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Introduction: 

Motivation 
Founded in 1947, H.F. Hauff Company Inc. of Yakima, Washington has been a nation-

wide manufacturer and distributor of specialized agricultural equipment. The company is 

constantly striving to provide quality, dependable products using innovative technological 

advancements and the highest engineering standards. The company’s president, Neil Hauff, 

is the driver behind this innovation. Neil’s efforts towards perfection and customer 

satisfaction are the motivation behind this project.   

 

Neil Hauff was approached by a Greek organic orchardist, Emmanuel Maniadakis. 

Emmanuel approached Neil with his Treelion D45-900 battery-powered pruner and he 

explained the issues he has with the current design.  

 

After operating for a long time, the linear actuator which provides cutting force becomes 

too hot for the operator to hold the housing surrounding the actuator, even when wearing 

gloves. The current reach of the pruner is also not sufficient. The single-finger trigger is 

difficult to operate when wearing gloves and causes discomfort on the operator’s finger 

after pruning for a long time. Emmanuel would prefer a 4 finger trigger (hand trigger) 

similar to the triggers found on pneumatic tools. With the current pruner, a cut is made by 

holding down the trigger until a cut is made and then letting go of the trigger. Emmanuel 

needs a cut to be made by only pressing the trigger once, momentarily.  

 

The new design will eliminate the heat issue with the current pruner actuator and housing. 

The new design will also have a longer reach. The single-finger trigger system will be 

replaced with a new trigger system that is more comfortable for the operator and easier to 

operate with gloves. For the new design, a cut will be made by pressing the trigger once, 

momentarily. However, Emmanuel is satisfied with the current power supply system, a 44 

V DC battery belt.  

 

Function Statement 
Function statement #1 applies to the new pruner design in its entirety. Function statement 

#2 applies to the Power system of the new pruner design.  

 

1. H.F. Hauff Pruner (Entire Pruner): 

- A device is needed which can cut branches all day without overheating.  
 

2. H.F. Hauff Pruner: Power System: 

- A device is needed that transmits cutting force to the pruner blade, when initiated by the 

operator. 

 

Requirements 
The bulleted list below contains the design requirements for the Hauff Pruner in its entirety. 

 

 The distance from the trigger to the end of the pruner blade must be no shorter than 

36” 

 After operating at a pruning rate of 250 1” diameter branches/ hour for 6 hours, all 

the pruner components must remain under 110° F.  

 The pruner must be able to cut at least a 1.5” diameter branch. 



 The trigger system must be a four-finger hand trigger. (as per customer) 

 The power supply must be a 44V DC battery belt. (as per customer) 

 The combined weight of the pruner must be no greater than 15 lbs.  

 The pruner center of mass must be within the first quarter of total pruner length 

(starting from handle end) 

 The total cost to manufacture the pruner can be no greater than $2,500. 

 The cut cycle time of each pruner cut can be no longer than 2s. (as per customer) 

 At any point on the pruner, the width can be no greater than 6 in. 

 The cutting cycle must be initiated by a single, momentary pull of the trigger, 

performed by the operator. (as per customer) 

 The pruner must be manufactured within a 9 week period.  

 

 

The bulleted list below contains the design requirements for the Hauff Pruner power 

system. 

 

 The power system must use a 44 V DC power supply (as per customer) 

 The power system must be able to supply a force to the pruner blade which can cut 

at minimum a 1.5” diameter branch. 

 The weight of all power system components must be no greater than 7 lbs. 

 The power system components must be able to fit inside 2” inner-diameter housing.  

 At least 50% of the power system components’ weight must be positioned directly 

over the trigger system for ergonomic balance.  

 When the power system is operating at a pruning rate of 250-1” diameter branches/ 

hour, the components must not exceed a temperature of 110 degrees F.  

 The pruner power system must provide at least 450 lbs. of force to the pruner blade. 

 The cutting power system must supply cutting force for 6 hours when pruning at a 

rate of 300 1” diameter branches/ hour. 

 After a cut is initiated by the operator, the cut cycle must be no longer than 2.0 

seconds. (as per customer) 

 The cut cycle must be initiated by a single, momentary pull of the trigger. (as per 

customer) 

 The trigger must be designed so 4 fingers are used to operate it. (Hand trigger) (as 

per customer) 

 The cost of all power system components must be no greater than $800. 

 

Engineering Merit 
 

It is most important that the new pruner design is ergonomic. This is going to be achieved 

through overall weight, balance (weight kept near the handle), and a re-designed trigger 

system. However, the new design must also adhere to the design requirements regarding 

power capability, operating temperature, and reach of the pruner. A formula that will be 

used to find a better cutting force mechanism is the equation for duty cycle rating, D.C. = 

(Tc / To) *100, where Tc = Time of cycle and To = time in between cycles. Finding the 

required duty cycle rating for the cutting force mechanism will help ensure the new power 

system doesn’t overheat during operation.  

 



Engineering merit is also present in the use of Stress equations: σ = Force/Area. These 

calculations for average shear and tensile stress in the power system components help 

establish dimensions and material which are optimal. Material selection must be 

appropriate for each component in order to meet requirements and to keep cost down. 

Engineering merit can also be found in the material  

 

Scope of Effort 
The main focus for the design of the Hauff pruner power system is its ability to provide 

necessary cutting force, cut cycle time, and consecutive cuts while maintaining a low 

operating temperature. The scope of effort also extends to the trigger system which must be 

a 4 finger hand trigger for ergonomic purposes. 

 

Success Criteria 
The success of the pruner power system depends on its ability to; remain below 110 

degrees F when operating at a pruning rate of 250 1”-diameter branches/hour and provide 

sufficient cutting force to the blade to cut a 1.5” diameter branch at minimum. However the 

success criteria of the pruner power system can also be defined by the following equation 

which incorporates all sections of the pruner design. 

 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝐿𝑒𝑣𝑒𝑙 =
(𝑡)∗(𝑇)∗(𝑃)∗(36 𝑖𝑛.  𝐿𝑒𝑛𝑔𝑡ℎ)

1.5 𝑖𝑛.  𝐵𝑟𝑎𝑛𝑐ℎ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 

 
“t” represents the time in seconds it takes for the pruner to complete one cut cycle. “T” 

represents the temperature of the housing surrounding the actuator/motor system after the 

maximum branch cut, 1.50 in. or the temperature of the housing after the pruner has cut 

250 1 in. diameter branches in one hour. The 36 in. length refers to the required length 

from the trigger to the end of the blade. “P” refers to the maximum load required to cut a 

branch. The equation incorporates design requirements. If P is greater than 600 lb., T is 

greater than 110°F, or t is greater than 2.0 seconds, the success level will exceed a level of 

146 s-°F-lb. Once this value has been exceeded, the pruner is not considered successful.  

Design and Analysis 

Approach: Proposed Solution 
As stated before, the main problem with the power system of the current pruner is the 

operating temperature. The linear actuator and housing surrounding the linear actuator 

become too hot for the operator’s hands. To fix this problem, the new pruner design must 

have a linear actuator which will not exceed a temperature of 110 degrees F when operating 

at a rate of 250 1” diameter branches/ hour for 6 hours. The selection of a more appropriate 

linear actuator is crucial to the success of the new design. 

 

In order for the cutting cycle to be initiated by a single push of the trigger, electrical 

switches must be positioned inside the housing to open the circuit and reverse the motion of 

the actuator. (See Figure 2-2)  

 

Design Description 
Figure 2-1(Also found in Appendix A1) below displays the basic components of the 

pruner power system in a conceptual sketch. The power supply is the 44 V battery belt. The 

linear actuator transmits cutting force to the blade through the linear motion of the driving 



rod. The linear actuator will retract to close the blade and move forward to open it. The 

cutting motion is initiated by the hand trigger. The circuitry required for the cutting cycle 

(i.e. limit switches) is not displayed in this sketch.  

 

Figure 2-1: Power System Concept Sketch 

 
 

The cutting cycle must be initiated by a single pull of the hand trigger. The blade of the 

pruner is open when the actuator is fully forward. When the actuator is at this position, the 

power circuit is open due to a switch. The single push of the hand trigger will close this 

circuit and retract the actuator, closing the blade. When actuator reaches the end of the 

retraction stroke, the polarity must be switched which will send the actuator back in a 

forward motion until the circuit is opened again. Appendix, A2 displays a conceptual 

sketch of the circuit switches.   

 

In order for cutting cycle to be initiated with a single, momentary pull of the trigger, the 

circuit shown in Figure 2-3 (Also found in Appendix, A3) must be used. This circuit 

includes a N.C. (Normally Closed) switch, the trigger momentary switch, and a latching 

3.P.D.T. (3 pole, double throw) switch. In the final design, a safety switch will also be 

included to ensure the cutting action can’t be initiated by accident. And finally, the trigger 

circuit will also need a function to back out of a cut.  

 

Benchmark 
The benchmark for the design of the pruner power system is the current power system 

found in Emmanuel’s Treelion D45-900 electric pruner. Figure 2-4 shows a picture of the 

Treelion pruner. This pruner is manufactured by Pellenc, a French agricultural company, 

and it costs $1950 USD. Figure 2-5 shows the linear actuator and linkage to driving rod 

found in the D45-900. The actuator is also manufactured, in-house, by Pellenc (Model #: 

69068-E). 

 

Figure 2-4: Treelion D45-900 Pruner 



 
 

Figure 2-5: Linear Actuator and Driving Linkage (D45-900) 

 
 

This a very valuable benchmark for the design process because the customer was mostly 

satisfied with the Treelion’s performance, aside from a few factors; overheating, 

ergonomics, and reach. Each member of the design team will use this benchmark as a guide 

for designing the optimized Hauff pruner.  

Performance Predictions 
The linear actuator of the new pruner design will have an average surface temperature of 70 

degrees F after pruning 250 1”-diameter branches in one hour. After going at this rate for 

six hours, the average surface temperature of the actuator will be 75 degrees. The actuator 

will be able to dissipate heat at a rate appropriate for the operation demands.  

 

A single cut cycle will be sufficient to cut a 1.5” diameter branch. The pruner blade won’t 

have to be backed out of the cut.  

 

At a rate of 250 1”-diameter branches/hour, the new pruner power system will provide 

cutting force to the blades for 6 hours.  

 

Description of Analyses 
First, an analysis will be performed to determine the appropriate duty cycle rating for the 

new design’s linear actuator. Selecting an actuator with a suitable duty cycle rating is 

important because this will ensure that the new pruner design will not overheat when under 

the expected operating conditions. The duty cycle rating is a required specification for the 

selection of a more appropriate actuator. Appendix A-5 shows the calculation for the duty 

cycle rating of the linear actuator. 

 

Then, an analysis will be performed to determine the maximum linear force that is required 

from the actuator. The moment at which the most linear force is required for cutting a 1.5” 

diameter branch will be analyzed statically. The static analysis will take into account the 

geometry and angles in the blade linkage and blade. From this, the maximum linear force 

needed will be determined. This is a design parameter for the selection of a more 

appropriate actuator. 

 

After the maximum required linear force is determined and an appropriate actuator is 

selected, an analysis on the actuator will be performed. This analysis is to determine the 



maximum current that will be present in the circuit when the actuator is delivering force to 

the blade during the 1.5”diameter branch cut. This is a design parameter for the selection of 

circuit components. 

 

 

Scope of Testing and Evaluation 
In order to test the new pruner design, a location with fruit trees must be used. During the 

pruner testing, a thermocouple must be used to observe the temperature of the pruner 

housing and linear actuator. During this testing phase, it must also be observed how 

efficient the cutting cycle is, with regard to battery life.  

Analysis 
Listed below are the different methods of analysis which are used to design the optimized 

pruner. 

 

Tree Branch Testing: Round 1 

To establish how much force is needed to cut various sizes of branches and where, during 

the cut, the most force is required, a test was performed using the Tinius Olsen tensile 

tester. Appendix A6 shows the testing device assembly that was manufactured for the first 

round of testing. Appendix A7 shows the force vs. distance of travel through the branch. 

The main problem with this test was the simulated cutting action. The blade was brought 

directly down on the branch by the tensile tester, resulting in more crushing than cutting. 

This also resulted in a very high maximum cutting force, about 4,000 lb. (Appendix A7). 

In order to more accurately simulate the shearing action of the pruner blade/anvil better, a 

guillotine style cutting action will have to be utilized.  

 

Tree Branch Testing: Round 2 

The second round of testing resulted in a much more accurate value for required cutting 

force. Appendix A8 shows a picture of the apparatus used for the second round of testing. 

The blade and anvil were taken from a pair of 32-inch Fiskars bypass loppers. The blade 

and anvil used on Fiskars were highly praised by the customer for their effectiveness. 

Therefore, the Fiskars blade and anvil geometry have been adopted into our design. The 

test data determined the force that was required at the end of the 2.50 inch moment arm, 

500 lb., to cut a 1.50 inch branch. The test data for the Testing: Round 2 is found in 

Appendix A9.  

 

 

Blade Orientation during Cut: 

The geometry of the blade/anvil in Testing: Round 2 is known. Also, it is known how fast 

the Tinius Olsen tensile test was moving downward, 4.5 in/s. This linear, downward 

velocity was then converted to (in/s), 0.075 in/s. It is determined from the test data that, 

during the cut of 1.50 inch-diameter Cherry branch, that the maximum cutting force was 

needed when the Tinius Olsen had moved 1.8 inches from the start of the cut. The 

calculation in Appendix A10 shows how it was determined that the maximum force during 

this cut was needed 24 seconds into the cut. After this value was determined, the video 

footage of the 1.50 in Cherry branch cut was reviewed. After 24 seconds into the test cut, 

the video was paused and the blade orientation during maximum required cutting force was 

documented. (See Appendix A10) 

 

Average Cutting Point Force: 



After the Fiskars blade/anvil orientation during maximum required force on a 1.50 inch 

diameter branch was determined, the approximate cutting point of the blade could be 

located from the visual analysis of the blade/anvil orientation. From this visual analysis, it 

was determined that the average cutting point on the Fiskars blade during maximum 

required force was 1.50 inches away from the pivoting cutting joint. Also the distance from 

the applied force to the cutting joint was observed to be 2.3125 inches. Now that the 

perpendicular distances were known, it could be determined that the reaction of the branch 

on the blade during this maximum force moment is 770.83 lb. (See Appendix A11) 

 

Duty Cycle:  

Establishing an appropriate duty cycle for the cutting force device is a helpful and practical 

parameter for selecting a more appropriate linear actuator for power delivery to the pruner 

blade. (If that is the best option for the cutting force device) Appendix A5 shows a 

calculation which establishes a duty cycle value for the pruner cutting force device. It is 

assumed that the time between cutting cycles would be an average of 8 seconds. Therefore, 

if a linear actuator is to be used, it must have a duty cycle rating of 20% or greater.  

 

Mechanical Power Output: 

Even though a required linear force is not yet determined, the method that is used to find 

the required mechanical power output is shown on Appendix A6. If the required linear 

force is assumed to be 450 lbs., then the required power output is determined to be 50.9 

Watts. 

 

Clevis Pin Sizing: 

Appendix A12 shows the analysis that was performed in order to determine the minimum 

diameter of the clevis pin which is to be used to transfer force from the linkages to actuator 

connection. From the analysis, it is determined that minimum diameter the AISI 1020 pin 

should be to withstand maximum cutting force is 0.152 inches. Therefore, the pins that will 

be used in the assembly are ¼” in diameter. 

 

Sizing the Carbon Fiber Driving Rod for Tensile Strength: 

 Appendix A13 shows the calculation which determines the required wall thickness of the 

aluminum or carbon fiber tube which will be used as the driving rod in the assembly. From 

the calculation, it is determined that the wall thickness of a carbon fiber tube must be at 

least 0.0073 inches to withstand the cutting tensile force, 600 lbs. It is also determined that 

an aluminum tube must have a wall thickness of 0.1495 inches in order to withstand the 

tensile force. 

 

Sizing the Width of the Driving Rod Linkage Width: 

Appendix A16 shows the calculation that was done to determine the required width for the 

driving rod linkage (Drawing #12, Appendix B12). The thickness of the linkage 0.138” is a 

fixed dimensions to ensure the driving rod assembly still fits inside the housing. The size of 

the pin holes in the linkage are also fixed because it was determined that 0.25” was an 

appropriate diameter of the power system clevis pins. (See calculation in Appendix A12). 

It is determined that the width of the driving rod linkage must be at least 0.738” when made 

out of SAE 1020 Cold-drawn steel. Therefore, the final design width dimension of the 

linkage is ¾”.  

 

Driving Rod Buckling Analysis: 

Appendix A17 show the calculation which determines that the dimensions established for 

the driving rod in tension (calculation in Appendix A13) still give the driving rod a 



buckling load of 2,461 lb. This value is much higher than the rod would ever experience 

with maximum compressive load it receives from the actuator. Therefore, the rod would 

not buckle if the blade were to become stuck and could not open.  

 

 

Approach: Proposed Sequence 
The numbered list below explains the proposed sequence of analyses for pruner power 

system. 

 

1. The Tinius Olsen tensile tester will be used to determine the maximum force 

required during the cut of a 1.5” diameter branch. This test will also establish the 

point of the cut where the most force is required. 

2. After the force required at the branch is determined, the department responsible for 

manufacturing the blades (Daniel Gibson) will perform a static analysis of the blade 

geometry during this point of the cut. From the analysis, it will be determined how 

much linear force is needed from the actuator.  

3. After the required maximum linear force is established, this value and other 

parameters will be used to select a more appropriate actuator. The other 

specifications which will be considered are; stroke length, linear stroke velocity, 

amperage and power draw, duty cycle rating (See Appendix A4), maximum 

push/pull force, power supply voltage, and geometric dimensions. 

4. After the appropriate actuator is selected, appropriate circuit components will also 

be selected which can handle the amperage of actuator operation. 

5. Finally, the driving rod material will selected with the following specifications in 

mind; weight, material tensile strength (cutting action puts driving rod in tension 

 

Device Shape: 
The customer, Emmanuel Maniadakis, requested that the trigger system be a hand trigger. 

He wants to the trigger for the pruner design to be similar to the triggers found on 

pneumatic hand tools. He has also requested that the pruner be at least 3 feet long (from 

trigger to blade end).  

Device Assembly, Attachments 
The Makita XDT08 has been chosen as the most appropriate impact driver motor for the 

team’s application and here’s why: 

 

- The brushless DC motor offers unparalleled efficiency and low maintenance in 

comparison to other brushed DC motors. 

- The XDT08 is capable of producing 1420 in*lb of torque under normal operation. 

This is sufficient for the team’s application 

- The XDT08 is capable at running at 2500 RPM under normal operation. This is a 

sufficient rotational speed in order to achieve the desired cycle time. 

- The XDT08 weighs only 2 pounds. This is an ideal weight for the motor system.  

Tolerances, Kinematic, Ergonomic, etc. 
All components of the optimized pruner power system, excluding the purchased actuator, 

contain tolerances on all dimensions. In compliance with A.N.S.I. Y14.5-2009 drawing 

standards, a documented Solidworks drawing of each power system component has been 

constructed (See Appendix B). In these drawings, dimensions containing decimal values 

with 2 decimal places have a tolerance of ±0.030 inches. Drawing dimensions containing 



decimal values with 3 decimal places have a tolerance of ±0.005 inches. Tolerance stacking 

is a potential issue regarding the dimensions of the driving rod linkage and the connecting 

pins. Stacked tolerances for these components could cause the actuator shaft to become 

misaligned with the driving rod when it is rigidly housed.  

 

The linear actuator for the optimized design produces a linear force, resulting in motion. 

Therefore, the kinematics of the actuator shaft motion must be discussed. In order to reach 

the optimal cycle time, the actuator must have linear velocity of 0.75 in/s during operation. 

The actuator retracts when providing cutting force. During the retraction, the actuator 

experiences the highest force in tension. When the actuator extends and returns the blade to 

the open position, the actuator is pulling, causing the power system components to be in 

compression. 

 

Ergonomics is one of the most important factors for the pruner design. In order to comply 

with ergonomic standards for the design, multiple features are included. The trigger system 

must be a four-finger hand trigger to decrease the strain that a single-finger trigger places 

on the index finger of the operator. Also, the center of mass must be considered in the 

construction to reduce operator strain. One the design requirements for the entire pruner is 

to keep the center of mass within the first quarter of the total pruner length.  

 

 

Technical Risk Analysis, Failure Mode Analyses, Safety Factors, Operation 
Limits 
The optimized pruner power system design uses a safety factor of 2 for establishing the 

diameter of the pins used to transmit power. The calculation in Appendix A12 shows how 

this safety factor was used to establish this design parameter. The required pin diameter for 

safe power transmission in the pruner has been established to be ¼”.  

Methods and Construction 

Construction 
The power system of the pruner will now be entirely manufactured and assembled in the 

Hogue machine shop. The ball screw must be modified for the application. The ball nut 

guide will be a rapid prototype part. The hex adapter will be turned, drilled, and bored on 

the lathe. The aluminum thrust plates which surround the needle thrust bearing will be 

laser-cut in the Hogue facilities. The aluminum plate which screw to the ball nut will be 

manufacture with the Bridgeport milling machine. The driving rod is now welded to the 

aluminum plate on the ball nut. And finally, the aluminum pin which connects to the blade 

linkage will be first manufactured using the lathe and the milling machine. 

Description 
The most recent design of the pruner power system is made up of a Makita Impact Driver 

(Model #: XDT08) (See Appendix B5), an hex adapter (See Appendix A9) which adapts 

the hex drive system at the end of the Makita into a torque transmitter for a ball lead screw 

(See Appendix A6). The ball screw drives a ball nut (See Appendix A10) forwards and 

backwards in a linear motion in the ball nut guide (See Appendix A14). An aluminum 

weld plate (See Appendix A11) is now attached to the ball nut through tapped holes added 

through the ball nut modification process. This weld plate is attached to the ball nut 

through fasteners to enable the aluminum driving rod (See Appendix A12) to be welded to 



the top of the ball nut assembly. The linkage pin connector (See Appendix A13) is has an 

interference-adhesive fit with opposite end of the driving rod which is used to connect to 

the linkage of the cutting system. In order to keep thrust forces away from the motor and 

place them in the central housing tube, a thrust bearing (See Appendix A8) and two 

aluminum thrust plates (See Appendix A7) are press fit into the central housing tube to 

capture the thrust load created by the ball screw. 

Drawing Tree, Drawing ID’s 
 

Appendix B15 displays the Drawing tree of the Hauff Pruner Components. All component 

which lead with the letter “A” in their drawing designation are components pertaining to 

the Power system of the pruner design.  

Parts list and labels 
 

Appendix C1 contains the parts list for the Hauff pruner components. Included in the parts 

list is quantity and price of each pruner component which will have to be purchased. The 

parts which are required to be purchased are a ball screw and ball nut from McMaster-Carr. 

Aluminum round stock, plate, and round tube from OnlineMetals.com And finally, the 

Makita Impact Driver, Dual 5 Ah batteries, and Makita dual-port charging pad will have to 

be purchased from Home Depot.  

Manufacturing issues 
Many manufacturing issues have come to the attention of the pruner team as we have 

moved forward. During the second meeting with the customer for our fall quarter 

manufacturing meeting, it was determined that the current pruner design was entirely 

impractical and heavy. The customer set the pruner team on a redesign track. This is 

problematic for the manufacturing process because it has placed an intense time constraint 

on the project. However, with the manufacturing process being completed a little each 

week, it should be able to be finished by the end of winter quarter.  

 

After the weight problem was addressed with a first round of re-designing, the problem of 

required linear force was addressed by optimizing the cutting system of the pruner in order 

to achieve the maximum mechanical advantage necessary during the maximum branch cut. 

 

However, after the pruner had been optimized for mechanical advantage the H.F. Hauff 

sales department determined that the look of the optimized pruner was not very marketable. 

This resulted in another round of redesigning where the team has been dialing back the 

mechanical optimization in order to achieve a more consumer friendly look to the product.  

 

Another manufacturing issue for the pruner team has been delivery times for necessary 

components. Many required components for the manufacturing process are taking much 

longer to arrive than we had previously thought they would. This has been an issue because 

many measurements and technical aspects of these components need to be researched in 

order to mover the manufacturing process forward.  

 

Now that the Redesign process had completed, the pruner team could move forward with 

manufacturing in Week 8 of Winter quarter. The following issues listed below became 

apparent as the manufacturing process moved forward. 

 

- When manufacturing the aluminum driving rod, it was decided that the aluminum 

ball nut adapter which matched the 15/16-16 female threads on the ball nut would 



be welded on to the aluminum driving rod. Due to unforeseen expansion and 

stresses introduced through welding, the driving rod seems not to share the same 

line of action as the ball screw. This has caused excess friction in the power system. 

- The runout cause by the driving rod made it where the aluminum thrust plates 

which are used to be another source of excess friction within the system. Even with 

the clearance between the ball screw and the trust plates, the ball screw still rubs on 

the ID of the plates.  

- The initial troubleshooting testing of the pruner brought another issue to the team. 

The team did not account for the bending that would occur in the blade housing 

when the blade and anvil separated during a large cut. After cutting the 4
th

 ¾” 

branch for testing, the blade housing bent sideways and support material had to be 

welded on to the housing.  

- Due to time constraints, the team was not able to manufacture the Makita housing 

halves out of aluminum on the CNC mill. However, the pieces were made through a 

rapid prototype process. The analysis of the new housing material is still being 

completed. However, for the initial troubleshooting testing the housing halves did 

not seem to deform, deflect, or crack during operation. During spring quarter, the 

aluminum housing halves are going to be manufactured with aluminum on the CNC 

mill at the Hogue machine shop. 

- Since the thrust plates caused excess friction within the power system, the ID and 

OD of the thrust plates was filed down to allow for an easier fit and allowance for 

runout.  

- The screws which fasten the front housing of the Makita unit were originally going 

to be removed to allow longer #8-18 screws to be inserted from the front of the 

Makita housing which would hold the Makita in line with the action of pruner. 

However it was not considered that front housing for the Makita unit would still 

need to be firmly bolted down and the long screws would not accomplish this. To 

fix this, the team only used 2 of the long screw to hold to pruner in line. The other 

two screws kept the front Makita unit housing fastened down on the unit.  

- The ball nut guide pieces were installed inside the tube using an EX 375 epoxy. 

However, the surface finish of the inside of the tube was not appropriate for the 

epoxy to get inside the surface imperfections. The guides eventually fell out. To fix 

this the inside of the tube was honed out using a honing kit and a DP 420 resin was 

used to adhere the guides inside the tube instead of the previously used epoxy. This 

solved the problem and the resin has worked well. 

- Initially there were two ball nut guide pieces on opposing sides of the ball nut. 

However due to runout and line-of-action issues in the other parts of the pruner 

power system, only one could be used. Only using one of the guides greatly reduces 

friction inside the pruner and the function of the ball nut guides was still 

accomplished.  

- The tolerances of the 3D printed material were not considered in the design of the 

ball nut guides. When printed and cooled, the ball nut guide pieces were .015 wider 

than they were specified in the design process. This caused a fit which was too tight 

inside the pruner. In order to achieve a more appropriate sliding-clearance fit in the 

ball nut guides, the flat face which mates with the ball nut had to be filed down 

accordingly.  

- Since the trust plates were filed down to allow for the runout and line-of-action 

problems inside the pruner, they did not capture all the thrust on the ball nut. This 

caused the 7/16” hex nut driver which was installed on the back of the ball nut to 

become stuck inside the mounting head of the Makita unit. This issue is still being 

researched and solved. 



- Now that thrust plates did not capture the intended amount of thrust in the ball 

screw, the 7/16” nut driver which was mated with the male 7/16” hex on the ball 

screw would not stay in. When the screw would experience a thrust load during 

operation it would slip out of the nut driver. To fix this, a hole was drilled on 

opposing sides of the nut driver and a spot weld was placed in the hole to keep the 

nut driver attached.  

 

Testing Method 

Introduction 
The Power system of the pruner must be tested thoroughly to ensure that the customer, Mr. 

Maniadakis, is satisfied with performance and design. The testing of the power system will 

be focused around two factors; the system’s ability to cut a 1.5” branch (maximum branch 

cutting), and the system’s ability to cut at rate of 250 1 inch diameter branches per hour 

without exceeding an operating temperature of 110° F (endurance branch cutting). 

However, this maximum operating temperature which was established in the requirements 

for the power system has changed as the design process has moved forward. The housing 

department (Erich Heilman) has made a design decision to have the motor of the linear 

actuator be placed behind the operator’s hand. This placement of the actuator is different 

from the system found in the Treelion where the actuator was positioned directly under the 

operator’s hand. The excessive heat caused Mr. Maniadakis discomfort and was a primary 

problem with the Treelion design.  Since the 110° F operating temperature was established 

for the comfort of the user, it may be acceptable for the linear actuator to exceed the 

maximum temperature due to the position of the actuator motor in the new design. 

Method/Approach 
 

The testing of the pruner power system is focused around two aspects of power system 

performance; maximum branch diameter cutting and endurance branch cutting. The 

materials which will be needed are listed below; 

 

Testing Materials: 

1. Thermocouple  

2. Stopwatch 

3. Spreadsheet Software (Microsoft Excel) 

 

Both of the tests which will be performed for the pruner power system can be performed in 

the senior project room of Hogue Technology building at Central Washington University.  

Testing Procedures 
 

1. Maximum Branch Cutting: 

To ensure the power system is able to transmit enough power to the cutting system 

of the pruner to cut the 1.5” maximum branch diameter, a test must be performed. 

For this test, branch samples will be used which have an approximate diameter of 

1.50”. Since the pruner is expected to be used in an orchard environment, the test 

samples will include 5 apple branches (wet and dry) and 5 cherry branches (wet and 

dry). The test branches will also include a 1 spruce branch and 1 other evergreen 

branch for test sample variety. During the maximum branch test cuts, the cycle time 



of a cut when cutting the maximum branch size will be measured, using a 

stopwatch. It is expected that the cycle time of a cut will increase when cutting a 

maximum size branch. However, the cycle time of the cut must be no longer than 

the required 2.0 seconds. The temperature of the power system when cutting 

maximum diameter branches will also be measured using a thermocouple. 

 

2. Endurance Branch Cutting : 

 

To ensure that the power system of the pruner can remain under 110° F when 

cutting at a rate of 250 1” diameter branches/ hour, a test must be performed. It is 

impractical to attempt to obtain 250 green (wet) branches for the sake of testing the 

power system temperature. However it is practical to obtain 25 green branches for 

the testing process. A thermocouple will be attached to the actuator of the power 

system to record how the temperature of the system changes when consecutively 

cutting 25 1 inch branches of the different varieties (apple, cherry, and spruce). The 

data from this test can be analyzed using Microsoft Excel. A predictive plot can be 

made from to test data to determine what the power system temperature would be 

after 250 consecutive cuts. 

 

Deliverables: 
 

The testing of pruner power system will take place during the first week of spring quarter 

2016. This testing will follow the construction of the pruner prototype. The following 

weeks of spring quarter will be allotted for the testing of the other divisions of the pruner 

projects, housing and ergonomics, and the cutting system. The test data for all sections will 

be documented in the Appendix. 

 

Budget/Schedule/Project Management 
 

Proposed Budget 
 

In the design requirements for the pruner power system, it is established that the total cost 

of all components and construction should be no more than $700. A summarized table of 

the quantity and cost of all pruner system components can be found in Appendix C1. It can 

be seen in the appendix that the power system components actually cost $162 less than the 

previously proposed budget for the power system. This is mainly due to the selection of a 

new drive system, Makita, which has been a better choice in every single, including cost. 

Although the redesign process has placed a major time constraint on the pruner team, it has 

spurred further optimization and practicality for the pruner design.  

 

Proposed Schedule 
 

A high level Gantt chart which establishes the proposed schedule of the pruner project is 

included in Appendix E1. The primary milestones included in the chart are listed below: 

 

1. Fall Quarter Proposal Finished – 12/9/15 



2. Proposal Revisions – 12/18/15 

3. Prototype Construction Complete – 3/15/15 

4. Testing/Evaluation – 6/8/15 

 

The project should take 223 hours in total. This total is calculated from the Gantt chart 

displayed in the Appendix K1 

Project Management 
 

Human Resources: 

- The construction of the pruner power system relies heavily on the cooperation of 

the Hogue Technology Building’s lab technician, Matt Burvee. Mr. Burvee’s 

assistance and expertise in the machine shop is extremely valuable to the progress 

of construction. The cooperation of our team with Mr. Burvee will ensure that we 

have frequent access to the machine shop and will be prioritized above other groups 

with regards to effort 

 

- Professors Greg Lyman and Christopher Hobbs are crucial resources for the 

construction of the circuit which will be required for the cutting cycle to operate 

correctly. They will consult the power system division of the pruner team to ensure 

that appropriate circuit components are purchased for the pruner trigger circuit. 

 

- Professor Johnson is a crucial resource for assistance with stress and failure 

analysis. His expertise will help ensure the pruner team does not overlook any 

aspects of design, with regard to strength and stress analysis. 

 

- Professor Pringle is another important resource for information and guidance with 

design decisions and analysis. Professor Pringle’s expertise will help the pruner 

team in the production of a successful product.  

 

 

Physical Resources: 

- The machine shop of Hogue Technology Building 

- The materials lab of Hogue Technology Building 

- The Construction Management Testing Lab 

- The foundry of Hogue Technology Building 

 

Software Resources: 

- Multisim circuit builder 

- Dassault Solidworks 

- Microsoft Excel 

 

Financial Resource: 

- Neil Hauff, president of H.F. Hauff Co. Inc.: Neil is willing to pay for justified 

design decisions and components. At the beginning of winter quarter, the pruner 

team will meet with Neil Hauff to discuss what components will require funding. 

Design decisions will be justified to Mr. Hauff through specification sheets, 

empirical testing data, and analysis performed by the pruner team.   



Discussion 
 

Design Evolution/Performance Creep 
 

As the design process moves into the prototype construction phase, aspects of the original 

proposed design may have to be changed to accommodate unforeseen factors. As the 

process moves forward, the design changes and evolution will be recorded.   

 

Many aspects of the original design finalized at the end of the end of fall quarter have been 

changed. A few changed are listed below: 

 

1. Instead of purchasing a linear actuator, the team is now using a Makita impact 

driver as the primary source of torque for a custom-made actuator. 

2. Instead of using the Pellenc battery back which was used for the Treelion, the 

pruner team will now utilized the dual-port charging pad for the Makita LXT series. 

This pad will be converted into a mobile battery pack with two 5 Ah Makita 

batteries hooked together in parallel.  

3. Instead of have the main driver be at the far end the Makita is now located in the 

approximate middle of the pruner and a “double-pistol grip” handle system will 

now be used as per request of the financier.  

 

Project Risk Analysis 
 

One risk involved with the current design process is the potential for the final design to not 

be easily mass-produced. The KV2l linear actuator may not easily purchased in mass 

quantities for a decent price and it may not be feasible when the pruner design goes to 

production level.  

 

Another risk of the current pruner design is the possibility that a battery system may have 

to be purchased/produced. The battery system to be used in the current design is the 

Treelion 44VDC battery belt design by Pellenc, the parent company of Treelion. A new 

battery system may result in changes in design due to supply voltage, battery weight, 

battery life of the different battery system. 

 

Successful  
 

If the prototype of the pruner proves to be a successful design, with regard to design 

requirements, testing results, and success criteria, the design may be acknowledged by Neil 

Hauff to be a product to be mass-produced. In this next phase of design, the ascetics and 

features of the pruner design would be improved and re-designed.  

 

Next Phase 
 

The next phase of the design process is to construct a working prototype of the pruner 

power system. After the power system is manufactured, it will then be assembled with the 

cutting system components and the housing components constructed by the other members 

of the pruner design team. 



Conclusion 
 

The problems with the original Treelion pruner used by Emmanuel Maniadakis can be 

summarized in the list below: 

 

 The device is too hot to hold on to. 

 The trigger system is uncomfortable. 

 The “hold trigger to keep cutting” feature of the Treelion is not comfortable or 

practical. 

 It’s not long enough. 

 

The new design of the Hauff pruner will solve these problems involved with pruner use and 

performance summarized in the list below: 

 

 The pruner actuator/motor and surrounding housing will not exceed a temperature 

of 110°F after cutting a maximum branch size of 1.50 in. or cutting 250 1 in. 

diameter branches/hour for 1 hour.  

 The “single-finger” trigger system that was not comfortable for the user before is 

replaced with a 4-finger hand trigger in the new design. 

 The trigger system will now require only a momentary pull which initiates the 

cutting cycle of the pruner.  

 The pruner design will has a length of 36 in. from the top of the trigger to end of the 

blade.  

 

  



 

Appendix A – Analyses  
 

A1: Design Concept 

 
 

 

 

 

A2: Trigger Concept 

 
 



A3: Trigger Circuit Drawing 

 
 

 

A4: Duty Cycle Calculation 

 
 



A5: Mechanical Power Output 

 
 

A6: Test Blade Assembly (Testing Round #1) 

 



 

A7: Cutting Test Data (Testing Round #1) 
The graphs displayed below show the force required during the cut of various sizes of plum 

branches.  

(1.75” diameter branch #1) 

 
(1.75” diameter branch #2) 



 
 

(1.75” diameter branch #3) 

 
 

(1.25” diameter branch) 



 
 

 

 

(1.8” diameter branch) 

 
 

 

 

 

 

 



 

 

 

  

  



A8: Tree Branch Testing (Round #2) Testing Apparatus 

 
  



A9: Tree Branch Testing (Round #2) Data 
(Test #1 - Cherry – 1.50 in Diameter) 

 
(Test #2 – Cherry – 1.34 in Diameter)

 
  

(Test 3 – Cherry – 1.52 in. Diameter) 



 
(Test 4 – Dead Apple Branch – 1.30 in. Diameter) 

 
 

 

(Test 5 – Spruce – 1.28 in. Diameter) 



 
(Test 6 – Knot-Ridden Cherry – 1.60 in. Diameter) 

 
 



A10: Maximum Required Force Blade Orientation Calculation 

 
 

 

  

  



A11: Average Cutting Point Force Calculation 

 
 

 

FA 
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A12: Actuator Pin Sizing Calculation 

 
  



A13: Aluminum vs. Carbon Fiber Driving Rod 

 
  



A14: Carbon Fiber Driving Rod Tension Sizing 

 
  



A15: Collar Stress Concentration Calculation 

 

 
  



A16: Driving Rod Linkage Width Sizing 

 
  



A17:  Driving Rod Buckling Analysis 

 
  



A18: Cutting Point Force Calculation 

  



A19: Shear Pin Sizing for Cutting System Pin 

 
 
  



Appendix B – Power System Drawings 
 

B1:  Drawing A1 – Power System Assembly 

 
 

B2: Drawing A2: Ball Screw Assembly 

 
 

  



B3: Drawing A3: Ball Nut Assembly 

 
 

 

  



B4: Drawing A4: Makita Dual-Port Charger 
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Appendix C – Parts List 
 

C1: Parts and Price List 

 
 

Appendix D – Budget 

 

Appendix E – Schedule 
 



E1: Gantt chart: Project Schedule 

 

 



 
 

 

Appendix F – Expertise and Resources 
 

Neil Hauff – President, H.F. Hauff Co. Inc. 

Dr. Craig Johnson – Central Washington University 

Professor Charles Pringle – Central Washington University 

Appendix G – Testing Data 
 

This Appendix will contain the testing data following the construction of the prototype. 

Appendix H – Evaluation Sheet 
This appendix will contain evaluation sheet of pruner. 

Appendix I – Testing Report 
Introduction:  

Requirements:  
 

The Requirement of the power system of the pruner which will be tested are listed 

below:  

- Pruner power system must be able to make 250 7/8”- 1” diameter branch cuts 
in 1 hour  

- Pruner power system must supply enough power to cut through a 1.5” 
diameter branch. 

- The power system must supply cutting force for 1,000 7/8” to 1” diameter 
branch cuts 

- Weight: under 7 lb. 
- Cutting cycle should be no longer than 2 seconds.  

 

Parameters of Interest: 
 
      The parameters of interest for the power system of the pruner are listed below: 

- Battery Life (Number of cuts per charge) 
- Weight 



- Max.  Branch Cut 
 

Predicted Performance: 
  

Cut cycle time: 

-  Using the specifications of the linear motion ball screw and the Makita XDT08, it 

was predicted that the total open-close-open cycle of the pruner cutting blade would 

be 1.67 seconds. To determine this, the resulting linear operating speed of the 

driving rod had to be determined. The  calculation for this is shown below: 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑆𝑝𝑒𝑒𝑑 =
(𝑅𝑃𝑀 ∗ 𝐿𝑒𝑎𝑑 (

𝑖𝑛

𝑟𝑒𝑣
))

60

= ((800 𝑅𝑃𝑀) ∗ (. 203
𝑖𝑛

𝑟𝑒𝑣
)) ∗

 1 𝑚𝑖𝑛.

60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 2.71 𝑖𝑛./𝑠 

 

Now that the linear speed of the driving rod during an operational rotational speed 

of 1,000 RPM was determined. The cut cycle time could be found be found by 

multiplying the required stroke length (2.23 in.) by 2 to account for the forward and 

backward motion of the driving rod. Then, the total travel distance was divided by 

the linear operating speed of the driving rod to determine the predicted cycle time, 

1.67 seconds. (See Testing Appendix 1 for Excel calculations) 

 

Weight:  

- The predicted weight of all power system components was predicted using the 

material mass features of Dassault Solidworks modeling software. The weight of 

the Makita XDXT08 impact driver unit was found in the product specifications, as 

was the weight of the battery, linear motion ball screw, and ball nut. The 3D models 

of these components were altered so they could represent the true weight of the 

components in the 3D environments. The total predicted weight of all the power 

system components was 5.87 lb. 

 

Quantity of Branch Cut per Hour:  

- The number of branches which could be cut in 1 hour was determined in a 

simplified fashion, using the predicted value of time for 10 branch cuts. This time 

value for 10 branch cuts was determined to be 52.7 s. This was determined by 

multiplying the cut cycle time by 10 and adding 4 seconds in between each cut to 

accommodate real-world conditions.  

 

Thrust Output of Ball Screw System:  

- The thrust output of the ball screw system is predicted to follow the relationship 

specified in the following equation:  

𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑇𝑜𝑟𝑞𝑢𝑒 =
𝐿𝑒𝑎𝑑 𝑜𝑓 𝑆𝑐𝑟𝑒𝑤 ∗ 𝑇ℎ𝑟𝑢𝑠𝑡 𝑙𝑜𝑎𝑑 ∗ 𝑆𝑐𝑟𝑒𝑤 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

2 ∗ 𝜋
 

The testing procedure explained below provides a predicted value as an example. 

 

Data Acquisition: 
 

Cut Cycle Time:  

- The data for the cut cycle time will acquired using a stop watch to record the cut 



cycle time. 

Weight: 

- The weight of the power system has been acquired using a scale. 

Branch Cut Rate: 

- The rate of cut branches data is acquired by using a stop watch to time how long it 

takes to cut 10 branches. 

Maximum Branch Cut: 

- The maximum branch cut data is acquired through observing the operation of the 

unit during a maximum branch cut. 

Thrust Output: 

- The data for the thrust output of the pruner will be determined through the usage of 

point-load cell and load cell unit.  

 

Schedule: 
The attached Gantt chart lists the dates and predicted times for the different tests: 

 

- Cut Cycle Time : See “Complete Pruner Testing” ID: 61 

- Weight: See “Power System Testing” ID: 62 

- Branch Cut Rate: See “Complete Pruner Testing ID:61 

- Maximum Branch Cut: See “Complete Pruner Testing ID:61 

- Thrust Output: See “Power System Testing” ID: 62 

 
Method/Approach: 
 
The methods used to acquire, record, and report the testing data are explained 
below: 
 

Resources: 
The primary resources for testing are listed below: 

- Matt Burvee: Mr. Burvee provided assistance with testing setup and manufacturing 

of testing components for the thrust output testing procedure. 

- Hogue Technology Building Machine Shop: Tools, materials, and equipment were 

used in the machine shop to construct the setup for the thrust output testing.  

- Greg Lyman and the EET Department: With the assistance of Greg Lyman and the 

EET department, it was possible to acquire load data from the Point-load cell unit.  

- D.J. Gibson: Mr. Gibson provided assistance with data collection for the maximum 

branch cut, branch cut rate, and weight testing.  

- Erich Heilman: Mr. Heilman provided assistance with data collection in the 

maximum branch cut and branch cut rate testing.  

 

Data Capture/Doc/Processing 
 

The methods for data capture, documentation, and processing are listed below: 

 

Branch Cut Rate: This testing was accomplished by recording the time it takes to cut 

down the length of a single branch 10 times. The diameter of the branch ranged from 7/8” 

to 1”. A stopwatch was used to record the time as 10 cuts were taken from the single 

branch. The time started at the beginning of the first cut and ended at the end of the 10
th

 



cut. The recorded times were then processes in Microsoft Excel to determine the average 

cutting time for the three trials. (See Testing Appendix 2 for Excel Calculations) 

 

Weight: The weight of the power system components was observed and recorded using a 

soil scale from the Construction Management department. The total weight of the power 

system components was recorded in Excel. 

 

Cutting Cycle Time: The time it takes to complete a cutting cycle with the pruner power 

system was recorded using a stopwatch. The stopwatch would start when the blade of the 

pruner was in the full open position and end after the cut had been completed and the blade 

returned to the open position. Three trials were performed. The average cutting time of the 

three trials was recorded as the testing value. 

 

Thrust Output: The thrust output of the ball screw system was initially acquired through 

the usage of a point-load cell. The load value on the load cell unit was recorded on paper 

for the five testing trials. Microsoft Excel was used to find the average of the 5 testing 

trials.  

 

Maximum Branch Cut: The data for the maximum branch cut test was acquire through 

visual observation and recorded on paper and in the testing report.  

  

Test Procedure Overview 
 

The overview for the 5 testing procedures are listed below: 

 
Branch Cut Rate: The branch cut rate testing is completed by recording the time it takes 

to make 10 7/8” to 1” diameter branch cuts. This test includes 3 testing trials.  

 

Weight: The weight test is completed by recording the weight of all pruner power system 

components when placed on a scale.  

 

Cutting Cycle Time: The cutting cycle time test is completed by recording the time it 

takes for the power system of the pruner to complete 1 cutting cycle (blade open→ blade 

close→ blade re-open). This test includes 3 testing trials. 

 

Thrust Output: The thrust output test of the ball screw system is completed by measuring 

and recording the linear thrust output of a known input torque on the ball nut, using a point-

load cell. This test includes 5 testing trials.  

 

Maximum Branch Cut: This maximum branch cut test is completed by observing and 

recording whether or not the power system of the pruner is successful in providing enough 

linear output torque to cut a 1.5” diameter branch.  

 

Operational Limitations 
 

The operational limits for the testing procedures are listed below: 

 

Branch Cut Rate: One operational limit of the branch cut rate test is time. There is not 

enough time allotted in the testing schedule to actually try and cut 250 branches in 1 hour. 



The stopwatch used in the cycle time test is only able to record to the nearest .001 second. 

However this is satisfactory for this test. 

 

Cutting Cycle Time: The stopwatch used in the cycle time test is only able to record to the 

nearest .001 second. However this is satisfactory for this test.  

 

Thrust Output: The accuracy of the thrust output test is limited by the data tolerance of 

the point-load cell unit. This tolerance is ± .05 lb.  

 

Maximum Branch Cut: The power system components may not be able to withstand the 

stresses involved in the maximum branch cut despite the preliminary design and analysis of 

the components. This could lead to re-design or more manufacturing of previous parts.  

 

Precision and Accuracy Discussion 
 

The precision of the stopwatch used in the cut cycle time and branch cut rate testing is to 

the nearest 0.001 second. The accuracy of the stopwatch reading is obviously limited by the 

reaction time of the stopwatch user. This is a potential source of error. The point-load cell 

unit used in the thrust output relationship test has an accuracy tolerance of ± 0.5 lbs.  

 

Data Storage/Manipulation/Analysis 
 

Branch Cut Rate: For this test, data was stored both on engineering paper and in an Excel 

spreadsheet form. The timed trials of 10 cuts were manipulated into an average value using 

Excel.  This average value was then analyzed against the predicted value for Branch cut 

rate. 

 

Weight: For the weight test, data was stored directly into the engineering report. The 

recorded weight value was analyzed in regards to the predicted weight value.  

 

Cutting Cycle Time: For this test, data was stored both on engineering paper and in an 

Excel spreadsheet form. The timed trials of the timed trials were manipulated into an 

average value using Excel.  This average value was then analyzed against the predicted 

value for cutting cycle time.  

 

Thrust Output: For the thrust output test, the data was stored on both engineering paper 

and in an Excel spreadsheet. The values from the 5 thrust output trials were averaged to get 

a final testing value.  

 

Maximum Branch Cut: The visual observations of this test were recorded directly into the 

testing report and the observations were checked against predictions.  

 

 

Data Presentation 
 



The data for the 5 testing procedures are displayed in the testing report and they are 

summarized in the “Testing” section of the Engineering Report.  

 
Testing Procedures: 
 
Thrust Output Testing:  
Test Duration: 2 hours 
 
Place: Hogue Technology Building Machine Shop 
 
Testing Procedure: 
1. Isolate the following power system components in single assembly; Makita head, 

7/16” hex nut driver, hex-adapted ball screw, ball nut, driving rod attachment. 
2. Using the screw holes in the Makita head piece, fasten it to the first mounting 

plate, making sure the bottom of the head component is facing the bottom of the 
mounting bracket. 

3. Place a small amount of grease in the pilot hole of the other mounting bracket and 
insert the end of the driving rod in the pilot hole.  

4. Position the ball screw/Makita assembly and both mounting plates on the way-
table of the Bridgeport milling machine. 

5. Uses a square to ensure that both mounting plates are perpendicular to the edge 
of the table and use blocks and screw to firmly mount the plates to the Bridgeport 
table.  

6. Place the point-load cell in between the Makita-head mounting bracket and the 
rear stop. Make sure the load cell is as close to the center of the line of action as 
possible. 

7. Without any pressure on the load cell, tare it out. 
8. Turn the ball nut make the ball screw to make the ball screw assembly tight 

within the two brackets. The load cell should read between 30 – 50 lbs. for the 
initial clamping pressure.  

9. Place the mini-torque arm on the ball nut.  
10. Hook the Fish-scale hook to the hook hole of the mini-torque arm and attempt to 

position the scale as perpendicular as possible to the torque arm. 
11. Pull on the fish scale while maintaining perpendicularity to the mini-torque arm 

until the spring-scale reads 7lbs.  
12.  Record the resulting linear thrust value on the point-load cell.  
13.  Repeat the process for four more trials.  

 
Weight Testing:  
Test Duration: 20 minutes 
 
Place: Construction Management Soils Lab 
 
Testing Procedure: 

1. Assemble the pruner power system assembly containing all components found 
in Appendix B1. 

2. Place the complete pruner power system assembly on the soils scale. 
3. Record the weight value. 

 
Cut Cycle Time Testing:  



Test Duration: 2 hours 
 
Place: Hogue Technology Building Machine Shop 
 
Testing Procedure: 
1. Get a branch from a fruit-bearing tree with a diameter ranging from 7/8” to 1”. 

Make sure there is enough length to make three cuts. 
2. Position the cutting blade in the fully open position.  
3. Place the branch for the first cut on the anvil.  
4. Start the stopwatch while simultaneously starting the branch cut. Complete the 

cut and return to the open position. When the blade returns to the fully open 
position, stop the stopwatch. 

5. Record the cutting cycle time. 
6. Repeat the procedure for 2 more 7/8” t o1” diameter branch cuts. 
 

Maximum Branch Cut Testing:  
Test Duration: 20 minutes 
 
Place: Hogue Technology Building Machine Shop 
 
Testing Procedure: 
1. Obtain a branch from a fruit-bearing tree which approximately has a 1.50” 

diameter 
2. Place the open pruner blade and anvil around the 1.50 inch diameter branch. 
3. Attempt to cut the branch. 
4. Record the success of the cut as PASS/FAIL. 
 
Branch Cut Rate Testing:  
Test Duration: 2 hours 
 
Place: Hogue Technology Building Machine Shop 
 
Testing Procedure:  
1. Obtain 3 branches from a fruit-bearing tree which have a diameter ranging from 

7/8” to 1”.  Make sure each branch has a sufficient length for 10 consecutive cuts. 
2. With the pruner blade open, start the stopwatch as the operator begins the 1st of 

10 consecutive cuts.  
3. Stop the watch, after the operator has completed 10 consecutive cuts on the 

branch.  
4. Record the time on engineering paper.  
5. Repeat the process for the other two branches. 

 
Safety Note: If a team member is holding the branch, ensure their fingers are 
ALWAYS clear of the blade and anvil.  

 
 
 
Deliverables:  
 



Parameter Values: 
Below the values for the “parameters of interest” are explained: 
 
 Weight: The total weight of the power system components was recorded to be 5.87 
lbs. This satisfies the weight requirement limit of 6 lbs. 
 
Battery Life: It is required that the pruner power system supplies cutting force for 
1,000 cuts. The battery life of the Makita 5 Ah battery depleted approximately 25% 
after 213 cuts of branch diameters ranging from 0.3” to 1”. From this, we can 
determine that the battery would last roughly 862 cuts. This is not satisfactory with 
regard to the design requirements.  
 
Max. Branch Cut: The current power system of the pruner is unable to cut a branch 
with a diameter of 1.50”. This is not satisfactory with regards to the design 
requirement.  
 

Calculated Values: 
 

Branch Cut Rate: Using the specifications of the ball screw/nut and the Makita XDT08, it 

is determined that the unit should be able to cut 10 7/8” to 1” diameter branches in 52.7 

seconds.  

 

Cutting Cycle Time: Using the equations and method explained in the “predicted 

performance” section of the testing report, it is determined that the cutting cycle time while 

operating at 1000 RPM should be 1.67 seconds.  

 

Thrust Output: Using the Machinery’s Handbook equation for the Ball screw driving 

torque, it is predicted that (in the test) a 7 lb. force on the torque arm should result in an 

approximately 111 lb thrust. This equation is explained in the “predicted performance” 

section of the testing report. 

 

Conclusion: 
 

From the five testing procedures for the power system of the pruner it can be determined 

that the cut cycle time, branch cutting rate, weight, and ball screw thrust output are 

satisfactory with regard to the power system’s design requirements.  However, the power 

system is unable to withstand the stresses experienced during a 1.50” diameter branch cut 

and the battery is approximately 140 short of satisfying the battery life requirement. 



Report Appendix: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

  

Model # 6641K3 Operating RPM 800

Diameter (in) 0.625

Lead (mm/rev)  n/a Linear Speed (in/s)

Lead (in/rev) 0.203 2.71

Required

Stroke Length (in)

Length to

Complete Cycle (in)
Load of Max. Cut (lb)

2.23 4.46 750

Description Diameter (in.) Lead (in/rev)

Ball Screw Ball screw w/ One Machined End .625 in 13/64"

Ball Nut Round Ball Nut 1.3125 in. (OD) 13/64'

Required Torque 

For Load (lb*in)
Cycle Time (s)

26.94 1.647

Shear Stress on Hex 

Adapter 

(lb/in^2)

8781.169249

McMaster-Carr 

Ball Screw
 Brushless Motor 

Trial Time (s)

1 52.36

2 54.21

3 44.65

Average Time (s)

50.41

10 Cuts (Diameter: 7/8" - 1")



1 

 

 

Appendix J – Resume 
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