Central Washington University ScholarWorks@CWU

All Undergraduate Projects

Undergraduate Student Projects

Spring 2019

R/C Mini Baja: Drivetrain

Kyle Aitken Central Washington University, aitkenk@cwu.edu

Follow this and additional works at: https://digitalcommons.cwu.edu/undergradproj

Part of the Mechanical Engineering Commons

Recommended Citation

Aitken, Kyle, "R/C Mini Baja: Drivetrain" (2019). *All Undergraduate Projects*. 109. https://digitalcommons.cwu.edu/undergradproj/109

This Dissertation/Thesis is brought to you for free and open access by the Undergraduate Student Projects at ScholarWorks@CWU. It has been accepted for inclusion in All Undergraduate Projects by an authorized administrator of ScholarWorks@CWU. For more information, please contact scholarworks@cwu.edu.

R/C Mini Baja: Drive Train

By

Kyle Aitken

(Teammate: Sheynia Martin: Suspension and Frame)

MET 489C

TABLE OF CONTENTS:

- 1. Introduction
 - a. Motivation
 - b. Function Statement
 - c. Requirements
 - d. Engineering Merit
 - e. Scope of Effort
 - f. Success Criteria
 - g. Success Scenario
- 2. Design Analysis
 - a. Approach: Proposed Solution
 - b. Design Description
 - c. Benchmark
 - d. Performance Predictions
 - e. Description of Analyses
 - f. Scope of Testing and Evaluating
 - g. Analyses
 - i. Design Issue
 - ii. Calculated Parameters
 - iii. Best Practices
 - h. Device: Parts, Shapes, and Conformation
 - i. Device Assembly, Attachments
 - j. Tolerances, Kinematics
 - k. Technical Risk Analysis, Failure Mode Analyses, Safety Factors, Operation Limits
- 3. Methods and Construction
 - a. Construction
 - i. Description
 - ii. Drawing Tree, Drawing ID's
 - iii. Parts list and labels
 - iv. Manufacturing issues
 - v. Discussion of assembly, sub-assemblies, parts, drawings (examples)
- 4. Testing Method
 - i. Introduction
 - ii. Method/Approach
 - iii. Test Procedure description)
 - iv. Deliverables
- 5. Budget/Schedule/Project Management
 - a. Proposed Budget
 - i. Discuss part suppliers, substantive costs and sequence or buying issues
 - ii. Determine labor or outsourcing rates & estimate costs
 - iii. Labor
 - iv. Estimate total project cost
 - v. Funding source(s)

- b. Proposed schedule
 - i. High level Gantt Chart
 - ii. Define specific tasks, identify them, and assign times
 - iii. Allocate task dates, sequence and estimate duration
 - iv. Specify deliverables, milestones
 - v. Estimate total project time
 - vi. Gantt Chart
- c. Project Management
 - i. Human Resources: You are the most important human resource. Other HR may include mentors, staff, faculty, etc.
 - ii. Physical Resources: Machines, Processes, etc.
 - iii. Soft Resources: Software, Web support, etc.
 - iv. Financial Resources: Sponsors, Grants, Donations
- 6. Discussion
 - a. Design Evolution / Performance Creep
 - b. Project Risk analysis
 - c. Successful
 - d. Project Documentation
 - e. Next phase
- 7. Conclusion
 - a. Restate your design title and its complete design readiness.
 - b. Restate your important analyses and how this contributes to success.
 - c. Restate your design predicted performance vs actual performance, with respect to your requirements
- 8. Acknowledgements
- 9. References
- 10. Appendix A Analyses
- 11. Appendix B Drawings
- 12. Appendix C Parts List
- 13. Appendix D Budget
- 14. Appendix E Schedule
- 15. Appendix F Expertise and Resources
- 16. Appendix G Testing Data
- 17. Appendix H Evaluation Sheet
- 18. Appendix I Testing Report
- 19. Appendix J Safety Job Hazards Analyses
- 20. Appendix K Resume

ABSTRACT

A device is needed that can power the back wheels of R/C car and allow it to drive smoothly. This drivetrain also has to transmit power to the axles in an acceptable height range to comply with the frame and suspension. The project was supported by a team member who designed the frame and suspension. The design of this project consists of two sub-assemblies that make up the drive train assembly. The transmission assembly uses gears to convert the rotational speed from the motor to the drive shaft. The gearbox assembly also uses gears and converts the rotational speed from the drive shaft to the output shaft which powers the axles. To transmit the power from the electric motor to the wheels the two gear pairs and two shafts are needed. The spur pinion is attached to the motor and mates with the spur gear to drive the drive shaft. The gear box houses the bevel pinion and gear which mate to rotate the output shaft to power the vehicle. This device was tested to meet the requirements of the project. The device transmitted the rotational motion of the motor to the rear wheels of the vehicle, had an acceptable total gear ratio of 12.5:1, met the weight requirement of less than 1 pound, and costed less than \$200.

1: INTRODUCTION

Motivation:

This project was motivated by a need for a device that would compete in the Mini Baja R/C race. It was also motivated by the author's interest and experience in driving R/C cars. Building an R/c car from scratch and buying the necessary parts will also help in gaining knowledge in how they work.

Function Statement:

The R/C car needs to be able to compete in a race and a device is needed that will accept power from the R/C car motor and transmit it to the wheels

Requirements:

The device will conform to the following requirements and be optimized for performance, cost, and size:

- Be able to compete in a sprint and off-road race
- The drivetrain is required that would weigh less than 1 pound
- The drivetrain must fit in the available space on the chassis plate
- Accept 19740 RPM from electric motor
- Transmit HP to the rear axel
- Take rotary motion in one axis to a perpendicular axis
- The drivetrain must have a gear reduction to allow the vehicle to drive at 20 MPH
- The total cost of the drivetrain must me less than \$200 not including electronic components

Engineering Merit:

This project covers analyses that determine torque and rotational speed being transmitted. For example an engineering equation used for this was Torque = Power / Angular Velocity. To transmit the rotational speed, velocity ratios were used to determine gears to have compliant turn ratios and design parameters. In supporting components forces were calculated to determine how much stress would be applied to those parts.

Scope of Effort:

This project will not cover the whole vehicle just the drivetrain assembly. The rest of the R/C car will be covered by the suspension and frame.

Success Criteria:

This project will need to allow the R/C car to compete while meeting the requirements of the ASME Design Competition. This project will be successful if the drivetrain allows the R/C car to meet the requirements and successfully drive forward at about 20 MPH. It should be able to operate on smooth and off-road surfaces. The drivetrain components will also need to stay secure on the R/C car while in motion.

Success Scenario:

The way this project can be successful is racing in the R/C Mini Baja Competition and being competitive against opponents. This will be done by doing analyses to meet the requirements giving a design parameter that can be shown in a drawing.

2: DESIGN ANALYSIS

Approach:

The approach for this project was to start with the rotational output speed from the drive shaft on the motor and figure out how to transfer that to the rear axle. Then the housing and connecting components were determined and designed to support the drivetrain.

Design Description:

This R/C car was designed to power the rear axle and steer the front axle. The drivetrain design covers the power being transmitted to the rear axle and the parameters needed to achieve this. A double gear reduction was designed for to smoothly transmit power from the electric motor to the wheels.

Benchmark:

Schedules and characteristics of previous R/C Mini Baja projects can be used as benchmarks to compare performance.

Performance Predictions:

The main goal for the performance of the drivetrain is that the car drives smoothly at a constant speed. In Appendix A3, using the gear ratio calculated, the predicted maximum speed was 20.16 MPH.

Description of Analyses:

To get the R/C car to drive smoothly an analysis is done in Appendix A1 to determine a turn ratio for a constant speed. To get this turn ratio, an analysis on a double gear reduction is used and calculated for the separate ratios in Appendix A2. When a ratio is calculated that works for two gears, a corrected speed can be calculated in Appendix A3. Also using these gear ratios, in Appendix A4-6 analyses on gear parameters can be calculated. Next an analysis can be done on torque in the shafts using the power and angular velocity calculated in Appendix A7. With those torque values, analyses can be done to determine the forces on the shafts and bearings calculated in Appendix A8-9. To find design parameters for the shafts, an analysis can be done to determine a minimum diameter when designing with a specific material which is calculated in Appendix A10. With these shafts, a key width and depth can be chosen so an analysis can be done to determine the minimum length and stresses of the key, calculated in Appendix A11. In Appendix A12, an analysis is done to determine the distance and angle between the two offset shafts.

Scope of Testing and Evaluation:

Tests will be done on the R/C car after it is built and assembled. This project will cover testing on the drivetrain to determine the maximum speed, acceleration time, and driving ability on different surfaces.

Analyses:

For the required speed of 20 MPH an analysis on a turn ratio is needed that would reduce the shaft speed of 19740 RPM to 1566.6 RPM. In Appendix A1, the total gear ratio was calculated by converting 20 MPH to an output speed measured in RPM and then dividing the maximum speed by the output speed. This resulted in a turn ratio of about 12.5:1. To get this ratio a double gear reduction is shown in Appendix A2 with a transmission ratio and a differential ratio. Since a standard gear ratio for a pair of bevel gears rotating an axle in a gear box is around 3:1, a ratio of 2.5:1 was chosen to equal 5:1 for the transmission ratio to get to the total gear ratio of 12.5:1. With these two ratios chosen, an estimated max speed of 20.16 MPH with a rotational speed of 1579.2 RPM was calculated in Appendix A3.

To get the necessary gear reduction the first pair of gears were calculated to have 16 teeth on the pinion and 80 teeth on the gear, these calculations and dimensions of the gear pair can be found in Appendix A4 and A5. The second pair of gears had to drive the axle shaft with the driven shaft perpendicular to it so bevel gears had to be used. The pinion was calculated to have 12 teeth and the gear needed 30 teeth to complete the full gear reduction. These calculations and dimensions of the gear pair can be found in Appendix A6.

To find torque power is divided by angular velocity and converted to lb*in. Calculated in Appendix A7, the torque on the drive shaft was 0.385 lb*in, the driven shaft had 1.925 lb*in, and the axle shaft had 4.813 lb*in. With these torque values, the forces on the spur gears were calculated to have a tangential force of 2.31 lb and a radial force of 0.84 lbs. The forces on the bevel gears can also be calculated from these values. The pinion tangential force was 3.06 lb, the pinion radial force was 1.03 lb, the pinion axial force was 0.41 lb, the gear tangential force was 3.06 lb, the gear radial force was 0.41 lb, and the gear axial force was 1.03 lbs. This was calculated in Appendix A8. With these tangential, radial, and axial forces the maximum bending moments and bearings forces were calculated in Appendix A9. The maximum bending moment in the driven shaft was 1.51 lb*in and the maximum bending moment in the axle shaft was 3.48 lb*in. Bearing A had a radial force of 2.69 lb, Bearing B had a radial force of 0.60 lb and a thrust force of 0.41 lb, Bearing C had a radial force of 1.63 lb, and Bearing D had a radial force of 1.64 lb and a thrust force of 1.03 lbs.

Using the torque and maximum bending moments in the driven and axle shafts, the minimum diameters can be found for the chosen material. For carbon steel SAE 1020 the minimum diameters of the driven shaft and axle shaft were 0.162 in and 0.214 in calculated in Appendix A10. For these two shafts, a standard shaft diameter above the calculated minimum was chosen to be 0.25 in. With that shaft diameter, two carbon steel SAE 1018 shafts were chosen with key depths of 3/64 in and key widths of 3/32 in. For the axle key the length was calculated to be 0.6 in, with a shear stress of 684.52 psi, and a compressive stress of 1369.03 psi. For the driven shaft the length was calculated to be 0.2 in, with a shear stress of 821.33 psi, and a compressive stress of 1642.67 psi. These calculations can be found in Appendix A11. To find the distance and angle between the driven shaft and the bevel pinion the u-joint lengths, connecting shaft clearance length, and bearing height difference will need to be used. In Appendix A12, the distance was calculated to be 1.46 in and an angle of 51.25° between the two u-joints.

Device Parts, Shapes and Conformation:

An aspect of the design that was not directly referenced in the analyses was the motor housing size. It was designed to create small clearance between the motor and chassis plate while keeping the motor secure. This determined the height of the center of the drive shaft which was used in the design of the bearing housings to determine the height of the holes.

Device Assembly:

This device covers the drivetrain assembly which is split up into two main components that work together, the transmission and the gearbox, with many parts that make up this assembly shown in Appendix B14-16.

Tolerances, Kinematics and Ergonomics:

Tolerances for this project will need to be around +/-0.01 inches. A small tolerance is necessary for this project especially for parts like gears so they interface correctly. Since this device is human operated, it is designed to drive smoothly which is why it was not designed to have the fastest top speed possible.

Technical Risk Analysis:

The largest risk in this project is the manufacturing, specifically cutting down the stock material to the correct size and using high powered machines. This hazard will be avoided by using safety precautions as well as having supervision while in the machine lab. A job hazard analysis can be found in Appendix J. The safety factor used was 2.5 for gear and shaft calculations. This safety factor keeps the R/C car from failing under normal operating conditions and testing will be done to ensure this.

3. METHODS & CONSTRUCTION

Description:

Most of the parts of this project need to be purchased and then assembled because it is more practical and cost efficient than manufacturing them with the resources available. The 3-D printing machine in the CWU lab will be used for parts related to housing or support parts.

Drawing Tree and Drawing ID's:

In Appendix B17 there is a drawing tree with preliminary parts towards the bottom and the completed assembly at the top. Also all the parts necessary in each sub assembly are shown grouped together.

Parts List and Labels:

Parts list shown in Appendix C.

- 1. Electric Motor (1) Output 19740 RPM, Case Length 50mm, Case Diameter 35.8mm
- 2. Spur Pinion (1) 20 teeth, Pd=48, $d_0 = 0.375$ in, Set Screw Hole = 0.125in
- 3. Spur Gear (1) 80 teeth, Pd = 48, $D_0 = 1.708in$
- 4. Bevel Pinion (1) 14 teeth, $P_d = 8$, $d_o = 0.625$ in
- 5. Bevel Gear (1) 36 teeth, $P_d = 8$, $D_o = 1.5$ in
- 6. Key (1) Width = 3/32in, Height = 3/32in, Length = 0.5in

- 7. Drive Shaft (1) Length = 4in, Diameter = 1/4in, Key Width = 3/32in, Key Depth = 3/64in, Hole Diameter = 4mm
- 8. Driven Shaft (1) Length = 3.125in, Diameter = 3/16in, Hole Diameter = 3/32in
- 9. Adapter Shaft (1) Length = 0.89in, Diameter = 1/4in, Hole Diameter = 4mm
- 10. Spur Bushing (1) OD = 0.9in, ID = 0.25in, Length = 0.5in, Bore OD = 0.375in, Key Width = 3/32in, Key Depth = 3/64in
- 11. Bevel Bushing (1) OD = 0.9in, ID = 3/8in, Length 0.55in, Bore OD = 0.5in
- 12. Bevel Pinion Sleeve (1) OD = 0.31in, ID = 3/16in, Length = 0.35in, Hole Diameter = 3mm
- 13. Drive Cup (2) Length = 16mm, OD = 11mm, ID = 5mm, Set Screw Hole = 4mm
- 14. Bearing ¹/₄ (2) OD = 3/8in, ID = 1/4in, w = 1/8in
- 15. Bearing 3/16 (3) OD = 3/8in, ID = 3/16in, w = 1/8in
- 16. Bearing Housing (1) Dimensions $1.25 \times 0.375 \times 1.35$ in, Height to Center of Hole = 0.975 in, Bearing Hole Diameter = 3/8 in
- 17. Gearbox (1) Dimensions 2.5x2.25x3.3in, Height to Center of Holes = 1.5in, Bearing Hole Diameter = 3/8in
- 18. Motor Housing Base (1) Dimensions 2.243x2.075x0.337in,
- 19. U-Joints (2) ID = 0.31in with set screw hole, OD = 0.55in, Total Length at 0° deflection = 1.34in
- 20. Shaft Sleeves (3) OD = 0.31 in, $ID = \frac{1}{4}$ in, Length = 0.35 in, Hole Diameter = 4mm
- 21. Bolt M4x20 (5) Attaches u-joints to shafts and bearing housing to chassis plate
- 22. Bolt M4x10 + nuts (3) Attaches spur bushing to spur gear
- 23. Bolt M4x25 + nuts (4) Attaches motor housing
- 24. Bolt M2x12 (5) Attaches bevel bushing to bevel gear and bevel bushing to driven shaft
- 25. Screw M3x5 (2) Attaches motor to housing
- 26. Set Screw M3x4 (1) Attaches spur pinion to motor
- 27. Set Screw M4x5 (4) Attaches drive cups to driven shaft and u-joint to bevel pinion sleeve
- 28. Pin M3x6 (1) Attaches bevel pinion sleeve to bevel pinion
- 29. Motor Housing Mount (1) Dimensions 2.243x0.138x1.421in, Height to Center of Holes = 1.5in, Bearing Hole Diameter = 3/8in
- 30. Bearing Housing Block (1) Dimensions 1.25x0.375x0.138in, Bolt Hole diameter = 4mm
- 31. Nut M4 (12) Fastens M4 bolts
- 32. Nut M2 (5) Fastens M2 bolts

Manufacturing Issues:

The labs at CWU have the capability of manufacturing gears but not at the smaller size that this drivetrain requires. Also the housings for the bearings need to have a hole size that is more accurate than the 3-D printer provides, so the size will have to be adjusted after printing.

Another manufacturing issue in this design is the difference in height between the drive shaft and the pinion gear in the gearbox. This was accounted for with two u-joints which will be held together by an adapter shaft and the ends connected to the drive shaft and the bevel pinion. Another manufacturing issue was that the bevel pinion shaft diameter was much smaller than the

u-joint inner diameter. This was modified for by designing a sleeve that can be 3-D printed to fit between the u-joint and pinion shaft and has a hole for a pin to go through and screw into the u-joint side hole.

When the shaft sleeves were 3-D printed to accommodate for the difference between the outer diameter of the shafts and inner diameter of the u-joints it was discovered that they could not print to a close enough tolerance to fit around the 1/4in shafts and were too small and not strong enough to be altered to fit. To solve this problem, bronze sleeves were ordered from a supplier with a much closer tolerance and with this stronger material, holes could be drilled through the side for the screws that will go through the u-joints and shafts. The motor housing also had issues with tolerances when 3-D printed. The holes in the motor housing needed to be a precise distance apart to position the spur gears to mesh correctly. Since the original 3-D printed design for this did not work it was redesigned to be cut out of aluminum and then marked and drilled through to give a higher precision on the hole distances. To modify the motor housing, the design was changed to have the base of the original 3-D printed housing attached on top of the new "L" shaped aluminum part by being bolted down. The aluminum couldn't just be attached to the front because the plastic did not 3-D print solid so it was unable to be threaded and screwed into. This modification also effected the bearing housing since it raised the height of the motor and the drive shaft, therefore the bearing housing block had to be added to keep the drive shaft bearings at the same height.

Assembly, Sub-Assembly, Parts, Drawings:

The design of this project consists of two sub-assemblies that make up the drivetrain assembly. The transmission assembly uses gears to convert the rotational speed from the motor to the drive shaft. The gearbox assembly also uses gears and converts the rotational speed from the drive shaft to the output shaft which powers the axles. To transmit the power from the electric motor to the wheels the two gear pairs and two shafts are needed. The spur pinion is attached to the motor with the set screw included in the part. The spur gear mates with the pinion to rotate the drive shaft parallel to the motor and is attached to the driven shaft with the spur bushing and key. The driven shaft also has two u-joints at the end of it to get up to the height that the bevel pinion needs to be in the gear box. The gear box houses the bevel pinion and gear which mate to rotate the axle shaft to power the vehicle. There are three holes in the gearbox with bearings fixed in. The one on the front face supports the end of the pinion and the holes on the two sides support the driven shaft.

The first part of this project to be manufactured is the key, shown in Appendix B1. Also ordered and cut to the correct length are the three shafts which are located in Appendix B2-4. Next, the 3-D printed support components which are the spur and bevel bushings, bevel pinion sleeve, bearing housing, gearbox, and motor housing base located in Appendix B5-10 respectively. Other manufactured parts shown in Appendix B11-13 are the shaft sleeves, motor front mount, and bearing housing block. Then the drivetrain assembly drawing is in Appendix B14-16 showing all the components of the drivetrain. Pictures of the SolidWorks assemblies of the drivetrain and the entire R/C car are shown in Appendix B18, as well as construction and device pictures in Appendix B19-21.

4. TESTING METHOD

Introduction:

The main tests for the drivetrain of the RC car are determining how well it drives. The speed can be tested for accuracy compared to calculations. This can be tested on smooth and off-road surfaces.

Method and Approach:

The actual speed can be calculated by recording distance and time of the car once it has got up to a constant speed. For this test a stopwatch and tape measure are needed. Once this speed is calculated, acceleration can also be found by recording how long it takes for the device to get to top speed.

Test Procedure Description:

Space will be needed for this testing procedure. A track won't be necessary, but the open area in Hogue Hall can be used with cones set up to measure distances. For off-road testing areas outside on campus can be used. A more detailed procedure is shown in the testing report in Appendix I.

An aspect that will be tested to ensure the drivetrain is functional is how well the gears mesh together. This was a more difficult part of construction and had to be redesigned so the teeth would actually mate together. This will have to be tested more thoroughly to make sure not only that it functions, but that they also are not mated together too close or too far away. If the gears are not mated correctly, they would be subjected to more wear effecting the sustainability of the drivetrain. An incorrect mating of the gears could also have a potential risk of losing contact between teeth during operation from driving off terrain or taking a sharp turn.

The first test that was done was the maximum speed test. The results from this test were lower than the expected speeds because the device was unable to convert the full rotational speed of the motor to the axles without skipping teeth and falling out of alignment in the gearbox. There was also a part failure in this test with the plastic bushing breaking where it held the bevel gear to the driven shaft. This was due to a stress concentration in the geometry of the part and a large amount of torque in that area so to reinforce this a strong epoxy was used. Also the bearing holding the bevel pinion in the gearbox came out due to the high rotational speed. This was corrected by making a new part out of aluminum to cover the outer ring of the bearing and hold it in place. After this test there were also modifications made to the project covering frame and suspension to correct the angle of the wheels putting less stress on the drivetrain. With these corrections being made, the speed will be tested again to compare results and see if there has been improvement to get the speed closer to the predicted value.

The second test was the acceleration test. This tests how well the drivetrain gets the vehicle up to its max speed and maintains that speed for an extended distance. Since manufacturing improvements were being made up until the competition to make sure it worked, it was just tested for functionality in a 60 feet drag race and then the results were recorded from the event. The expected results were slower than the max speed test since this one had to start from rest, but it ended up only being slightly slower due to the improvements made.

The device was also tested for functionality on off-road terrain during the event. The off-road terrain provides a challenge for the drivetrain because of an increase of friction compared to smooth flat surfaces because the same amount of power transferred to the axles will not drive it as fast. In the Mini Baja course there was a section with a ramp going onto a slight downhill covered in bark. This test was not results based since it was just a success or fail outcome. The car drove through the bark obstacle in a practice run and in the competition making it a successful test.

Deliverables:

Max speed will be compared to the predicted value. The ability to handle off-road terrain will also be evaluated to see how much of a difference is made. The raw data from testing is shown in Appendix G and the data evaluation sheets used to collect the data are shown in Appendix H.

5. BUDGET/SCHEDULE/PROJECT MANAGEMENT

Proposed Budget:

To assemble this project, 32 different parts are needed with a total of 71 parts. Since this project has multiple expensive electronic components, the budget for non- electronic parts was set to be no more than \$200. After adding up all the purchased parts and the cost to 3-D print the other parts the total part cost came out to be under \$200 meeting the requirement. A labor cost also needs to be factored into the budget and for this project with an estimated number of hours spent working on it to be 116.5 so far with the actual total being 125. This increased the total build cost to be \$1377.49, but is not what the actual budget for the project is though because the principle engineer is a student doing the project for the requirements of the MET major so labor costs are not compensated. This leaves a budget of \$127.49 to be covered by the principle engineer.

Changes in the proposed budget were made in the manufacturing process. The largest change was due to the parts list being revised. This decreased the total cost because the original budget accounted for the electronic parts most of which can be obtained from the extra parts the CWU MET program has from past Mini Baja R/C cars. Another aspect that impacted the budget was the shipping and tax costs. These costs were estimated incorrectly before they were actually ordered, but it did not increase the total budget by too much more than originally planned. Also the 3-D printing was done at the MEC in Samuelson Hall instead of Hogue Hall as originally planned because the MEC charges hourly rather than by size which decreased the printing cost. These values were determined in Appendix D.

The only change made to the budget during testing was the added labor hours. The amount of time spent on correcting manufacturing issues want not anticipated in the proposed schedule. When issues came up in testing, modifications had to be made to reconstruct or add new parts and then test the requirement again. There was not any added part or material cost because the only parts added to the drivetrain during testing were constructed out of scrap aluminum from the CWU machine shop. These machined parts added the necessary strength in the components to not fail under the stress from operation in testing.

Proposed Schedule:

For this project to be completed, a schedule is needed to give the project better organization and optimization of time. This schedule covers deliverables of a draft proposal, analyses, documentation, a final proposal, part construction, device construction, and the MET 489 course required deliverables. Each of these milestones also have tasks that need to be completed in order to reach the milestones. The total time estimated it would take to complete all designing, constructing, and testing of this project was 143.5 hours with 128 hours estimated up though construction. The actual total up to date hours spent on this project so far is 123.5 hours and the actual subtotal for construction was slightly higher than the estimated time due to scheduling issues. This schedule is mapped out in the Gantt Chart in Appendix E1 and E2.

A scheduling issue that was run into was the 3-D printing taking over a week after delivering the STL files due to all of their printers being down except one. This caused the project to be slightly behind on the second manufacturing milestone with those parts in progress. Luckily multiple parts were able to be printed at the same time so once the order went through all seven 3-D printed parts would be received. To get back on track the first steps of manufacturing the three shafts had to be moved up to the fifth week of winter quarter and altering 3-D printed parts for press fits had to be moved back.

Redesigns also had an impact on the schedule. The original proposed design and analysis was not expected to work exactly as planned, but with multiple parts added and others edited along with slight modifications in the overall design, the project got off schedule. Changes had to be made to the Gantt Chart during construction, but that got the project back on schedule and allowed the device to be assembled and working by the deadline.

Revisions in the schedule had to be made to accommodate for testing reports and the competition. The device had to be working reliably by these deadlines to be successful in the tests. When testing the device for functionality, issues were found that needed modifications which affected the schedule. The major device issues that came up while testing were the bevel bushing breaking and the front bearing slipping out of the gearbox. This was resolved by manufacturing a new bushing out of aluminum and a plate to attach to the gearbox to hold the bearing in. To stay on track, extra hours were added into the schedule for these modifications.

Project Management:

This project will succeed due to the availability of appropriate technical expertise and resources. Easily obtainable test equipment is available to use for this project to test its effectiveness. The principal engineer will provide expertise in designing, constructing, and testing a mechanical device and their resume is shown in Appendix K.

6. DISCUSSION

The goal of this project was to determine a way for the device to transmit power to the wheels and then design for more efficient and optimized ways of doing that. At first the design idea was to power and steer the front axle of the R/C car which could have been done, but was providing problems with interference between the steering and the drivetrain. A rear axle powered design introduced advantages for the R/C car by making the assemblies less complicated therefore decreasing the chance for error. This also spread out the components on the chassis plate giving more options for orientation of the attached parts. The spacing of parts worked out with the final design well because this drivetrain uses a double gear reduction which takes up more space that some other drivetrain designs. The previous design also didn't leave enough space for the critical electronic components like the motor, speed controller, receiver, and battery needed to drive the vehicle.

The analyses were very crucial to the design of this project because most of the drawings had a design parameter that was reliant on an analysis calculation. An example specific to this device would be a gear because there is no good way to design a gear without having calculated parameters to use for the most important features in the gear. Design limitations were also found through analyses by calculating the minimum allowable shaft diameter for the amount of torque on the shafts and calculating the maximum range the universal joints could offset the height of the two shafts.

Once parts were 3-D printed, modifications were needed to be made. Specifically on the Bearing Housing, Motor Housing, and Gear Box the hole sizes were purposely designed with too high of an interference fit with the bearings. Since the bearings needed to be applied to those parts with force fits, the 3-D printer didn't have the precision necessary for this type of fit. Therefore, the parts were designed to be 3-D printed with hole diameters of 0.370 inches for the bearings with outer diameters of 0.375 inches. Then, the holes would need to be reamed out to a range of 0.3740 to 0.3745 inches.

Many changes had to be made to drawings and the parts list during construction. Multiple parts had to be added to the parts list and new drawings had to be made and updated into the assembly model. Since the principle engineer had limited experience working in machine labs and building mechanical devices, the original proposed plans had to be altered. Also in the design and analysis phase, not enough plans were made for combining this project with the other project covering the other half of the R/C car. Components added to connect the two projects were the drive cups and the design of the gearbox had to be altered to account for the frame being lower than anticipated. These unplanned events affected the schedule which had to be frequently changed throughout the months of construction with extended hours added towards the end.

Once the device was functioning, it was clear that testing needed to be done to pinpoint areas that need improvements. While it was a working device, optimizations can be made to prepare to complete the course and compete well against other R/C cars. An issue found in testing was the stress concentration in the bevel gear bushing where the diameter decreases. This ended up breaking during testing due to it having to attach the gear to the driven shaft rotating at a high RPM and holding the gear in place while under additional pressure from the pinion gear. To solve this the bushing was manufactured out of aluminum so the shape could be kept the same, but the material strength was increased to be stronger than the plastic. This improvement also helped with off-road driving since with the increased friction from an uneven rough surface, there is more stress put on the gears to rotate the axles at the same speed. This was shown to be successful in testing because after the modification was made, the device was able to drive off the jump and through the bark obstacle of the Mini Baja course.

Overall there is not much financial risk in this project as the most expensive parts are the tires and electronic components. Also the total price being \$127.49 is reasonable for the types of components necessary for the project. A preliminary design that had a large impact on the budget was the gearbox being solid without any cutouts besides the bearing holes. This design resulted in a lot of unnecessary material being used and adding to the price. To counteract this problem in the next design, some sections were cut out of the gearbox which ended up decreasing the volume of the gearbox from 7.42in³ to 3.88in³ and drastically decreasing the printing price for the part.

7. CONCLUSION

The design of the drivetrain for the Mini Baja R/C car complies with the requirements needed for a successful device to be built. This device has been planned out, analyzed, and designed to meet the function requirements for an R/C car drivetrain. The necessary parts have been specified that work with the design and did not run into any major problems with components in analyses. These requirements work for a successful senior project because of the engineering merit which was used in calculating parameters to efficiently operate the drivetrain. The most important analyses for the design of this device were calculating torque and angular speed because with those values, stresses and forces can be found so the drivetrain can be designed to not fail while subjected to these unavoidable stresses and forces. The device was constructed and although it did not meet all of the requirements of functioning consistently, the device worked to some degree, meaning modifications can be made during testing to improve the project. The goal for the second quarter of the project was to construct a functioning device. This goal was met by the R/C car constructed because it was able to drive forward, and in reverse while also steering. This was a solid foundation for a device that will be able to meet the requirements after testing and slight modification preparing it for competition. The device was tested to see if it could drive the vehicle and get up to its top speed and also drive through off-road terrain. When operating issues came up, additional time had to be spent modifying and adding two parts which were then tested again. After testing and modifications, the R/C car was able to compete in the Mini Baja competition. This was an extensive learning experience for the principal having to plan, construct, and test while making many changes along the way. This gave experience in time management for a project with a long process and many requirements to meet.

8. ACKNOWLEDGEMENTS

This project would not have been possible without support from CWU having a provided machine shop and 3-D printer. Support was given through advice from the current and former MET faculty members: Charles Pringle, Craig Johnson, John Choi, and Roger Beardsley. Also assistance and advice in manufacturing was given from Matt Burvee and Eric Arlt. This project was also supported by the suspension and frame of the R/C car being designed by group partner Sheynia Martin.

 $Machine \ Elements \ in \ Mechanical \ Design-Mott$

RC Car Drivetcain Kille Aitken MET 489 Given: Mabuch: RS-SHOSH-7520 At Max: Rotanical speed = 19740 RPM Tocque = 30, 6 mN-n Efficiency: Current = 13.0 Amps Output Power = 63, 2 W Traxxas TRA 6873R Wheel Dimmensions 00=109mm Hex = 12mm W= 43 mm Find: - Requirements for Design speed of ZOMPH - Total Turn Ratio Solution: | Rev = $\pi(00) = 342.43nn$ Design Speed $\left(\frac{20 \text{ miles}}{hc}\right) \left(\frac{1609.34 \text{ m}}{1 \text{ mile}}\right) \left(\frac{1000 \text{ mm}}{1 \text{ m}}\right) \left(\frac{1 \text{ Rev}}{342.43 \text{ mm}}\right) \left(\frac{1 \text{ hc}}{60 \text{ min}}\right) = 1566.59 \text{ RPM}$ Total Turn Ratio = Max Motor RPM = 19740 RPM = 12.6 Total Turn Ravid = [12.6:1]

Kyk Aitken RC (ar Dovetrain MET 489 Given: Total Turn Ratio = 12.6:1 End: Differential and Transmission Ratio Solution: 50 SHEETS -- 5 SQUARES
100 SHEETS -- 5 SQUARES
200 SHEETS -- 5 SQUARES
200 SHEETS -- FILLER (Differential ratio) (Transmission Patro) = 12.6:1 Differential Ratio Transmission Ratio COMET Saw ê. recommended differential partio = [2.5:1] Travenission Ratio = total = 12.6 = 5.04 Round down to keep total turn ratio below. 12.6:1 Transmission Routio = S:1]

MET 489 RC Cor Drivetrain Kyle Aitken Given: Turn Ravio's S:1 and Z.S:1 End: Actual Speed from adjusted two raxio 3-0235 - 50 SHEETS - 5 SQUARES 3-0236 - 100 SHEETS - 5 SQUARES 3-0237 - 200 SHEETS - 5 SQUARES 3-0137 - 200 SHEETS - FILLER Solution: Adjusted Turn Ratio = (Travenission Ratio) (Differential Ratio) = (5:1) (2.5:1) = 12.5:1Adjusted Output RPM. COMET VR = <u>NP</u> $12.5 = \frac{19740 \text{ RPM}}{n_6} \implies n_6 = \frac{19740 \text{ RPM}}{12.5} = 1579.2 \text{ RPM}$ Adjusted Speed $\frac{1579, 2 \text{ (eV)}}{\text{min}} \left(\frac{60 \text{min}}{\text{hr}} \right) \left(\frac{342.43 \text{mm}}{1 \text{ rev}} \right) \left(\frac{1 \text{m}}{1000 \text{ rm}} \right) \left(\frac{1 \text{mile}}{1609.34 \text{m}} \right) = \left[20.16 \text{ MPH} \right]$

	Kyle Aitken	ME7489	RC Car Drivetrain		
		h a set somew able	to fix to a		
•	Shaft diameter of 3.17 mn Material: Aluminum 7075				
RES RES RES	PJ = 48				
s — 5 squares s — 5 squares s — 5 squares s — filler s — filler	Np = 16 np = 197 VR = 5	IO RPM			
50 SHEET 100 SHEET 200 SHEET 200 SHEET	<u>Find</u> : Dimensions (F Transprission Pinion			
3-0235	Solution'				
0 0 0 0 0 8 8 8 8 8	Pitch Diameter	$DP = \frac{NP}{Pd} = \frac{16}{48} = 0.3331$	<u>n</u>		
COMET	Modale	$m = \frac{D_A}{N_P} = \frac{0.335}{1h} = 0.$	0208 in		
COL	Outside Diameter	$D_0 = \frac{(Npr2)}{Pd} = \frac{16+2}{48} =$	0.375:2		
-	Ciccular Pitch 1	$h = \frac{\pi N_{P}}{N_{P}} = \frac{\pi (0.333)}{16} = 0$.065 m		
		= 1.00m = 0.0208in			
		D = 1.25 m = (1.25)(.0208) =			
		$D_{R} = D_{P} - Z_{D} = 0.333$			
	- Con to be	= 0.25m = 0.25(.02)			
		$n_{t} = a + b = 0.0208 + 0.0$			
	2	$p_k = 2\alpha = 2(.0208) =$ $f = \frac{p}{2} = \frac{0.065}{2} = 0$			
		$F = \frac{1}{12} = \frac{1}{18} = \frac{0.25}{11}$			
	Pressure Angle	$\phi = 20^{\circ}$ (cormon value)			

Inter Joseph Dimensions of Transmission that and Transmission Raws Find Spure (basi to make with point Fallows Transmitter Case Relation) Solution: The pure RPM, $VE = \frac{AE}{A_{0}} \Rightarrow A_{0} = \frac{WE}{VE} = \frac{(47+10)}{(5)(16)} = \frac{3(1+18)(200)}{(5)(16)} = \frac{3(1+18)(200)}{(5)(16)}$ Number of Teeth, $VE = \frac{AE}{A_{0}} \Rightarrow A_{0} = \frac{WE}{VE} = \frac{(47+10)(200)}{(5)(16)} = \frac{3(1+18)(200)}{(5)(16)} = \frac{3(1+18)(200)}{(5)(16)}$ Number of Teeth, $VE = \frac{AE}{A_{0}} \Rightarrow A_{0} = \frac{WE}{VE} = \frac{(1+18)(16)(16)}{(5)(16)} = \frac{3(1+18)(200)}{(5)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)}{(16)(16)(16)} = \frac{3(1+18)(16)(16)(16)(16)(16)}{(16)(16)(16)(16)} = 3(1+18)(16$		Kyle Aitken	MET 489	RC Car Dr	-ivetrain	
Follows Transmitter Care Reduction Solution: Dut put RPM $VR = \frac{AP}{N_{c}} \rightarrow N_{c} = \frac{VP}{V2} = \frac{19740}{5} = \frac{3148}{5} RPM$ Number of Teeth $VR = \frac{AP}{N_{c}} \rightarrow N_{c} = \frac{VP}{V2} = \frac{19740}{5} = \frac{3148}{5} RPM$ Number of Teeth $VR = \frac{AP}{N_{c}} \rightarrow N_{c} = (VR)(NP) = (5)(16) = 30 + eeth$ Dianatal Pitch $Pd = 415$ (since as Philar) Pitch Dianeter $D_{c} = \frac{M_{c}}{PR} = \frac{1.667}{80} = 0.0208 in$ Midale $m = \frac{D_{c}}{N_{c}} = \frac{1.667}{80} = \frac{1.708 in}{100}$ Circular Pitch $P = \frac{\pi}{N_{c}} = \frac{\pi}{10} \frac{1.108}{10} = \frac{0.0055in}{100}$ (eur Touth Features (same as Philar) a = 0.0208in b = 0.0208in h = 0.0208in h = 0.0208in h = 0.0208in h = 0.0208in $Root Dianeter D_{R} = D_{c} - 2b = 1.667 = 21.0260) = 1.614 in$	0	Given: Design Dimensions of Transmission Phylon and Transmission Rano				
Solution: Output RPM $VR = \frac{h_{e}}{h_{u}} \Rightarrow h_{c} = \frac{h_{e}}{V2} = \frac{h_{e}}{5} = \frac{3.948}{5} RPM$ Number of Teeth $VR = \frac{h_{e}}{N_{b}} \Rightarrow N_{c} = (VR)(N_{P}) = (S)(h_{b}) = \frac{30}{50} \frac{1+8}{5}$ Number of Teeth $VR = \frac{h_{e}}{N_{b}} \Rightarrow N_{c} = (VR)(N_{P}) = (S)(h_{b}) = \frac{30}{50} \frac{1+6}{5}$ Dianated Pitch $Pd = \frac{14}{5} (sme as Philon)$ Pitch Dianeter $D_{c} = \frac{h_{b}}{R_{d}} = \frac{1.667}{80} = 0.0208 in$ Midule $m = \frac{D_{c}}{N_{b}} = \frac{1.667}{48} = \frac{1.708 in}{80}$ Circular Pitch $P = \frac{\pi}{N_{b}} = \frac{\pi}{10} \frac{1.667}{80} = 0.0055 in$ $h_{e} = 0.0208 m$ $h_{e} = 0.00416$ $h_{e} = 0.0208 m$ $h_{e} = 0.00416$ $h_{e} = 0.0465m$ $h_{e} = 0.0465m$ h_{e						
Number of Teeth $VR = \frac{N_{c}}{N_{p}} \Rightarrow N_{c} = (VR)(N_{p}) = (3)(1b) = 30 + teeth$ Dianatal Pitch $Pd = 4R$ (some as finion) Pitch Dianater $D_{c} = \frac{N_{c}}{P_{d}} = \frac{80}{48} = 1.667in$ Midule $m = \frac{D_{c}}{N_{c}} = \frac{1.667}{80} = 0.0208in$ Outside Dianater $D_{o} = \frac{(N_{b}+2)}{N_{c}} = \frac{80+2}{48} = 1.708in$ Circular Pitch $P = \frac{\pi D_{c}}{N_{c}} = \frac{\pi(1.667)}{80} = 0.005in$ Gene Tooth Features (same as finion) a = 0.0208in b = 0.0208in b = 0.0208in f = 0.0218in C = 0.0016in h = 0.0218in $Root Dianeter D_{R} = D_{c} - 2b = 1.667 - 721.0260) = 1.614in$	QUARES QUARES QUARES CER					
Hometral Pitch $Pd = 4g$ (some as finion) Pitch Diameter $D_{G} = \frac{N_{G}}{P_{G}} = \frac{g_{O}}{4g} = 1.067in$ Midule $m = \frac{D_{G}}{N_{G}} = \frac{1.667}{80} = 0.0208in$ Outside Diameter $D_{O} = \frac{(N_{U}+2)}{P_{d}} = \frac{g0+2}{4g} = 1.708in$ Circular Pitch $P = \frac{\pi}{N_{G}} = \frac{\pi}{1.607} = 0.005in$ Gene Tooth Featules (same as Pinion) a = 0.0206in $b = \frac{0.0206in}{1000000000000000000000000000000000000$	13 - 53 15 - 55 15 - 5	Output RPM VR	$l = \frac{n_{P}}{n_{G}} \rightarrow n_{G} = \frac{n_{P}}{v_{R}}$	$= \frac{19740 \text{ RPM}}{5}$	= <u>3948 RPM</u>	
Pitch Dianeter $D_{6} = \frac{N_{6}}{P_{0}} = \frac{S_{0}}{4g} = 1.667in$ Midule $m = \frac{D_{6}}{N_{6}} = \frac{1.667}{80} = 0.0208in$ Outside Dianeter $D_{0} = \frac{(N_{0}+2)}{P_{0}} = \frac{80+2}{4g} = 1.708in$ Circular Pitch $P = \frac{\pi}{N_{6}} = \frac{\pi}{100} = \frac{\pi}{100} = 0.005in$ Gene Tooth Featules (same as Pinim) A = 0.0208m $h_{c} = 0.0208m$ $h_{c} = 0.0216in$ $h_{c} = 0.0122in$ $h_{c} = 0.016in$	50 SHEET 00 SHEET 00 SHEET 00 SHEET	Number of Teeth VR Diametral Pitch P	$2 = \frac{N_G}{N_P} \implies N_G = (VR)$	$(N_P) = (5)(1b) =$	80 teeth	
Midule $m = \frac{D_{L}}{N_{0}} = \frac{1.667}{80} = 0.0208 in$ Outside Dianeter $D_{0} = \frac{(N_{0}+2)}{P_{0}} = \frac{80t2}{48} = 1.708 in$ Circular Pitch $P = \frac{\pi D_{0}}{N_{0}} = \frac{\pi (1.667)}{80} = 0.005 in$ bear Tooth Features (same as Pinim) a = 0.0208 m $b = \frac{0.0208 m}{0.0260 in}$ $h_{k} = \frac{0.0416}{0.0325 m}$ $h_{t} = 0.052 in$ $h_{t} = 0.052 in$ $h_{t} = 0.0468 in$ $P = \frac{\pi D_{0}}{20^{\circ}}$ Root Dianeter $D_{R} = D_{0} - 2b = 1.667 - 21.0260) = 1.614 in$	-0235					
$P = \frac{\pi D_{b}}{N_{b}} = \frac{\pi (1.667)}{80} = \frac{0.065 \text{ in}}{0.065 \text{ in}}$ (bear Tooth Features (same as Pinion) $a = 0.0208 \text{ in} \qquad h_{k} = \frac{0.0416}{0.0325 \text{ in}}$ $b = \frac{0.0250 \text{ in}}{0.0052 \text{ in}} \qquad h_{k} = \frac{0.0416}{0.0325 \text{ in}}$ $f = 0.0251 \text{ in} \qquad f = 0.251 \text{ in}$ $h_{t} = 0.0468 \text{ in} \qquad h_{t} = 0.6 - 2b = 1.667 - 21.0260) = 1.614 \text{ in}$ Robt Diaretter $D_{R} = D_{6} - 2b = 1.667 - 21.0260) = 1.614 \text{ in}$	0000	Medale	$=\frac{D_{G}}{N_{c}}=\frac{1.667}{20}=0,$	020810		
$P = \frac{A U_{b}}{N_{c}} = \frac{O(1.667)}{80} = \frac{O.065 \text{ in}}{0.005 \text{ in}}$ bear Tooth Features (same as Pinim) $a = 0.0208 \text{ in}$ $b = \frac{O.0260 \text{ in}}{0.0260 \text{ in}}$ $f = 0.0325 \text{ in}$ $f = 0.255 \text{ in}$ $f = 0.255 \text{ in}$ $h_{t} = 0.0468 \text{ in}$ $P = 20^{\circ}$ Robt Diareter $D_{R} = D_{c} - 2b = 1.667 - 21.0260) = 1.614 \text{ in}$	COMET					
$\begin{array}{llllllllllllllllllllllllllllllllllll$		P	$= \frac{\pi D_b}{N_b} = \frac{\pi (1.667)}{80}$	= 0,065in		
$b = 0.0260;n \\ C = 0.0052;n \\ ht = 0.0468;n \\ Root Dianeter \\ D_R = D_G - 2b = 1.667 - 21.0260) = 1.614;n \\ D_R = D_G - 2b = 1.667 - 21.0260) = 1.614;n \\ Root Dianeter \\ D_R = D_G - 2b = 1.667 - 21.0260) = 1.614;n \\ D_R = D_G - 2b = 1.667 - 21.0260 \\ D_R = 0.67 - 21.0260 \\ D_R = 0.026 - 21.0260 \\ D_R =$		Gear Tooth Features	(same as Plaim)			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$h_{k} = 0.041$	2		
		C = 0.0052 in	F= 0.2510	-		
		Robt Diameter Di	$p = D_{k} - 2b = [.]$	67 - 21.0260) =	1.614 10	

	Kyle Aitken MET 489 RC Car Drivetrain	1/2
	<u>Given</u> : Straight Bavel Gear minimum number of teeth for Plaion = 12 Standard Diametral Pitch for Straight Bevel Gears = 8 Differential Gear Ratio = 2.5:1 N.p = 3948 RPM	
 5 SQUARES 5 SQUARES 5 SQUARES 5 SQUARES FILLER 	Find: Dimensions of Straight Bevel Gear Pair Follows Differential Gear Ratio	
- 50 SHEETS - 100 SHEETS - 200	Solution! Diametral Pitch : Pd = 8 Number dE teeth : Np=12 In Planion	
3-0235 - 3-0236 - 3-0237 - 3-0137 -	Geor Ratio: $P_G = \overline{2.5}$ Number of each: $N_B = (M_G)(N_P) = (\overline{2.5})(12) = \underline{30}$	
COMET	Output RPM: $VR = \frac{n_P}{n_G} \Rightarrow n_G = \frac{n_P}{VR} = \frac{3948}{2.5} = \frac{1579.2 \text{ RPM}}{1579.2 \text{ RPM}}$	
0	Pitch Diameters: $d = \frac{NP}{Pd} = \frac{12}{8} = \frac{1.5}{10}$	
	$D = \frac{176}{P1} = \frac{30}{7} = \frac{3.75}{1.75}$	
	Pitch Cone Angles: $\gamma' = \tan^{-1}\left(\frac{N\rho}{N_{0}}\right) = \tan^{-1}\left(\frac{12}{30}\right) = \frac{21.80^{\circ}}{2}$	
	$\Gamma = \tan^{-1}\left(\frac{N_{U}}{N_{P}}\right) = \tan^{-1}\left(\frac{1}{12}\right) = \frac{68,20^{\circ}}{12}$	
	Outer Cone Distance: $A_0 = (0.5)(D) = (0.5)(3.35) = 2.019 in$	
	Nominal Face Width: From = 0.30 Ao = (.3)[2.019] = 0.606 in	
	Maximum Face Width : Frax = Ao = 2.019 = U.673in	
	Face Width: 0.606 < F < 0.673 > F= 0.650 in	
	Mean (one Distonce: $A_m = A_0 - 0.5F = 2.019 - (.5)(.65) = 1.694_{10}$	
	Mean Circular Pitch: $Pn = \begin{pmatrix} F_{d} \\ fd \end{pmatrix} \begin{pmatrix} Am \\ F_{o} \end{pmatrix} = \begin{pmatrix} T_{d} \\ 2.019 \end{pmatrix} = 0.329 m$	
	Mean Working Depth; $h = \left(\frac{2.00}{Pd}\right) \left(\frac{Am}{A_0}\right) = \left(\frac{2}{Pd}\right) \left(\frac{1.644}{2.019}\right) = 0.2101n$	
0	Clearance: $C = 0.125h = (.125)(.210) = 0.026in$	
	Mean whole Depth: $h_m = h + c = .210 + .026 = 0.236in$	

	Kyle Aitken MET 489 RC Car Drivetrain	2/2
-	Mean Addendum Fuctor: $c_1 = 0.210 + \frac{0.290}{(m)^2} = .21 + \frac{.29}{(2.5)^2} = 0.256$	
	Gear Mean Addendum: $a_c = c_1 h = (.256)(.21) = 0.054 in$	
RES RES RES	Pinion Mean Addendum: dp = h - ag = .21 054 = 0.156in	
5 SQUARES 5 SQUARES 5 SQUARES FILLER	Gear Mean Dedendum: b_6 = h_m = a_6 = .236054 = 0.182 in	
SHEETS	-Pinion Mean Dedenduem: bp = hm - ap = .286156 = 0.08011	
50 SHE 100 SHE 200 SHE 200 SHE	· Gear Dedendum Angle: $\delta_G = \tan^{-1}\left(\frac{b_G}{Am}\right) = \tan^{-1}\left(\frac{.182}{1.694}\right) = 6.13^{\circ}$	
3-0235	Pinnion Dedendum Angle: $SP = +an^{-1}\left(\frac{bP}{An}\right) = +an^{-1}\left(\frac{.08}{1.644}\right) = \frac{2.70^{\circ}}{2.70^{\circ}}$	
	Gent Duter Addendum: $a_{0G} = a_G + .5F + a_n \delta_p = .054 + (.5)(.65) + a_n(2.7)$	
COMET	$a_{06} = 0.2073 in$	
CC	Pinion Duter Addendum: $a_{OP} = a_P + .5F \tan \delta_G = .156 + (.5)(.65) \tan (6.13)$	
	$d_{OP} = 0.1909in$ Geor Outside Diameter: $D_0 = D + 2q_{00} \cos \Gamma = 3.75 + 2(.2073) \cos (68.2)$	
-	$D_0 = 3.904 in$	
	Pinion Outside Diameter: $d_0 = d + 2a_{op} \cos \gamma = 1.5 + 2(.1909) \cos (21.8)$	
	$d_0 = 1.854 in$	

MET 489 Kyle Altken RC Car Drivetrain Given: Maximum Dutput Power from motor = 90 W Angular Velocity of Drive Shaft = 19740 RPM Angular Velocity of Driven Shaft = 3948 RPM Argunar velocity of Axle shaft = 157.9.2 RPM 50 SHEETS -- 5 SQUARES
100 SHEETS -- 5 SQUARES
200 SHEETS -- 5 SQUARES
- 200 SHEETS -- FILLER Find: Torque on Drive Shaft and Driven shaft Solution: Drive Shaft $T_{1} = \frac{P}{w_{1}} = \left(\frac{90 \text{ W}}{19740 \text{ RPM}}\right) \left(\frac{1 \text{ RV}}{2\pi \text{ rad}}\right) \left(\frac{60 \text{ sec}}{1 \text{ min}}\right) \left(\frac{1 \text{ J/s}}{1 \text{ W}}\right) \left(\frac{1 \text{ W/m}}{1 \text{ Sb}}\right) \left(\frac{1 \text{ Ib-fr}}{1 \text{ Sb}}\right) \left(\frac{12 \text{ in}}{1 \text{ Sb}}\right) = \left(0.385 \text{ Ib-in}\right)$ Driven Shaft COMET $T_{p} = (T_{1}) \left(\frac{w_{1}}{w_{2}}\right) = (0.385 \text{ IL-in}) \left(\frac{14740 \text{ RPM}}{3948 \text{ RPM}}\right) = [1.925 \text{ Ib-in}]$ $T_{6} = (T_{1})(\frac{w_{1}}{w_{3}}) = (0.38516-m)(\frac{103740R7M}{1579.24PM}) = [4.81316-m]$

Kyle Aitken MET 489 R(Car Deivetcam (iven: Torque of Drive shaft = 0.385 (bin Torque of Deiver Shaft = 4,813 15-in Plack Diameter of Ger on Deveshoft = 0.3231, Pitch Diameter of Pinnion of Deven Shaft delis in Prossure angle of 20°, Pitch Love Angles 7 = 21.8° 1° = 68.2° Pitch Dinnexos d= 1.5m D= 3.75 in Face Width = 0.65 in 50 SHEETS - 5 SQUARES
100 SHEETS - 5 SQUARES
200 SHEETS - 5 SQUARES
200 SHEETS - FILLER End: Forces in Drive Sheft and Driven Sheaft Drive Shaft I F Tangential Force 1111 $W_{t} = \frac{T}{(k_{t})} = \frac{0.385 \text{ (b-m)}}{(\frac{1}{2})(333 \text{ m})} = [2.312 \text{ lb}]$ 3-0235 -3-0236 -3-0237 -3-0137 -Radial Force COMET $W_{r} = W_{t} \tan \phi = (2,3121b) \tan(20) = [0,8421b]$ Doven Shaft Provide Tongeneral Force Phoning Radial Forre Wer = 44 tond cos 7 = (3.060 13) ton (20 cos (2).8) = 1.03415 Planie Axed Force WXP = WE ton \$ 510 7 = (3.06012) tan(20) sig(21.8) = [0, 414 15 Gear Torgential force $R_{M} = \frac{2}{2} - \left(\frac{E}{2}\right) \sin \Gamma$ $R_{M} = \frac{3.75}{2} - \left(\frac{.15}{.2}\right) \sin \left(\frac{182}{.2}\right)$ $R_{M} = 1.573 \text{ in}$ WEG = TO = 4.81316-1-Rm = 1.873m WE6- 3,06013) Geor Radial Force Wr6= We ton & cos 1 = (3.060 14) tan (20) cos (68.2) = (0.414 16 George Argual Force Wx6 = WE tan & Sin 1 = (3.060 1) ton (20) sin (68,2) = [1.03416

$$Kyb Airkan MET 489 Re Car Drivetan
Kyb Airkan MET 489 Re Car Drivetan
Kyb Airkan Subar Target T: Hass lin
And Schur Manner T. Arson She She She
Mar Schur Manner M. Ark She
Mar Schur M. She
M$$

-		
	Kyle Aitken MET 489 RC Car Drivetrain	Yz
	Given! Shaft Diameter = 0.25 in Key Depth = 3/44 in Same for Driven and Axle Shafts Keyy Width = 3/32 in	
888	Tocque on Deinen Shafis = 1.925 [bin Torque on Anle Shaft = 4.813]] Key Material Carbon Steel SAE 1018 Su= 64 ksi Sy = 54 ksi	THE REPORT OF THE PARTY OF
- 5 SQUARES - 5 SQUARES - 5 SQUARES - FILLER	Ney material tensory and $500 + 10^{-5} + 54 = 04 \text{ ks}$ y=2.5	
SHEETS - SHEETS - SHEETS -	Find: Key Length for Driven shaft and Axle Shaft Shearing and compressive stresses	
5 - 50 6 - 100 7 - 200 7 - 200		
3-0235 3-0236 3-0237 3-0237 3-0137	$T_d = \frac{0.5 s_y}{N} = \frac{(.s)}{2.5} \frac{54 k_{si}}{2.5} = 10.8 k_{si}; \qquad \sigma_d = \frac{s_y}{N} = \frac{s_{11}k_{s1}}{2.5} = 21.6 k_{si}$	
COMET	Driven Shaft	
ö	Minimum Required Key Length for Shear	
	$L_{min} = \frac{2T}{2\lambda DW} = \frac{2(1.925 \text{ (b.m)})}{(10,800 \text{ (si)})(25:n)} = 0.015 \text{ in}$	
	Minimum Required Key Length for Compassion $L_{100} = \frac{417}{\sigma_d OH} = \frac{4(192516:n)}{(21600)c:(250n)} (964:n) = 0.015 in$	
-	Minimum Required Key Length is Key Material is Weakest $L_{min} = \frac{4TN}{0 \text{ wisy}} = \frac{4(1.92516-n)(2.5)}{(.25in)(54,000ps)(3/2:n)} = 0.015 \text{ in}$	
	Axle Shafes	
	$\frac{P(in)}{P(in)} = \frac{2}{2} \frac{(4, 813 + 10 - 11)}{(10, 800 pri)(0.25 in)(3/32 in)} = 0.038 in$	
	Minimum Redwird Key Length for Compression	
	$C_{min} = \frac{41}{\alpha_{0}D4} = \frac{4(4.813 \text{ (b.m)})}{(21,600 \text{ psil})(.25m)(4/24m)} = 0.038m$	
	Minimum Required Key Length if Key Maxerial is weakerst	
	$L_{mit} = \frac{4 \tau_{N}}{Dwsy} = \frac{4 (4.8i3 \mu m) (2.5)}{(.25.n) (3_{12:n}) (5.1000 \mu m)} = 0.038:n$	
and a strategy		

RC Car Drivetrain Kyle Aitken NET 489 Face Width for Bevel Gear on Axle Shaft = 0.65 in .65:0>L7.038:0 [L= 0.6M] $T = \frac{F}{A_{5}} = \frac{T}{(V_{2})WL} = \frac{2T}{DWL} = \frac{2(4.813 \text{ Ib-in})}{(.25\text{ in})^{25}\text{ scin}(0.6\text{ in})} = \frac{1084.52 \text{ psi}}{1084.52 \text{ psi}}$ 50 SHEETS
5 SQUARES
100 SHEETS
5 SQUARES
200 SHEETS
5 SQUARES
200 SHEETS
HILLER $\sigma = \frac{T}{A_{c}} = \frac{T}{(0/z)(L)(H/z)} = \frac{4T}{DLH} = \frac{4(4,81316-n)}{(25n)(4in)(4in)} = (1369.0385)$ Face Width for Spur Geor on Driven Shaft = 0.25:n ,25m 7 L 7 .015m [L=0.2m 1111 3-0235 -3-0236 -3-0237 -3-0237 - $T = \frac{2T}{DWL} = \frac{2(1.925 \text{ (b-in)})}{(.25in)(3/32in)(12n)} = [821, 32 \text{ psi}]$ $\sigma = \frac{47}{DLH} = \frac{4(1.925 \text{ Hz/in})}{(.25in)(2m)(6/44in)} = 1642.67 \text{ ps};$ COMET

APPENDIX A12

APPENDIX B1

APPENDIX B2

APPENDIX B3

APPENDIX C

Part ID	Part Description	Part Quantity	Buy/ Mfg/ Print
1	Motor	1	Buy
2	Spur Pinion	1	Buy
3	Spur Gear	1	Buy
4	Bevel Pinion	1	Buy
5	Bevel Gear	1	Buy
6	Кеу	1	Mfg
7	Drive Shaft	1	Mfg
8	Driven Shaft	1	Mfg
9	Adapter Shaft	1	Mfg
10	Spur Bushing	1	Print
11	Bevel Bushing	1	Print
12	Bevel Pinion Sleeve	1	Print
13	Drive Cup	2	Buy
14	Bearing 1/4 X 3/8	2	Buy
15	Bearing 3/16 X 3/8	3	Buy
16	Bearing Housing	1	Print
17	Gearbox	1	Print
18	Motor Housing Base	1	Print
19	U-Joints	2	Buy
20	Shaft Sleeves	3	Mfg
21	Bolt M4x20	5	Buy
22	Bolt M4x10	3	Buy
23	Bolt M4x25	4	Buy
24	Bolt M2x12	5	Buy
25	Screw M3x5	2	Buy
26	Set Screw M3x4	1	Buy
27	Set Screw M4x5	4	Buy
28	Pin M3x 6	1	Buy
29	Motor Front Mount	1	Mfg
30	Bearing Housing Block	1	Mfg
31	Nut M4	12	Buy
32	Nut M2	5	Buy

APPEDIX D

Item ID	Item Description	Item Source	Brand Info	Model/SN	Price/Cost (\$/Hour)	Quantity (hours)	Cost Subtotals
1, 25	Electric Motor	eBay	Mabuchi	RS-540	13.19	1	13.19
2, 26	Spur Pinion	Amazon	GoolRC	48DP 16T	1.8	1	1.80
3	Spur Gear	Amazon	Team Associated	TC6 80T 48DP	3.55	1	3.55
4, 5	Bevel Pinion and Gear	Active Powersports	HPI Racing	105551	21.99	1	21.99
6	Keystock	McMaster-Carr	McMaster-Carr	98830A050	0.94	1	0.94
7,8,9	0.25 Shaft	McMaster-Carr	McMaster-Carr	1327K66	16.45	1	16.45
10-12, 16-18	Printed Parts	CWU	MEC	PLA	1	12.46	12.46
13, 27	Drive Cups	Amazon	Redcat Racing	B00D25G9T6	7.99	1	7.99
14	Bearings 1/4	Amazon	Advantage Racing Products	R168-ZZ	0.99	2	1.98
15	Bearings 3/16	Amazon	TRBRC	TRB-100493	1	3	3.00
19	U-Joint	Amazon	uxcell	A16121400UX0550	8.65	2	17.30
20	Shaft Sleeves	MSC	Igus	MSI040504	0.65	2	1.30
21, 31	Bolt M4x10 + nuts	CWU	Fastenal	M4x10mm	N/A	N/A	0.00
22, 31	Bolt M4x25 + nuts	CWU	Fastenal	M4x25mm	N/A	N/A	0.00
23, 31	Bolt M2x12 + nuts	Amazon	uxcell	M2x12mm	0.04	10	0.40
24, 32	Bolt M3x5	CWU	Fastenal	M3x5mm	N/A	N/A	0.00
28	Pin M3x6	Amazon	uxcell	M3x6mm	0.17	1	0.17
29	Motor Front Mount	CWU	N/A	Aluminum	N/A	N/A	0.00
30	Bearing Housing Block	CWU	N/A	Aluminum	N/A	N/A	0.00
					Driv	vetrain Total Cost:	102.52
Non-Drivetra	in Parts						
	Battery	Amazon	Powerextra	B01DZACEUA	15.99	1	15.99
	Motor ESC	Amazon	Hobbypower	B00DU49XXS	8.98	1	8.98
					A	l Parts Total Cost:	127.49

APPENDIX E1

X to indi	nart cate work										-	-	-	-				-								
								-			-	-	-								No	te:	Marc	h x F	inals	
											-	-	-					-							esentation	
ROIFCT	TITLE: Mini Baja Drivetrain																	-							Spr Finals	
	Investigator: Kyle Aitken						-	-			+	+	-	-							140		June	, 2.		
meipai		Duratio	n				-	-			+	+	-	-		-	-	-				-		_		
ASK:	Description	Est.		a %Con	C	Oct	tob	or	No	N/OI	mho	rΓ		12	nua	n	E	obri	Jary	Ма	ch	٨	pril		May	Jun
	Description			1 70CUII	3	UCI	LOD	Jei	INC	vei	TIDE		ec	Ja	iiiua	цу	F	ebit	лагу	Ma	CII	A	prii		May	Juli
ID		(hrs)	(hrs)				-	-			-	+	-	-				-				_		_		
							-				_	-	_	-			_	-				_		_		
	Proposal						-				-	-	_	-			_	-				_		_		
	Outline	1			X			_			_	_	_	-			_	_				_				_
	Intro	2				X	X				_	_	_	-			_	_				_				_
	Methods	2					_	X	X				_	_			_	_				_		_		
	Analysis	5					_	_			X		(_	_								
	Discussion	5					_	_			X	K	_				_	_				_				
	Parts and Budget	5					_			х		_					_	_				_				
	Drawings	4									X															
	Schedule	1	3								2	K														
1i	Summary & Appx	4	2									X	(
	subtotal:	29	18.5										K	>												
														Τ												
2	Analyses																									
	Total Turn Ratio	0.5	1						X					1	\square			1								
	Gear Turn Ratios	0.5				\square	+		X		+	+	-	1	\square			1								
	Speed Requirements	0.5	1			\vdash	-	-	x		-	+	-	-	\square		-	1		+						++-
	Spur Pinnion Design	1				\vdash	-	-	~	x	x	+	-	-	\vdash		-	-	\vdash	+			+-+			
	Spur Gear Design	1					-	-		x		+	-	-		-	-	-				-		_		
	Bevel Gear Pair	1				\vdash	-	-			X	r -	-	-	\vdash		-	-	\vdash	+-+	+		+			
							-						-	-				-						_		
	Shaft Torque	0.5	1				-					K	_	-			_	-				_		_		
	Shaft Forces	1					-					K		-			_	-				_		_		
	Bearing Forces	1					_	_			- 2	κх		-			_	_				_				_
	Shaft Minimum Diameter	1					_	_			_	X		_			_	_				_		_		
	Key Lengths and Stresses	1					_	_			_	X					_	_								
21	Clearance Distance Between U-Joints	1											X													
	subtotal:	10	20										C													
3	Documentation																									
3a	Part 1 Motor	1	0.5			X																				
3b	Part 2 Spur Pinnion	2	0.5			X																				
3c	Part 3 Spur Gear	2	0.5			X																				
3d	Part 4 Bevel Pinion	2	0.5			2	x																			
	Part 5 Bevel Gear	2					x																			
	Part 6 Key	1					3	x																		
	Part 7 Drive Shaft	1						ХХ										-								
	Part 8 Driven Shaft	1						XX			-	-	-	-				-				-				
	Part 9 Adapter Shaft	1					- 1	X			-	-	-	-				-						_		
	Part 10 Spur Bushing	2					-	^	X	v	-	-	-	-				-				_		_		
							-				-	-	-	-				-						_		
	Part 11 Bevel Bushing	3			-		-		X		-		_	-			_	-				_		_		
	Part 12 Bevel Pinion Sleeve	1					_	_		X	_	_	_	-			_	_				_				
	Part 13 Drive Cup	1					_	_			_	-	_	_	X		_	_				_		_		
	Part 14 Bearing 1/4 X 3/8	1					_	_			_	Х					_	_								
	Part 15 Bearing 3/16 X 3/8	1					_	_				X	(_	_				_				
	Part 16 Bearing Housing	2								Х																
3q	Part 17 Gearbox	3	4								X	κх	(
3r	Part 18 Motor Housing	2	1.5							X	X	K														
3s	Part 19 U-Joint	1	2									X	(X	X												
3t	Part 20 Shaft Sleeve	1	1									X	(
	Part 21 Bolt M4x10	1	0.5												х											
	Part 22 Bolt M4x10	1													X											
	Part 23 Bolt M4x25 + nuts	0.5												-		x										
	Part 24 Bolt M2x12 + nuts	0.5														X		-								
	Part 25 Bolt M3x5	0.5				\vdash	+	-		\vdash	+	+	-	-		x	-	1								++
	Part 26 Set Screw M3x4	0.5				\vdash	-	-		\vdash	+	+	-	-	\vdash		x	-	\vdash		+					
	Part 27 Set Screw M4x5	0.5				\vdash	-			\vdash	-	-	-	-	\vdash		x	-	\vdash	+-+			+		+ $+$ $+$ $+$	
					\square	\vdash	-	-	\square	\vdash	+	+	-	-	\vdash		~	-	\vdash	+	+		+		++++	++
	Part 28 Pin M3x6	0.5			\square	\vdash	+	-		\mapsto	+	+	-	-	\vdash	x	_	~		+-+	\rightarrow					
	Part 29 Motor Front Mount	2			\square	\vdash	_	_		\mapsto	_	_	_	-	\vdash		_	X	\vdash		+	_	+	_		++
	Part 30 Bearing Housing Block	0.5				\vdash	_	_		\vdash	_	_	_	-	\square			-		+						\rightarrow
	Part 31 Nut M4	0.5				\vdash		_		\square	_	_	_	-	\square			-	\square		\square	_		_		\rightarrow
	Part 32 Nut M2	0.5				\square	_	_		\square	_	_	_					_								
3ag	ANSIY14.5 Compl*	4												X	X	X	XX	X								
	subtotal:	43.5	31.5															\mathbf{O}								
	Proposal Mods																									
4a	Project Drivetrain Schedule	3	3										X													
	Project Drivetrain Part Inv.	2												X				1								
	Crit Des Review*	4												X				1								
-	subtotal:	9													\diamond											
	2.5totan		Ū				-	-			-	-	-	-	\mathbf{r}			-		-	-	_	-			

APPENDIX E2

	1						_	_	-							_		
5	Part Construction																	
5a	Buy Part 1	0.5	0.5		X													
5b	Buy Part 25	0.5	0.5		X													
5c	Buy Part 2	0.5	0.5		X													
	Buy Part 26	0.5			X				-				-	_	-			
	Buy Part 3	0.5			X				-				-	-	-	-		
	Buy Part 7	0.5			X				-					-		-		
								-	-				-	-	-	-		
	Buy Part 8	0.5			X			_	_					_		_	_	
	Buy Part 9	0.5			X				_				_	_	_	_	_	
5	i Buy Part 19	0.5	0.5		X													
5	Buy Part 14	0.5	0.5		X													
	Manufacture Part 18	1					х>	٢										
	Manufacture Part 16	1				v	X	•	-					-		-	_	
					~	^	^	-	-				-	-	-	-		
	Buy Part 6	0.5			X			_	_				_	_	_	_	_	
5n	Buy Part 4	0.5	0.5		X													
50	Buy Part 5	0.5	0.5		X													
	Manufacture Part 17	0.5				X	х											
	Manufacture Part 10	1				X			-					-		-	_	
								_	-								_	
	Manufacture Part 11	1				•	X	_	_					_		_	_	
	Buy Part 13	0.5					X											
5t	Buy Part 27	0.5	0.5				Х											
	Buy Part 15	0.5					х	T						T				
	Buy Part 12	0.5				X		1	1			++	+	+	+	-		
					+ + + -	^	⊢.	,	-			++	\rightarrow	+	\rightarrow	-		
	Buy Part 20	0.5		+++++++++++++++++++++++++++++++++++++++	+ $+$ $+$ $+$)	۱	-			+	\rightarrow	_	\rightarrow		_	
	Manufacture Part 6	0.5					X	_	_			\downarrow		_			_	
	Manufacture Part 9	1					X)											
5z	Manufacture Part 7	1	1.5				X)	(X										
	Manufacture Part 8	1					х>	X						T		1		
	Buy Part 21	0.5)		1			++	+	+	+	-		
					+ + + -		, ,		-			++	\rightarrow	+	\rightarrow	-		
	Buy Part 31	0.5		+++++++++++++++++++++++++++++++++++++++	+ + + -		 ^					+		\rightarrow			_	
	Buy Part 22	0.5						X										
5ae	Buy Part 23	0.5	0.5					Х										
	Buy Part 24	0.5						X						T				
	Buy Part 32	0.5						X				+	-	+	-	-	_	
		0.5)		-			++	+	+	+	+		
	Buy Part 28			+ + + + + + + + + + + + + + + + + + + +			'	•				+	\rightarrow	+	\rightarrow		_	
	Manufacture Part 20	0.5					\vdash	_	X			\downarrow	\rightarrow	_	\rightarrow	_	_	
	Manufacture Part 29	1.5							Х									
5ak	Manufacture Part 30	0.5	0.5						Х				T		T			
	Take Part Pictures	0.5							X			+	-	+	-	+		
	Take Construction Videos	0.5	0.5				\vdash	v	X			++	+	+	+	-		
				+ + + + + + + + + + + + + + + + + + + +			⊢.					++	\rightarrow	+	\rightarrow	_	_	
	Update Website	0.5	0.5)	<u>۱</u>	-			+		_			_	
5ao	Manufacture Plan*	1			X	X						\square					_	
	subtotal:	25.5	28						\diamond									
								T						T				
6	Device Construct								1			\square		\neg		1		
	Assemble Transmittion	2	3		+ + +-		\vdash	-	-			++	+	+	+	+	-	
								-					-	-	-	-		
	Assemble Gear Box	2							X				_	_	_	_	_	
60	Assemble Drivetrain	2						X	X									
6d	Assemble R/C Car	4	6						X	X								
	Take Dev Pictures	0.5	0.5							X								
	Update Website	0.5							-	X			_	-	_	-		
01														-		-		
	subtotal:	11	17					_	-	\diamond			-	_	-	_	_	
7	Device Evaluation																	
7a	List Parameters	1	1									X						
7h	Design Test&Scope	5	4									X	x					
	Obtain resources	1			+ + +-		\vdash	-	-					x	+	+	-	
							\vdash	-	-			+			\rightarrow	-	_	
	Make test sheets	3			+		\square		-			$\downarrow \downarrow$		X			_	
	Plan analyses	2									i 1	1 1	X					1 I
76			2														_	
/1	Test Plan	2	2						-				X					
	Test Plan													x	x)	x	-	
7g	Test Plan Perform Evaluation	6	4											x	x)		ĸ	
7g 7h	Test Plan Perform Evaluation Take Testing Pics	6 1	4 0.5											x	x)		(X	
7g 7h	Test Plan Perform Evaluation Take Testing Pics Update Website	6 1 0.5	4 0.5 0.5											x	x 3		X	
7g 7h	Test Plan Perform Evaluation Take Testing Pics	6 1 0.5	4 0.5											x x	x 3			
7g 7h 7	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal:	6 1 0.5	4 0.5 0.5											x 2	x)		X	
7g 7h 7	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables	6 1 0.5	4 0.5 0.5											X 3	x)		X	
7g 7h 7	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal:	6 1 0.5	4 0.5 0.5 15.5											x :	x)		X	
7g 7h 7 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide	6 1 0.5 21.5	4 0.5 0.5 15.5 0.5											× :)	X	
7g 7h 7 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website <u>495 Deliverables</u> Get Report Guide Make Rep Outline	6 1 0.5 21.5 1 1	4 0.5 0.5 15.5 0.5 0.5 1											× :)) 	×	
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website <u>495 Deliverables</u> Get Report Guide Make Rep Outline Write Report	6 1 0.5 21.5 1 1 1 4	4 0.5 15.5 0.5 0.5 1 2											× :)) 	X	
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline	6 1 21.5 1 1 4 2	4 0.5 15.5 0.5 15.5 0.5 1 2 1											× 3)) 	x ¢ x	×
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation	6 1 21.5 1 1 4 2 3	4 0.5 15.5 0.5 1 0.5 1 2 1 1											× 2)) 	×	×
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website <u>495 Deliverables</u> Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List	6 1 0.5 21.5 1 1 4 2 3 0.5	4 0.5 15.5 0.5 1 0.5 1 2 1 1 0.5)) 	x ¢ x	x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation	6 1 21.5 1 1 4 2 3	4 0.5 15.5 0.5 1 0.5 1 2 1 1 0.5)) 	x ¢ x	×
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts	6 1 0.5 21.5 1 1 1 4 2 3 0.5 2	4 0.5 15.5 0.5 1 0.5 1 2 1 1 0.5 1)) 	x ¢ x	x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website	6 1 0.5 21.5 1 1 4 2 3 3 0.5 2 2 1	4 0.5 15.5 0.5 1 0.5 1 2 1 1 0.5 1 0.5)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD	6 1 0.5 21.5 1 1 4 4 2 3 3 0.5 2 2 1 1	4 0.5 15.5 0.5 1 0.5 1 1 0.5 1 0.5 0.5)) 	x ¢ x	x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website	6 1 0.5 21.5 1 1 4 4 2 3 3 0.5 2 2 1 1	4 0.5 15.5 0.5 1 0.5 1 1 0.5 1 0.5 0.5							Image: Constraint of the sector of)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website Subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD Subtotal:	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD	6 1 0.5 21.5 1 1 4 4 2 3 3 0.5 2 2 1 1	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website Subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD Subtotal:	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours=	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables*	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal Analyses Mod	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs)) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs	\mathbf{O})) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website Update Website Subtotal: 995 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Update Website Project CD Subtotal: Total Est. Hours= Deliverables* Draft Proposal Analyses Mod Document Mods	6 1 0.5 21.5 21.5 1 1 4 4 2 3 3 0.5 2 1 1 1 5.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs	\mathbf{O})) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal Analyses Mod Document Mods Final Proposal	6 1 0.5 21.5 1 1 1 4 2 3 3 0.5 2 1 1 1 5.5 2 1 4 3.5 2 1 5 2 2 1 5 2 2 1 5 2 1 1 5 2 1 1 5 2 2 1 5 2 2 1 5 2 2 5 2 2 1 5 2 2 1 5 2 2 1 1 5 2 2 1 5 2 2 1 1 5 2 1 1 5 2 1 5 2 1 1 5 2 1 1 5 2 2 1 1 5 2 1 1 5 2 1 5 2 1 1 5 2 1 1 5 2 1 1 5 2 2 1 1 1 1	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs	\mathbf{O})) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal Analyses Mod Document Mods Final Proposal Part Construction	6 1 0.5 21.5 21.5 2 1 1 1 1 5.5 2 1 1 1 5.5 143.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs	\mathbf{O})) 	x ¢ x	x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Create Presentation Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal Analyses Mod Document Mods Final Proposal Part Construction Device Construct	6 1 0.5 21.5 1 1 1 4 2 3 3 0.5 2 1 1 1 5.5 2 1 4 3.5 2 1 5 2 2 1 5 2 2 1 5 2 1 1 5 2 1 1 5 2 2 1 5 2 2 1 5 2 2 5 2 2 1 5 2 2 1 5 2 2 1 1 5 2 2 1 5 2 2 1 1 5 2 1 1 5 2 1 5 2 1 1 5 2 1 1 5 2 2 1 1 5 2 1 1 5 2 1 5 2 1 1 5 2 1 1 5 2 1 1 5 2 2 1 1 1 1	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs	\mathbf{O})) 		x x x x x x
7g 7h 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Test Plan Perform Evaluation Take Testing Pics Update Website subtotal: 495 Deliverables Get Report Guide Make Rep Outline Write Report Make Slide Outline Create Presentation Make CD Deliv. List Write 495 CD parts Update Website Project CD subtotal: Total Est. Hours= Deliverables* Draft Proposal Analyses Mod Document Mods Final Proposal Part Construction	6 1 0.5 21.5 21.5 2 1 1 1 1 5.5 2 1 1 1 5.5 143.5	4 0.5 15.5 15.5 1 2 1 1 2 1 1 0.5 1 0.5 0.5 7.5	=Total Actual Hrs	\mathbf{O})) 	x ¢ x	x x x x x x

APPENDIX F

The principal engineer has expertise on the subject from experience in other MET courses. School resources can be used for this project but will most likely not be necessary.

APPENDIX G

Drag Race average velocity in the two attempts were 7.43 and 7.67 ft/s.

APPENDIX H

Trial #	Distance (m)	Time (s)	Velocity (m/s)
Trial 1	3		
Trial 2	3		
Trial 3	3		
Trial 4	3		
Trial 5	3		

Drag Race Speed Test

Trial #	Distance (ft)	Time (s)	Velocity (ft/s)
Trial 1	60		
Trial 2	60		

APPENDIX I

Test Report

Introduction:

- Requirements: The requirements of this project was to allow the device to drive and compete against other R/C cars.
- Parameters of interest: Speed, Functionality, off-road driving.
- Predicted performance: Speed was predicted with no losses but ended up being lower.
- Data Acquisition: Timed tests and completion tests.
- Schedule: The testing schedule is shown in the gantt chart in appendix B1-B2.

Method/Approach:

- Resources: For the competition space was needed for the events. The Fluke lab was used for the drag race and slalom, and the patio outside Hogue Hall was used for the mini baja. Volunteers were necessary for these events to officiate and keep time. Tape was used to mark the start and finish of the drag race and slalom, and 2 liter bottles were used as the obstacles for the slalom. Wood ramps were used for the baja course and stopwatches were used to record times.
- Data capture/doc/processing: Data was recorded in tables shown in appendix A.
- Test procedure overview: Resources need to be collected then trials need to be recorded.
- Operational limitations: Operations were limited by the maximum power output from the motor.
- Precision and accuracy discussion: The time was recorded with a precision of 0.01 seconds
- Data storage/manipulation/analysis: Time recorded, calculated with distance to determine average speed.
- Data presentation: Pictures and videos of testing are shown on the project website.

Test Procedure:

- Summary/overview: This test is to determine how fast the device drives the vehicle. In addition to this, it will also determine that the device functions.
- Specify time, duration: 4/8/19, 0.5 hours
- Place: Hogue Hall or outside. Any open area will work
- Resources needed: Tape, tape measure, stopwatch
- Specific actions to complete the test
 - Step 1: Find area to do test
 - Step 2: Measure out 10 meters and mark with two pieces of tape
 - Step 3: Set up R/C car about 10 meters in front of the first marker
 - Step 4: Turn on car and controller
 - o Step 5: Gradually accelerate until it reaches maximum speed
 - Step 6: Start stopwatch when front wheels reach first marker and stop time at the second marker
 - \circ Step 7: Calculate speed by dividing the 10 meters by the time recorded

- o Step 8: Repeat steps for at least three trials to get reliable results
- Risk, safety, evaluation readiness: There is low risk in operating an R/C car with no serious safety hazards involved
- Discussion: The speed the vehicles drives needs to be tested in order to race at a competitive speed. After this test, modifications can be made to drive at a more optimal speed.

Deliverables:

- Parameter values: Successfully drove in events, Successfully drove through off-road terrain.
- Calculated values: Speed test average of 3.63 m/s and drag race test average speed of 7.55 ft/s.
- Success criteria values: Functioning, driving off-road, competing in speed test.
- Conclusion:

The first test that was done was the maximum speed test. The results from this test were lower than the expected speeds because the device was unable to convert the full rotational speed of the motor to the axles without skipping teeth and falling out of alignment in the gearbox. There was also a part failure in this test with the plastic bushing breaking where it held the bevel gear to the driven shaft. This was due to a stress concentration in the geometry of the part and a large amount of torque in that area so to reinforce this a strong epoxy was used. Also the bearing holding the bevel pinion in the gearbox came out due to the high rotational speed. This was corrected by making a new part out of aluminum to cover the outer ring of the bearing and hold it in place. After this test there were also modifications made to the project covering frame and suspension to correct the angle of the wheels putting less stress on the drivetrain. With these corrections being made, the speed will be tested again to compare results and see if there has been improvement to get the speed closer to the predicted value.

The second test was the acceleration test. This tests how well the drivetrain gets the vehicle up to its max speed and maintains that speed for an extended distance. Since manufacturing improvements were being made up until the competition to make sure it worked, it was just tested for functionality in a 60 feet drag race and then the results were recorded from the event. The expected results were slower than the max speed test since this one had to start from rest, but it ended up only being slightly slower due to the improvements made.

The device was also tested for functionality on off-road terrain during the event. The off-road terrain provides a challenge for the drivetrain because of an increase of friction compared to smooth flat surfaces because the same amount of power transferred to the axles will not drive it as fast. In the Mini Baja course there was a section with a ramp going onto a slight downhill covered in bark. This test was not results based since it was just a success or fail outcome. The car drove through the bark obstacle in a practice run and in the competition making it a successful test.

APPENDIX J JOB HAZARD ANALYSIS {Insert description of work task here}

Prepared by: Kyle Aitken	Reviewed by:
	Approved by:

Location of Task:	Machine Lab
Required Equipment / Training for Task:	Basic Machining Training
Reference Materials as appropriate:	Machine Elements in Mechanical Design- Mott

(Check the I	Personal Protective Equipment (PPE) Required (Check the box for required PPE and list any additional/specific PPE to be used in "Controls" section)									
		3				E E				
Gloves	Dust Mask	Eye Protection	Welding Mask	Appropriate Footwear	Hearing Protection	Protective Clothing				
		\square								
Use of any re by the user.	Use of any respiratory protective device beyond a filtering facepiece respirator (dust mask) is voluntary by the user.									

PICTURES (if applicable)	TASK DESCRIPTION	HAZARDS	CONTROLS
	-	Using high powered machines to cut materials	

APPENDIX K

KYLE AITKEN

| 209 E. 14th Ave. #29 | Ellensburg, WA 98926 | AitkenK@cwu.edu | (206) 650-0047 |

OBJECTIVE

A position working as an Engineer in order to grow professionally

EDUCATION

Bachelor of Science in Mechanical Engineering Technology	Exp. Spring 2019
Specialization: Design	
Central Washington University, Ellensburg WA	

Achievements/Activities

Dean's List	Winter 2018, Spring 2018
ASME Club	2017 - 2019
Fundamentals of Engineering Exam	Exp. Summer 2019

SKILLS

Auto-Cad Microsoft Excel SolidWorks Machining Dynamics: Thermo/Fluid Physics and Statics Strengths of Materials

EXPERIENCE

Capstone Project Mini Baja R/C car Drivetrain Assembly Fall 2018 – Spring 2019

2015-2018

Operate and repair on JLG lift Inspect and operate hydrants Assisted installation of water meters Used GIS mapping system Landscaping Worked on different teams

References available upon request