Spring 2020

Automatic Bead Stringing Machine

Huy Dinh
anhuydinh90@gmail.com

Follow this and additional works at: https://digitalcommons.cwu.edu/undergradproj

Part of the Mechanical Engineering Commons

Recommended Citation
https://digitalcommons.cwu.edu/undergradproj/142

This Undergraduate Project is brought to you for free and open access by the Undergraduate Student Projects at ScholarWorks@CWU. It has been accepted for inclusion in All Undergraduate Projects by an authorized administrator of ScholarWorks@CWU. For more information, please contact scholarworks@cwu.edu.
Automatic Bead Stringing Machine

By

Huy Dinh

Central Washington University
Mechanical Engineering Technology
Table of Contents

1. **INTRODUCTION** ... 5
 - Motivation: ... 5
 - Function Statement: .. 5
 - Requirements: ... 5
 - Engineering Merit: ... 5
 - The scope of this effort: ... 5
 - Benchmark: ... 6
 - Success of the project: .. 6

2. **DESIGN AND ANALYSES** .. 6
 - Approach: ... 6
 - Design Description: .. 6
 - Benchmark: ... 6
 - Performance Predictions: .. 6
 - Description of Analyses ... 7
 - Scope of Testing and Evaluation .. 8
 - Analyses .. 8
 - Design Issue: .. 8
 - Calculated Parameters ... 8
 - Device: Parts, Shapes and Conformation .. 9
 - Device Assembly, Attachments ... 9
 - Tolerances, Kinematics, Ergonomics, etc. .. 10
 - Technical Risk Analysis, Failure Mode Analyses, Safety Factors, Operation Limits 10

3. **METHODS AND CONSTRUCTION** .. 10
 - Methods ... 10
 - Construction .. 10
 - Manufacturing issues ... 11
 - Drawing Tree and Drawing ID’s ... 12
 - Parts list and labels .. 13

4. **TESTING METHOD** .. 13
 - Introduction ... 13
 - Method/Approach .. 13

5. **BUDGET & COST** ... 14
6. SCHEDULE...15

7. DISCUSSION ..16
 Project Risk analysis ..16
 Successful ...16
 Project Documentation ..17
 Next phase ...17

8. CONCLUSION ..18

9. ACKNOWLEDGEMENTS ...18

10. REFERENCES ...19

APPENDIX A – ANALYSES ...20
 Figure A.1 Roller frame design ...20
 Figure A.2 Funnel support system ..21
 Figure A.3 Roller cover frame ...22
 Figure A.4 Induction motor torque & resistance ..23
 Figure A.5 Main Motor ..24
 Figure A.6 Spur Gear 1 ..25
 Figure A.7 Spur Gear 2 ..26
 Figure A.8 Spur Gear 3 ..27
 Figure A.9 Chain Speed ...28
 Figure A.10 Cooling Fan ...29
 Figure A.11 Pitch Diameter ..30
 Figure A.12 Theoretical center distance ...31

APPENDIX B – DRAWINGS ...32
 B1 – Base ...32
 B2 – Back Support ...33
 B3 – Top Left ..34
 B4 – Plastic Elevator ...35
 B5 – Top Right ..36
 B6 – Roller ...37
 B7 – Support Circle ...38
 B8 – Back Support ..39
 B9 – Top ..40
 B10 – Gear 1 – N28 ..41
B11 – Gear 2 – N32

B12 – Chain

B13 – Funnel

B14 – Large Circle

B15 – Motor Circle

B16 – Small Circle

B17 – Main Motor Assembly

B18 – Cooling Fan

B19 – Bead Machine Assembly

APPENDIX C + D

APPENDIX E

APPENDIX G

APPENDIX J

APPENDIX H
1. INTRODUCTION

Motivation:

The art of stringing beads together has been known since ancient times. Human learn how to pierce objects through drilling holes as an advanced beading process. There would be a great demand for beads and they appear more and more in human daily life. Many things made from bead string such as jewelry, furniture, house decoration. The beading process will do manually by hands of workers. This process takes a lot of effort and cost for labor. The automatic bead string machine will helps to free the work effort and low the labor cost.

Function Statement:

A device is needed that will accept a bin of beads and position/place them into a string

Requirements:

Bead string machine will string beads quickly and efficiently to eliminate hand and eye fatigue. Special designed for round bead, suitable for 6-12 mm round bead. This is a great machine for jewelry making, saving time and labor cost. The following are design requirement that the bead string machine should meet:

- Weight less than 20 pounds
- Easy to operate and use. Has 5 steps to install.
- Production rate 150 beads string per minutes
- Cost less to manufacture

Engineering Merit:

This project has many engineering criteria. The movement of the device will involve dynamic movements as well as kinematics. There will need to be safety factors built into the device.

The scope of this effort:

The bead strings machine’s has 3 main parts: the funnel, the roller system and the gear system. Motor will connect to the roller and the gear system. The funnel is where to put beads. Beads will go to roller system and connect to the last part is gear system. The material is made of stainless steel because of its high strength, high stiffness, good machinability, good formability and goof corrosion resistance.
Benchmark:
Comparison between the bead string machine with the others design on the market. The unit is designed in a way that easy to use, comfortable and affordable. The price tag will cheaper than other machine with same functions.

Success of the project:
The automatic bead string machine will increases the productivity, the quality and quantity. With high production rate and reduce the labor cost and saving time.

2. DESIGN AND ANALYSES

Approach:
Design and manufacture a simple system to facilitate adjusting needs of the bead string machine. There is currently nothing on the market that is adjustable and scalable to the users’ needs. A new design is needed that could be adapted to an individual’s current needs.

Design Description:
The bead strings machine’s has 3 main parts: the frame, the roller system and the gear system. Motor will connect to the roller and the gear system. The funnel is where to put beads. Beads will go to roller system and connect to the last part is gear system. The material is made of stainless steel because of its high strength, high stiffness, good machinability, good formability and goof corrosion resistance.

Benchmark:
A benchmark for this project is very hard to come up with because as research shows this is no such thing as bead string machine combination available on the market today. The closest thing available is a machine comes with rollers and do it manually. This is not even close to offering the same level of accessibility as this device. With that device, people have to put the string on bead manually. The device mentioned available on the internet is advertised at $199, so it is slightly cheaper, but it offers much less accessibility.

Performance Predictions:
The device is predicted to meet and exceed every design requirement. It will be built with strict enough tolerances and of the highest quality aluminum alloy to ensure the device will exceed all requirements.
Description of Analyses

As showing in Appendix A. First, figure A-1 show a simple calculate for the frame of the project. The requirement thickness of material is 0.077 inch. Second, figure A-2 show the maximum shear force and maximum bending moment is 960 lb.in. Thirds, figure A-3 show how much material have to use for the machine which is at 330 in² for the frame cover. Figure A-4 is induction motor calculation. Given power at 15W, current equal 0.14A and voltage at 110V. calculate the torque at 0.11N.m and resistance equal 785.7 Ω. On figure A-5, machine will use main motor with 50W, V = 220V and speed at 1200rpm. The torque (N.m) from this machine equal 0.4N.m and resistance is 1.4kΩ.

This machine will use 6 spur gears total. The next analysis figure A-6 will calculate spur gear 1. Given number of teeth is 30, pitch diameter is 2.5 and diametral pitch is 12. Use these values to calculate the circular pitch (P) equal 0.2618. Outside diameter (D₀) equal 2.6 inch, root diameter (Dₐ) equal 2.2917 inch and the center distance equal 4.67

The next analysis figure A-7 will calculate spur gear 2. Given number of teeth is 34, pitch diameter is 2.5 and diametral pitch is 13.6. Use these values to calculate the circular pitch (P) equal 0.2310. Outside diameter (D₀) equal 2.6471 inch, root diameter Dₐ equal 2.3162 inch and the center distance equal 4.118.

The next analysis figure A-8 will calculate spur gear 3. There are 4 spur gears of this type. Given number of teeth is 32, pitch diameter is 2.5 and diametral pitch is 12.8. Use these values to calculate the circular pitch (P) equal 0.2454. Outside diameter (D₀) equal 2.6563 inch, root diameter Dₐ equal 2.3047 inch and the center distance equal 4.375

On figure A-9 calculates the chain length to connect gear 1 and gear 2. Total chain length is 15.5 inch. Gear ratio equals 1.133:1 and the sprocket center is 3.75 inch. The chain speed at 1200 rpm on small sprocket. Every 15 chain rotations the same tooth on small sprocket contact the same chain link equal 48% optimal. Every 17 chain rotations the same tooth on large sprocket contact the same chain link equal 48% optimal.

Figure A-10 calculates torque of main motor. The given power is DC 12V, current = 1.8 A, Watt= 36W and speed at 400 rpm. Torques of this motor is 0.86 N.m.

Figure A-11 calculates pitch diameter of driving and driven. Result for pitch diameter of 30 teeth is 2.39 in and 34 teeth is 2.7in. The last figure A-12 calculates theoretical center distance of the
chain length and 2 spur gear. Chain length is 394 mm and 2 gear have 30 teeth and 34 teeth. The result for actual theoretical center distance is 45.25mm

Scope of Testing and Evaluation
The scope of testing and evaluation on the bead string machine must finish 150 beads string in 1 minute.

Analyses
Design Issue:
- Gear system to holding bead string
- Roller system to put bead on string

Calculated Parameters
As showing in Appendix A. First, figure A-1 show a simple calculate for the frame of the project. The requirement thickness of material is 0.077 inch. Second, figure A-2 show the maximum shear force and maximum bending moment is 960 lb.in. Thirds, figure A-3 show how much material have to use for the machine which is at 330 in² for the frame cover. Figure A-4 is induction motor calculation. Given power at 15W, current equal 0.14A and voltage at 110V. calculate the torque at 0.11N.m and resistance equal 785.7 Ω. On figure A-5, machine will use main motor with 50W, V = 220V and speed at 1200rpm. The torque (N.m) from this machine equal 0.4N.m and resistance is 1.4kΩ.

This machine will use 6 spur gears total. The next analysis figure A-6 will calculate spur gear 1. Given number of teeth is 30, pitch diameter is 2.5 and diametral pitch is 12. Use these values to calculate the circular pitch (P) equal 0.2618. Outside diameter (D₀) equal 2.6 inch, root diameter (Dᵣ) equal 2.2917 inch and the center distance equal 4.67

The next analysis figure A-7 will calculate spur gear 2. Given number of teeth is 34, pitch diameter is 2.5 and diametral pitch is 13.6. Use these values to calculate the circular pitch (P) equal 0.2310. Outside diameter (D₀) equal 2.6471 inch, root diameter Dᵣ equal 2.3162 inch and the center distance equal 4.118.

The next analysis figure A-8 will calculate spur gear 3. There are 4 spur gears of this type. Given number of teeth is 32, pitch diameter is 2.5 and diametral pitch is 12.8. Use these values to calculate the circular pitch (P) equal 0.2454. Outside diameter (D₀) equal 2.6563 inch, root diameter Dᵣ equal 2.3047 inch and the center distance equal 4.375
On figure A-9 calculates the chain length to connect gear 1 and gear 2. Total chain length is 15.5 inch. Gear ratio equals 1.133:1 and the sprocket center is 3.75 inch . The chain speed at 1200 rpm on small sprocket. Every 15 chain rotations the same tooth on small sprocket contact the same chain link equal 48% optimal. Every 17 chain rotations the same tooth on large sprocket contact the same chain link equal 48% optimal.

Figure A-10 calculates torque of main motor. The given power is DC 12V, current = 1.8 A, Watt= 36W and speed at 400 rpm. Torques of this motor is 0.86 N.m.

Figure A-11 calculates pitch diameter of driving and driven. Result for pitch diameter of 30 teeth is 2.39 in and 34 teeth is 2.7in. The last figure A-12 calculates theoretical center distance of the chain length and 2 spur gear. Chain length is 394 mm and 2 gear have 30 teeth and 34 teeth. The result for actual theoretical center distance is 45.25mm

Device: Parts, Shapes and Conformation
The Bead String Machine was manufactured following parts:

<table>
<thead>
<tr>
<th></th>
<th>Main Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Silicone Rubber Roller</td>
</tr>
<tr>
<td>3</td>
<td>Funnel</td>
</tr>
<tr>
<td>4</td>
<td>Rubber band</td>
</tr>
<tr>
<td>5</td>
<td>Spur gear 1</td>
</tr>
<tr>
<td>6</td>
<td>Spur gear 2</td>
</tr>
<tr>
<td>7</td>
<td>Spur gear 3</td>
</tr>
<tr>
<td>8</td>
<td>Cooling Fan (Square 12mm x12mm)</td>
</tr>
<tr>
<td>9</td>
<td>Plastic elevator circle</td>
</tr>
<tr>
<td>10</td>
<td>Nuts, Bolts and Washers</td>
</tr>
<tr>
<td>11</td>
<td>Square Tube 6063-T52-Extruded (84")</td>
</tr>
<tr>
<td>12</td>
<td>Spray paint</td>
</tr>
</tbody>
</table>

Device Assembly, Attachments
This device consists of the parts listed in Parts, Shapes, and Conformation above. All parts were secured to each other with the latches recorded inside the appendix.
Tolerances, Kinematics, Ergonomics, etc.
The tolerances will have to be fairly tight. The tolerances can’t be completely decided until the device is actually assembled. The tolerances are expected to be within .030” to ensure proper fit or within .005” to make the device look more appealing.

Technical Risk Analysis, Failure Mode Analyses, Safety Factors, Operation Limits
There are many sorts of possible risks. For example, there is a budgetary danger of going over spending plan. The budget for this project was $330. There was also additionally of a scheduling risk. The Bead String Machine was required to take close to 40 hours to manufacture.

3. METHODS AND CONSTRUCTION

Methods
This project was designed and analyzed using resources and personnel at Central Washington University Mechanical Engineering Technology department. The project parts were also manufactured and fabricated at the Mechanical Engineering Technology department and workshops. Appendix B shows all the parts was manufactured and fabricated.

Construction
The construction of this project will take place during winter quarter at Central Washington University and workshops. The roller system will be made within the machine shop using either CNC machines or manual mills and lathe machine. It is expected to take about 2-3 weeks to complete all of the manufacturing required to begin assembly. The gears system, cooling fan, motor will purchase online through Amazon, McMaster and Ebay. Bead string machine will be built in 3 different sections, the truss system, the roller system and the gear system. The truss and roller system of the this machine will be manufactured. Assembled parts include spur gears, cooling fan, funnel, plastic elevator system.

Description
Main Motor has 2 parts. Part 1 will connect to the roller system by using rubber band. Part 2 will connect to the gear system. The motor use 220V power and speed at 1200rpm. Torques of this motor is 0.86 N.m. The back of motor connect to the frame. Colling fan (size 80cm x 80cm) helps to reduce heat from the main motor.
Top of a machine is funnel connects to the roller system. The roller system has 3 main parts. Top cover, sides, and two rollers. Top cover using aluminum material with dimension 1.4 inch width
and 6 inch length. Top cover keeps beads fall out of the roller. The funnel will connect to the top cover of the machine. Sides part's dimensions are 1.14 inch width and 2.36” length. Sides parts function to hold the roller system. Connect the rollers with ball bearing.

Gears system has 6 gears. 5 gears with 32 teeth and 1 gear with 28 teeth. Gears will connect with plastic elevator to delivery bead from the roller system. Pair gear 28 teeth and 32 teeth will connect through KCM 25H chain with 62 links. This pair of gear will connect to the motor to run the gears system.

Beads go into the funnel to the roller. A top cover of roller system prevents bead fall out of rollers. Since beads place on the roller, the roller will run and make beads roll, therefore, the center of beads will go straight to the needle. Beads will drop to the gear system through 24 inch needle. This needle will go around the gear system in order to deliver the beads to the final destination. The base will be welded and back support will mount to base with an angle of 5 degrees. With this angle, the beads and fall to gear system through the needle by the gravity.

Manufacturing issues

The most complicated issue of this machine during the construction is the connection of the gear system and the roller system.

The roller system includes a top cover, both sides, and two rollers. These parts have to manufacture by CNC machine, milling machine, and lather machine. It takes more time to make these parts and gets the most accurate dimensions to assemble to the machine.

The motor using 220V power, therefore, It will need an AC adaptor to convert the power to 220V from 110v.

During manufacturing, the design needed to be modified due to the raw material being larger than the initial design. The elevator that attaches to the gear system had to be ordered online instead of manufactured. The initial design of the elevator was going to be 3D printed using ABS or PLA material. However, quality the material did not meet the standard and quality, therefore, this part was ordered online instead. The new material for elevator is plastic. The rollers will be made on the CNC machine instead of the lathe as originally designed. They will have 2 pieces of roller.

In manufacturing the roller system has been several issues. At first, it took a long time to manufacture as planned. This part has been manufacture three times. Secondary, The first roller manufactured did not fix the system. Therefore, it required to redesign and modify again. The
new design has increased the length by 0.5” to fit in the side parts and to attached the pulley. The extension part connected with a larger pulley (draw B14). The small one, which is coupled to the main motor(draw B15) attached to the larger one via a rubber belt.

Another issue encountered during this project was the frame. The original frame was designed to be a 6.1” x 11.5” square tube. This would have been much less useful to place gear system and roller system. Having extra space on each side could have easily arrange parts. The new design had an increase of 0.5” on both sides.

Drawing Tree and Drawing ID’s

The following drawing tree illustrates the order that the bead string machine was designed in Solidworks.
Parts list and labels

The following excel spreadsheet is the most current list and cost analysis.

<table>
<thead>
<tr>
<th>PARTS LIST AND BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENIOR PROJECT TITLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM ID</th>
<th>ITEM Description</th>
<th>Item Source</th>
<th>Price/Cost (US Dollars) ($ / hour)</th>
<th>Quantity (or hrs)</th>
<th>Cost: Subtotal</th>
<th>Actual $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Motor</td>
<td>Ebay</td>
<td>40</td>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Silicone Rubber Roller</td>
<td>Ebay</td>
<td>21</td>
<td>2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Funnel</td>
<td>Ebay</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rubber band</td>
<td>Home Depot</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Spur gear 1</td>
<td>McMaster</td>
<td>22.85</td>
<td>1</td>
<td>22.85</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spur gear 2</td>
<td>McMaster</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Spur gear 3</td>
<td>McMaster</td>
<td>25</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cooling Fan (Square 12mm x12mm)</td>
<td>Ebay</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Plastic elevator circle</td>
<td>Ebay</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nuts, Bolts and Washers</td>
<td>Home Depot</td>
<td>40</td>
<td>0.5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Square Tube 6063-T52-Extruded (84")</td>
<td>onlinemetals.com</td>
<td>7.35</td>
<td>2</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Spray paint</td>
<td>Home Depot</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tot Est. $</td>
<td></td>
<td></td>
<td>334.55</td>
<td></td>
<td></td>
<td>Tot Act. $</td>
</tr>
</tbody>
</table>

4. TESTING METHOD

Introduction

The testing of this project will take place during Spring 2020 quarter at Central Washington University. The purpose of testing method for this project was to free the work effort and low the labor cost. The finish device must be:

- Weight no more than 20 pounds
- Easy to operate and use. Has 5 steps to install.
- Production rate 150 bead string per minutes. The diameter of beads at 8mm
- Cost no more than $400 manufacture

Method/Approach

- Using timer to count the beads go on string per minute and 5 minutes
- Run machine in 1 minute and calculate the production rate

The primary testing will be based on device requirements. After testing, the measurement data, that will determine whether modifications may be taken into consideration to improve the device.
The first test is to weigh the machine, this test can be done on a weight scale. The second test is the installation of the machine. The machine can completely assemble under 5 steps. 5 parts are roller system, gears system, motor, switch, and cooling fan. The third test is testing the production rate. The purpose of this test is to check how many beads will go through this machine in 1 minute. The estimated production rate is 150 bead per minute. This test can improve by calculating beads for 5 minutes, 10 minutes, 15 minutes and 20 minutes. To compare the production rate during the given time.

Result

Base on the requirements and test plan, the machine meets all requirements. In the first test, the total weight of the machine is 16 lbs. This test is done by using a weight scale. In the second test, the machine assembled in 5 basic steps and took 15mins to install the process. Third test, the production rate purpose to check how many beads will go through the machine in 1 minute. This test will be tested by hand (traditional way) and by the machine. 3 trials of 1 minute of bead threading both by hand and by machine show the machine dominating. The average result was 17 beads per 1 minute after 3 trials by using hand. However, the result was higher when used machine with the average after 3 trials at 372 beads. The percentage change between the two methods is 2195%.

During the test process, there were some issues occurred. Time to assemble the machine took longer than planned due to: the gear system needed to set up perfectly to run, electric wires needed to attach to the machine’s frame. During the production test, when put too many beads in the funnel. Beads always stuck in the funnel. They could not run to the roller system. This is a major effect on the result of the testing. The connection point between the roller and funnel needs to be fixed in order to get a better result for the next tests.

5. BUDGET & COST

One of the requirements was a sensible materials cost of under $400 Appendix C contains a parts list in Figure C & D with associate costs from possible suppliers. The budget includes parts, transportation and labor the parts list includes an estimated and actual cost of each item was 12 purchased, the place of purchase, and a description of each item. The actual cost of the project was $350 which is much chapter than was estimated $400.

The proposed budget for this project is shown in Appendix D. The budget references the parts cost for this project shown in Appendix C
Changes in the proposed budget were made in the manufacturing process. The largest change was due to the parts list being revised. However, this did not affect the original budget. Another aspect that impacted the budget was the shipping and tax costs. These costs were estimated incorrectly before they were actually ordered, but it did not increase the total budget by too much more than originally planned.

The only change made to the budget during manufacture was the added labor hours. The amount of time spent on correcting manufacturing issues was not anticipated in the proposed schedule. When issues came up in testing, modifications had to be made to reconstruct or add new parts and then test the requirement again.

At this point, the budget for the bead machine project is $350. This is under the proposed budget which is $400. There were some changes in the budget plan such as materials, shipping, and tax costs. However, this did not over the planned budget. The initial design of the elevator was going to be 3D printed using ABS or PLA material. However, the quality of the material did not meet the standard and quality, therefore, this part was ordered online instead. The cost of this part is less than the planned budget. Before the cost for spring, there is nothing extra charge for the machine in this quarter.

<table>
<thead>
<tr>
<th>PARTS LIST AND BUDGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project Title: Bead String Machine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM ID</th>
<th>ITEM Description</th>
<th>Item Source</th>
<th>Price/Cost (US Dollars)</th>
<th>Quantity (or hrs)</th>
<th>Cost: Subtotal Actual $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Motor</td>
<td>Ebay</td>
<td>40</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Silicone Rubber Roller</td>
<td>Ebay</td>
<td>21</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Funnel</td>
<td>Ebay</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Rubber band</td>
<td>Home Depot</td>
<td>10</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Spur gear 1</td>
<td>McMaster</td>
<td>22.85</td>
<td>1</td>
<td>22.85</td>
</tr>
<tr>
<td>6</td>
<td>Spur gear 2</td>
<td>McMaster</td>
<td>25</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Spur gear 3</td>
<td>McMaster</td>
<td>25</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Cooling Fan (Square 12mm x12mm)</td>
<td>Ebay</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Plastic elevator circle</td>
<td>Ebay</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Nuts, Bolts and Washers</td>
<td>Home Depot</td>
<td>40</td>
<td>0.5</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>Square Tube 6063-T52-Extruded (84")</td>
<td>onlinemetsals.com</td>
<td>7.35</td>
<td>2</td>
<td>14.7</td>
</tr>
<tr>
<td>12</td>
<td>Spray paint</td>
<td>Home Depot</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Est. $ 334.55 Total Actual $

6. SCHEDULE

The schedule for the project will take place over three quarters. The first quarter (fall) will be when the proposal is written. The second quarter (winter) will consist of final design changes and construction of the design. Lastly, the third quarter (spring) will be when testing of the project
will be completed and when presentations will begin. The schedule was portrayed in an Appendix E. The schedule is further divided into plans per quarter. Some of the crucial activities in the project are developing and writing the proposal, dimensional and material analysis, sub-assembling, assembling, draws and testing of the device. The schedule depends on the intensity of the work, time, and availability of materials. schedule.

During the winter quarter, redesigns also had an impact on the project schedule. The original proposed design and analysis were expected to work exactly as planned, but with multiple parts added and others edited along with slight modifications in the overall design, the project got off schedule. The change of material for the elevator system took longer than the planned schedule. Moreover, the rollers required more time to manufacture also affected the project schedule. Changes had to be made to the Gantt Chart during construction, but that got the project back on schedule and allowed the device to be assembled and working by the deadline.

During manufacturing, The elevator that attaches to the gear system had to be ordered online instead of manufactured. The initial design of the elevator was going to be 3D printed using ABS or PLA material. However, the quality of the material did not meet the standard and quality, therefore, this part was ordered online instead. The new material for the elevator is plastic. Another issue is that the beads always stuck in the funnel, this also affected the result of the production test. To solve this problem, the funnel needs to expand on the size. Overall, the project finishes on time and under budget. All test meets requirements.

7. DISCUSSION

Project Risk analysis

The biggest risk factor that was considered was time. The project was characterized by many redesigns and analysis, revising of the proposal, and material selection. This lead to the wastage of valuable time. It also leads to the cancellation of the analysis of some parts. The assembling and building phase also poses some risks. Many parts need to be machined and fabricated for the short remaining time. Lastly, lack of expert skills in production processes such as welding and operate machines are potential risk factors.

Successful

The success of this project to this far is attributed to the vast engineering knowledge in project management and planning, material science, mechanical design using Autodesk
AutoCAD and SolidWorks engineering software, Gantt charts, and production. However, the project has been challenging. This is because the project was an original work that is developed from the challenges faced. Some of the challenges experienced include overdesigning, material selection and analysis, and fabrication methods. That gave the ability to work on a tight schedule to ensure that the project was completed on time. With only a few weeks remaining, the project management process was continuing well as per the schedule.

Project Documentation

All project documentation can be found in the Appendix of this proposal; the documentation includes drawings, analyses, schedule, parts/budget lists, safety hazard forms, etc. If reference material is needed, please refer to the Appendix of this engineering report.

Next phase

The next phase of this project is the construction of this machine. The build process will begin in the beginning of winter quarter. The process will begin with manufactures parts for the project and order parts that also required for the project. Once all the parts/materials are finished, the process of assemble will begin. During spring 2020 will be tested process. All requirements need to be meet.

Manufacturing issues

Do dates, this project has seen several redesigns on parts. Many issues were only discovered during the manufacturing process. The first issue encountered was the side parts of the roll system. Completed parts are different from the original design. New side parts design has to machine hole for a bearing to support rollers. The purpose of this is to improve the movement of rollers on system.

Another issue encountered during this project was the frame. The original frame was designed to be 6.1” x 11.5” square tube. This would have been much less useful to place gear system and roller system. Having extra space on each side could have easily arrange parts. The new design had an increase of 0.5” on both sides.
During manufacturing, the design needed to be modified due to the raw material being larger than the initial design. The elevator that attaches to the gear system had to be ordered online instead of manufactured. The initial design of the elevator was going to be 3D printed using ABS or PLA material. However, the quality of the material did not meet the standard and quality, therefore, this part was ordered online instead. The new material for the elevator is plastic. The rollers will be made on the lathe machine instead of the CNC as originally designed. They will have 2 pieces of roller. The roller also redesigns to fit with the system by increased length by 0.5”.

Base on the requirements and test plan, the machine meets all requirements. In the first test, the total weight of the machine is 16 lbs. In the second test, the machine assembled in 5 basic steps and took 15mins to install the process. Third test, the production rate purpose to check how many beads will go through the machine in 1 minute. This test will be tested by hand (traditional way) and by the machine. 3 trials of 1 minute of bead threading both by hand and by machine show the machine dominating. The percentage change between the two methods is 2195%.

After the test process, the machine needs some modification with the gears to reduce the time set up. During the production test, beads always stuck in the funnel when place too many beads in a funnel. The funnel needs to be fixed by expanding the size.

8. CONCLUSION

This project is expected to be completed on time, accounting for possible setbacks and redesigns. The timeline has been created with the above average number of federal holidays during the period in mind. The budget is far under that of the competition while still allowing for some error. The assistance needed to complete the project has been confirmed to be available during the entire build period. All parts needed are currently in stock from multiple suppliers. The space required to build the project has been confirmed available and the construction team has the means to unlock the area.

Everything necessary to complete this project has been check. Extra time, space, and money has been built into the plans for this project. This project is a solid endeavor and should be approved immediately.

9. ACKNOWLEDGEMENTS

A huge thanks to Professor Charles Pringle, Dr. Craig Johnson, Professor John Choi and Mechanical Engineering Technology department at Central Washington University. The
resources at Central Washington University was really helping, provided the use of the Machine Shop, Materials Lab, Welding and logistics to achieve the final device. Auto bead string machine project would not be constructed without those resources.

10. REFERENCES

-“Machine Elements in Mechanical Design” Sixth Edition, Robert L. Mott
-www.mcmaster.com
APPENDIX A – ANALYSES

Figure A.1 Roller frame design

Given frame has distributed load, aluminum 6061
Find: Reaction Forces & thickness required

Solution:
\[1 \leq M_x = 0 \]

\[(80 \text{ lb}) \times (10 \text{ in}) - B_y (20 \text{ in}) = 0 \text{ FB} \]

\[B_y = 40 \text{ lb} \]

\[\sum F_y = 0 \]

\[N_y = (80 \text{ lb}) - (40 \text{ lb}) \]

\[N_y = 40 \text{ lb} \]

Find thickness:

\[h = \frac{M}{S} \rightarrow S = \frac{M}{h} \]

\[S = \frac{400 \text{ lb} \times 10 \text{ in}}{60000 \text{ in}^2} = 0.01 \text{ in} \]

\[S = \frac{h + 2t}{6} \rightarrow t = \frac{6S}{2} = \sqrt{\frac{6 \times 0.01}{10}} = 0.077 \text{ in} \]
Figure A.2 Funnel support system

Given: A cantilever beam - 6 inch
Find: Maximum shear force
 Maximum bending moment

Solution:
From the FBD
\[R_A = 160 \text{ lb} \]
\[M_A = 160 \text{ lb} \times 6 = 960 \text{ lb\cdotin} \]
From the bending moment diagram
the maximum bending moment is
\[M_{max} = 960 \text{ lb\cdotin} \]
Given: Roller cover material (4 pieces)

Find: Total area for roller cover

Top & bottom dimensions:
- Thickness: \(t = 0.077 \text{ m} \)
- Length: \(L = 15 \text{ m} \)
- Width: \(W = 6 \text{ m} \)

2 sides:
- Length: \(L = 15 \text{ m} \)
- Width: \(W = 5 \text{ m} \)

Solution:

Total area for top & bottom:
\[A_1 = 15 \times 6 \times 2 = 180 \text{ m}^2 \]

Total area for 2 sides:
\[A_2 = 15 \times 5 \times 2 = 150 \text{ m}^2 \]

Total area for roller cover frame:
\[A = 150 \text{ m}^2 + 180 \text{ m}^2 = 330 \text{ m}^2 \]
Figure A.4 Induction motor torque & resistance

Given: Machine has S induction motor.

Find: Torque from the motor's power, resistance

Solution:

Power: $15\text{ W} = 15 \times 10^{-3}\text{ kW}$

$I = 0.14\text{ A}$, $V = 110\text{ V}$

Speed: 1350 rpm

Torque (N.m) = $\frac{9.5488 \times \text{ Power (kW)}}{\text{ Speed (RPM)}}$

$= \frac{9.5488 \times 0.015\text{ kW}}{1350\text{ rpm}}$

$= 0.011\text{ N.m} = 0.94\text{ lb in}$

$V_{av} = J_{(a)} \times R_{(a)}$

$R = \frac{V}{I} = \frac{110\text{ V}}{0.14\text{ A}} = 785.72$
Figure A.5 Main Motor

Huy Dinh | Main Motor

Main machine uses main motor with 50 \text{ W}, V = 220 V, speed = 1200 \text{ rpm}

\begin{align*}
\text{Torque (N\cdot m)} & = 9.5488 \times \frac{\text{Power (W)}}{\text{speed}} \\
& = 9.5488 \times \frac{50 \times 10^{-3}}{1200} \\
& = 0.4 \text{ N\cdot m}
\end{align*}

\begin{align*}
V & = I_n \times R (\Omega) \\
R & = \frac{V}{I} = \frac{220}{0.15} = 1466.67 \Omega
\end{align*}
Figure A.6 Spur Gear 1

<table>
<thead>
<tr>
<th>Huy Dinh</th>
<th>Spur Gear 1</th>
<th>Figure A.6</th>
</tr>
</thead>
</table>

Given:
- \(m \) or \(m \) value = 30
- \(P_p \) pitch diameter = 2.5
- \(P_0 \) diametral pitch = 15

Find:
- circular pitch \(P \)
 \[P = \pi \times \frac{P_p}{N_1} = \pi \times \frac{2.5}{30} \]
 \[P = 0.2618 \]
- outside diameter \(D_o \)
 \[D_o = \frac{N_1 + 2}{P_0} = \frac{30 + 2}{12} = 2.6 \text{ inches} \]
- root diameter \(D_r \)
 \[D_r = D_p - (2 \text{ dedendum } \times 2) \]
 \[= 2.5 - (0.40 \times 2) = 2.3917 \text{ inches} \]
- center distance \(C \)
 \[C = \frac{(2 + 30)}{2 \times n_1} = 4.67 \]
Figure A.7 Spur Gear 2

<table>
<thead>
<tr>
<th>Hey Dinb</th>
<th>Spur Gear 2</th>
<th>Figure A.7</th>
</tr>
</thead>
</table>

Given:
- # of teeth \(N = 34 \)
- \(D_p \) pitch diameter = 2.5
- \(P_d \) Diametral pitch = 13.6

Find:
- Circular pitch \(P \)
 \[P = \frac{\pi \times D_p}{N} = \pi \times \frac{2.5}{34} \]
 \(P = 0.2310 \)
- Outside Diameter \((D_o) \)
 \[D_o = \frac{N+2}{P_d} = \frac{34+2}{13.6} = 2.6474 \]
- Root Diameter \(D_r \)
 \[D_r = D_p - (Diamub x 2) \]
 \[= 2.5 - (0.0919 x 2) \]
 \(D_r = 2.3162 \)
- Cutter distance
 \[C = \frac{D_r + 70}{2 \times P_d} = \frac{2.3162 + 70}{2 \times 13.6} = 4.118 \]
Given: # of teeth \(N = 32 \)

- Pitch Diameter \(D_p \): \(2.5 \)
- Diagonal Pitch \(P_D \): \(12.8 \)

Find:

- Circular Pitch \(P \):
 \[
 P = \pi \times \frac{D_p}{N} = \pi \times \frac{2.5}{32} = 0.2054
 \]

- Outside Diameter \(D_o \):
 \[
 D_o = \frac{N \times P}{P_D} = \frac{32 \times 12.8}{12.8} = 26563
 \]

- Root Diameter \(D_r \):
 \[
 D_r = D_p - (C - \text{Washer diameter} \times 2)
 = 2.5 - (0.0377 \times 2)
 = 2.3047
 \]

- Center Distance \(C \):
 \[
 C = \frac{42 \times 70}{2 \times P_D} = \frac{42 \times 70}{2 \times 11.8} = 4.375
 \]
Figure A.9 Chain Speed

| Hay Dimb | Chain Speeds | Figure A.9 |

Given:
- Link pitch = 0.25"
- Small teeth = 30
- Large teeth = 34
- Link = 62

Solution:

![Diagram](image)

- Chain length: \(C \times 0.25 = 15.5" \)
- Gear ratio: \(1.133:1 \)
- Sprocket center = 3.75"
- Chain speed @ 1200 rpm small sprocket = 951.4 ft/min

- Every 15 chain rotations, the same tooth on small sprocket contact the same chain link = 48% optimal
- Every 17 chain rotation the same tooth on large sprocket contact the same chain link = 48% optimal.
Figure A.10 Cooling Fan

Details:
- **Type:** 12 V DC
- **Current:** 1.8 A
- **Wattage:** 36 W
- **Speed:** 400 RPM

Solution:

\[
\text{Torque} = \frac{9.5488 \times \text{Power (in W)} \times \text{Speed}}{1400} = 0.86 \text{ N.m}
\]
Figure A.11 Pitch Diameter

Given:

\[\text{pitch : } p = \frac{1}{4} \text{ in} = 0.25'' \]
\[N_1 = 30 \text{ teeth} \]
\[N_2 = 34 \text{ teeth} \]

Find: Pitch Diameter of each helix

Solution:

\[PD_1 = \frac{p}{\sin \left(\frac{180}{N_1} \right)} = \frac{0.25}{\sin \left(\frac{180}{30} \right)} = 2.39 \text{ in} \]

\[PD_2 = \frac{p}{\sin \left(\frac{180}{N_2} \right)} = \frac{0.25}{\sin \left(\frac{180}{34} \right)} = 2.71 \text{ in} \]
Figure A.12 Theoretical center distance

Given: Chain length \(L_c = 15.5 \) in. = 394 mm

\(N_1 = 30 \) teeth
\(N_2 = 34 \) teeth

Find: calculated, actual theoretical center distance.

Solution:

\[
L_0 = \frac{1}{4} \left(\frac{L_c - \frac{N_2 + N_1}{2}}{2} + \sqrt{\left(\frac{L_c - \frac{N_2 + N_1}{2}}{2} \right)^2 - \frac{8 \left(\frac{N_2 - N_1}{2} \right)^2}{2 \pi \tau}} \right)
\]

\[
= \frac{1}{4} \left(\frac{394 - \frac{34 + 30}{2}}{2} + \sqrt{\left(\frac{394 - \frac{34 + 30}{2}}{2} \right)^2 - \frac{8 \left(\frac{34 - 30}{2} \right)^2}{2 \pi \tau}} \right)
\]

\[
= \frac{1}{4} \left(394 - 32 + \sqrt{\left(394 - 32 \right)^2 - 3.24} \right)
\]

\(L_0 = 180 \) pitches.

\[
L_0 = 180 \times 0.23 = 41.25 \text{ mm}
\]
APPENDIX B – DRAWINGS

B1 – Base

<table>
<thead>
<tr>
<th>UNLESS OTHERWISE SPECIFIED</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWN: 1/20/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKED:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG. APPE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPR.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BASE

SIZE 20-0001

REV

SCALE 1:4 **WEIGHT**

SHEET 1 OF 1
B2 – Back Support
B4 – Plastic Elevator

PLASTIC ELEVATOR

SCALE: 2:1

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED HEREIN IS THE PROPERTY OF OUR COMPANY AND IS PROTECTED BY COPYRIGHT LAWS. REPRODUCTION IN PART OR WHOLE WITHOUT THE WRITTEN PERMISSION OF OUR COMPANY IS UNAUTHORIZED.

MATERIAL:
G10

DRAWN:
H.O.
120119

CHECKED:
END: APRIL
GRADE: APRIL

SPECIFICATIONS:

DIMENSIONS ARE IN INCHES

SCALE:
1:1

WEIGHT:

SHEET 1 OF 1

REV

SIZE DWG. NO.
A 20-0004

DETAIL A
B6 – Roller

UNLESS OTHERWISE SPECIFIED:

| DIMENSIONS ARE IN INCHES |

DRAWN: 12/20/19

CHECKED:

TITLE:

QUALITY:

NOTE:

APPLICATION: DO NOT SCALE DRAWING

DRAWING 20-0006

SCALE: 1:2

WEIGHT:

SHEET 1 OF 1
B13 – Funnel
B15 – Motor Circle
B18 – Cooling Fan
B19 – Bead Machine Assembly
APPENDIX C + D

Part and budget list

<table>
<thead>
<tr>
<th>ITEM ID</th>
<th>ITEM Description</th>
<th>Item Source</th>
<th>Price/Cost (US Dollars)</th>
<th>Quantity</th>
<th>subtotal</th>
<th>Actual $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main Motor</td>
<td>Ebay</td>
<td>40</td>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Silicone Rubber Roller</td>
<td>Ebay</td>
<td>21</td>
<td>2</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Funnel</td>
<td>Ebay</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rubber band</td>
<td>Home Depot</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Spur gear 1</td>
<td>McMaster</td>
<td>22.85</td>
<td>1</td>
<td>22.85</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spur gear 2</td>
<td>McMaster</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Spur gear 3</td>
<td>McMaster</td>
<td>25</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cooling Fan (Square 12mm x12mm)</td>
<td>Ebay</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Plastic elevator circle</td>
<td>Ebay</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nuts, Bolts and Washers</td>
<td>Home Depot</td>
<td>40</td>
<td>0.5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Square Tube 6063-T52-Extruded (84")</td>
<td>onlinemetals.com</td>
<td>7.35</td>
<td>2</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Spray paint</td>
<td>Home Depot</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Total Est.: $334.55 **Total Act.**: $0
APPENDIX E
APPENDIX G

Testing Report

<table>
<thead>
<tr>
<th>Task</th>
<th>Requirement</th>
<th>Actual</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weight</td>
<td>No more than 20lbs</td>
<td>15lbs</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Cost</td>
<td>Less than $400</td>
<td>$350</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Production</td>
<td>150 beads per minute</td>
<td>372 beads per minute</td>
<td>Yes</td>
</tr>
</tbody>
</table>
APPENDIX J

Engineering Technologies, Safety, and Construction Department

JOB HAZARD ANALYSIS
Auto Bead Stringing Machine

Prepared by: Huy Dinh

Location of Task: Central Washington University

Required Equipment / Training for Task: The required equipment of Auto bead string machine are gloves, eye protection, welding mask, Appropriate footwear, hearing protection and protective clothing

Reference Materials as appropriate: Drilling, welding, painting

Personal Protective Equipment (PPE) Required

<table>
<thead>
<tr>
<th>PPE</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloves</td>
<td>X</td>
</tr>
<tr>
<td>Dust Mask</td>
<td>X</td>
</tr>
<tr>
<td>Eye Protection</td>
<td>X</td>
</tr>
<tr>
<td>Welding Mask</td>
<td>X</td>
</tr>
<tr>
<td>Appropriate Footwear</td>
<td>X</td>
</tr>
<tr>
<td>Hearing Protection</td>
<td>X</td>
</tr>
<tr>
<td>Protective Clothing</td>
<td>X</td>
</tr>
</tbody>
</table>

Use of any respiratory protective device beyond a filtering facepiece respirator (dust mask) is voluntary by the user.

PICTURES (if applicable) TASK DESCRIPTION HAZARDS CONTROLS

Device Operation: Drill
Feed the drill with the feed

Injury caused by breaking the bit
Feed with the appropriate pressure.
Use the appropriate bit for the type of metal.
Wear eye protection

Eye or skin damage from cutting oil
Use the lowest RPM.
Wear eye protection.
Wear a long sleeved shirt.

Device Operation: Grinding
Turn on the machine and allow the grinding wheel to rotate to speed. Firmly hold the piece to be grounded up to the grinding wheel. Grind the piece. Turn off the machine and wait for the wheel to stop rotating.

Lacerations and severe eye damage from flying glass and ground bits Inhalation of fine dust particles. Burns caused by heat from friction and machine operation
Wear appropriate gloves and safety glasses.
Wear a dust mask.

Device Operation: Saw Vertical
Align material on saw platform.

Muscle strain
Position body to maintain balance.
Maximize use of legs.
Avoid twisting and overextending.

Device Operation: Welding
Set-up material and equipment.

Inhalation. Burn, fire.
Ensure PPE is worn.
Work in welding hood.
Device Operation: Welding

Clamp / fix in place, weld as required

<table>
<thead>
<tr>
<th>Struck against / by.</th>
<th>Burns.</th>
<th>Welder’s flash.</th>
</tr>
</thead>
</table>

Ensure PPE is worn. Wear cotton long sleeved shirt and appropriate PPE.
APPENDIX H
Resume

HUY DINH
Address: 1307 17th St NE, Auburn, WA-98002, USA
Cell Phone: 510-925-8867 - E-Mail: anhuydinh90@gmail.com

CAREER SUMMARY
• Working on Bachelor degree of Sciences majoring in Mechanical Engineering Technology expected graduate in 2020
• 4 years’ experience in managing events with budget over $200,000 per event. Provide excellent service for international corporation such as: Coca-Cola, Korean Air, Nike, NCH Corporation, Abbott, McKinsey, Colliers.
• Experience of developing and managing human capital, budget, and business partner relationships

EDUCATION
Central Washington University (August 2017-Present)
• Major in Mechanical Engineering Technology, current GPA 3.5
• ASME member
Towson University, Maryland (August 2010 – May 2013)
• Bachelor of Sciences, Business Administration major, graduated May 2013
• Vice President of Vietnamese Student Association Group

WORKING EXPERIENCE
Event Planning Manager – Team Travel and Event Joint Stock Company (December 2015 –June 2017) – Viet Nam
• Responsible for all aspects of event management
• Managed budgets of up to $200,000, for up to 350 attendees.
 Successful Events:
 ○ NCH Corporation event up to 400 participants with budget $180,000
 ○ McKinsey event up to 150 participants
Event Planning Executive – Oriental Destination (September 2014 – November 2015) – Viet Nam
• Managed budgets of up to $100,000, for up to 150 attendees.
 Successful Events:
 ○ Local Partner for Ironman 70.3, Nike - Corporate Social Responsibility, Abbott and Collier International,
 World Spa Awards, Color me run and Danang International Marathon 2015
Shuttle Bus Service Manager (service for 5 stars resorts) – Oriental Destination (December 2014- November 2015)
• Over 1300 customers use service each month with revenue over $6000 for each month.
• Clients: Novotel, Hyatt, Grand Mercure, Holiday Beach, Premier Village, Vinpearl Premium.
• Responsible for every logistical element of event, food and beverages, room set-ups, audiovisuals, entertainment.
 Successful Events: Viet Nam Petrolimex, SHIER, APOT, Korean Airline

SKILLS
• Courses work: Lean Manufacturing, Mechanical Design, CNC programming, Advance Machine, Computer Aided design Manufacturing, Casting
• Proficient in CNC machine, CNC programming, 3D-Solid Work, Auto-cad, Rhinoceros
• Strong attention to detail and accuracy, leadership skills, communication, negotiation and time management