
Journal of Math Circles Journal of Math Circles 

Volume 2 Issue 1 Manuscript 1023 

January 2021 

A Gentle Introduction to Inequalities: A Casebook from the A Gentle Introduction to Inequalities: A Casebook from the 

Fullerton Mathematical Circle Fullerton Mathematical Circle 

Adam Glesser 
California State University, Fullerton, aglesser@fullerton.edu 

Matt Rathbun 
California State University, Fullerton, mrathbun@fullerton.edu 

Bogdan Suceavă 
California State University, Fullerton, bsuceava@fullerton.edu 

Follow this and additional works at: https://digitalcommons.cwu.edu/mathcirclesjournal 

 Part of the Algebra Commons, and the Analysis Commons 

Recommended Citation Recommended Citation 
Glesser, Adam; Rathbun, Matt; and Suceavă, Bogdan (2021) "A Gentle Introduction to Inequalities: A 
Casebook from the Fullerton Mathematical Circle," Journal of Math Circles: Vol. 2 : Iss. 1 , Article 1. 
Available at: https://digitalcommons.cwu.edu/mathcirclesjournal/vol2/iss1/1 

This Article not for special issue is brought to you for free and open access by ScholarWorks@CWU. It has been 
accepted for inclusion in Journal of Math Circles by an authorized editor of ScholarWorks@CWU. For more 
information, please contact scholarworks@cwu.edu. 

https://digitalcommons.cwu.edu/mathcirclesjournal
https://digitalcommons.cwu.edu/mathcirclesjournal/vol2
https://digitalcommons.cwu.edu/mathcirclesjournal/vol2/iss1
https://digitalcommons.cwu.edu/mathcirclesjournal/vol2/iss1/1
https://digitalcommons.cwu.edu/mathcirclesjournal?utm_source=digitalcommons.cwu.edu%2Fmathcirclesjournal%2Fvol2%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.cwu.edu%2Fmathcirclesjournal%2Fvol2%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.cwu.edu%2Fmathcirclesjournal%2Fvol2%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cwu.edu/mathcirclesjournal/vol2/iss1/1?utm_source=digitalcommons.cwu.edu%2Fmathcirclesjournal%2Fvol2%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@cwu.edu


A Gentle Introduction to Inequalities: A Casebook from the Fullerton A Gentle Introduction to Inequalities: A Casebook from the Fullerton 
Mathematical Circle Mathematical Circle 

Cover Page Footnote Cover Page Footnote 
The author's wish to acknowledge the Department of Mathematics at California State University, Fullerton 
for its continued support of Fullerton Mathematical Circle. 

This article not for special issue is available in Journal of Math Circles: https://digitalcommons.cwu.edu/
mathcirclesjournal/vol2/iss1/1 

https://digitalcommons.cwu.edu/mathcirclesjournal/vol2/iss1/1
https://digitalcommons.cwu.edu/mathcirclesjournal/vol2/iss1/1


A Gentle Introduction to Inequalities:
A Casebook from the Fullerton

Mathematical Circle

Adam Glesser∗, Matt Rathbun, and Bogdan Suceavă

California State University, Fullerton

Run for nearly a decade, the Fullerton Mathematical Circle at Cali-
fornia State University, Fullerton prepares middle and high school
students for mathematical research by exposing them to difficult
problems whose solutions require only age-appropriate techniques
and background. This work highlights one of the avenues of study,
namely inequalities. We cover Engel’s lemma, the Cauchy–Schwarz
inequality, and the AM-GM inequality, as well as providing a wealth
of problems where these results can be applied. Full solutions or
hints, several written by Math Circle students, are given for all of
the problems, as well as some commentary on how or when to assist
students, and details about the pedagogical value of certain problems.

Keywords: AM-GM inequality, Cauchy–Schwarz inequality, En-
gel’s lemma, problem-solving

1 Introduction

Our goal in the Fullerton Mathematical Circle (FMC), an outreach program
of the Department of Mathematics at California State University, Fullerton, is
to introduce middle and high school students to the problem-solving culture as
early as possible. We have found that the study of algebraic inequalities pro-
vides a perfect point of access to math competitions, mathematical problem-
solving, rigor, and an appreciation for the power and beauty of mathematics.
There are a wealth of techniques and strategies around inequalities which have

∗Please address all correspondence to Adam Glesser, aglesser@fullerton.edu.
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no Calculus prerequisite—only algebraic methods, and some cunning—which
makes this perfect material for outreach to younger students.

As early as 1903, the Romanian Mathematical Society’s monthly periodical
Gazeta matematică started publishing original problems designed for middle-
school students. This was how Gheorghe Ţiţeica (see [2]) and his colleagues
from the editorial board promoted mathematical creativity from an early age.
(For a celebrated product of that school in the first decades of the 20th century,
see [6]). They understood how important it is to find perpexling, interesting,
age-appropriate questions to inspire and attract young minds towards math-
ematics. Arguably, this is the key quest in all of mathematics:What are the
good problems?

A central element in our program at the FMC since its inception in 2011 has
been to translate to English the problems in the Gazeta and to propose them
to our students. Sometimes, students arrive at solutions almost immediately,
and then our task is to encourage them to explain their thinking to others
so that other students gain inspiration and insight. Sometimes, all attending
students struggle with the problems, and we spend more time in the presen-
tation of solutions and cultivating problem-solving techniques. Over time, we
have witnessed these young mathematicians produce a litany of original solu-
tions to these problems, many of which have been submitted to the Gazeta,
or which formed the foundations of projects that culminated in student poster
presentations or even full conference talks!

The methods developed in this curriculum—applying Engel’s lemma, the
Cauchy–Schwarz inequality, and the AM-GM inequality—are elementary, but
they can be applied in very clever ways involving forethought and sneaky
substitutions. The bridge from one to the other is experience, so offering
opportunities for students to see and practice these techniques every week helps
excite new students and helps craft the exceptionally talented and dedicated
students into great mathematical thinkers. The repeated use of a core set of
methods also helps obviate the need for a linear progression of ideas. Such a
progression is incredibly challenging, if not impossible, to maintain in the face
of the sometimes sporadic attendance one would expect from students who
have weekend sporting events, family obligations, or just the need to take a
Saturday morning off.

The material included here is principally intended for fairly advanced high
school students, though we have had some exceptional middle school students
thrive in our FMC. We draw students from a nearby STEM magnet school,
and particularly eager students commute from neighboring counties. While the
curriculum here may not be applicable for all Math Circles, we hope that it
will be a useful guide and resource for anyone with motivated and enthusiastic
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learners. Students regularly surprise and impress us, creating an empowering
experience for them and for us. The material, particularly terminology and
notation, may need adaptation for younger or lesser-prepared audiences. Even
our presentations are highly interactive and adaptive to the audience we have
on any given Saturday, and intended lessons often detour considerably. How-
ever, regardless of ability, all students benefit greatly from being challenged
and encouraged to hone their skills. And the reader need not be frightened by
references to Mathematical Olympiads or the Putnam Exam. It is a testament
to the elegant power of such elementary methods that selected problems, even
from notoriously difficult exams, may yield to these tools.

In Section 2 we lay out the general pedagogical approach of our Math Cir-
cle. In Section 3 and Section 4, we provide two samples of class content, each
consisting of an introduction to the main tool (the Cauchy–Schwarz inequality
and the AM-GM inequality, respectively); an array of problems on which stu-
dents can apply their new knowledge and skills; and an integrated discussion
of some common pitfalls and highlights. In Section 5, we provide a couple of
additional problems for advanced students or regular attendees.

There are many resources for more problems and more general theory.
Perhaps the most influential book on the topic of inequalities is the classical
volume [9], while a more accessible reference is [19]. In our presentation, we
have used several arguments and proofs from a wonderful little booklet [13]
of Korovkin coming from the Soviet classical school. We also present some
of the solutions found by our students to selected problems. The goal of this
work is certainly not to be comprehensive, but to serve as an introductory
resource, and as a springboard for other Math Circles interested in attempting
our approach.

2 Pedagogy of the Fullerton Mathematical Circle

How can problem solving be taught? Is there any educational strategy in
preparing students for approaching new and difficult mathematical problems?
The answer definitely depends on one’s audience, and at the Fullerton Math-
ematical Circle we have been particularly fortuitous to have encountered a
superb community of students with many interesting and creative ideas. More
importantly, connecting with that community helps us recognize their poten-
tial. Our guiding principle is to treat every Math Circle participant with the
attention and individual guidance usually granted to graduate students.

First and foremost, we teach our students content, and then we guide them
towards problem-solving. The key premise is that once the technical ideas are
taught, the students can reach solutions by themselves. Our sessions typically
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last two hours, with the first fifty minutes devoted to direct instruction, usually
in the form of lectures or guided explorations, and the second fifty minute block
is devoted to the students actively solving problems. Each block is followed
by time to socialize and light refreshements.

Though we have many students who will attend the sessions regularly,
there are many who will only show up periodically. This makes it challenging
to consistently introduce new material during the weekly lectures. Instead,
we tend to cover a few topics repeatedly, but from many different angles, and
with many different toy examples. This allows for the regular attendees to
gain a much deeper understanding of the topics, while keeping the level of any
individual session adequately accessible.

An expectation our students have is that they will not be allowed to be
passive learners. The second half of the session lets the students participate in
the fun of problem-solving. We prepare a handout, including many problems
from the Gazeta Matematică and other sources, and give this to the students.
The problems are broken up by difficulty level and we typically arrange the
students in groups according to their mathematical background and oral com-
munication abilities.

Generally, it is better to have students working together when they are
closer in mathematical background, experience, and aptitude. However, it is
also very useful to keep in mind how well a student communicates with their
peers. For example, while it may often be reasonable to place an advanced
student with someone less experienced, if the advanced student struggles to
explain their ideas, then there is a good chance that the less experienced
student will be left out of any collaboration.

Frequently, our students will get stuck on problems—we shy away from
using too many problems that the students will find straightforward. It is
extremely important to identify what type of obstruction is blocking their
path. We tend to spot three different classes of obstructions.

Statements
This is where students, usually new to the program or topic, do not yet
have the definition of a concept or the statement of a result internalized.
Frequently, this will take the form of not knowing the hypotheses they need
to check in order to apply a result. In this case, we usually ask them to
review the statement, or encourage one of their groupmates to share their
understanding of the statement.

Routine Applications
Given a formula, some students may struggle in determining what ingre-
dients given in the problem are relevant, or how they fit into the formula.

4

Journal of Math Circles, Vol. 2, Iss. 1 [2021]



A. Glesser, M. Rathbun, B. Suceavă Journal of Math Circles

This is where having some extra straightforward problems prepared, but not
necessarily included on the worksheet, can be beneficial. Giving students
problems where the application is more transparent usually succeeds in al-
lowing them to clear this hurdle, oftentimes before they even finish going
through the supplementary problem.

Clever Applications
Even our seasoned verterans will get stuck on problems where using their
toolbox requires a non-standard substitution or transformation of the prob-
lem. Unsurprisingly, this is where we see our students most frequently per-
plexed. This is where we give the most help, but also where we let them
struggle the most. The outcome is some of the most creative mathematics
we get to see.

We firmly believe that learning to communicate is an absolutely necessary
skill for our students. So, after students have solved problems, we invite them
to present their solutions to the class. We make it a point to get as many
different students presenting at each session, and try to foster a collaborative
atmosphere where comments from the audience are considered constructive
rather than critical.

In the following sections, we give a taste of the material we cover, as well
as a sampling of the problems we solve. Moreover, we give examples of steps
we expect students to find difficult, as well as some of the hints we provide in
these situations.

3 The Cauchy–Schwarz inequality

An incredibly important and ubiquitously used inequality is the Cauchy–
Schwarz inequality. In this section, we provide a guided exploration to prove
the classical Cauchy–Schwarz inequality via another useful result, Engel’s
lemma. We then provide several example problems for students to attack
using this tool.

3.1 A guided exploration

Theorem 1 (The Cauchy–Schwarz inequality). If a1, . . . , an, b1, . . . , bn are real
numbers, then(

a21 + a22 + · · ·+ a2n
)
·
(
b21 + b22 + · · ·+ b2n

)
≥ (a1b1 + a2b2 + · · ·+ anbn)2 .

Equality holds when there exists a real number c such that a1 = cb1, a2 =
cb2, . . . , an = cbn.

5

Journal of Math Circles, Vol. 2, Iss. 1 [2021]



A. Glesser, M. Rathbun, B. Suceavă Journal of Math Circles

An oft-cited proof (e.g.[10]) considers the quadratic function

f(x) =
n∑

k=1

(akx + bk)2,

using the observation that the discriminant must be non-positive. While this
proof is accessible to high-school students, who will have encountered proper-
ties of parabolas, the following development is considerably gentler, and hints
at how powerful it can be to simply apply known results about inequalities to
obtain new insights.

We let students work to prove each of the following lemmas before present-
ing the proofs.

Lemma 1. If x, y > 0 and a and b are any real numbers, then

a2

x
+

b2

y
≥ (a + b)2

x + y

with equality occuring if and only if a
x

= b
y
.

Proof. Since x and y are strictly positive real numbers, we can multiply the
relation by xy(x + y) to obtain the equivalent inequality

a2y(x + y) + b2x(x + y) ≥ xy
(
a2 + 2ab + b2

)
.

After the appropriate distribution and cancellation, this relation reduces to

a2y2 + b2x2 ≥ 2abxy,

which is readily recognizable as

(ay − bx)2 ≥ 0.

This inequality holds for all x, y, a, b, with equality occuring precisely when
ay = bx, or equivalently a

x
= b

y
.

Commentary. Most of our students have not taken calculus, so the no-
tion of maximum and minimum values is often a foreign concept. This
provides an opportunity to establish a foundational idea that will be
seen again. Also, students must become very aware of the hypotheses
in a statement, particularly those regarding the signs of the variables.
Furthermore, they must become adept at inequality multiplication ma-
nipulation, namely, knowing whether an inequality will reverse directions
when they multiply by a variable expression. We provide direct instruc-
tion on these points, but we expect students to struggle for a while when
they start, and adjust the time and attention spent explaining details
as appropriate.
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We pursue our exploration further with the following claim.

Lemma 2. If x, y, z > 0 and a, b, c ∈ R, then

a2

x
+

b2

y
+

c2

z
≥ (a + b + c)2

x + y + z
.

Equality holds precisely when there is a constant k such that a = kx, b = ky,
and c = kz.

Proof. Indeed, by applying the previous result twice, we see that

a2

x
+

b2

y
+

c2

z
≥ (a + b)2

x + y
+

c2

z
≥ (a + b + c)2

x + y + z
.

To verify the equality claim, Lemma 1 implies that ay = bx and that (a+b)z =
c(x+y). If we instead first combine the second two terms, then, in the equality
case, observe that we have bz = cy. With the previous equality, we conclude
that az = cx, or a

x
= c

z
. As a = (a/x)x, b = (b/y)y and c = (c/z)z, the equality

case in Lemma 1 shows that k = a/x = b/y = c/z satisfies a = kx, b = ky,
and c = kz.

We are ready now to state Engel’s lemma, the logical conclusion of the
previous explorations.

Lemma 3 (Engel’s lemma). If x1, x2, . . . , xn > 0, and a1, a2, . . . , an ∈ R, then

a21
x1

+
a22
x2

+ · · ·+ a2n
xn

≥ (a1 + · · ·+ an)2

x1 + · · ·+ xn

.

Furthermore, equality holds precisely when there is a constant k such that
ai = kxi for i = 1, . . . , n.

A proof can be given immediately by iterating (n − 1) steps as in the
explorations above. Moreover, Engel’s lemma implies the Cauchy–Schwarz
inequality! (Depending on the strength of the students, this could also be a
time during the lecture to introduce proofs by induction, though we find that
usually this takes us too far off-topic.) Again, we let students struggle with
this proof before presenting it.
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Proof of The Cauchy–Schwarz Inequality. If any of the numbers bi were zero,
we could simply ignore them. So, without loss of generality (a fantastic term
for students to encounter early!), we may assume that all the real numbers
b1, b2, . . . , bn are nonzero. Engel’s lemma implies that

a21 + a22 + · · ·+ a2n =
a21 · b21
b21

+
a22 · b22
b22

+ · · ·+ a2n · b2n
b2n

≥ (a1b1 + · · ·+ anbn)2

b21 + · · ·+ b2n
.

Since b21 + · · · + b2n > 0, cross-multiplying we obtain the Cauchy–Schwarz
inequality.

Commentary. Sometimes students will arrive at this proof, and other
times will be at a loss. Either way, we generate a group conversation
about how to transform what we want, one side of the Cauchy–Schwarz
inequality, to resemble something we know, one side of the inequality
from Engel’s lemma, and how powerful is the innocuous idea of multi-
plying by a clever form of 1.

3.2 Some problems

We next explore several direct applications of Engel’s lemma.
Despite the fact that this next result is well-known, we introduce it in

Math Circle as a “problem,” as opposed to a theorem, because students are
able to work it out themselves after the previous discussion! Some students
will connect this problem to Engel’s lemma, and others to the Cauchy–Schwarz
inequality, so we present both lines of reasoning elicited from students. Only
after they have discovered a solution (or both solutions) do we reveal that they
have reproved a classical result on their own.

Theorem 2 (Nesbitt’s inequality). If a, b, c > 0, then

c

a + b
+

a

b + c
+

b

c + a
≥ 3

2

with equality holding if and only if a = b = c.

Proof via Engel’s lemma. Multiplying the summands on the left-hand side by
c/c, a/a, and b/b, respectively, and applying Engel’s lemma, yields

c

a + b
+

a

b + c
+

b

c + a
=

c2

ac + bc
+

a2

ba + ca
+

b2

cb + ab
≥ (a + b + c)2

2(ab + bc + ca)
.
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This is greater than or equal to 3/2 if and only if

(a + b + c)2 ≥ 3(ab + bc + ca),

that is
a2 + b2 + c2 − ab− bc− ca ≥ 0.

By doubling both sides and factoring, we get the equivalent inequality

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0,

which holds for all a, b, c. Furthermore, equality occurs precisely when a =
b = c.

Proof via the Cauchy–Schwarz inequality. In our attempt to morph the n = 3
version of the Cauchy–Schwarz inequality:(

a21 + a22 + a23
) (

b21 + b22 + b23
)
≥
(
a1b1 + a2b2 + a3b3

)2
into Nesbitt’s inequality, we make the following substitutions:

a1 =
√
b + c, a2 =

√
c + a, a3 =

√
a + b,

b1 =
1√
b + c

, b2 =
1√
c + a

, b3 =
1√
a + b

.

Plugging these values into the Cauchy–Schwarz inequality, we obtain

9 = (1 + 1 + 1)2 ≤
(

(b + c) + (c + a) + (a + b)

)(
1

b + c
+

1

c + a
+

1

a + b

)
= 2(a + b + c)

(
1

b + c
+

1

c + a
+

1

a + b

)
= 2

(
a + b + c

b + c
+

a + b + c

c + a
+

a + b + c

a + b

)
= 2

(
a

b + c
+

b

c + a
+

c

a + b

)
+ 6,

and the result now follows easily.

In fact, we can explore considerably more advanced problems that demon-
strate how much progress the students can make by simply applying or mirror-
ing the above methods. A university student who has completed multivariable
calculus, for instance, might approach the following problem using Lagrange
multipliers. However, the solution here is readily accessible to any avid student
with solid algebra skills.
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Problem 1. ([15]) Let x, y, z > 0 with the property that x2 + y2 + z2 = 3.
Prove that

x3

y2 + z2
+

y3

z2 + x2
+

z3

x2 + y2
≥ 3

2
.

Solution. By Engel’s lemma:

x3

y2 + z2
+

y3

z2 + x2
+

z3

x2 + y2
=

(x2)
2

xy2 + xz2
+

(y2)
2

yz2 + yx2
+

(z2)
2

zx2 + zy2

≥ (x2 + y2 + z2)
2

xy2 + xz2 + yx2 + yz2 + zx2 + zy2

=
9

xy2 + xz2 + yx2 + yz2 + zx2 + zy2

=
9

x (y2 + z2) + y (x2 + z2) + z (x2 + y2)

=
9

x (3− x2) + y (3− y2) + z (3− z2)
.

Commentary. The only real trick here is forcing the cubic terms into
squared terms, amenable to Engel’s lemma. This step is almost always
discovered and discussed within each group.

In order to complete the proof we need only to show that

6 =
2 · 9

3
≥ x

(
3− x2

)
+ y

(
3− y2

)
+ z

(
3− z2

)
. (1)

We claim, for x > 0, that x (3− x2) ≤ 2. Indeed, this is equivalent to

x3 − 3x + 2 ≥ 0

or, after factoring,
(x− 1)2(x + 2) ≥ 0.

which is certainly true for x ≥ −2. and hence for x > 0. Similar claims are
true for y and z, respectively. This verifies (1), completing the proof. The last
part of the proof also shows that equality is obtained only when x = y = z = 1.

Commentary. Here is where fundamental skills may need to be reiter-
ated or strengthened, but students are motivated by having already seen
the big idea of the problem. Now their standard curriculum is put into
a context of solving competitive math problems.
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The following problem exercises precisely the kinds of technique that could
be useful in a high-school student’s toolbox while preparing for the USA Math-
ematical Olympiad, whose format and structure is closely aligned to the Inter-
national Mathematical Olympiad. However, the Engel’s lemma-like approach
is completely tractable to middle school students trained in thinking strategi-
cally about inequalities.

Problem 2. ([14]) If a, b, c > 0, then

a3 + b3 + c3 + a2c + b2a + c2b ≥ (a + b + c)3

3 + c
a+b

+ b
c+a

+ a
b+c

.

Solution. As in the previous example, we manipulate the left-hand side so that
we can apply Engel’s lemma:

a3 + b3 + c3 + a2c + b2a + c2b = a2(a + c) + b2(b + a) + c2(c + b)

=
a2

1
a+c

+
b2

1
b+a

+
c2

1
c+b

≥ (a + b + c)2

1
a+b

+ 1
b+c

+ 1
c+a

=
(a + b + c)3(

a + b + c
) (

1
a+b

+ 1
b+c

+ 1
c+a

)
=

(a + b + c)3

3 + c
a+b

+ a
b+c

+ b
c+a

.

Note. The superb problem above was written by the Bucharest-based author
Alexandru Mihalcu when he was in his 9th grade!

To emphasize the importance of these techniques, it is useful to point out
that, historically, the algebraic techniques to determine extreme values were
discovered before the discovery of Calculus. This classical example, which can
be found in [8], illustrates the point quite nicely.

Problem 3. For a, b, c > 0, determine the minimal value of the expression

3a

b + c
+

4b

c + a
+

5c

a + b
.

Solution. An initial instinct may be to seek a common denominator for the
fractions. This proves unfruitful, however. There is insight in observing that
adding (a multiple of) each summand’s denominator into the numerator gives
a common factor.

11
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3a+ (3b+ 3c)

b+ c
+

4b+ (4c+ 4a)

c+ a
+

5c+ (5a+ 5b)

a+ b
=

3(a+ b+ c)

b+ c
+

4(a+ b+ c)

c+ a
+

5(a+ b+ c)

a+ b

=

(
a+ b+ c

)(
3

b+ c
+

4

c+ a
+

5

a+ b

)
.

All we have done is to add 12, so we can rewrite our initial expression with
a factorization almost amenable to the Cauchy–Schwarz inequality. Finally,
the only difference between the first factor, (a+ b+ c), and what we would like
in order to apply the Cauchy–Schwarz inequality, (b + c) + (c + a) + (a + b),
is a factor of 2, since each variable shows up twice in the latter sum.

3a

b+ c
+

4b

c+ a
+

5c

a+ b
=

(
a+ b+ c

)(
3

b+ c
+

4

c+ a
+

5

a+ b

)
− 12

=
1

2

(
(b+ c) + (c+ a) + (a+ b)

)(
3

b+ c
+

4

c+ a
+

5

a+ b

)
− 12

≥ 1

2

(√
3 +
√
4 +
√
5
)2

− 12.

The minimum value,
1

2

(√
3 +
√

4 +
√

5

)2

− 12, is attained when there is

a k so that

√
b + c =

k
√

3√
b + c

,
√
c + a =

k
√

4√
c + a

,
√
a + b =

k
√

5√
a + b

,

that is, when
b + c√

3
=

c + a√
4

=
a + b√

5
.

Commentary. Although we work here with particular numbers, the
argument we present might be viewed as a general technique. The real
art is to pick the right starting point, and to work our way into using
the Cauchy–Schwarz inequality.

The following problem was presented for students to think about and,
within 15 minutes, an 8th grader, Alvin Kim, who had been attending the
FMC for a couple of years, offered the solution shown here for the class! In
a Math Circle, the general progression of content cannot be as linear as in
a standard classroom, but having a large story to tell and helping students
incrementally advance through the arc leads to significant results. In fact, this
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student presented a poster at the Southern California-Nevada sectional MAA
Meeting in Spring 2014 with this solution and several others borne out of his
work at the FMC!

Problem 4. ([11]) Prove that, for all real numbers a, b, c, we have:√
(a + 1)2 + (b + 1)2 +

√
(b + 1)2 + (c + 1)2 +

√
(c + 1)2 + (a + 1)2

≥
√

2(a + b + c + 3).

Solution. (Alvin Kim) We use the substitutions: a+1 = x, b+1 = y, c+1 = z.
The inequality we have to prove turns into√

x2 + y2 +
√

y2 + z2 +
√
z2 + x2 ≥

√
2(x + y + z).

Applying the Cauchy–Schwarz inequality cleverly to the summand
√

x2 + y2

and then taking the square root yields√
x2 + y2 ·

√
12 + 12 ≥ 1 · x + 1 · y,

or, equivalently, √
x2 + y2 ≥ 1√

2
(x + y). (2)

Cycling x, y, and z yields two other similar relations corresponding to the other
two summands. Adding these three inequalities we obtain√

x2 + y2 +
√

y2 + z2 +
√
z2 + x2 ≥ 1√

2
(x+y+z+x+y+z) =

√
2(x+y+z),

as desired. The equality case holds when x = y = z which, in terms of the
original variables, means a = b = c.

Before presenting our final problem of the section, a gem from the 2015
Romanian Olympiad, we call attention to a porism of the above solution,
namely that in using the Cauchy–Schwarz inequality to obtain (2), had we not
taken the square root, we would have found that

(x + y)2 ≤ 2(x2 + y2). (3)

This observation is offered as a hint for the next problem, and can also be
argued geometrically as seen in Figure 1.

Problem 5. ([17]) Let a, b, c > 0 be three real numbers such that a+b+c = 3.
Prove that

a

√
b2 + c2

2
+ b

√
c2 + a2

2
+ c

√
a2 + b2

2
≤ 2(ab + bc + ca)− 3abc.
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x y

x

y

y x

x

yx2 y2

y2 x2

Figure 1. A geometric proof that (x + y)2 ≤ 2(x2 + y2).

Solution. From (3), we have (b + c)2 ≤ 2 (b2 + c2). Multiplying both sides by

a2
b2 + c2

2(b + c)2
and then taking the square root yields

a

√
b2 + c2

2
≤ a

b2 + c2

b + c
= a

(b + c)2 − 2bc

b + c
= a(b + c)− 2abc

b + c
.

Cyclically permuting a, b, and c gives similar inequalities.

Commentary. Once again, we see that a complicated expression is made
simpler by observing the cyclic symmetry. This is a good first hint for
students. Many of our students still get stuck because they don’t see
how to employ (3), particularly since the inequality in (3) appears to
be in the wrong direction for this application. Give them a chance to
be clever. If they need it, remind them that they know how to multiply
through an inequality.
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Summing these inequalities, we get

a

√
b2 + c2

2
+ b

√
c2 + a2

2
+ c

√
a2 + b2

2

≤ 2(ab + bc + ca)− 2abc

(
1

a + b
+

1

b + c
+

1

c + a

)
.

Here we use Engel’s lemma and the assumption that a + b + c = 3 to obtain

1

a + b
+

1

b + c
+

1

c + a
≥ (1 + 1 + 1)2

2(a + b + c)
=

32

2 · 3
=

3

2
.

This estimate implies that

a

√
b2 + c2

2
+ b

√
c2 + a2

2
+ c

√
a2 + b2

2
≤ 2(ab + bc + ca)− 2abc

(
3

2

)
as required.

Observe that, with just these very fundamental tools, we already have stu-
dents discussing and understanding solutions to genuine Olympiad problems!
Let’s go further and finish the section with Problem 11670 from the American
Mathematical Monthly [3]. This problem was proposed by the CSU Fullerton
undergraduate students Miranda Bakke and Benson Wu, and by the third
author of the present article. It was a result of conversations in a Learning
Inequalities Seminar for undergraduate students that ran in parallel to the
FMC. The original statement the authors proposed to the Monthly was the
following.

Problem 6. ([3])

(a) Prove that for any a, b, c > 0, we have:

a + b + c

2
≥ ab

a + b
+

ac

a + c
+

bc

b + c
,

with equality if and only if a = b = c.

(b) Prove that, for any a1, a2, . . . , an > 0, we have

(n− 1)

4

(
n∑

i=1

ai

)
≥

∑
1≤i<j≤n

aiaj
ai + aj

,

with equality if and only if a1 = a2 = · · · = an.
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The solution published by the AMM applies the Harmonic Means Inequal-
ity, which we do eventually explore with the FMC, but here is a more funda-
mental proof.

Solution. As (a) is a special case of (b), we will only give the proof of (b).

(b) Multiplying the inequality in (b) by 2, moving all of terms to the left

and then adding (n−1)
2

(
∑n

i=1 ai) to both sides gives:

(n− 1)

(
n∑

i=1

ai

)
−

∑
1≤i<j≤n

2aiaj
ai + aj

≥ (n− 1)

2

(
n∑

i=1

ai

)
. (4)

Working with just the left-hand side, we regroup the summands to obtain

∑
1≤i<j≤n

(
ai −

2aiaj
ai + aj

+ aj

)
=

∑
1≤i<j≤n

a2i + a2j
ai + aj

=
∑

1≤i<j≤n

(
a2i

ai + aj
+

a2j
ai + aj

)
≥ [(n− 1)

∑
ai]

2

2(n− 1)
∑

ai

=
n− 1

2

n∑
i=1

ai,

where the inequality above comes from Engel’s lemma. This proves (4).
The equality case follows from Engel’s lemma since it requires ai

ai+aj
=

aj
ai+aj

for all 1 ≤ i < j ≤ n. These equalities imply a1 = · · · = an.

4 The AM-GM inequality

We have presented the material in this section multiple times in many different
ways as part of the Fullerton Mathematical Circle. The approach below reflects
the presentation we found most compelling to the students. In this section, we
present the gentle proof of the AM-GM inequality we show students, and then
several problems that can be tackled through application of the inequality or
the method of the proof.
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4.1 An interactive lecture

We start our exploration with two important definitions.

Definition 4.1. For positive real numbers x1, x2, . . . , xn, their arithmetic
mean is defined to be:

a =
x1 + x2 + · · ·+ xn

n
,

and their geometric mean is defined to be:

g = n
√
x1x2 · · ·xn.

At the beginning of the 19th century, Augustin-Louis Cauchy [7] had es-
tablished that g ≤ a. This result is today known as the AM-GM inequality.
We present here a proof by induction of the general AM-GM inequality, that
will set the stage for a proof of the more general Ladder of Means theorem
(but that’s a story for another article). Our viewpoint is much indebted to
the presentation from P. P. Korovkin [13], which represents, in our view, an
expository masterpiece. We start with the following.

Theorem 3. If x1, . . . , xn are positive real numbers satisfying x1x2 · · · xn = 1,
then

x1 + x2 + · · ·+ xn ≥ n.

Furthermore, equality holds if and only if all of the xi are equal.

Proof. We proceed by induction on n.

Commentary. Once again, if you find your students not ready to grapple
with induction, you can follow the proof below replacing the general case
with n = 2 and n = 3. This should be enough for students to see the
pattern.

The result holds trivially when n = 1. We now assume the result holds
for some n ≥ 1, and that x1, . . . , xn+1 are positive real numbers such that
x1 · · ·xn+1 = 1. If all of these numbers are equal, then they equal 1 and their
sum is n + 1, proving the result. Otherwise, there exist at least two different
numbers and at least one of them is less than 1 and at least one is greater than
1. Without loss of generality, we assume that x1 < 1 < x2. It follows that the
product of the n numbers (x1x2), x3, . . . , xn+1 is 1, and hence their sum is at
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least n. Thus,

x1 + · · ·+ xn+1 = x1 + · · ·+ xn+1 + x1x2 − x1x2

≥ n + x1 + x2 − x1x2

= (n + 1) + x1 + x2 − x1x2 − 1

= (n + 1) + (1− x1)(x2 − 1).

As x1 < 1 < x2, it follows that (n + 1) + (1− x1)(x2 − 1) > n + 1, completing
the proof.

We now prove the AM-GM inequality.

Theorem 4 (AM-GM inequality). If x1, x2, . . . , xn are positive real numbers,
then their arithmetic mean,

a =
x1 + x2 + · · ·+ xn

n
,

is at least as large as their geometric mean

g = n
√
x1x2 · · ·xn,

i.e., a ≥ g. Furthermore, equality holds if and only if all of the xi are equal.

Proof. Raising the geometric mean to the nth power, we have gn = x1 · · ·xn,
and therefore

1 =
x1

g
· · · xn

g
.

By Theorem 3, since we have a product of n positive numbers whose prod-
uct is 1, it follows that their sum is at least n, i.e.,

x1

g
+

x2

g
+ · · ·+ xn

g
≥ n,

with equality if and only if all of the xi are equal. Multiplying by g and
dividing by n now yields the AM-GM inequality:

a =
x1 + x2 + · · ·+ xn

n
≥ g.
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4.2 Some problems

Next, we present some problems whose solutions can use Theorem 3 or the
AM-GM inequality. Many of these are examples of extrema problems for
quantities with several variables. As in the previous section, we prefer algebraic
arguments to those using calculus.

Problem 7. If x1, x2, . . . , xn are positive real numbers, then

x1

x2

+
x2

x3

+ · · ·+ xn−1

xn

+
xn

x1

≥ n,

with equality precisely when

x1 = x2 = · · · = xn.

Solution. Since
x1

x2

· x2

x3

· · · xn−1

xn

· xn

x1

= 1,

Theorem 3 implies that

x1

x2

+
x2

x3

+ · · ·+ xn−1

xn

+
xn

x1

≥ n,

and equality holds only precisely when

x1

x2

=
x2

x3

= · · · = xn−1

xn

=
xn

x1

= 1,

i.e., when x1 = x2 = · · · = xn.

Commentary. Any trouble here generally arises from the ‘Statements’ or
‘Routine Applications’ categories discussed in Section 2, and are easily
overcome by checking in with students or prompting discussion within
a group.

The following few problems are now within reach for our students, often
without the hints included here.

Problem 8. Prove that, for any real number x, we have:

x2 + 2√
x2 + 1

≥ 2.
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Hint. The left-hand side term can be expressed as

√
x2 + 1 +

1√
x2 + 1

.

Now denote
√
x2 + 1 = A and think of a simple application of the AM-

GM inequality. Students can often be led to this form by reminding them
of the previous problem. The application of the AM-GM inequality to
a sum of reciprocals is a fiendishly powerful tool.

Problem 9. Prove that, if a > 1, then

loge(a) + loga(e) ≥ 2.

Hint. Write x = loge(a) and note that 1
x

= loga(e).

Problem 10. Prove that, for any real number x, we have:

x2

1 + x4
≤ 1

2
.

Hint. Note that the left-hand side term can be rewritten as

1
1+x4

x2

=
1

1
x2 + x2

.

The solution to the following Gazeta problem was found by Edward Zeng,
a 12th-grader at the time he provided the solution. Edward presented this
solution, along with solutions to other problems, as part of a poster presented
at the Southern California-Nevada sectional meeting of the MAA in 2017.

Problem 11. ([4]) Prove that, for any x, y, z ∈ (0,∞), we have the inequality

6
√

(2x + y)(x + 2y)(2y + z)(y + 2z)(z + 2x)(x + 2z) ≤ x + y + z.

Solution. (Edward Zeng) By using the AM-GM inequality, we have the fol-
lowing:

x + y + z = [6x + 6y + 6z]/6

= [(2x + y) + (x + 2y) + (2y + z) + (y + 2z) + (z + 2x) + (x + 2z)]/6

≥ 6
√

(2x + y)(x + 2y)(2y + z)(y + 2z)(z + 2x)(x + 2z).
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Several of our advanced students noted that the following problem showed
up in their Calculus textbooks (along with many similar problems). They
were delighted to find out that they could solve these problems without any
Calculus.

Problem 12. From all rectangular boxes with a given sum of the three mutu-
ally perpendicular edges, find the box with the greatest volume.

Solution. Suppose that three mutually orthogonal sides have lengths a, b, and
c, and that a + b + c = m. The volume of the box is given by V = abc. The
AM-GM inequality implies that

V = abc ≤
(
a + b + c

3

)3

=
(m

3

)3
=

m3

27
,

where equality holds precisely when a = b = c = m
3

.

It is also useful to note that that the AM-GM inequality can be used
to analyze transcendental sequences, and even to solve some transcendental
equations with just as much ease.

Lemma 4. For any positive numbers a, b with a 6= b we have:

abn <

(
a + nb

n + 1

)n+1

.

Proof. The argument relies on a direct application of the AM-GM inequality:

n+1
√
abn =

n+1
√
abb · · · b < a + b + b + · · ·+ b

n + 1
=

a + nb

n + 1
.

Note that the inequality must be strict.

Problem 13. Show that Euler’s sequence is increasing:

xn =

(
1 +

1

n

)n

.

Solution. By Lemma 4, with a = 1 and b = 1 + 1
n
, we have

xn =

(
1 +

1

n

)n

<

(
1 + (n + 1)

n + 1

)n+1

=

(
1 +

1

n + 1

)n+1

= xn+1.
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Problem 14. Show that the following sequence, closely related to Euler’s se-
quence, is increasing:

zn =

(
1− 1

n

)n

.

Hint. In Lemma 4, take a = 1 and b = 1− 1
n
.

Problem 15. Show that the following sequence, closely related to Euler’s se-
quence, is decreasing:

yn =

(
1 +

1

n

)n+1

.

Solution. We connect the values yn and, using the notation from Problem 14,
zn+1 as follows:

yn =

(
1 +

1

n

)n+1

=

(
n + 1

n

)n+1

=
1(

n
n+1

)n+1 =
1(

1− 1
n+1

)n+1 =
1

zn+1

.

Since (zn) in increasing, it follows that (yn) is decreasing.

Problem 16. Euler’s sequence is bounded.

Solution. Using the notation from Problem 13 and Problem 15, since (xn) is
increasing, (yn) is decreasing, and xn < yn for all n, it follows that, for all
m,n, xm < yn. Since y1 = 4, it follows that xn < 4 for all n, and (xn) is
bounded.

Advanced Note: In the solution above, we chose y1 for simplicity. Alternatively,
we could have chosen y5 < 3 to get an even smaller (integer) upper-bound on
Euler’s sequence. Most readers will recognize that Problem 13 and Problem
16 can be combined to show that Euler’s sequence converges to a real number,
Euler’s number e. A rigorous proof of this last step is generally beyond the
scope of our Math Circle discussions, but an intuitive explanation of the fact
that a bounded, increasing sequence converges is usually enlightening, partic-
ularly for those students for whom e has been introduced in school, but with
little justification.

Problem 17. ([1]) Solve the equation

2x + 2−x = 2 cos
(x

3

)
.
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Solution. By applying the AM-GM inequality, we have the following sequence
of inequalities:

2x + 2−x ≥ 2
√

2x · 2−x = 2 ≥ 2 cos
(x

3

)
.

These inequalities hold true for all x ∈ R, with equality only when 2x = 2−x,
i.e., when x = 0.

Much more sophisticated problems are also accessible using the techniques
discussed.

Problem 18. Prove that for any natural number n ≥ 2 the following inequality
holds:

n∑
k=2

1
k
√

(2k)!
>

n− 1

2n + 2
.

Solution. By the AM-GM inequality, we have

k
√

(2k)! = k
√

1 · 3 · 5 · · · (2k − 1) · k
√

2 · 4 · 6 · · · (2k)

<
1 + 3 + 5 + · · ·+ (2k − 1)

k
· 2 + 4 + 6 + · · ·+ 2k

k

=
k2

k
· k(k + 1)

k
= k(k + 1).

Commentary. We expect students to get stuck at the beginning of this
problem for three main reasons. First, many will be familiar with but
still uncomfortable with summation notation. Including a problem in
lecture that utilizes summation notation can be helpful. The second
difficult part is that the inequality looks very complicated, with a sum
and a product. We remind our students of other instances where they
had sums and analyzed the terms piece-by-piece. The third point where
students tend to stumble is the factorial, which many students will dis-
tribute to get 2!k!. Part of the inspiration for this misstep is that they
are trying to use the AM-GM inequality which, since there is a k-th
root, wants to have a product with k factors. We simply ask them to
check if it is true when k = 3. It isn’t hard for students to find a way to
break the product up into two pieces with k factors. However, the se-
quential partition will not reduce as nicely as the odd-even partition we
use below. Nonetheless, we let them head down the wrong path first as
overcoming frustration is part of the game. If students are not familiar
with the sum of consecutive odd/even integers, then more guidance is
certainly necessary.

23

Journal of Math Circles, Vol. 2, Iss. 1 [2021]



A. Glesser, M. Rathbun, B. Suceavă Journal of Math Circles

The inequality is strict since the integers in the product are all distinct.
We conclude that, for all k ≥ 2, we have

1
k
√

(2k)!
>

1

k(k + 1)
=

1

k
− 1

k + 1
.

Recognizing the “telescopic sum” (a term students connect with even if it is
unfamiliar), we finally have

n∑
k=2

1
k
√

(2k)!
>

n∑
k=2

(
1

k
− 1

k + 1

)
=

1

2
− 1

n + 1
=

n− 1

2(n + 1)
.

The solution to the next problem is another due to Alvin Kim.

Problem 19. ([18]) Find all nonzero natural numbers a, b, c, d such that

a + b + c + d + bcd + acd + abd + abc = 8
√
abcd

Solution. (Alvin Kim) Since all the terms are positive, we can use the AM-GM
inequality for the terms a, b, c, d, bcd, acd, abd, abc. Therefore, we have

a + b + c + d + bcd + acd + abd + abc

8
≥ 8
√

(abcd)4

=
√
abcd,

or
a + b + c + d + bcd + acd + abd + abc ≥ 8

√
abcd.

Since equality holds only when all of the terms a, b, c, d, bcd, acd, abd, abc are
equal, the only solution is when a = b = c = d = 1.

5 Advanced Problems

For students who come regularly or have a stronger background to begin with,
it is also helpful to have advanced problems that require a bit more ingenuity
in mixing or iterating the methods developed over several sessions.

A challenging question, for example, that receives a lot of attention when
students prepare for the mathematical olympiads is the following. Regular
attendees will be familiar with both Engel’s lemma and the AM-GM inequality.

Problem 20. ([12]) Let a, b, c > 0, such that abc = 1. Prove that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(b + a)
≥ 3

2
.
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Solution. Thinking ahead to try to use Engel’s lemma, we rewrite each of the
summands on the left to put a square in the numerator:

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(b + a)
=

(
1
a

)2
a(b + c)

+

(
1
b

)2
b(c + a)

+

(
1
c

)2
c(b + a)

.

To simplify matters, we make the substitutions a = 1
x
, b = 1

y
, and c = 1

z
. Since

abc = 1, we get xyz = 1 and the AM-GM inequality yields

x + y + z

3
≥ 3
√
xyz = 1. (5)

After the substitution, we have

x2

1
x

(
1
y

+ 1
z

) +
y2

1
y

(
1
x

+ 1
z

) +
z2

1
z

(
1
x

+ 1
y

) =
x2(xyz)

y + z
+

y2(xyz)

x + z
+

z2(xyz)

x + y

=
x2

y + z
+

y2

x + z
+

z2

x + y
.

By Engel’s lemma and (5), we have

x2

y + z
+

y2

x + z
+

z2

x + y
≥ (x + y + z)2

2(x + y + z)

=
x + y + z

2

=
x + y + z

3
· 3

2

≥ 3

2
,

completing the proof. We also note, from the use of the AM-GM inequality,
that equality occurs precisely when a = b = c = 1.

Although still a year or more away from taking the exam, our students are
even being trained to solve Putnam problems—with short, elegant solutions—
using only the elementary methods described above!

Problem 21. ([16]) Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative real
numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ [(a1 + b1)(a2 + b2) · · · (an + bn)]1/n.
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Solution. Assume without loss of generality that ai + bi > 0 for each i (oth-
erwise both sides of the desired inequality are zero). The AM-GM inequality
implies that

[
a1

(a1 + b1)
· · · an

(an + bn)

]1/n
≤

(
a1

a1+b1
+ · · ·+ an

an+bn

)
n

.

Similarly,

[
b1

(a1 + b1)
· · · bn

(an + bn)

]1/n
≤

(
b1

a1+b1
+ · · ·+ bn

an+bn

)
n

.

Adding these two inequalities gives[
a1

(a1 + b1)
· · · an

(an + bn)

]1/n
+

[
b1

(a1 + b1)
· · · bn

(an + bn)

]1/n
≤ 1

Clearing denominators now yields the desired result.

6 Conclusion

Taking inspiration from G. Ţiţeica’s discovery of the 11th grade student Dan
Barbilian, through his stellar problem skills at a fundamental level [6], our
Math Circle’s fundamental philosophy is that good problems are an avenue
and an introduction into mathematical research. As such, we see the above
problems as much more than extensions of the traditional algebra curriculum
designed to challenge our students and exercise their analytical skills. There
are natural extensions of these ideas that lead into research mathematics, as is
illustrated in, for example, [20, 21, 22]. In fact, a module on the foundations
of inequalities was part of FMC alum Bryan Brzycki’s training in 11th grade,
when he participated in the USA Mathematical Olympiad. While training
for the USAMO, Bryan was presented with a challenge related to a research
project in differential geometry. That particular challenge had an elemen-
tary flavor quite suitable for his background and his skills. Bryan proved the
statement, and his proof made it to print in [5].

The structure of this program is highly flexible and adaptable, but has a
clear trajectory that can and has led to amazing projects. We have several
examples of students rising up through our program to engage fully in research
mathematics. Algebraic inequalities in conjunction with a few classical results
provide an easy access point, while the methods of application provide for a
full range of skill development perfect for the Math Circle setting.
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4. Bătineţu-Giurgiu, D. & Stanciu, N. (2016) Problem 27297. Gazeta matem-
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22. Suceavă, B. D. (2018) A Geometric Interpretation of Curvature Inequal-
ities on Hypersurfaces via Ravi Substitutions in the Euclidean Plane.
The Mathematical Intelligencer, 40, 50–54.

28

Journal of Math Circles, Vol. 2, Iss. 1 [2021]


	A Gentle Introduction to Inequalities: A Casebook from the Fullerton Mathematical Circle
	Recommended Citation

	A Gentle Introduction to Inequalities: A Casebook from the Fullerton Mathematical Circle
	Cover Page Footnote

	Introduction
	Pedagogy of the Fullerton Mathematical Circle
	The Cauchy–Schwarz inequality
	A guided exploration
	Some problems

	The AM-GM inequality
	An interactive lecture
	Some problems

	Advanced Problems
	Conclusion

