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Abstract
Mathematicians have been interested in properties of abundant numbers – those
which are smaller than the sum of their proper factors – for over 2,000 years. During
the last century, one line of research has focused in particular on determining the
density of abundant numbers in the integers. Current estimates have brought the
upper and lower bounds on this density to within about 10�4, with a value of
K ⇡ 0.2476, but more precise values seem di�cult to obtain. In this paper, we
employ computational data and tools from inferential statistics to get more insight
into this value. We also put a lower bound on the quantity of abundants in any
interval of size 106. Finally, we consider the “time series” nature of our data, and
consider the possibility of employing tools from this branch of statistics to more
carefully refine our statistical estimates.

1. Introduction and Background

In the first century CE, Nichomachus defined an abundant number to be an integer
the sum of whose proper factors is greater than the integer itself. The smallest
abundant number is 12, with factors 1+2+3+4+6 = 16; there are 22 such integers
less than or equal to 100. It is easy to see that there are infinitely many abundant
numbers – every multiple of a perfect or abundant number is itself abundant. This
leads us quickly to the question: what is the density of the abundant numbers?

It is not immediately apparent that abundant numbers even have a density. In
what follows, we shall use the concept of natural density, which roughly asks for the
fraction of integers which are members of a given set. More formally, we use the
following:
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Definition 1. Given a set S of positive integers, let S(n) be the number of integers
x  n with x 2 S. We define the natural density of S, dS, as:

dS := lim
n!1

S(n)
n

,

supposing the limit exists [10]. If the limit does not exist, the set does not have a
natural density.

Let A be the set of abundant numbers, and let dA represent their (natural)
density. With this definition of density, Davenport [3] showed in 1933 that the
density of the abundant numbers exists. Finding lower bounds for dA is easy. Since
every multiple of 6 is abundant, for example, we have dA � 1/6. Similarly, since 20
is the first abundant not a multiple of 6, we can put a stronger lower bound on the
density of abundant numbers using a standard inclusion-exclusion argument, noting
that dA > 1/6 + 1/20 � 1/60 = 1/5 (since multiples of 60 are double-counted by
the first two terms). Similarly, stronger lower bounds can be found by considering
more abundant numbers, again using standard ideas of inclusion and exclusion; we
shall revisit this idea in Section 9.1.

Finding upper bounds on dA is quite a bit harder; indeed it is not completely
trivial to show that dA < 1. In 1932, however, Behrend [1] showed that dA < 0.47.
In fact, he showed the slightly stronger statement that:

A(n)
n

< 0.47

for all integers n. Since that time, the best known bounds on dA have steadily
improved. The progress of the state of the art is shown in Table 1.

Year Author Lower Upper
1932 Behrend [1] 0.47
1933 Behrend [2] 0.241 0.314
1955 Salié [13] 0.246
1971� 72 Wall, et al. [15, 14] 0.246 0.2909
1998 Deléglise [4] 0.2474 0.2480
2010 Kobayashi [6] 0.2476171 0.2476475

Table 1: History of the best-known bounds on the density of abundant numbers.

Our goal in this paper is to use computational and statistical methods to ex-
plore some questions concerning the distribution of abundant numbers over various
ranges. We shall start with the distribution over a small range starting from 1, and
then “zoom out” to larger ranges, pausing to describe what we can learn about the
density of abundant numbers from each of these snapshots. Over larger ranges, we
will naturally use larger subintervals of integers as our unit of study. Rather than
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try to improve the best known bounds on dA (currently due to Kobayashi, whose
work involved hundreds of CPU hours, several clever custom algorithms, and was
the primary work of his Ph.D. dissertation and a paper [6, 7]), we use our compu-
tational and statistical methods to observe several features of the distribution of
abundant numbers in various ranges. We shall also introduce the idea of using tech-
niques from the theory of Time Series Analysis to provide insight into the behavior
of number-theoretic functions.

While the final interval in Table 1 provides the best proven bounds on the density
of abundant numbers, there are some theoretical reasons to think that the true
density is at the lower end of Kobayashi’s range. We shall thus use this lower
bound throughout the paper as a possible conjectural value, and shall call this
value K = 0.2476171.

2. Values of A(n)/n to 104

As a warm-up to our bigger study, we first examine the density of abundant numbers
up to 10,000. Since the first abundant number is 12, we have A(n)/n = 0 for n < 12,
and thus it is perhaps not surprising to see that A(n)/n grows fairly monotonically
at the beginning.
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Figure 1: Density of abundant numbers up to 104.
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Indeed, A(n)/n is so much smaller for values less than about 103 than for larger
values this is is di�cult to graph all of these on the same axis (see Figure 1). For
this reason, we take a closer look at the behavior of A(n)/n over the region [103, 104]
in Figure 2.
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Figure 2: Density of abundant numbers in the range [103, 104].

We see in this second plot that the density seems to be increasing. Somewhat
surprisingly, A(n)/n passes Kobayashi’s upper bound at about n = 3000, and does
not drop back into his range in the interval [3000, 10000]. (Note that Kobayashi’s
upper and lower bounds on dA are graphically indistinguishable on the scale of this
graph.) Of course, eventually it must do so, and we shall take our first step out in
order to try to locate when this might happen.

3. Values of A(n)/n to 107

If we expand our “window” by three orders of magnitude, we find a similar theme
on a larger scale. Before we examine the results, however, we establish a few
notational conventions we shall follow as we move to larger ranges. In practice,
there are computational limits on the number of integers for which we can store the
value of A(n). We therefore collected data about the quantity of abundant numbers
in blocks of size 106. Expanding on our previous notation, we make the following
definition:

Definition 2. We shall use the notation dA106,n to denote the density of abundant
integers in the range [(n� 1)106 + 1, n106].
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Thus, dA106,1 is the density of abundant numbers in the first block of one mil-
lion integers, and dA106,7 is the density of the abundant numbers in the range
[6000001, 7000000]. A quick computer check gives the values in Table 2.

n dA106,n

1 0.247545
2 0.247491
3 0.247509
4 0.247766
5 0.247704
6 0.247681
7 0.247713
8 0.247782
9 0.247739

10 0.247807

Table 2: Values of dA106,n for 1  n  10. Each gives the proportion of abundant
integers in the nth block of size one million.
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Figure 3: The density of abundant numbers, dA106,n for n 2 [1, 10]. The horizontal
line is at K = .2476171, which is Kobayashi’s lower bound. Note that the values
are being plotted here for each additional block, and are not cumulative.

As described above, we see in Figure 3 a pattern similar to that seen on the
interval [1, 104]. In the first three blocks of size 106, the density of abundant numbers
is less than Kobayashi’s lower bound, after which they are all greater. Once again,
we find that values of A(n)/n seem to be generally increasing.

It is encouraging that we are able to identify large-scale changes in the density
of abundant numbers using these block values. Indeed, from this point on most of
the study of abundant numbers in this work will center on these values of dA106,n.
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4. Values of A(n)/n to 108

Given that the density of abundant numbers is generally increasing until 107, and
given that it cannot continue to do so indefinitely, it is reasonable for us to ask when
the density levels out or decreases. If we zoom out one more order of magnitude,
we find a partial answer to this question; a graph of the block densities dA106,n for
n 2 [1, 100] is in Figure 4.
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Figure 4: Values of dA106,n for n 2 [1, 100].

The increasing trend, it seems, was short-lived. After about 4 ⇥ 107, values of
dA106,n drop below K, and stay below for almost all of these blocks up to 108.

A graph of the running averages A(n)/n is in Figure 5. It shows that, by ap-
proximately 80 ·106, A(n)/n has dropped below K and stays there through the end
of this range.

4.1. An Analogy: Counting Primes With ⇡(x), li(x) and x
log x

As we consider the relationship between A(n)/n and dA, we note that the rela-
tionship between the asymptotic limit of a number-theoretic ratio and its finite
values can take two general forms. Consider, for example, the relationship between
the prime counting function ⇡(x), the logarithmic integral li(x) :=

R x
2

1
log tdt, and

the function x/ log(x). While it is true that asymptotically both ⇡(x) ⇠ li(x) and
⇡(x) ⇠ x/ log(x), in the latter case the asymptotic belies a subtle inequality. In
fact, for all x � 17,⇡(x) > x

log x , and thus ⇡(x)� x
log x > 0 for all x � 17 [12]. On

the other hand, Littlewood proved that the sign of ⇡(x) � li(x) changes infinitely
often [9] .

Based on the evidence so far, it becomes increasingly tempting to conjecture that
A(n) will oscillate above and below dA infinitely often. More data might help us



INTEGERS: 19 (2019) 7

0 20 40 60 80 100

0.
24

75
5

0.
24

76
5

D
en

si
ty

 u
p 

to
  n

⋅1
06

Block number n

K

Figure 5: Cumulative density of the abundant numbers up to n ⇥ 106 for all n 2
[0, 100]. The horizontal line is at height K.

be more certain, however, and to that end we consider values over a larger scale.

5. Values of A(n)/n to 1011

We next consider integers up to 1011, giving us 100,000 blocks of size 106. At this
point, there is enough data that plotting it on a single graph renders the graph
unreadable, so instead we include as representative of this data graphs of the first
1000 blocks (integers up to size 109), block numbers 9000 - 10,000 (integers between
9 ⇥ 109 and 1010) and block numbers 99,000 through 100,000 (integers between
9.9⇥ 1010 and 1011). These are Figures 6, 7, and 8, respectively.

While there is definitely some initial variability in the densities, this appears to
have diminished as the block number increases, and the last two sets of blocks vi-
sually appear to be quite similar. There is still substantial block-to-block variation,
but overall the pattern does not seem to be changing much, if at all.

Note that because we have an order structure given by the block number (and
indirectly by the ordering of the integers), we can think of the data series as being
analogous to a time series - a sequence of data points indexed by time. Loosely
speaking, statisticians refer to time homogeneity as stationarity. We’ll discuss sta-
tionarity in more detail in Section 7. For now, we simply note that this suggests
that it might be useful to apply statistical reasoning and techniques to develop
more insight into the behavior of abundant numbers, and specifically into the val-
ues dA106,n. In the next section, therefore, we begin to use statistical techniques
to study these values.
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Figure 6: Density of abundant numbers in the first 1000 blocks of size 106.

6. A Statistical Approach to Abundant Numbers

Given an integer n, we let a(n) be the function that returns 1 if n is abundant, and
0 otherwise. Intuitively, we might expect a(n) to behave like a random variable
taking values from the set {0, 1}, with a(n) taking the value 1 with probability dA,
and taking the value 0 with probability 1�dA. To that end, let us define just such
a random variable, X, as follows:

X :=

(
0 with probability 1� dA;
1 with probability dA.

A random variable X which takes two distinct values with given probabilities is
a Bernoulli variable. It has a mean µX = dA and standard deviation �X =p

dA(1� dA). Since we are working under the assumption that X behaves like
a(n), we use the midpoint of Kobayashi’s bounds on dA above to estimate µX ⇡
0.247632 and �X ⇡ 0.431637.

Because we are interested in the distribution of values of dA106,n, we also define
a new random variable Y to model the proportion of abundant integers in blocks
of size 106 as

Y :=
1

106

106X

i=1

Xi.

We can model the distribution of Y by recalling the Central Limit Theorem.

Theorem 3 (Central Limit Theorem). Given a set of independent, identically
distributed variables X1,X2, . . .Xn, whose common distribution has mean µ and
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Figure 7: Density of abundant numbers in an interval of 1000 consecutive blocks of
size 106, starting with block 9000.

finite standard deviation �, for large n their mean X̄ is approximately normally
distributed with mean µ and standard deviation �/

p
n; that is, the distribution of

X̄ can be approximated by the N(µ,�/
p

n) distribution.

We have previously defined the random variable X, trying to use it as a model
for whether a single integer is abundant. Let Xi correspond to the ith integer.
Since the variables Xi are indeed independent, identically distributed variables,
then Y is approximately normally distributed with mean dA and standard deviationq

dA(1�dA)
106 .

Using the Central Limit Theorem, we can try to predict the behavior of the
values of dA106,n over di↵erent values of n. We have:

dA106,n =
1

106

n·106X

i=(n�1)106+1

a(i).

If we assume that the a(i) are independent, identically distributed variables, we
would expect that Y behaves like dA106,n, or more formally,

Conjecture 4. The values of dA106,n over all values of n are normally distributed

with mean dA and standard deviation
q

dA(1�dA)
106 . Taking the midpoint of Kobayashi’s

interval as our value for dA, we expect more precisely that the values of dA106,n

will fall in an N(0.247632, 0.0004316) distribution.

It now remains to check this conjecture against the computational data.
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Figure 8: Density of abundant numbers in an interval of 1000 consecutive blocks of
size 106, starting with block 99000.

6.1. Missing Variability in dA106,n

As expected, the values of dA106,n are normally distributed (Figure 9). However,
the standard deviation is far from what we conjectured above. We expected to find
a standard deviation of about 4.32⇥ 10�4. Instead, the value is only 3.54⇥ 10�5 –
more than an order of magnitude less. We next need to address the question of why
the values of dA106,n seem to be clustered together so much more than we would
expect.
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Figure 9: A histogram giving the number of blocks with given density from the
values of dA106,n for all n 2 [1, 100 000].

In formulating Conjecture 4, we used the hypothesis that the individual values of
a(n) were independent. That is, we assumed that whether any particular integer is
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abundant does not influence whether any other integer is abundant. We first need
to examine this assumption more closely.

6.2. Independence of Values of a(n)

Recall that our function a(n) is an indicator function on whether an integer n is
abundant. Before considering the trickier question of the behavior of the values of
dA106,n, let us first look at the independence of a(n). For example, one implication
of independence would be that knowing that an integer n is abundant would not
change the likelihood that n + 1 is abundant.

Even without answering the question of independence precisely, we can note
several things. The first is that even numbers are considerably more likely to be
abundant than odd numbers – this alone suggests that if n is an abundant even
integer, n + 1 is unlikely to be abundant. A related consideration concerns short
runs. Since every multiple of 6 is abundant, we see that the abundants occur with
more regularity than they would if a(n) truly behaved like a sequence of independent
random variables. Therefore, we see that the values of a(n) are not independent, and
that we shall therefore need more sophisticated methods to describe the distribution
of dA106,n.

6.3. Back to the Distribution of dA106,n

We prove in Section 9 that any block of size 106 must necessarily contain at least
237, 110 abundant numbers. This lower bound helps explain the unusually small
standard deviation in the values of dA106,n. Since the blocks contain about 247,600
abundant numbers on average, the “random” nature of the distribution will oc-
cur entirely in the remaining 10, 000 or so values. That is, we should expect a
much smaller standard deviation in the values of dA106,n than our näıve heuristic
suggested.

6.4. Independence of Values of dA106,n

We know that values of a(n) aren’t really independent, but what about dA106,n?
Because each of these values incorporates information about the abundance of 106

di↵erent integers, it seems likely that the issues arising from dependence of a(n)
will be “smoothed out”, letting us make the following conjecture.

Conjecture 5. The values of dA106,n over all values of n form a sequence of
independent, identically distributed variables.

We shall undertake a careful exploration of Conjecture 5 in Section 7.
If Conjecture 5 is true, we can use the first 100,000 blocks described in Section

5 to calculate an approximate 95% confidence interval for the true mean value
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dA106,n, and therefore the value of dA. Over these first 100,000 values, we first
find x̄ = 0.24761949309 and s = 3.54164 ⇥ 10�5, and thus our confidence interval
becomes

0.24761949309± 1.96 ⇤ (3.54164⇥ 10�5)p
105

,

or (0.247619274, 0.247619713). Note that this interval lies near the bottom of
Kobayashi’s interval of (0.2476171, 0.2476475), and thus if our estimate is correct,
his lower bound is very near the truth.

However, we must be quite careful here. Some of the graphs presented earlier
suggest that there are long-term trends in the values of dA106,n, and that there
may be some time series structure to these data.

If the values of dA106,n are not independent, then the confidence interval calcu-
lated above is not valid. We therefore turn next to the field of time series analysis
to consider whether the values of dA106,n are, in fact, independent, and if not to
apply some alternate techniques to calculate a confidence interval for dA.

7. Abundant Densities as Time Series

Since the values dA106,n have an order structure (they are ordered by the block
index n), we can analyze the independence of dA106,n using tools from time series
analysis, where the block index n plays the role of the time variable. A standard
tool in time series analysis to look at the order structure of a time series (if any)
is the autocorrelation function. The autocorrelation function of a time series Yt, or
ACF, is defined by ⇢(k) = Corr(Yt, Yt+k), where Corr(·, ·) denotes the correlation
between two random variables. The observant reader will note that implicit in this
notation is the assumption that the correlation does not depend on the time, t,
but only on the distance between the observations, k, which is often referred to as
the lag. This will be true provided that the series Yt is second-order stationary or
weakly stationary, that is, the means of the observations, E[Yt], variances, V ar(Yt),
and covariances, Cov(Yt, Yt+k), are independent of t. For our series dA106,n, the
graph suggests that the values from about block number 10,000 to block number
100,000 do, in fact, represent a stationary time series. Since the beginning of the
series seems to represent ‘burn-in’ or initial noisiness not typical of the rest of the
series, we will work with the data set starting at block 10,001; this is well past any
unusual initial behavior.

Since the data appear to be stationary, we consider the sample ACF, ⇢̂(k). If
the densities in successive blocks are truly independent, then all of the sample
autocorrelations will be near 0. However, ⇢̂(1) = �.169, so we see that successive
blocks are not independent and, in fact, are negatively correlated. Considering edge
e↵ects, this seems reasonable: a slightly higher proportion of abundant numbers in
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Figure 10: Sample ACF for dA106,n.

one block may mean that it had an extra multiple of 6, 20, etc; the next block
then might have a slightly lower proportion of abundant numbers. The second
autocorrelation is also negative, but with smaller magnitude, and the magnitude
then falls o↵ somewhat quickly (Figure 10).

Unfortunately, what this goes to establish is that the block densities dA106,n are
not independent in n, which means that the conditions for the standard normal-
based confidence interval discussed above are not met. However, the problem of
giving a confidence interval for the mean of a stationary time series is a standard one
in the time series literature. There are various approaches proposed for calculating
such a confidence interval; we will implement a bootstrap-based method called the
moving block bootstrap. This method was chosen because of its relatively mild
assumptions and, in particular, the fact that it does not require a particular model
for the time series to be specified.

The moving block bootstrap method was originally proposed by Künsch in [8].
(Note that there is no relationship between the general term ‘block’ in the bootstrap
method and our use of it to refer to a set of integers in this paper.) For this
method, our original series of 90,000 observations is divided into (90, 000 � b + 1)
overlapping blocks of block size b. Then 90, 000/b of these blocks are chosen with
replacement and used to form a new series of 90,000 observations. We compute
the mean of the new series and then repeat the whole process many times. The
resulting means are viewed as a sample from an empirical distribution, and then the
bootstrap confidence interval uses the percentiles of this sample to give a confidence
interval for the population mean. The table below gives results for several choices
of block size from b = 100 to b = 10, 000. In each case, the re-sampling procedure
was repeated 10,000 times and the 2.5th and 97.5th percentiles of the resulting
empirical distributions were taken as lower and upper confidence limits. Along
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with the confidence interval itself, the table also gives the width of each confidence
interval. Notice that the confidence intervals are consistent with the confidence
interval calculated using the standard normal-based techniques, and the narrowest
of the intervals is slightly narrower than the classical confidence interval.

Block size Lower endpoint Upper endpoint Width
100 0.24761881 0.24761918 3.7⇥ 10�7

500 0.24761867 0.24761930 6.3⇥ 10�7

1000 0.24761855 0.24761940 8.5⇥ 10�7

5000 0.24761816 0.24761961 1.45⇥ 10�6

10,000 0.24761801 0.24761943 1.42⇥ 10�6

Classical CI 0.247619274 0.247619713 4.39⇥ 10�7

These techniques seem promising, but do require that the time series be sta-
tionary (since estimating the mean requires that there be a time-invariant mean to
estimate). In our e↵orts to see whether it is plausible that these conditions hold,
we made a final zoom out to integers of size 1012.

8. Values of A(n)/n to 1012

In an e↵ort to see whether this behavior continues, we then ran an additional 900,000
blocks, giving us 106 blocks each of size 106 (representing abundant integers out to
size 1012). With this much data, however, it turns out that the noisiness between
blocks is actually hiding some of the underlying behavior of the data. This is more
obvious if we consider somewhat larger blocks. If we take these 1012 integers but use
blocks of size 109 rather than 106 (giving us 1000 data points rather than 106), we
see that our conjecture that the series was a stationary time series is, unfortunately,
not the case.

Figure 11 shows some very interesting behavior; the averages are below Koba-
yashi’s lower bound for a sizable range approximately between blocks 200 and 400,
corresponding to integers between 2⇥1011 and 4⇥1011. Beyond this there appears
to be a very slow upward trend through the range calculated. We see that the range
up to block 100 at this scale (representing the first 100,000 blocks at the previous
scale) do appear to be stationary and fairly stable, but that the behavior changes
noticeably shortly thereafter.

Unfortunately, this means that further analysis based on looking at the block
densities as a stationary time series is not possible, since there is a noticeable slow
upward trend. The fact that there seem to be oscillations leads to the following
conjecture:

Conjecture 6. The values of A(n)
n � dA will change sign infinitely often.
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Figure 11: Density of abundant numbers using a block size of 109, over the first
1000 blocks. The horizontal line is Kobayashi’s lower bound.

Despite the fact that our statistical e↵orts have not been successful in determining
new truths about the behavior of A(n)

n at infinity, we have found some interesting
results concerning bounds on the density of abundant numbers in short intervals,
a question which it seems has not been considered before. We shall turn to this in
the in final section of this paper.

9. Bounds on the Density of Abundant Numbers in Short Intervals

Having found both some promising leads and some disappointing dead ends in our
statistical analysis, we conclude this paper with a pair of theorems which determine
upper and lower limits on the number of abundants in any consecutive set of 106

integers – that is, we explore what limitations exist on the values of dA106,n.

9.1. A Lower Bound on dA106,n

In Section 1, we included a short inclusion-exclusion argument that the density
of abundant numbers is at least 1/5. We can use a more precise version of this
reasoning to put an absolute lower bound on the quantity of abundant numbers in
any block of 106 consecutive integers. We will use the following notation:

Definition 7. Given a set of integers X, let fX(d) the number of elements of X
divisible by d. If there is no confusion about the set in question, we will shorten
this notation simply to f(d).

Now let X be any block of 106 consecutive integers. Then f(6) = fX(6), the
number of integers in the set divisible by 6, satisfies b106/6c  f(6)  d106/6e



INTEGERS: 19 (2019) 16

(where b·c and d·e represent the floor and ceiling functions, respectively), with f(6)
taking the higher or lower of these values depending on the value of the smallest
element of X (mod 6). Since each multiple of 6 is abundant, we can say that
there are at least 166666 abundant numbers in any such block. Furthermore, f(20)
satisfies b106/20c  f(20)  d106/20e and so on. Using this same idea and our
inclusion-exclusion argument from Section 1, we find that dAX , the proportion of
integers in X which are abundant, can be bounded as

dAX � 1
106

(fX(6) + fX(20)� fX(60))

� 1
106

(b106/6c+ b106/20c � d106/60e) = .199999.

This lower bound is slightly less than the bound of 1/5 given above. The di↵er-
ence reflects the fact that we are now considering the density of abundant numbers
in intervals, and thus each term in the inclusion-exclusion argument has the po-
tential to contribute errors due to rounding. In the following we shall work to
balance the benefits of including more terms in the argument with the fact that
each additional term carries this potential for rounding error.

If we are going to use more values for our inclusion-exclusion argument (beyond
6 and 20), which values should we choose? The natural choice is the set of primitive
nondeficient numbers. The set of nondeficient numbers is slightly larger than the
set of abundant numbers; it includes both abundant numbers and perfect numbers
– those integers precisely equal to the sum of their proper factors. A nondeficient
number is primitive if it is not a multiple of another nondeficient number.

More generally, we can find explicit bounds on the number of abundant integers
in an interval using the Bonferroni inequalities. We shall begin with the general
setting for the Bonferroni inequalities as given in [11, Theorem 6.8].

Theorem 8 (Bonferroni inequalities). Let X be a nonempty, finite set of N
objects, and let P1, . . . , Pr be properties that elements of X may have. For each
subset I ⇢ {1, 2, . . . , r}, let N(I) denote the number of elements of X that have
each of the properties indexed by the elements of I. Let N0 denote the number
of elements of X with none of these properties. Then if m is a nonnegative even
integer,

N0 
mX

k=0

(�1)k
X

I⇢{1,2,...,r}
|I|=k

N(I),

while if m is a nonnegative odd integer,

N0 �
mX

k=0

(�1)k
X

I⇢{1,2,...,r}
|I|=k

N(I).
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(Here we take N(;) to be |X|, the cardinality of X.)
We shall take the set X in this theorem to be our set above, that is, a set of 106

consecutive integers. We shall let Pj be the property that an integer is divisible
by j, so N({n1, n2, . . . , nk}) = f(n), where n is the least common multiple of
{n1, n2, . . . , nk}. Then N0 will be the number of elements of X not divisible by any
of n1, n2, . . . , nr.

The value N0 bears a useful relationship with the number of nondeficient integers
(hereafter, nondeficients) in X, which we will denote by AX . In particular, for any
set of nondeficient integers I, the union of the nondeficients in X and those integers
counted by N0 contains all of X, so we have |X|  AX + N0, or

AX � |X|�N0. (1)

We shall combine these ideas in Theorem 10 to develop a method to find better
explicit lower bounds on the density of nondeficients in intervals.

We will first find it useful to have one more definition:

Definition 9. Given a set of integers I, we shall denote by lcm(I) the least common
multiple of all elements of I.

Now applying the Bonferroni inequalities to our setting, we have the following:

Theorem 10. Let X be a set of n consecutive integers and let d be any positive
integer, and recall that f(k) represents the number of elements of X divisible by
k. As above, let AX denote the number of nondeficient integers in X. Finally, let
Ad represent the set of the first d primitive nondeficient integers. Then if m is a
nonnegative even integer, we have

AX �
X

I⇢Ad
0<|I|m

(�1)|I|+1f(lcm(I)),

Proof. From Theorem 8, we know that for nonnegative even integers m, we have

N0 
mX

k=0

(�1)k
X

I⇢Ad
|I|=k

N(I).

Thus, by (1), the quantity of nondeficient integers in X, AX , satisfies

AX � |X|�
mX

k=0

(�1)k
X

I⇢Ad
|I|=k

N(I).

Note that in our notation, we have that N(I) = f(lcm(I)), and thus we can write
this as

AX � |X|�
mX

k=0

(�1)k
X

I⇢Ad
|I|=k

f(lcm(I)).
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The double sum above is taken over all subsets of Ad of size at most m. We can
thus rewrite the double sum directly, and find

AX � |X|�
X

I⇢Ad
|I|m

(�1)|I|f(lcm(I)).

Finally, note that by the definition of fX(n), when I is the empty set, we have
(�1)|I| · f(lcm(I)) = |X|, and so we can rewrite the above as

AX � �
X

I⇢Ad
0<|I|m

(�1)|I|f(lcm(I)) =
X

I⇢Ad
0<|I|m

(�1)|I|+1f(lcm(I)),

proving the theorem.

We can use Theorem 10 to find lower bounds on AX , the number of nondeficients
in a set X, by choosing values of m and d. In practice, we will find it useful to replace
each of the summands in Theorem 10 with an easily computable lower bound. We
shall do this using the following definition.

Definition 11. Given a set of integers I, let g(I) be defined as

g(I) :=

(
b 106

lcm(I)c if |I| is odd;
d 106

lcm(I)e if |I| is even.

Note that we now have, for each of the summands in Theorem 10,

(�1)|I|+1f(lcm(I)) > (�1)|I|+1g(I).

We therefore have the following.

Theorem 12. Given X, m, and d as in Theorem 10, we can put a lower bound on
the quantity of nondeficients in X, AX as

AX �
X

I⇢Ad
0<|I|m

(�1)|I|+1g(I).

Returning to the particular context in which we are working, we apply this
theorem to blocks of size 106 and write:

Theorem 13. Let Ad be the set of the first d primitive nondeficient integers. Then
for any nonnegative even integer m  d and any n � 0, we have that the proportion
of nondeficient integers in any interval of length 106 is at least

1
106

X

I⇢Ad
0<|I|m

(�1)|I|+1g(I).
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Proof. The theorem follows by applying Theorem 12, setting X to be any set of 106

consecutive integers.

The reader should confirm that choosing d = 2, m = 2 in Proposition 13 would
give the result that the proportion of nondeficient integers in any interval of length
106 is at least 1

106

�
b106/6c+ b106/20c � d106/60e

�
= 0.199999.

It remains for us to find the best lower bound by finding the best choices of d and
m. In fact, for any given d, there will an “optimal” value of m – that is, a choice of
m which gives the best lower bound. The basic idea here is that increasing m gives
us more terms in our inclusion-exclusion calculation (and thus a better bound), but
includes more rounding errors (and thus a worse bound). In practice, finding a
general function for predicting the best value of m for a given d in these cases is
di�cult or impossible, and instead we computationally check all possible values of
m to find the best choice.

In Table 3, for each choice of d, the optimal value of m  d is shown, together
with the resulting bound on the proportion of nondeficient integers in any interval
of length 106. The bolded row is the optimal lower bound using this technique for
those values of d tested (and likely for all d).

d m Bound
2 2 0.199999
3 2 0.216665
4 4 0.223803
5 4 0.228882
6 6 0.232969
7 6 0.234347
8 6 0.235469
9 6 0.236277

10 6 0.236765
11 6 0.237024
12 4 0.237111
13 4 0.236887
14 4 0.236527
15 4 0.236103
16 4 0.235535
17 4 0.235077
18 4 0.234633
19 4 0.234025
20 4 0.233248

Table 3: Best choices of m and corresponding best lower bounds on dA106,n from
Proposition 13 for small values of d.
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By choosing d = 12 and m = 4 in Proposition 13, we can show that 0.237111 is
a lower bound of the proportion of nondeficient integers in any interval of length
106. (Also note that this seems to be the best possible lower bound using inclusion-
exclusion techniques alone – stronger results may be possible, but would require
other techniques.) The work and computations above serve to prove the following:

Proposition 14. Any consecutive sequence of 106 integers contains at least 237111
nondeficient numbers.

The count of nondeficient numbers, in practice, is very close to the count of
abundant numbers (since perfect numbers are rare). It follows from the Euclid-
Euler theorem on even perfect numbers that no block of size 106 (with smallest
value at least 8128) can contain more than such value. (From Table 2, in the first
106 integers there are 247545 abundant numbers, so any block with smallest value
below 8128 must contain at least 239417 abundant integers.) We can thus also state
the following:

Corollary 15. Assuming the non-existence of odd perfect numbers, any consecutive
sequence of 106 integers contains at least 237110 abundant numbers.

9.2. An Upper Bound on dA106,n

It is not hard to show that the only upper bound on dA106,n is 106, that is, there are
106 consecutive abundant numbers. We could, in theory, even find these numbers by
using the Chinese Remainder Theorem and solving appropriate modular equations
using appropriate “small” abundant numbers.

In fact, Erdős proved the stronger result in 1935 that the longest sequence of
consecutive abundant numbers up to n is of the order log log log n [5]. We should
thus expect a consecutive sequence of 106 abundant numbers somewhere in the
range of exp(exp(exp(106)))!

10. Conclusions

Although the hypotheses required for proper inference using the statistical tech-
niques described in this paper were not satisfied, the fact that all of the estimates
made and intervals calculated fell near the bottom of Kobayashi’s range suggest
that in fact his lower bound may be near the true value of dA. In fact, we feel com-
fortable with the conjecture that 0.24761 < dA < 0.24762, which, if true, would fix
the value of dA to one more decimal digit.

The techniques used in Theorem 13 can be used to put lower bounds on the
number of abundant integers in intervals of any length. We note, for example, that
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taking d = 22 and m = 8 in the theorem gives that any consecutive sequence of 109

integers contains at least 240, 770, 557 nondeficient numbers.
We also note that these statistical techniques have the potential to be used to

address other number-theoretic questions. In particular, we would like to see Time
Series Analysis applied to help gain insight into other open problems.
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