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Abstract

We give a new generalization of the Riemann zeta function to the set of b-ball
juggling sequences. We develop several properties of this zeta function, noting among
other things that it is rational in b−s. We provide a meromorphic continuation of
the juggling zeta function to the entire complex plane (except for a countable set of
singularities) and completely enumerate its zeroes. For most values of b, we are able
to show that the zeroes of the b-ball zeta function are located within a critical strip,
which is closely analogous to that of the Riemann zeta function.
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30B50.

1. Introduction

This work finds its motivation in two disparate sources. The first is the recognition that
in recent years a large and growing body of mathematics has grown out of the study of
juggling. Recent work by Chung and Graham [CG] has been devoted to primitive juggling
sequences, which as (loosely) the building blocks of juggling sequences, serve as a rough
analogue to prime numbers among the integers.

The second motivation comes from the awareness that in several branches of number
theory and combinatorics, zeta functions are used to study primes and their analogues.
Based on the work of Riemann (and ultimately Euler), these functions encode information
about all primes (or their analogues), and allow the primes to be studied via analytic tech-
niques. In this paper, we develop a zeta function for primitive juggling sequences, and
develop several results about this function.

∗E-mail address: carsten.elsner@fhdw.de; Website: http://www.carstenelsner.de/
†E-mail address: klyved@cwu.edu; Website: http://www.cwu.edu/∼klyved/
‡E-mail address: etou@carthage.edu; Website: http://www.carthage.edu/faculty/etou/
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2. Background and Notation: Juggling

The notation used for juggling sequences is almost, though not quite, standardized. In the
present paper, we will follow the notation used in [CG], which served as a motivation for
this work. Jugglers classify juggling patterns using siteswap notation, which is based on
the height to which each consecutive ball is thrown. “Height” measures the number of
beats, or units of juggling time, that a ball is in the air. For example, the sequence (5, 1)
indicates that the first ball should be thrown to height 5, and the second to height 1, at
which point the pattern repeats. Mathematicians refer to examples of siteswap notation as
juggling sequences. Mathematically, a juggling sequence is a sequence T = (t1, t2, . . . , tn)
for which the values i+ti (mod n) are all distinct. For jugglers, this condition is equivalent
to the requirement that no two balls land in the same hand at the same time. We write ti = 0
to indicate that no ball is thrown at time i.

This notation has several interesting properties, one of which is that the average of the
entries in the juggling sequence is equal to the number of balls being juggled. Readers are
encouraged to consult the comprehensive book by Polster [P] for more interpretations and
use of juggling patterns and siteswap notation.

It is interesting to consider what it would mean to do arithmetic on juggling sequences.
The most obvious way to combine two sequences is to concatenate them. We shall refer to
this as multiplying the two sequences. However, this type of multiplication is a bit strange,
in that not every pair of sequences can be multiplied. For example, take the first two 3-ball
sequences learned by most jugglers: (3) and (5, 1). If we multiply these, we get (3, 5, 1),
which is not a juggling sequence (because 3 + 1 ≡ 5 + 2 (mod 3)). In order to determine
whether two sequences can be multiplied, it is necessary only to know the state of the
sequence—a binary sequence that indicates when the balls currently in the air are going to
land. Two juggling sequences can be multiplied if and only if they are in the same state (see
[CG, p. 186] for details concerning juggling states). In this paper, we will be using only
sequences which have a ground state—b-ball sequences with a state consisting of b 1’s.

As a converse to multiplication, we note that some juggling sequences can be decom-
posed (factored) into shorter sequences. For example, the sequence p = (4, 2, 4, 4, 1, 3) can
be decomposed into (4, 2), (4, 4, 1), and (3). A juggling sequence is called primitive if it
cannot be decomposed into shorter sequences. In this way, primitive sequences serve as the
analogue to prime numbers in the space of all juggling sequences.

Let us further define J = J(b) to be the set of all ground state b-ball juggling sequences,
with JP = JP (b) denoting the subset of primitive ground state b-ball juggling sequences.

3. Background and Notation: Zeta Functions

The idea of capturing information about all primes in one function dates most famously
to Riemann [R], though it was defined earlier by Euler [E]. As usually written, the zeta
function is defined as

ζ(s) =
∞∑
n=1

1
ns
.
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The zeta function has an Euler product, and (in its half-plane of convergence) it can also be
expressed as a product over only primes, rather than as a sum over all positive integers:

ζ(s) =
∞∑
n=1

1
ns

=
∏
p prime

1
1− p−s

(for Re(s) > 1).

It is for this reason (broadly speaking) that we say that information about the zeta function
gives us information about primes. Furthermore, this is the motivation for building zeta
functions over objects other than the integers. For example, the Dedekind zeta function is
defined over an algebraic number field, K:

ζK(s) =
∑

a⊆OK

1
N(a)s

,

where a ranges over the non-zero ideals of the ring of integers OK associated with K, and
N(a) is the norm of a. This too has an Euler product, and Dedekind [D] showed that it can
be expressed as a product over only the prime ideals:

ζK(s) =
∏

prime p⊆OK

1
1− (N(p))−s

(for Re(s) > 1).

As a final example of a zeta function with an interesting connection to our work in this
paper, we mention the related zeta function over function fields. Let F be a finite field of
q = pf elements with p prime, and let A = F[T ] be the polynomial ring over F. As usual,
we can define a zeta function over A and find its associated Euler product for Re(s) > 1:

ζA(s) =
∑
f∈A
f monic

1
|f |s

=
∏

P irreducible
P monic

(
1− 1
|P |s

)−1

,

where |f | is defined as qdeg(f). However, in this setting we find the surprising fact [Ro, p.
11] that

ζA(s) =
1

1− q1−s
(for Re(s) > 1).

That is, zeta functions over function fields are rational in qs! With these thoughts in mind,
we return to juggling sequences.

4. A Norm on Juggling Sequences

Observe that when we defined zeta functions over number fields and finite fields, it was
necessary to put a norm on the objects of interest (ideals and polynomials, respectively).
Because our goal is to create a zeta function for juggling sequences, we first need to define
a norm on these objects. This norm should capture as much information about the juggling
sequence as possible. In the end, we opted for a norm that is both simple in form and
incorporates the number of balls and the length of the juggling pattern, as follows. For a
juggling sequence j, we define

N(j) = bn, (4.1)
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where b is the number of balls being juggled and n is the length of the sequence. For
jugglers, this has the advantage of corresponding roughly to the difficulty of the juggling
pattern; increasing either the number of balls or the length of the pattern makes it more
difficult to juggle. For mathematicians, we note that this does indeed satisfy the conditions
of a norm:

Theorem 4.1. Given a juggling sequence j = (t1, . . . , tn), let as usual b = 1
n

∑n
i ti. Then

the function N(j) = bn is positive definite and multiplicative.

Proof. The fact that the values of this function are always positive holds trivially, so we
turn to multiplicativity. Let j1 = (t1, . . . , tn) and j2 = (u1, . . . , um) be two b-ball juggling
sequences, so N(j1) = bn and N(j2) = bm. If j1 and j2 have the same state (a necessary
condition for concatenation), then j1j2 = (t1, . . . , tn, u1, . . . , um) is a sequence of length
m+ n, and therefore N(j1j2) = bm+n, as desired.

For any subset S ⊆ J , we may then define the norm counting function for S by πS(x) =
#{N(j) ≤ x | j ∈ S}, with π(x) = πJP

(x) denoting the primitive norm counting
function. Note that when b ≥ 2 one could replace the inequality N(j) ≤ x with n ≤ log x

log b ,
where n is the length of the juggling sequence.

5. Zeta functions for ground state juggling sequences

Having defined a norm on juggling sequences, we can now define the zeta function for the
set of ground state juggling sequences J :

ζJ(s) =
∑
j∈J

1
N(j)s

,

where as usual s = σ + it is a complex variable, and N(j) is as defined in (4.1). Having
defined our zeta function, we now have three goals:

1. Rewrite the zeta function in a simpler form

2. Analytically (or at least meromorphically) continue it

3. Find its zeroes and singularities.

We will make considerable use of the following theorem concerning the number of juggling
sequences of a given norm (the notation has been modified from the original version).

Theorem 5.2. [CG, Theorem 1] Let J(b) be the set of all ground state juggling sequences
with b balls, and for any j ∈ J of length n, let N(j) = bn be the norm of j. Then

#{j ∈ J(b) | N(j) = bn} =

{
n! if n < b

b!(b+ 1)n−b otherwise.

Before tackling our three goals for an arbitrary number of balls, we start with a warm-up
problem, in which we examine a zeta function for the set of three-ball juggling sequences.
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6. A 3-ball juggling zeta function

Recall that our zeta function in general is written as

ζJ(s) =
∑
j∈J

1
N(j)s

,

where s = σ+it is a complex variable. We now prove several theorems about this function.

Theorem 6.3. The 3-ball zeta function, ζJ(s), can be written in closed form as a rational
function of 3s. In particular,

ζJ(s) =
1
2

(
5
4
· 1
3s

+
1

32s
+

3
16
· 4
3s − 4

)
.

Proof. For the 3-ball zeta function, we take b = 3 in Theorem 5.2, allowing us to write

ζJ(s) =
1
3s

+
2

32s
+
∞∑
n=3

3
32 · 4

n

3ns

=
1
3s

+
2

32s
−

3
8

3s
−

3
2

32s
+
∞∑
n=1

3
32 · 4

n

3ns

=
5
8
· 1
3s

+
1
2
· 1
32s

+
3
32

∞∑
n=1

4n

3ns

=
1
2

(
5
4
· 1
3s

+
1

32s
+

3
16
· 4
3s − 4

)
, (6.2)

as desired.

We have no a priori reason to expect to be able to write the zeta function in closed
form. Neither the classic Riemann zeta function nor the Dedekind zeta function share this
property. Rather, this zeta function behaves more like zeta functions over function fields.

Note also that this expression immediately gives a meromorphic continuation of the
zeta function to the entire complex plane, with singularities whenever 3s = 4 (viz., s =
log 4+2kπi

log 3 for any integer k).
Finally, we can use this rational version of the 3-ball zeta function to find its zeroes.

Theorem 6.4. Let ζJ(s) =
∑

j∈J
1

N(j)s be the 3-ball zeta function. Then the zeroes of

ζJ(s) are precisely the values s = − log( 1
2
(−1+

√
3))+2kπi

log 3 and s = − log( 1
2
(1+
√

3))+(2k+1)πi

log 3 ,
for all integers k.

Proof. Setting (6.2) to zero, we set z = 3−s to get

5
4
z + z2 +

3
16
· 4z
1− 4z

= 0,

from which it soon follows via a basic algebra exercise that

z(−2z2 − 2z + 1) = 0.
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The roots of this equation are z = 0 and −1
2 ±

√
3

2 . Since z = 3−s is never zero, the

only zeroes of ζJ(s) occur when s = − log( 1
2
(−1±

√
3))

log 3 . A simple application of complex
logarithms gives the desired result.

7. A juggling zeta function on b balls

Next, we generalize the above results to juggling zeta functions for an arbitrary number of
balls.

Theorem 7.5. For an arbitrary integer b > 2, the b-ball zeta function can be written as a
rational function of bs with rational coefficients; i.e., ζJ(s) ∈ Q(bs).

Proof. Recall that the b-ball zeta function is ζJ(s) =
∑

j∈J
1

N(j)s , where the number
of juggling sequences with norm N(j) can be found using Theorem 5.2. Applying this
theorem with b balls, we find

ζJ(s) =
b−1∑
n=1

n!
bns

+
∞∑
n=b

b! · (b+ 1)n−b

bns
,

and our goal is to replace the infinite sum with a finite sum of rational terms in bs. We have

ζJ(s) =
b−1∑
n=1

n!
bns
−

b−1∑
n=1

b! · (b+ 1)n−b

bns
+

∞∑
n=1

b! · (b+ 1)n−b

bns

=
b−1∑
n=1

(
n!− b! · (b+ 1)n−b

bns

)
+

b!
(b+ 1)b

∞∑
n=1

(
b+ 1
bs

)n

=
b−1∑
n=1

(
n!− b! · (b+ 1)n−b

bns

)
+

b!
(b+ 1)b−1

· 1
bs − b− 1

, (7.3)

which proves the theorem.

(Note that, unlike the three-ball case, we have not attempted to rewrite the general b-ball
zeta function in closed form.)

Once again, the rational form of the zeta function immediately gives us meromorphic
continuation to the complex plane; for general b there are singularities whenever bs = b+1
(viz., at s = log(b+1)+2kπi

log b ). It remains for us to find the zeroes. We find

Theorem 7.6. Let b > 2 be an integer, and let ζJ(s) be the juggling zeta function on b
balls. Then the zeroes of ζJ(s) are precisely the roots of the (b− 1)-degree polynomial

Pb(z) = 1 +
b−1∑
n=1

n!(n− b)zn,

where z = b−s.
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Proof. Taking the rational form of ζJ(s) in (7.3), we let z = b−s and set the expression to
zero to get

b−1∑
n=1

(n!− b! · (b+ 1)n−b)zn +
b!

(b+ 1)b−1
· z

1− (b+ 1)z
= 0.

Taking cn = n!− b! · (b+ 1)n−b to simplify notation, this becomes

0 =
b−1∑
n=1

cnz
n +

b!
(b+ 1)b−1

· z

1− (b+ 1)z
.

Since z = b−s is never zero, multiplying first by (1− (b+ 1)z)/z, we have

0 = (1− (b+ 1)z)
b−1∑
n=1

cnz
n−1 +

b!
(b+ 1)b−1

=
b−1∑
n=1

cnz
n−1 − (b+ 1)

b−1∑
n=1

cnz
n + 1− c1

= 1 +
b−1∑
n=2

cnz
n−1 − (b+ 1)

b−1∑
n=1

cnz
n

= 1 +
b−2∑
n=1

cn+1z
n − (b+ 1)

b−1∑
n=1

cnz
n

= 1 +
b−2∑
n=1

(
cn+1 − (b+ 1)cn

)
zn − (b+ 1)cb−1z

b−1. (7.4)

We can expand cn and cn+1 to rewrite the coefficients of zn as follows:

cn+1 − (b+ 1)cn = (n+ 1)!− b! · (b+ 1)n+1−b − (b+ 1)(n!− b! · (b+ 1)n−b)
= (n+ 1)!− (b+ 1)n! + b! · (b+ 1)n+1−b − b! · (b+ 1)n+1−b

= (n+ 1)!− (b+ 1)n!
= n! · (n+ 1− (b+ 1))
= n! · (n− b).

Substituting this into (7.4) we find that the zeroes of the zeta function are given by the
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roots of the (b− 1)-degree polynomial

Pb(z) = 1 +
b−2∑
n=1

n!(n− b)zn − (b+ 1)((b− 1)!− b!(b+ 1)−1)zb−1

= 1 +
b−2∑
n=1

n!(n− b)zn − (b− 1)!((b+ 1)− b)zb−1

= 1 +
b−2∑
n=1

n!(n− b)zn − (b− 1)! · zb−1

= 1 +
b−1∑
n=1

n!(n− b)zn,

as desired.

(It should be noted that a similar polynomial appears in a pair of generating functions
in [CG, pp. 189-190].)

Each root r of Pb(z) will produce an infinite family of zeroes: s = −Log r+2kπi
log b , where

k is any integer and Log r denotes the principal value of the logarithm. Clearly, the zeroes
will be distributed more tightly (in the vertical direction) for larger values of b.

8. Locating the zeroes of the zeta function on b balls

We continue the analysis of the various ζJ(s) with a more precise accounting of their zeroes.
For example, in the case b = 4 the roots of P4(z) = 1− 3z − 4z2 − 6z3 are

0.23435808..., −0.45051237...± i · 0.71288220... .

Since each of these roots has a modulus ≤ 1, and since z = 4−s, it follows that each zero
s0 of ζJ(s) satisfies Re(s) > 0. However, it is possible to extend this result further by using
the following

Theorem 8.7. For any b ≥ 4, the zeroes s0 of ζJ(s) satisfy Re(s0) > 0.

Proof. The case b = 4 has already been attended to above. For b ≥ 5, we will make use of
the inequality

b−2∑
n=1

n!(b− n) < (b− 1)!− 1 (b ≥ 5) (8.5)

which can be shown by induction. Next, for any b ≥ 5 we define the polynomials

fb(z) = 1− (b− 1)!zb−1 , gb(z) =
b−2∑
n=1

n!(n− b)zn .

Note that fb(z) comprises the first and last terms of Pb(z), while gb(z) is made up of the
remaining terms. Taking C to be the unit circle (i.e., C = {z = e2πit | 0 ≤ t < 1}), we
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have by (8.5) ∣∣gb(z)∣∣ ≤ b−2∑
n=1

n!(b− n) < (b− 1)!− 1 ≤
∣∣fb(z)∣∣

on C. Since Pb(z) = fb(z) + gb(z), Rouché’s theorem implies that, inside the unit circle,
the polynomial Pb(z) has the same number of roots as fb(z). Since all the b − 1 roots of
fb(z) have the modulus 1/ b−1

√
(b− 1)! < 1, we have proven the theorem.

We have thus far defined the zeroes of ζJ(s) implicitly as the roots of a polynomial. In
this section we go further, and give upper and lower bounds on the (real part) of the zeroes,
locating them more explicitly on the complex plane. To do so, we require the following
inequalities.

Lemma 8.1. Let b denote a positive integer. Then we have

b(b−1)/2

(b− 4)!
< 1 (b ≥ 18) , (8.6)

n!(b− n)
bn/2

≤ 4(b− 4)!
b(b−4)/2

(b ≥ 10 , 1 ≤ n ≤ b− 4) . (8.7)

Lemma 8.2. Let b denote a positive integer. Then we have

b−2∑
n=1

n!(b− n)
bn/2

<
(b− 1)!
b(b−1)/2

− 1 (b ≥ 16) . (8.8)

Proofs of these inequalities are appended to the end of this section. Here, we use these
facts to establish a stronger result regarding the zeroes of ζJ(s):

Theorem 8.8. For b ≥ 16, the zeroes s0 of ζJ(s) satisfy the lower bound Re(s0) > 1
2 . For

b ≥ 2, the zeroes of ζJ(s) satisfy the upper bound Re(s0) <
log(b+1)

log b .

Proof. Repeating the above proof with the curveC defined by {z = e2πit/
√
b | 0 ≤ t < 1},

we use (8.8) to conclude that

∣∣gb(z)∣∣ ≤ b−2∑
n=1

n!(b− n)
1
bn/2

<
(b− 1)!
b(b−1)/2

− 1 ≤
∣∣fb(z)∣∣ .

In this situation Rouché’s theorem and the inequality 1/ b−1
√

(b− 1)! < 1/
√
b (b ≥ 6)

show that for b ≥ 16 the roots zi of Pb(z) satisfy |zi| < 1/
√
b (i = 1, . . . , b − 1). Since

z = b−s, we estimate below the real part of every zero s0 of ζJ(s) by the modulus of the
corresponding root z0 ∈ {z1, . . . , zb−1} of Pb(z):

Re(s0) = − log |z0|
log b

=
log(1/|z0|)

log b
>

log
√
b

log b
=

1
2

(b ≥ 16) .
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For an upper bound of Re(s0) we use the identity

b−1∑
n=1

n!(b− n)
1

(b+ 1)n
= 1− (b+ 1)!

(b+ 1)b
(b ≥ 2) ,

which shows that

∣∣Pb(z)∣∣ ≥ 1−
b−1∑
n=1

n!(b− n)
1

(b+ 1)n
=

(b+ 1)!

(b+ 1)b
> 0

holds for |z| ≤ 1
b+1 . Consequently, the zeroes z0 of Pb(z) satisfy |z0| > 1

b+1 , and therefore
Re(s0) satisfies

Re(s0) <
log(b+ 1)

log b
(b ≥ 2)

for every zero s0 of ζJ(s). This completes the theorem.

Remark 8.1. The upper bound for Re(s0) in Theorem 8.8 cannot be replaced by 1: since

Pb

( 1
b+ 1

)
=

(b+ 1)!

(b+ 1)b
> 0 and Pb

(1
b

)
≤ −1

b
− 2
b2

+
18
b3

< 0

hold simultaneously for b ≥ 4, there is a real zero s0 of ζJ(s) between 1 and log(b+1)
log b for

such b.
Given b ≥ 16, we will call the region S = {z ∈ C | 1

2 < Re(z) < log(b+1)
log b } the critical

strip for ζJ(s). Next, for any positive real number X we may define the rectangle SX in
the critical strip by 1

2 ≤ Re(s) ≤ log(b+1)
log b and −X < Im (s) < X . Since ζJ(s) is periodic

in Im(s) with period 2π
log b , and since Pb(z) has degree b− 1, there are exactly b− 1 zeroes

(up to multiplicity) in S2π/ log b. This discussion proves the following

Theorem 8.9. For any b ≥ 16, the number Nb(ζJ) of zeroes in a general SX satisfies

Nb(ζJ) =
X(b− 1) log b

π
+Ob(1).

The implicit constant of the error term depends at most on b.

Collecting together our results on the singularities of ζJ(s) (stated before in the com-
ments preceding Theorem 7.6) and on the zeroes of ζJ(s) (stated in Theorem 8.9), we have
the following corollary.

Corollary 8.1. Let C be the boundary of the rectangle in the complex plane defined by the
four points 1/2− iX , 2− iX , 2 + iX , and 1/2 + iX , where X is any positive real number
such that the function ζ ′J(s)/ζJ(s) with b ≥ 16 is holomorphic on C. Let Sb(ζJ) denote the
number of singularities of ζJ(s) in the rectangle bounded by C. Then we have

Nb(ζJ)− Sb(ζJ) =
1

2πi

∮
C

ζ ′J(s)
ζJ(s)

ds =
X(b− 2) log b

π
+Ob(1) .

The implicit constant of the error term depends at most on b.
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Proof of Lemma 8.1: For (8.6) we proceed by induction. For b = 18 we have

1817/2

14!
= 0.5363001782... < 1 .

Next, let (8.6) be true for some integer b ≥ 18. Then,

(b+ 1)b/2

(b− 3)!
=

b1/2(1 + 1/b)b/2

(b− 3)
· b

(b−1)/2

(b− 4)!

<
b1/2(1 + 1/b)b/2

b− 3
(Induction hypothesis)

<

√
be

b− 3
< 1 (with e := exp(1)) .

To prove (8.7) we first check the inequality for b = 10, . . . , 44 by computer. Then we
assume that b ≥ 45 and distinguish the cases n ∈ {b− 4, b− 5, b− 6} and n < b− 6. For
n = b − 4 there is nothing to show because (8.7) becomes an identity. For n = b − 5 the
inequality (8.7) is equivalent to

5
4
≤ b− 4√

b
,

and for n = b− 6 it is equivalent to

3
2
≤ (b− 4)(b− 5)

b
.

Both inequalities hold for b ≥ 45. Now let b ≥ 45 and 1 ≤ n ≤ b − 7. From Stirling’s
formula,

√
2πm

(m
e

)m
< m! <

√
2π(m+ 1)

(m
e

)m
(m ≥ 1) ,

we obtain on the one side

n!(b− n)
bn/2

<
n!b
bn/2

<
b
√

2π(n+ 1)
bn/2

·
(n
e

)n
= b

√
2π(n+ 1)

( n

e
√
b

)n
≤ b

√
2π(b− 6)

(b− 7
e
√
b

)n
< b

√
2π(b− 4)

(b− 7
e
√
b

)b−7

. (8.9)

Note that b− 7 > e
√
b holds for b ≥ 45. On the other side, we have

4(b− 4)!
b(b−4)/2

>
4
√

2π(b− 4)
b(b−4)/2

·
(b− 4

e

)b−4

= 4
√

2π(b− 4) ·
(b− 4
e
√
b

)b−4

. (8.10)
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For b ≥ 45 we obtain the following inequalities (the first one does not hold for b = 44):

e3b5/2 < 4(b− 4)3

⇐⇒ e3b5/2(b− 4)b−7 < 4(b− 4)b−4

=⇒ e3b5/2(b− 7)b−7 < 4(b− 4)b−4

⇐⇒ b(b− 7)b−7

(e
√
b)
b−7

< 4 · (b− 4)b−4

(e
√
b)
b−4

⇐⇒ b
√

2π(b− 4)
(b− 7
e
√
b

)b−7

< 4
√

2π(b− 4) ·
(b− 4
e
√
b

)b−4

. (8.11)

Then, (8.7) for b ≥ 45 and 1 ≤ n ≤ b − 7 follows from (8.9), (8.10), and (8.11). This
completes the proof of the lemma. �

Proof of Lemma 8.2: First of all, note that the left side may be written as gb( 1√
b
). To verify

(8.8), one first checks by computer that it holds for b = 16, . . . , 44, but not for b = 15.
Next, let b ≥ 45. The polynomial p(x) := x6 − 6x5 − 9x4 + 26x3 + 20x2 − 12x− 7 has
six real roots x1, . . . , x6 with −2 < x1 < · · · < x6 < 6.705. Therefore, for x > 6.705 we
obtain p(x) > 0, and hence, equivalently,

4(x2 − 4)x3 + 3(x2 − 3)x2 + 2(x2 − 3)(x2 − 2)x < (x2 − 3)(x2 − 2)(x2 − 1)− 1 .

Substituting b := x2, we have for integers b ≥ 45 that

4(b− 4)b3/2 + 3(b− 3)b+ 2(b− 3)(b− 2)b1/2

< (b− 3)(b− 2)(b− 1)− 1

< (b− 3)(b− 2)(b− 1)− b(b−1)/2

(b− 4)!
(by (8.6)) .

Multiplying with (b− 4)!/b(b−1)/2, we arrive at

(b− 4)
4(b− 4)!
b(b−4)/2

+
3(b− 3)!
b(b−3)/2

+
2(b− 2)!
b(b−2)/2

<
(b− 1)!
b(b−1)/2

− 1 .

Now we apply (8.7) to estimate below the first term on the left-hand side:

b−4∑
n=1

n!(b− n)
bn/2

+
3(b− 3)!
b(b−3)/2

+
2(b− 2)!
b(b−2)/2

<
(b− 1)!
b(b−1)/2

− 1 .

This is (8.8) for b ≥ 45. �

9. Conclusion

We have not made use of an Euler product for our zeta function, such as

ζ(s) =
∏
j∈JP

(
1−N(j)−s

)−1
,
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in this work. It would be interesting to develop another version of meromorphic continua-
tion using this formula. Two basic methods suggest themselves. The first is to expand the
product into a Dirichlet series (this would differ significantly from the series used above)
and then attempt a meromorphic continuation using methods similar to Riemann’s. The
other method would be to calculate the logarithmic derivative of ζ(s) and then attempt a
meromorphic continuation of that. In each case, the multiplicity is the salient feature; we
need a count for the number of primitive juggling sequences of a given norm.

An asymptotic count of this type appears in [CG, p. 191]. We also find a claim by
Benoit Cloitre in the discussion for sequence A084519 of the OEIS [S] that

#{j ∈ JP | N(j) = 3n} ∼ α · βn,

where β ≈ 3.6891 is the real root of the polynomial p(t) = t3 − 3t2 − 2t − 2 and α ≈
0.068706 is the real root of the polynomial q(t) = 118t3 + 118t2 + 35t − 3. In fact, it
is conjectured that the multiplicity may be calculated exactly by rounding α · βn to the
nearest integer. Perhaps some version of this can be used to develop an Euler product for
the juggling zeta function.

Concerning the zeroes of ζJ(s), the contour integral in Corollary 8.1 can be easily
computed numerically for a given b and X by using a suitable computer algebra system
and by splitting the path of integration into the four edges of the rectangle. By numerical
investigations using such a computer program it seems reasonable that the error termOb(1)
in Corollary 8.1 becomes very small in general.
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