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Abstract 1 

A growing set of data indicates a stark contrast between the evolution of two types of 2 

ultrahigh-pressure (UHP) terranes: large terranes that evolved slowly (over 10 30 Myr), 3 

and small terranes that formed and were exhumed on timescales of <10 Myr. Here we 4 

compare the characteristics area, thickness, formation rate, exhumation rate, age, and 5 

tectonic setting of these two endmember types of UHP terrane worldwide. We suggest 6 

that the two UHP terrane types may form during different orogenic stages because of 7 

variations in the buoyancy and traction forces due to different proportions of subducting 8 

crust and mantle lithosphere or to different rates of subduction. The initial stages of 9 

continent collision involve the subduction of thin continental crust or microcontinents, 10 

and thus tectonic forces are dominated by the density of the oceanic slab; subduction 11 

rates are rapid and subduction angles are initially steep. However, as collision matures, 12 

thicker and larger pieces of continental material are subducted, and the positive buoyancy 13 

of the down-going slab becomes more prominent; subduction angles become gentle and 14 

convergence slows. Assessing the validity of this hypothesis is critical to understanding 15 

the  16 

 17 

Keywords: ultrahigh-pressure; continental subduction; collision; orogenesis  18 

 19 

Introduction 20 

Regionally extensive exposures of coesite- and/or diamond-bearing rocks are referred to 21 

as ultrahigh-pressure (UHP) terranes. Since the discovery of coesite in metamorphic rock 22 

more than 25 years ago (Chopin, 1984; Smith, 1984) revolutionized our understanding of 23 



plate tectonics, the number of recognized UHP terranes has increased to more than 20 24 

(Rumble et al., 2003; Liou et al., 2004). With this recognition, our understanding of how 25 

subduction and exhumation of continental material influence the growth and decay of 26 

mountain belts, the modification of continental crust, the geochemical evolution of the 27 

mantle, and the forces acting on tectonic plates has dramatically increased. Although 28 

UHP terranes are postulated to form in a range of tectonic settings, including subduction 29 

erosion (Stoeckhert and Gerya, 2005), intracontinental shortening (Pysklywec et al., 30 

2000), and lithospheric rifting (Little et al., 2011), most are presumed to represent once-31 

subducted microcontinents or continental margins (Liou et al., 2004).  32 

With few exceptions, data on the age, size, thickness, and residence time (here chosen 33 

as the period of time at greater than mid-crustal depths) define two end member types of 34 

UHP terrane: i) Small, young, thin and fast (rapidly subducted and exhumed) terranes, 35 

and ii) large, old, thick and slow terranes (Table 1). The oldest exposed UHP terranes are 36 

620 Ma (Jahn et al., 2001), and active orogens contain UHP terranes as young as 8 Ma 37 

(Baldwin et al., 2004). The areal extent of UHP terranes here taken to be the area of 38 

UHP and contiguous HP eclogite-facies rocks (or amphibolite-facies rocks hosting 39 

eclogite) ranges from >20,000 km2 to <50 km2. UHP terranes were originally all 40 

assumed to be thin (<10 km; Ernst, 2006); however, a number of 10 km) UHP 41 

terranes have been recognized (Hacker et al., 2000; Root et al., 2005). 42 

Geochronologic data indicate rapid (<5 Myr) exhumation of most UHP terranes 43 

(Rubatto and Hermann, 2001; Hacker et al., 2003; Zheng et al., 2003; Root et al., 2005; 44 

Parrish et al., 2006), but a few UHP terranes were exhumed long after reaching peak 45 

depths (Hacker et al., 2000; Gilotti et al., 2004; Kylander-Clark et al., 2008). Subduction 46 



rates and residence times are less well constrained, but some were demonstrably short 47 

(<15 Ma; Amato et al., 1999; Lapen et al., 2003; Parrish et al., 2006) and some 48 

demonstrably long (>20 Ma; Hacker et al., 2006; Mattinson et al., 2006; McClelland et 49 

al., 2006; Kylander-Clark et al., 2007; Kylander-Clark et al., 2009).  50 

This paper categorizes the better-known UHP terranes into these two main types, and 51 

suggests possible orogenic processes and tectonic environments that may have produced 52 

this duality. 53 

Small vs. Big U HP T er ranes 54 

UHP terranes with well-studied P-T-t paths, such as the Dabie Sulu terrane of eastern 55 

China, the Western Gneiss region (WGR) of Norway both of which are large terranes56 

and the Dora Maira massif of the western Alps a small terrane are used to 57 

characterize the two types of endmembers. A summary of these terranes is given in Table 58 

1 and Figure 1, and a detailed discussion of the >150 studies represented herein is in 59 

Supplementary Table A.1. Eclogite-facies rocks in the Dabie Sulu terrane cover ~30,000 60 

km2 of which 10,000 km2 are UHP (Hacker et al., 2006); geologic maps, cross sections, 61 

and seismic profiles suggest that the (U)HP unit is at least 10 km thick (Hacker et al., 62 

2000; Wang et al., 2000). The terrane reached eclogite-facies conditions by ~245 Ma and 63 

was exhumed to mid-crustal levels by ~220 200 Ma (U-Pb, Lu-Hf, Sm-Nd ages, and 64 

40Ar/39Ar ages; Hacker et al., 2009; Zhang et al., 2009); HP conditions lasted for more 65 

than 25 Myr. The WGR, exposing ~30,000 km2 of eclogite-facies rocks (UHP rocks 66 

underlie ~5,000 km2; Root et al., 2005), spent more than 25 Myr at HP conditions: 67 

subduction began prior to ~425 Ma (Lu-Hf garnet ages; Kylander-Clark et al., 2007), and 68 

the UHP terrane was exhumed to mid-crustal levels by 400 380 Ma (40Ar/39Ar muscovite 69 



ages; Root et al., 2005). The lengthy isothermal decompression, particularly of the UHP 70 

rocks, implies that the WGR was >15 km thick (Kylander-Clark et al., 2009). The Dabie71 

Sulu and Western Gneiss region UHP terranes thus exhibit similar characteristics: both 72 

are exposed in inactive orogens, spent a relatively long time at high pressure (>20 Myr), 73 

are exposed over large areas (>20,000 km2)74 

terrane in the Dora Maira massif spent only 3.3 ± 1.3 Myr at depth (U-Pb zircon and 75 

titanite; Gebauer et al., 1997; Rubatto and Hermann, 2001), is thin (~1 km), and UHP 76 

rocks represent only ~50 km2 of a <500 km2 eclogite-facies unit (Henry et al., 1993) in an 77 

active orogen. 78 

Other less-studied UHP terranes exhibit characteristics similar to these better-known 79 

endmembers (Table 1, Figure 1, Table A.1). For example, the North-East Greenland 80 

Eclogite Province (NEGEP; >15 km thick) and the Qaidam UHP terrane (unconstrained 81 

thickness) are large (>25,000 km2) and spent a long time at depth (>20 Myr). Conversely, 82 

the Papua New Guinea, Lago Cignana, Tso Morari, and Kaghan Valley (U)HP localities 83 

underlie small areas (<5000 km2), were subducted and exhumed over short periods (<10 84 

Myr), are < 3 km thick, and crop out in active orogens. There may be some UHP terranes 85 

that cannot be neatly shoe-horned into either of these endmembers: the Erzgebirge unit in 86 

the Bohemian Massif and the poorly exposed Kokchetav UHP terrane are old (~340 Ma 87 

and ~535 Ma, respectively), but current data indicate that their size, thickness, and 88 

exhumation rate are similar to small UHP terranes (Table 1). These terranes are discussed 89 

further below. Not discussed are numerous other UHP terranes such as those in 90 

Rhodope, Greece, Central Europe (parts of the Variscan orogen other than the 91 

Erzgebirge), and Brazil and Mali (the Pan-African orogen) whose tectono-chronologic 92 



framework is less well constrained because of poor exposure, a dearth of data, and/or 93 

post-(U)HP overprinting events. 94 

In summary, most UHP terranes can be categorized into one of two groups: i) small, 95 

thin, young, and fast (rapidly subducted and exhumed), and ii) large, thick, old, and slow 96 

(slowly subducted and exhumed). Recognizing this duality (Kylander-Clark et al., 2009) 97 

has been a significant step forward, but the cause of the duality remains unclear. 98 

Early vs. Mature O rogenic Stage Model  99 

Did fundamentally different geodynamic/tectonic process(es) produce this bimodal set of 100 

UHP terranes? Although differences in metamorphic PT gradients (Brown, 2008), 101 

igneous rock abundances (e.g., TTG anorthosite Rapakivi suites), ophiolite outcrops, 102 

and accretionary-wedge outcrops (Hamilton, 2011) imply that plate tectonics may be an 103 

exclusively late Proterozoic Phanerozoic phenomenon, it is unlikely that major changes 104 

in plate tectonics since the latest Proterozoic (the earliest recognized UHP rocks; Jahn et 105 

al., 2001) are responsible for producing these two types of UHP terrane. Secular cooling 106 

would have meant warmer early subduction, leading to slower, hotter subduction of 107 

smaller continental slivers (Pollack, 1997; Sleep, 2000); and colder late subduction, 108 

leading to faster, colder subduction of larger continental slivers. This expectation is 109 

inconsistent with the observations (Figure 1).  110 

As an alternative, we hypothesize that small, thin, young, and fast UHP terranes 111 

formed early during orogeny, and large, thick, old, and slow UHP terranes formed during 112 

the end of orogeny. This hypothesis fits the observations for both groups of terranes, 113 

allows for the exception noted above, and has significant impact on our understanding of 114 

the effects that UHP tectonism has on a variety of geologic processes. Our rationale is as 115 



follows: the transition from oceanic to continental subduction results in reduced 116 

subduction angle and slower vertical subduction velocity. The buoyant crustal material 117 

and the thicker, stronger continental lithosphere are entrained in the subduction zone and 118 

counteract the negative buoyancy of the dense oceanic lithosphere (Sobouti and Arkani-119 

Hamed, 2002; Billen and Hirth, 2007). As the volume of the subducted continent 120 

increases, the subduction angle and plate velocity continue to decrease. This reduction in 121 

subduction angle and plate velocity provide a mechanism to explain the two types of 122 

UHP terrane (Fig. 2). During the early stages of continent collision characterized by 123 

subduction of a microcontinent or thinned continental margin subduction forces are 124 

dominated by oceanic lithosphere and subduction is likely fast and steep; UHP terranes 125 

formed in such settings are small and subducted and exhumed quickly. During the mature 126 

stages of continent collision characterized by subduction of normal continental 127 

lithosphere subduction is slower and the subduction angle gentler; such settings 128 

produce large UHP terranes that form over longer periods of time.  129 

Because exhumation rate has commonly been tied to the positive buoyancy of 130 

subducted terranes (Ernst and Liou, 2008), one might expect that large terranes should 131 

exhume more rapidly than small ones. The opposite appears to be true, however (Figure 132 

1), and one or more factors may be responsible. If large and thick terranes remain 133 

attached to thick (typical continental) lithosphere, they may be less buoyant than small 134 

and thin terranes attached to the thinned lithosphere typical of continental margins. In 135 

addition, during mature stages of orogenesis, continent collision produces overthickened 136 

crust, which may arrest the rise of a UHP terrane at Moho depths (lower-crustal age in 137 

Table 1), prolonging the exhumation period (Walsh and Hacker, 2004). This 138 



arr is indicated for many UHP terranes, which appear to have a two-stage exhumation 139 

history in which an initial fast exhumation to ~1 GPa is followed by slower exhumation 140 

to the surface (Rubatto and Hermann, 2001). Large UHP terranes may also spend more 141 

time at peak depths because their greater thickness requires a longer period of heating to 142 

weaken the entire body internally such that buoyancy forces overcome the boundary 143 

tractions (Warren et al., 2008). Furthermore, if the UHP terrane follows the same low-144 

angle path during exhumation as it did during subduction (Ernst and Liou, 2008), larger 145 

terranes will take longer to travel vertically.  146 

147 

characteristics: 148 

 1) Orogens in which a continental margin has recently begun to subduct, such as the 149 

subduction of northern Australia beneath the Banda Arc (Elburg et al., 2004), 150 

should have small, actively forming UHP terranes that will be exhumed in a few 151 

Myr.  152 

2) Active, mature orogens, such as the Alpine Himalayan chain, should contain small 153 

UHP terranes exhumed rapidly during the early stages of orogeny, and large, 154 

buried UHP terranes that formed or are forming slowly. The Alpine155 

Himalayan orogen, where convergence is currently much slower than at the onset 156 

of collision (Guillot et al., 2003), does not reveal strong evidence of continental 157 

crust at UHP depths (Tilmann et al., 2003), but this does not preclude the 158 

presence of an incompletely exhumed UHP terrane in the lower crust (Walsh and 159 

Hacker, 2004). That terrane may not reach the surface for another 20 Myr, thus 160 

explaining why large UHP terranes are absent from active orogens. 161 



3) Ancient orogens with large, slowly formed UHP terranes should also contain or 162 

at one time have contained older, rapidly formed, small UHP terranes. The early 163 

exposure and small size of early UHP terranes would subject them to more 164 

erosion compared to large terranes. The preferential erosion of small terranes 165 

would reduce the abundance of ancient small UHP terranes. Nevertheless, some 166 

may exist: the ~450 Ma Jämtland HP region (Brueckner and van Roermund, 167 

2007), several hundred km east of the ~425 400 Ma Western Gneiss Region UHP 168 

terrane in Norway may be a prime example of a previously subducted continental 169 

sliver (as of yet, there is no evidence for UHP). In fact, it was the ~50 Myr age 170 

difference between these (U)HP terranes that prompted Brueckner and Van 171 

Roermund (2004) 172 

subduction and exhumation of continental slices during a single orogenic cycle. 173 

early vs. mature174 

rates successively slowed by increasingly larger volumes of continental material. 175 

The Kokchetav and Erzgebirge UHP units may also be good examples of early 176 

subducted UHP terranes, but they are poorly exposed, dissected by younger faults 177 

(Kokchetav), and have geochronologic data that do not define a coherent picture 178 

(see Supplementary Table 1). 179 

The model does not apply directly to UHP terranes that formed in the upper plates of 180 

collision zones (e.g., the NEGEP; Gilotti and Krogh Ravna, 2002), we expect those to be 181 

similar to other large, slowly formed terranes. The upper plate is thick, and thus buoyant, 182 

and, as is the case with Greenland, subducted during the later stages of orogenesis (Gilotti 183 

and McClelland, 2007).  184 



Outstanding Questions 185 

explaining a number of characteristics of 186 

UHP terranes, such as the degree of reaction progress (both on the prograde and 187 

retrograde path) and the P T paths, as well as the relative abundance and exposure of 188 

each end member type of terrane. 189 

Retrogression is ubiquitous in UHP terranes and obscures peak metamorphic 190 

conditions. However, even terranes that spent >20 Myr at mantle depths preserve 191 

incomplete prograde reactions (Austrheim, 1987; Zhang and Liou, 1997) presumably 192 

governed by fluid availability, deformation, and duration of metamorphism (Mosenfelder 193 

et al., 2005). One might expect small UHP terranes to be more retrogressed simply 194 

because of their low surface:volume ratio, but this may be compensated by the short time 195 

that they spend exhuming. At present, no correlation between degree or type of 196 

metamorphic overprint (e.g., greenschist-facies vs. granulite-facies) and terrane size has 197 

been noted.  198 

One might also expect that the thermal evolution of the two types of UHP terrane 199 

would be different, though no distinction can be drawn from the current dataset (Figure 200 

3). Heat conduction distance scales with the square root of time ( tx 2 ), such that a 201 

terrane with a subduction/exhumation cycle time of 20 Myr will be less affected by 202 

external temperatures if it is more than ~3X thicker than one with a 203 

subduction/exhumation cycle time of 2 Myr. This effect is offset by radiogenic heating, 204 

however, which would be minor, ~40°C, for a 3 Myr subduction/exhumation cycle, but 205 

significant, 250°C, for a 20 Myr cycle (these are maxima, assuming no heat loss and a 206 

heat production rate of 1µW/m3). Thermal-mechanical modeling can help test the 207 



proposed model; results thus far have been variable (Gerya et al., 2002; Warren et al., 208 

2008).  209 

As shown in Figure 1 and Table 2, more small, rapidly evolved UHP terranes have 210 

been recognized than large ones. This may be partly attributed to the increased chance for 211 

subduction of a microcontinent or continental margin over the subduction of a continental 212 

interior. The subduction of thick portions of continental lithosphere may also require a 213 

more specific set of requirements such as a large minimum dimension or a large 214 

attached oceanic slab which, if not met, would otherwise lead to a stall or reversal of 215 

subduction and produce only a small UHP terrane. It is also possible that, given the long 216 

time that large UHP terranes spend at depth, they are more likely to be overprinted and 217 

thus recognized less often. As stated earlier in this section, no correlation between the 218 

size of a terrane and the degree of retrogression yet exists. The occurrence of small and 219 

large UHP terranes could also simply be related to their size; the current estimate for the 220 

total volume of large terranes far exceeds that of small ones. Whereas many small, 221 

dissected terranes may form at the onset of continental subduction through the subduction 222 

of lobate continental boundaries or microcontinents, once interior portions of continents 223 

become subducted, the volume of subducted material is greater. 224 

   225 

Conclusions 226 

Ultrahigh-pressure terranes define two groups: terranes that are small, thin and subducted 227 

and exhumed rapidly, and terranes that are large, thick, and subducted and exhumed 228 

slowly. The former may be created during the early stages of continental subduction 229 

when the volume of negatively buoyant, subducted oceanic lithosphere, and, thus, forces 230 



that pull the subducting lithosphere down prevail; rapid, steep-angle subduction results. 231 

The latter may form during the later stages of continent collision when subduction of 232 

thick, positively buoyant continental lithosphere leads to slow, gentle-angled subduction. 233 

Assessing whether this hypothesis is correct by looking in detail at both poorly and well 234 

studied UHP terranes is important for understanding large-scale Earth evolution, such 235 

as the physical and chemical processes that produced and modified .  236 

237 



References 238 
 239 
Amato, J.M., Johnson, C., Baumgartner, L. and Beard, B., 1999. Sm-Nd geochronology 240 

indicates rapid exhumation of Alpine eclogites. Earth and Planetary Science 241 
Letters, 171: 425-438. 242 

Austrheim, H., 1987. Eclogitization of lower crustal granulites by fluid migration through 243 
shear zones. Earth and Planetary Science Letters, 81: 221 232. 244 

Baldwin, S.L. et al., 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern 245 
Papua New Guinea. Nature, 431: 263-267. 246 

Banno, S., Enami, M., Hirajima, T., Ishiwatari, A. and Wang, Q., 2000. Decompression 247 
P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos, 52: 248 
97 108. 249 

Billen, M.I. and Hirth, G., 2007. Rheologic controls on slab dynamics. Geochemistry, 250 
Geophysics, Geosystems - G (super 3), 8(8): 24. 251 

Brown, M., 2008. Characteristic thermal regimes of plate tectonics and their 252 
metamorphic imprint throughout earth history; when did Earth first adopt a plate 253 
tectonics mode of behavior? Special Paper - Geological Society of America, 440: 254 
97-128. 255 

Brueckner, H. and van Roermund, H.L.M., 2007. Concurrent HP metamorphism on both 256 
margins of Iapetus; Ordovician ages for eclogites and garnet pyroxenites from the 257 
Seve Nappe Complex, Swedish Caledonides. Journal of the Geological Society of 258 
London, 164(1): 117-128. 259 

Brueckner, H.K. and van Roermund, H.L.M., 2004. Dunk tectonics: a multiple 260 
subduction/eduction model for the evolution of the Scandinavian Caledonides. 261 
Tectonics, doi: 10.1029/2003TC001502. 262 

Compagnoni, R. and Rolfo, F., 2003. UHPM units in the Western Alps. EMU Notes in 263 
Mineralogy, 5: 13-49. 264 

Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: 265 
a first record and some consequences. Contributions to Mineralogy and Petrology, 266 
86: 107 118. 267 

de Sigoyer, J. et al., 2000. Dating the Indian continental subduction and collisional 268 
thickening in the Northwest Himalaya; multichronology of the Tso Morari 269 
eclogites. Geology (Boulder), 28: 487-490. 270 

de Sigoyer, J., Guillot, S. and Dick, P., 2004. Exhumation of the ultrahigh-pressure Tso 271 
Morari unit in eastern Ladakh (NW Himalaya): A case study. Tectonics, 23: 18, 272 
doi: 10.1029/2002TC001492. 273 

Elburg, M.A., van Bergen, M.J. and Foden, J.D., 2004. Subducted upper and lower 274 
continental crust contributes to magmatism in the collision sector of the Sunda-275 
Banda Arc, Indonesia. Geology (Boulder), 32(1): 41-44. 276 

Ernst, W.G., 2006. Preservation/exhumation of ultrahigh-pressure subduction complexes. 277 
Lithos, 92(3-4): 321-335. 278 

Ernst, W.G. and Liou, J.G., 2008. High- and ultrahigh-pressure metamorphism: Past 279 
results and future prospects. American Mineralogist, 93: 1771-1786, DOI: 280 
10.2138/am.2008.29. 281 



Gebauer, D., Schertl, H.-P., Brix, M. and Schreyer, W., 1997. 35 Ma old ultrahigh-282 
pressure metamorphism and evidence for very rapid exhumation in the Dora 283 
Maira massif, Western Alps. Lithos, 41: 5-24. 284 

Gerya, T.V., Stockhert, B. and Perchuk, A.L., 2002. Exhumation of high-pressure 285 
metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 286 
21(6): 10.1029/2002TC001406. 287 

Gilotti, J.A. and Krogh Ravna, E., 2002. First evidence of ultrahigh-pressure 288 
metamorphism in the North-East Greenland Caledonides. Geology, 30: 551-554. 289 

Gilotti, J.A. and McClelland, W.C., 2007. Characteristics of, and a Tectonic Model for, 290 
Ultrahigh-Pressure Metamorphism in the Overriding Plate of the Caledonian 291 
Orogen. International Geology Review, 49: 777-797. 292 

Gilotti, J.A., Nutman, A.P. and Brueckner, H.K., 2004. Devonian to Carboniferous 293 
collision in the Greenland Caledonides; U-Pb zircon and Sm-Nd ages of high-294 
pressure and ultrahigh-pressure metamorphism. Contributions to Mineralogy and 295 
Petrology, 148(2): 216-235. 296 

Guillot, S. et al., 2003. Reconstructing the total shortening history of the NW Himalaya. 297 
Geochemistry, Geophysics, Geosystems G, 4(7). 298 

Hacker, B.R., Calvert, A.T., Zhang, R.Y., Ernst, W.G. and Liou, J.G., 2003. Ultra-rapid 299 
exhumation of ultrahigh pressure diamond-bearing metasedimentary rocks of the 300 
Kokchetav Massif, Kazakhstan? Lithos, 70: 61 75. 301 

Hacker, B.R. et al., 2000. Exhumation of ultrahigh-pressure continental crust in east302 
central China: Late Triassic Early Jurassic tectonic unroofing. Journal of 303 
Geophysical Research, 105: 13339 13364. 304 

Hacker, B.R., Wallis, S., Ratschbacher, L., Grove, M. and Gehrels, G., 2006. High-305 
temperature geochronology constraints on the tectonic history and architecture of 306 
the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25(TC5006, 307 
doi:10.1029/2005TC001937): 1-17. 308 

Hacker, B.R., Wallis, S.R., McWilliams, M.O. and Gans, P.B., 2009. 40Ar/39Ar 309 
constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu 310 
orogen. Journal of Metamorphic Geology, 27(9): 827-844. 311 

Hamilton, W.B., 2011. Plate tectonics began in Neoproterozoic time, and plumes from 312 
deep mantle have never operated. Lithos, 123: 1-20. 313 

Henry, C., Michard, A. and Chopin, C., 1993. Geometry and structural evolution of ultra-314 
high-pressure and high-pressure rocks from the Dora-Maira Massif, Western 315 
Alps, Italy. Journal of Structural Geology, 15: 965-981. 316 

Hermann, J., Rubatto, D., Korsakov, A. and Shatsky, V.S., 2001. Multiple zircon growth 317 
during fast exhumation of diamondiferous, deeply subducted continental crust 318 
(Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 319 
141: 66 82. 320 

Jahn, B., R., C. and Monie, P., 2001. The oldest UHP eclogites of the World: Age of 321 
UHP metamorphism, nature of protoliths and tectonic implications. Chemical 322 
Geology, 178: 143-158. 323 

Kaneko, Y. et al., 2003. Timing of Himalayan ultrahigh-pressure metamorphism: sinking 324 
rate and subduction angle of the Indian continental crust beneath Asia. Journal of 325 
Metamorphic Geology. 326 



Kaneko, Y. et al., 2000. Geology of the Kokchetav UHP-HP metamorphic belt, northern 327 
Kazakhstan. The Island Arc, 9: 264 283. 328 

Kröner, A. and Willner, A.P., 1998. Time of formation and peak of Variscan HP-HT 329 
metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, 330 
Germany. Contributions to Mineralogy and Petrology, 132(1): 1-20. 331 

Kylander-Clark, A.R.C., Hacker, B.R., Johnson, C.M., Beard, B.L. and Mahlen, N.J., 332 
2009. Slow subduction of a thick ultrahigh-pressure terrane. Tectonics, 333 
doi:10.1029/2007TC002251. 334 

Kylander-Clark, A.R.C. et al., 2007. Coupled Lu-Hf and Sm-Nd geochronology 335 
constrains progade and exhumation histories of high- and ultrahigh-pressure 336 
eclogites from western Norway. Chemical Geology, 242: 137-154. 337 

Kylander-Clark, A.R.C., Hacker, B.R. and Mattinson, J.M., 2008. Slow exhumation of 338 
UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway. 339 
Earth and Planetary Science Letters, 272: 531-540. 340 

Lapen, T.J. et al., 2003. Burial rates during prograde metamorphism of an ultra-high-341 
pressure terrane: an example from Lago di Cignana, western Alps, Italy. Earth 342 
and Planetary Science Letters, 215: 57-72. 343 

Leech, M.L., Singh, S. and Jain, A.K., 2007. Continuous metamorphic zircon growth and 344 
interpretation of U/Pb SHRIMP dating; an example from the western Himalaya. 345 
International Geology Review, 49(4): 313-328. 346 

Liou, J.G., Tsujimori, T., Zhang, R.Y., Katayama, I. and Maruyama, S., 2004. Global 347 
UHP metamorphism and continental subduction/collision: The Himalayan model. 348 
International Geology Review, 46: 1-27. 349 

Little, T.A. et al., 2011. Diapiric exhumation of Earth's youngest (UHP) eclogites in the 350 
gneiss domes of the D'Entrecasteaux Islands, Papua New Guinea. 351 
Tectonophysics, 510: 39-68. 352 

Massonne, H.J., Kennedy, A., Nasdala, L. and Theye, T., 2007. Dating of zircon and 353 
monazite from diamondiferous quartzofeldspathic rocks of the Saxonian 354 
Erzgebirge; hints at burial and exhumation velocities. Mineralogical Magazine, 355 
71(4): 407-425. 356 

Mattinson, C.G., Wooden, J.L., Liou, J.G., Bird, D.K. and Wu, C., 2006. Age and 357 
duration of eclogite-facies metamorphism, north Qaidam HP/UHP terrane, 358 
western China. American Journal of Science, 306(9): 683-711. 359 

McClelland, W.C., Power, S.E., Gilotti, J.A., Mazdab, F.K. and Wopenka, B., 2006. U-360 
Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing 361 
zircons, North-East Greenland Caledonides. Geological Society of America 362 
Special Paper, 403: 23-43. 363 

Monteleone, B.D. et al., 2007. Late Miocene Pliocene eclogite facies metamorphism, 364 
D'Entrecasteaux Islands, SE Papua New Guinea. Journal of Metamorphic 365 
Geology, 25: 245-265. 366 

Mosenfelder, J.L., Schertl, H.-P., Smyth, J.R. and Liou, J.G., 2005. Factors in the 367 
preservation of coesite: The importance of fluid infiltration. American 368 
Mineralogist, 90: 779-789; DOI: 10.2138/am.2005.1687. 369 

Nakamura, D. and Hirajima, T., 2000. Granulite-facies overprinting of ultrahigh-pressure 370 
metamorphic rocks, northeastern Sulu region, eastern China. Journal of Petrology, 371 
41: 563 582. 372 



Parkinson, C.D., 2000. Coesite inclusions and prograde compositional zonation of garnet 373 
in whiteschist of the HP-UHPM Kokchetav massif, Kazakhstan: a record of 374 
progressive UHP metamorphism. Lithos, 52: 215-233. 375 

Parrish, R.R., Gough, S.J., Searle, M.P. and Waters, D.J., 2006. Plate velocity 376 
exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 377 
34: 989-992. 378 

Pollack, H.N., 1997. Thermal characteristics of the Archaean. Oxford Monographs on 379 
Geology and Geophysics, 35: 223-232. 380 

Pysklywec, R.N., Beaumont, C. and Fullsack, P., 2000. Modeling the behavior of the 381 
continental mantle lithosphere during plate convergence. Geology, 28: 655 658. 382 

Reinecke, T., 1998. Prograde high- to ultrahigh-pressure metamorphism and exhumation 383 
of oceanic sediments at Lago di Cignana, Zermatt-Saas zone, Western Alps. 384 
Lithos, 42: 147 189. 385 

Root, D.B. et al., 2005. Discrete ultrahigh-pressure domains in the Western Gneiss 386 
Region, Norway: implications for formation and exhumation Journal of 387 
Metamorphic Geology, 23: 45-61. 388 

Rubatto, D. and Hermann, J., 2001. Exhumation as fast as subduction? Geology, 29: 3 6. 389 
Rumble, D., Liou, J.G. and Jahn, B.M., 2003. Continental Crust Subduction and 390 

Ultrahigh Pressure Metamorphism. Treatise on Geochemistry, 3: 293-319. 391 
Shatsky, V.S. et al., 1999. Geochemistry and age of ultrahigh-pressure rocks from the 392 

Kokchetav Massif (northern Kazakhstan). Contributions to Mineralogy and 393 
Petrology, 137: 185-205. 394 

Simon, G. and Chopin, C., 2001. Enstatite-sapphirine crack-related assemblages in 395 
ultrahigh-pressure pyrope megablasts, Dora-Maira massif, western Alps. 396 
Contributions to Mineralogy and Petrology, 140: 422 440. 397 

Sleep, N.H., 2000. Evolution of the mode of convection within terrestrial planets. Journal 398 
of Geophysical Research, 105(E7): 17,563-17,578. 399 

Smith, D.C., 1984. Coesite in clinopyroxene in the Caledonides and its implications for 400 
geodynamics. Nature, 310: 641 644. 401 

Sobouti, F. and Arkani-Hamed, J., 2002. Thermo-mechanical modeling of subduction of 402 
continental lithosphere. Physics of the Earth and Planetary Interiors, 131: 185403 
203. 404 

Song, S. et al., 2003. Petrology, geochemistry, and isotopic ages of eclogites from the 405 
Dulan UHPM terrane, the North Qaidam, NW China. Lithos, 70: 195-211. 406 

Song, S. et al., 2006. Evolution from oceanic subduction to continental collision: A case 407 
study from the northern Tibetan Plateau based on geochemical and 408 
geochronological data. Journal of Petrology, 47(3): 435-455. 409 

Stoeckhert, B. and Gerya, T.V., 2005. Pre-collisional high pressure metamorphism and 410 
nappe tectonics at active continental margins; a numerical simulation. Terra Nova, 411 
17(2): 102-110. 412 

Tilmann, F. et al., 2003. Seismic imaging of the downwelling Indian lithosphere beneath 413 
central Tibet. Science, 300(5624): 1424-1427. 414 

Van der Klauw, S.N., Reinecke, T. and Stöckhert, B., 1997. Exhumation of ultrahigh-415 
pressure metamorphic oceanic crust from Lago di Cignana, Piemontese zone, 416 
western Alps: the structural record in metabasites. Lithos, 41: 79-102. 417 



Walsh, E.O. and Hacker, B.R., 2004. The fate of subducted continental margins: Two-418 
stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss 419 
complex, Norway. Journal of Metamorphic Geology, 22: 671-689. 420 

Wang, C.-Y., Zeng, R.-S., Mooney, W.D. and Hacker, B.R., 2000. A crustal model of the 421 
ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic 422 
refraction profiling. Journal of Geophysical Research, 105(B5): 10857-10869. 423 

Warren, C.J., Beaumont, C. and Jamieson, R.A., 2008. Deep subduction and rapid 424 
exhumation: Role of crustal strength and strain weakening in continental 425 
subduction and ultrahigh-pressure rock exhumation. Tectonics, 27, 426 
doi:10.1029/2008TC002292: 28. 427 

Werner, O. and Lippolt, H.J., 2000. White mica (super 40) Ar/ (super 39) Ar ages of 428 
Erzgebirge metamorphic rocks; simulating the chronological results by a model of 429 
Variscan crustal imbrication. Geological Society Special Publications, 179: 323-430 
336. 431 

Yamamoto, H., Ishikawa, M., Anma, R. and Kaneko, Y., 2000. Kinematic analysis of 432 
ultrahigh-pressure ultrahigh-pressure metamorphic rocks in the Chaglinka Kulet 433 
area of the Kokchetav Massif, Kazakhstan. The Island Arc, 9: 304 316. 434 

Zhang, R.Y. and Liou, J.G., 1997. Partial transformation of gabbro to coesite-bearing 435 
eclogite from Yangkou, the Sulu Terrane, eastern China. Journal of Metamorphic 436 
Geology, 15: 183 202. 437 

Zhang, R.Y., Liou, J.G. and Ernst, W.G., 2009. The Dabie-Sulu continental collision 438 
zone; a comprehensive review. Gondwana Research, 16(1): 1-26. 439 

Zhang, J., Zhang, Z., Xu, Z., Yang, J. and Cui, J., 2001. Petrology and geochronology of 440 
eclogites from the western segment of the Altyn Tagh, northwestern China. 441 
Lithos, 56: 187 206. 442 

Zhang, J.X. et al., 2005. Two contrasting eclogite cooling histories, North Qaidam 443 
HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 84: 444 
51-76. 445 

Zheng, Y., Fu, B., Gong, B. and Li, L., 2003. Stable isotope geochemistry of ultrahigh 446 
pressure metamorphic rocks from the Dabie-Sulu Orogen in China; implications 447 
for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161. 448 

 449 
 450 

451 



Correspondence and requests for materials should be addressed to A.R.C.K.C. 452 
 453 
Acknowledgements 454 
 455 
This work was supported by NSF grants EAR-0607775 and EAR-0838269 to B.R.H.456 

https://www.fastlane.nsf.gov/researchadmin/viewProposalStatusDetails.do;jsessionid=a2308071b8b61e631b61?propId=0607775&performOrg=U%20of%20Cal%20Santa%20Barbara


F igure Captions 457 

F igure 1. U HP ter rane size versus formation duration 458 

Well-studied UHP terranes define two separate groups: those that are large and spent a 459 

long time at depth, and those that are small and spent a relatively short period at depth. 460 

Symbol shading indicates terrane age (darkest are oldest). Where data are available, the 461 

time spent for terrane burial is shown with open symbols and the time spent for terrane 462 

exhumation to mid-crustal levels is shown with 463 

to the area of exposed eclogite-facies rocks, which includes HP and UHP rocks. 464 

 465 

F igure 2. Two types of U HP ter rane formation: early versus late 466 

The transition from oceanic subduction to continental subduction with the intermediate 467 

subduction of a microcontinent (mC). A) The oceanic lithosphere exerts a strong pull 468 

force, resulting in rapid and steep subduction. B) As a microcontinent (or continental 469 

margin) is subducted, buoyancy increases slightly. C) During the subduction of 470 

continental crust, buoyancy is greatly increased, reducing the subduction angle and 471 

velocity. oC = overriding continent; sC = subducted continent; OC = oceanic crust; LM = 472 

lithospheric mantle; AM = asthenospheric mantle. 473 

 474 

F igure 3. Pressure temperature paths of U HP ter ranes  475 

Large, slowly formed terranes in red/orange define a region (pink) with higher overall 476 

temperatures than the small, slowly formed terranes (blue and green). The Kokchetav 477 

terrane is not associated with a group and shown in grey. References: 478 



1) Van der Klauw, 1997; 2) Reinecke, 1998; 3) de Sigoyer, 2004; 4) Kaneko, 2003; 5) 479 

Compagnoni, 2003; 6) Simon, 200; 7) Parkinson, 2000; 8) Zhang, 1997; 9) Massonne, 480 

2003; 10) Wilner et al., 2000; 11) Gilotti, 2002; 12) Zhang, 1995; 13) Nakamura, 2000; 481 

14) Banno, 2000; 15) Root, 2005; 16) Zhang, 2001; 17) Zhang, 2005; 18) Song, 2003. 482 



Highlights 
 Young UHP terrains are small and evolved rapidly 
 Old UHP terrains are large and evolved slowly 
 Small terrains may be exhumed slivers related to early stages of orogenesis  
 Large terrains may be exhumed blocks related to late stages of orogenesis 

*Highlights
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Figure 1. UHP terrane size versus formation duration

Well-­studied  UHP  terranes  define  two  separate  groups:  
those  that  are  large  and  spent  a  long  time  at  depth,  and  
those  that  are  small  and  spent  a  relatively  short  period  at  
depth.  Symbol  shading  indicates  terrane  age  (darkest  are  
oldest).  Where  data  are  available,  the  time  spent  for  
terrane  burial  is  shown  with  open  symbols  and  the  time  
spent  for  terrane  exhumation  to  mid-­crustal  levels  is  
shown  with  filled  symbols  (See  Table  1).  ‘Size’  refers  to  
the  area  of  exposed  eclogite-­facies  rocks,  which  includes  
HP  and  UHP  rocks.
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Figure 2. Two types of UHP terrane formation: early versus late

Th¬e  transition  from  oceanic  subduction  to  continental  subduction  with  
the  intermediate  subduction  of  a  microcontinent  (mC).  A)  Th¬e  oceanic  
lithosphere  exerts  a  strong  pull  force,  resulting  in  rapid  and  steep  
subduction.  B)  As  a  microcontinent  (or  continental  margin)  is  subducted,  
buoyancy  increases  slightly.  C)  During  the  subduction  of  continental  crust,  
buoyancy  is  greatly  increased,  reducing  the  subduction  angle  and  
velocity.  oC  =  overriding  continent;;  sC  =  subducted  continent;;  OC  =  
oceanic  crust;;  LM  =  lithospheric  mantle;;  AM  =  asthenospheric  mantle.
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Figure  3.  A)  Large,  slowly  formed  terranes  are  in  red/orange  and  define  a  region  (pink)  with  higher  overall  temperatures  
than  the  small,  slowly  formed  terranes  (blue  and  green),  but  significant  overlap  precludes  any  correlation.  The  Kokchetav  
and  Erzgebirge  terranes  are  not  associated  with  a  group  and  plotted  in  grey.  B)  Generalized  P-­T-­t  paths  for  big,  ancient,  
slowly  evolved  terrains  vs.  small,  active,  rapidly  evolved  ones.  References:  1)  Van  der  Klauw,  1997;;  2)  Reinecke,  1998;;  
3)  de  Sigoyer,  2004;;  4)  Kaneko,  2003;;  5)  Compagnoni,  2003;;  6)  Simon,  200;;  7)  Parkinson,  2000;;  8)  Zhang,  1997;;  9)  
Massonne,  2003;;  10)  Wilner  et  al.,  2000;;  11)  Gilotti,  2002;;  12)  Zhang,  1995;;  13)  Nakamura,  2000;;  14)  Banno,  2000;;  15)  
Root,  2005;;  16)  Zhang,  2001;;  17)  Zhang,  2005;;  18)  Song,  2003.
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 Table 1. Characteristics of well-studied ultrahigh-pressure terranes 
 Minimum volumea   Mid upper Subduction Exhumation  

Terrane 
Areab 

(km2) 
Thickness 

(km) 
Peak UHP 
Age (Ma)c  

Lower-Crustal 
Age (Ma) d 

Crustal Age 
(Ma) e 

Duration 
(Myr) f 

Duration 
(Myr) 

Total Duration 
(Myr)g 

Lago Cignana1 <500 (2) 0.3 40.6 ± 2.6 n/d 38 ± 2 ~8 ~2 ~10 
Kaghan Valley2 <1000 <5 46.4 ± 0.1 n/d 44.1 ± 1.0 7 9 ~2 9 11 

Papua New 
Guinea3 4000 n/d 7.9 ± 1.9 ~3.5 ~1.5 n/d ~4 >4 

Tso Morari4 5000 <15 53.3 ± 0.7 47 ± 11 48 ± 2 n/d ~5 >5 
Dora Maira5 500 (50) 1 35.4 ± 2.7 32.9 ± 0.9 31.8 ± 0.5 n/d ~4 >4 
Erzgebirge6  2500 (1) 3 336.8 ± 2.8 330.2 ± 5.8 340 330 n/d <7 n/d 
Kokchetav7 <1500 <2 ~533 528 ± 8  ~529   n/d ~6 >6 
Greenland8 40,000 

(>40) 
>5 364 ± 8 342 ± 6 ~329 n/d ~35 >35 

Qaidam9 25,000 n/d 446 423 n/d 401.5 ± 1.6 >13 >21 ~58 
Western Gneiss 

Region10 
30,000 
(5,000) 

>15 405 400 ~390 385 375 >20 >15 >35 

Dabie Sulu11 30,000 
(10,000) 

>10 245 222 222 210 200 180 >12 >20 ~45 

For justification of reported ages, see discussion at end of Table A.1 1 
1) Amato et al., 1999; Lapen et al., 2003; 2) Kaneko et al., 2003; Parrish et al., 2006; 3)  Monteleone et al., 2007 ; 4)de Sigoyer et al., 2000; Leech et al., 2007; 5) 2 

Gebauer et al., 1997; Henry et al., 1993; Rubatto and Hermann, 2001; 6) Kröner and Willner, 1998; Massonne et al., 2007; Werner and Lippolt, 2000; 7) 3 
Hacker et al., 2003; Hermann et al., 2001; Kaneko et al., 2000; Shatsky et al., 1999; Yamamoto et al., 2000 ;8) Gilotti and Krogh Ravna, 2002; Gilotti et al., 4 
2004; McClelland et al., 2006; 9) Mattinson et al., 2006; Song et al., 2006; 10) Kylander-Clark et al., 2007, 2008, 2009; Root et al., 2005; 11) Hacker et al., 5 
2000, 2006. For a complete list of data, references and explanations for the dataset presented in this table, see Table A.1. 6 

a Because not all terranes are horizontal and well exposed, area x thickness provides a minimum volume estimate. 7 
b Area containing eclogite-facies (i.e., HP) outcrops (area within HP unit that contains confirmed UHP outcrops in parentheses). 8 
c U-Pb zircon, Lu-Hf garnet, or Sm-Nd garnet ages of eclogites that contain evidence of UHP conditions (e.g., inclusions of coesite). 9 
d U-Pb zircon or titanite or Sm-Nd garnet ages interpreted to represent amphibolite-facies metamorphism.  10 
e Reflects mid-crustal cooling through ~400°C (e.g., 40Ar/39Ar muscovite, U-Pb rutile). 11 
f Difference between the oldest HP ages interpreted as prograde and the oldest ages interpreted as UHP. 12 
g Difference between the earliest HP age and the mid-crustal age 13 
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