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Exploring the Historical Earthquakes Preceding the Giant 1960

Chile Earthquake in a Time-Dependent Seismogenic Zone

by M. Cisternas, M. Carvajal, R. Wesson, L. L. Ely, and N. Gorigoitia

Abstract New documentary findings and available paleoseismological evidence
provide both new insights into the historical seismic sequence that ended with the
giant 1960 south-central Chile earthquake and relevant information about the region’s
seismogenic zone. According to the few available written records, this region was
previously struck by earthquakes of varying size in 1575, 1737, and 1837. We ex-
panded the existing compilations of the effects of the two latter using unpublished
first-hand accounts found in archives in Chile, Peru, Spain, and New England. We
further investigated their sources by comparing the newly unearthed historical data
and available paleoseismological evidence with the effects predicted by hypothetical
dislocations. The results reveal significant differences in the along-strike and depth
distribution of the ruptures in 1737, 1837, and 1960. While the 1737 rupture likely
occurred in the northern half of the 1960 region, on a narrow and deep portion of the
megathrust, the 1837 rupture occurred mainly in the southern half and slipped over a
wide range of depth. Such a wide rupture in 1837 disagrees with the narrow and shal-
low seismogenic zone currently inferred along this region. If in fact there is now a
narrow zone where 200 years ago there was a wider one, it means that the seismogenic
zone changes with time, perhaps between seismic cycles. Such change probably
explains the evident variability in both size and location of the great earthquakes that
have struck this region over the last centuries, as evidenced by written history, and
through millennia, as inferred from paleoseismology.

Electronic Supplement: First-hand written accounts of the 1737 and 1837 earth-
quakes, method to compute the tidal level on the 1837 earthquake’s day, hypothesis to
explain the minor local effects of the 1837 tsunami, modeling results for each of the
1837 earthquake’s hypothetical sources, and nineteenth-century maps.

Introduction

The largest earthquake instrumentally recorded, the
giant 1960 Chile earthquake (M, 9.5), seemingly overspent
its plate-tectonic budget. It ruptured nearly 1000 km of the
Chilean subduction zone where the Nazca and South Ameri-
can plates converge at 6.6 m per century (Angermann et al.,
1999; Fig. 1a). The slip, which averaged 20-30 m over the
length of the rupture (Plafker and Savage, 1970; Cifuentes,
1989) and up to 40 m locally (Barrientos and Ward, 1990;
Moreno et al., 2009), expended about 350 years’ worth of
plate motion. Yet as judged from the scarce historical ac-
counts of damage, the slip area ruptured at least partially only
123 years before, in 1837, and also at earlier intervals of 100
and 158 years, in 1737 and 1575 (Lomnitz, 1970).

To understand this budgetary imbalance and then the
enormity of the 1960 earthquake, the spatial distribution of

the slip released by its predecessors should be addressed.
This issue deserves special attention today because the
1960 region seems to have seismically reawakened (Ruiz
et al., 2017), and future great earthquakes are expected to
occur (Moreno et al., 2011). However, this task is hindered
by the scarcity of reports on the effects produced by the
1575, 1737, and 1837 earthquakes. Historical circumstances
affected the production and geographic distribution of writ-
ten records. Archives for this region go back to the middle of
the sixteenth century, but they are scarce for the seventeenth
and eighteenth centuries, and they provide no coverage along
the southern half of the 1960 rupture area (Cisternas et al.,
2005). For example, while the 1575 historical earthquake is a
well-documented event, the later 1737 earthquake has previ-
ously only been known through two secondary sources—a
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Figure 1. Index maps. (a) Plate-tectonic setting of Chile and the 1960 earthquake region. Paired arrows indicate plate convergence at
6.6 cm/yr (Angermann ef al., 1999) and transparent area shows region that subsided tectonically (Plafker and Savage, 1970). The dashed line
shows a constant down-dip limit for the 1960 rupture (Moreno et al., 2009); dotted line delineates the hypothetical southward narrowing of
the megathrust seismogenic zone (Wang et al., 2007; Volker et al., 2011). Open circles show the lakes mentioned in the text. (b) Southern half
of the 1960 earthquake region. Geophysical profile of Isla Chiloé from Volker et al. (2011). Note that Lemu Island in the south is located
within the subsided area in 1960. The star shows the Chilean Seismological Center’s hypocenter of the Melinka 2016 earthquake. (c) Section
of the chart by Section of the chart made by FitzRoy in 1835, the most accurate map of the Chonos Archipelago available by 1837, which
depicts Lemus; the island described as uplifted in 1837 by French whalers (above). Note that Lemu Island at 45.2° S is not to be confused with
the larger and more well-known Lemuy Island off the east coast of Chiloé at 42.6° S. Part of the chart “Archipielago de los Chonos” made in
1873 by Enrique Simpson from the Chilean Navy (below). He was one of the Chilean officers with a mandate that extended beyond hydrog-
raphy into natural history. As in FitzRoy’s chart, Simpson correctly identifies and locates Lemu Island (inset). Is., island. The color version of
this figure is available only in the electronic edition.

pair of history books written five decades later by authors log of written records of shaking, land-level changes, and a
who did not witness the event. tsunami associated with the 1837 earthquake. To cover the un-

We sought to improve this situation by expanding the  inhabited southern half of the 1960 region, we scrutinized log-
existing compilations of the effects produced by the 1737 books of whalers who visited the area at the time of the 1837
and 1837 events within the region of the 1960 earthquake.  earthquake and reports from Chilean surveyors who mapped
By mining colonial archives in Chile, Peru, and Spain, we  the area later in the nineteenth century. We also checked for
found a dozen primary sources that clarify the extent of dam- first-hand contemporary accounts of flooding and damage in
age caused by the 1737 shaking. We also augmented the cata-  Japan that might be ascribed to tsunamis from south-central
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Chile. We further investigated the sources of the 1737 and
1837 earthquakes by comparing the newly unearthed historical
data and the published paleoseismological evidence with the
effects predicted by hypothetical dislocations at multiple depth
ranges.

The 1960 Earthquake and Associated Seismotectonic
Assumptions

On 21 and 22 May 1960, an astonishing series of earth-
quakes broke the boundary between the subducting Nazca
plate and the overriding South America plate (Cifuentes,
1989; Fig. 1a,b). The series culminated in a compound, partly
aseismic, rupture that likely changed Earth’s rotational wobble
(Kanamori and Cipar, 1974). The seismic mainshock, of mag-
nitude 9.5, lowered one-quarter of Chile’s outer coast by a
meter or two (Plafker and Savage, 1970). Concurrent displace-
ment of the seafloor generated a tsunami with peak heights of
15 m in Chile (Sievers, 1963), 10 m Hawaii (Eaton et al.,
1961), and 6 m in Japan (Watanabe, 1998).

The distribution of slip during the 1960 rupture has been
estimated through associated land-level changes and disloca-
tion models. These land-level changes, measured eight years
later, extended along a trench-parallel belt 1000 km long and
200 km wide, characterized by subsidence along the coast
and uplift of the continental shelf and offshore islands
(Plafker and Savage, 1970). Using these geodetic data and
a dislocation model with planar geometry, Barrientos and
Ward (1990) inferred a main rupture area 900 km long and
150 km wide. Most of the slip, between 20 and 30 m and
peaking at 40 m, was confined between the trench and the
coast, but some extended down-dip to a depth of 80-110 km.
Moreno et al. (2009) used the same data in a finite-element
model with a more realistic nonplanar fault geometry. They
derived a similar slip distribution, but with almost all the slip
confined to the region between the trench and a constant
lower limit just inland of the coast at a depth of about
40 km along the entire 900 km rupture (Fig. 1a,b).

Along-strike variations of the width of the seismogenic
zone along the 1960 region have been proposed on the basis
of postseismic deformation and thermal models. The south-
ward decrease in the velocity of landward motion of the
coastal sites shown by post-1960 Global Positioning System
(GPS) observations has been explained by a southward nar-
rowing of the seismogenic zone along the 1960 region (Wang
et al., 2007). Such narrowing is in full agreement with the
thermal model of Volker et al. (2011), being ascribed to the
southward decrease of the age along the Nazca plate, in
which an increasingly younger subducting plate produces
a warmer thermal regime, moving the up-dip and down-
dip limits of the seismogenic zone gradually closer together
(Volker et al., 2011). However, if the thermal modeling in-
cludes other variables, such as hydrothermal circulation
within the oceanic crust and frictional heating on the plate
interface, the results do not show the narrowing; instead, they

support a constant width of the seismogenic zone along the
entire 1960 region (Rotman and Spinelli, 2014).

If the down-dip limit of the 1960 rupture were in fact
constant, the southward decrease of the landward GPS veloc-
ities would be alternatively explained by a southward
decrease in the amount of coseismic slip in 1960 (Wang et al.,
2007). This assumes that the zone of relocking roughly
matches that where coseismic slip occurred. However,
decadal GPS observations in the area suggest that the plate
interface accumulates elastic strain (and slip deficit) in a spa-
tially and temporally variable mode. The current distribution
of locking indicates that the cores of the 1960 asperities are
already relocked, suggesting that the locking state and there-
fore the stress accumulation can also vary with time (Moreno
et al., 2011).

The recent 2016 M, 7.6 Chiloé earthquake struck the
previously quiescent southern half of the 1960 region (Mel-
gar et al., 2017; Ruiz et al., 2017; Xu, 2017). It ruptured a
highly locked area in southern Chiloé, near the bottom of the
seismogenic zone as currently defined by plate coupling
models. It is argued that the rupture resulted from changes
in the interseismic locking produced by the interaction
between the readjustment of the mantle flow after the 2010
Maule earthquake and a sudden end of the post-1960 mantle
relaxation (Ruiz et al., 2017). As with the 1960 event, but at a
much smaller scale, the 2016 Chiloé earthquake appears to
have also exceeded the slip deficit theoretically accumulated
since 1960 (Melgar et al., 2017). Notably, this implies that
even the largest earthquake ever recorded may not have used
all the available slip.

The Historical Predecessors of the 1960 Earthquake

The 1960 earthquake was preceded historically by earth-
quakes of varying size in 1575, 1737, and 1837. The reported
effects of the 1575 earthquake and tsunami most nearly re-
semble those in 1960. In 1575 shaking damaged Spanish set-
tlements for 640 km from Concepcién south to Castro on
Chiloé Island and triggered landslides that blocked the outlet
of Rinihue Lake in the Andean foothills (Lomnitz, 1970;
Fig. 1a). Conquistadors reported persistent marine inunda-
tion from north of Valdivia to Castro, implying widespread
tectonic subsidence (Cisternas et al., 2005). The associated
tsunami took more than 1000 lives in small Indian commun-
ities around Valdivia and wrecked galleons in that city’s port.
Despite these similarities with the 1960 event, there is no
known account of a 1575 tsunami in Japan (Watanabe,
1998). A subsequent earthquake in 1737, until now only
known from two secondary sources, damaged Valdivia and
towns on Isla Chiloé but produced no reported tsunami. The
1837 earthquake damaged towns along the central third of the
1960 rupture area and changed land levels along the southern
half of that area (Lomnitz, 1970). The height of the ensuing
tsunami, reportedly cresting 6 m high in Hawaii (Coan, 1882),
suggests that the 1837 earthquake released almost half of the
seismic moment of the 1960 mainshock (Abe, 1979).



Sources and Limitations of the Historical Accounts

Written history in Chile begins in the middle of the six-
teenth century, when Spaniards first colonized Santiago and
vicinity (Cisternas ef al., 2012). As the conquistadors pushed
southward, the Indians began an intermittent insurgency that
lasted into the nineteenth century. At first the colonists set up
seven outposts in south-central Chile, including Concepcién
and Valdivia on the mainland and Castro on Isla Chiloé
(Fig. 1a,b). All these towns were in the northern half of the
1960 rupture area, and they all produced reports of the 1575
earthquake and tsunami. However, in 1598, a widespread In-
dian uprising drove the colonists from most of these outposts
(Torrejon et al., 2004). At the time of the 1737 earthquake,
the Spanish were still restricted to Concepcidn, Valdivia, and
Castro, and these are the only places that provide accounts of
this earthquake.

Chilean independence in 1810 and the waning of the
Indian insurgency re-established extensive record keeping
along the northern half of the 1960 region before the earth-
quake and tsunami of 1837. Although the new Republic
lacked presence south of Chiloé, whalers had begun visiting
the Chonos Archipelago by the end of the eighteenth century
(Pereira Salas, 1971; Fig. 1b,c). Those from France, Holland,
Denmark, and Great Britain were followed by whalers from
the northeastern United States, chiefly between 1825 and
1860 (Greve, 1948). By that time, three of the most important
Pacific whaling grounds were located off Mocha Island,
Guafo Island, and the Chonos Archipelago (Clark, 1887;
Fig. 1b,c). Whaling captains kept logbooks of daily entries
on location, weather, captures, and work onboard, along with
occasional entries for unusual events, which included reports
of the 1837 earthquake as felt at sea and its onshore effects.
Another captain, the well-known Robert FitzRoy, com-
mander of HMS Beagle during Darwin’s famous voyage,
charted Chiloé and the western coast of the Chonos Archi-
pelago in 1835, shortly before the 1837 earthquake (Fig. 1c
and ® Fig. Sla in the electronic supplement to this article).
Additional information came to light later in the nineteenth
century when the Chilean Navy made surveys for nautical
charts of the area south of Chiloé (Fig. 1b and ® Fig. S1b).
With a mandate that extended beyond hydrography into natu-
ral history, the surveyors linked the 1837 earthquake to some
of what they saw and heard.

Tsunamis generated off Chile and Peru also entered
written history by crossing the Pacific Ocean and coming
ashore in Japan, particularly along the Sanriku coast of north-
east Honshu. The main examples between the sixteenth and
nineteenth centuries are the tsunamis that came from Peru in
1586, 1687, and 1868 and from Chile in 1730, 1751, 1837,
and 1877 (Watanabe, 1998; Atwater et al., 2005). The 1960
tsunami from south-central Chile took 138 lives in Japan,
chiefly in Sanriku. Historical circumstances, however, also
limit the completeness of the Japanese catalog of South
American tsunamis. Throughout the centuries before 1600,
the written records are sparse or refer mainly to central
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Honshu (Ueda and Usami, 1990). The records did not be-
come both widespread and numerous until the era of stability
under the Tokugawa shoguns, between 1603 and 1867, for-
tunately supplementing the sparse records from south-central
Chile after the 1598 Indian insurrection.

Paleoseismological Evidence for the 1737 and 1837
Events

Previous paleoseismological studies provide additional
evidence of the 1737 and 1837 earthquakes, including signs
of shaking, land-level changes, and tsunami inundation.

Turbidites in lakes Villarrica (39.25° S), Calafquén
(39.52° S), and Riifiihue (39.83° S) in the northern half of
the 1960 region (Fig. 1a) indicate shaking at these latitudes
in 1737 and 1837 (Moernaut et al., 2014). However, the spa-
tial distribution of the turbidites among the lakes suggests a
more northerly location for the 1737 earthquake and a more
southerly location for the 1837 event. A marine turbidite in
the Gulf of Reloncavi, located 200 km to the south of the
lakes (41.72° S; Fig. la), and triggered by the 1837 earth-
quake (St-Onge et al., 2012), also supports a more southerly
location for this event. At a similar latitude, but on the open
western coast of Chiloé, at Cocotué (41.92° S; Fig. 1b), a
series of soils buried locally by debris flows and extensively
by tsunami sand sheets recorded the occurrence of both great
and smaller earthquakes and tsunamis during the last 1000
years. Although the series includes evidence for shaking and
tsunami inundation in 1837, it lacks evidence for the 1737
event (Cisternas et al., 2017). Similarly, a 5500-year-long
coastal lacustrine record of tsunamis, also facing the open
western coast of Chiloé at Huelde Lake (42.60° S; Fig. 1b),
shows evidence of the 1837 tsunami but none for 1737
(Kempf et al., 2017).

Other studies made at nearby sites, but in more protected
settings, show coastal evidence of subsidence and tsunami
inundation only for the 1960, 1575, and older prehistoric
events (Cisternas et al., 2005; Atwater et al., 2013; Garret
et al., 2015). Notably lacking in these latter stratigraphic re-
cords are the 1737 and 1837 events.

Additional evidence for the presence or absence of land-
level changes in 1837 comes from trees. Drowned forests of
dead or dying trees at San Rafael Fjord (46.59° S; Fig. 1b), at
the southern end of the 1960 rupture, suggest 2 m of sub-
sidence in 1837 (Reed et al., 1988). Absence or little vertical
change in 1837 was inferred from old-growth trees at Pudeto,
an estuary in northern Chiloé (41.87° S; Bartsch-Winkler and
Schmoll, 1993) and at Misquihué, on the mainland along the
Maullin River (41.51° S; Cisternas et al., 2005; Fig. 1b).

Methods

Archives

We sought additional written records of the 1737 and
1837 earthquakes in the Archivo Nacional in Chile, Archivo
de la Nacion in Peru, Archivo General de Indias in Spain,
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and in New England whaling archives in the United States.
The Archivo Nacional, the main historic archive of Chile,
maintains the country’s most complete collection of original
colonial manuscripts. Because Chile was a dependent
territory of colonial Peru in 1737, we also examined the
Peruvian archives in the Archivo de la Nacion. Spain’s
Archivo de Indias holds 40,000 documents, with some
80 million pages in all, about the Spanish colonial adminis-
tration of the Americas and the Philippines. The Peabody
Essex, Falmouth, and New Bedford whaling museums hold
logbooks of U.S. whaling ships that sailed along the southern
coast of Chile during the nineteenth century. Additionally,
we checked for first-hand contemporary accounts of flooding
and damage in Japan that might be ascribed to tsunamis from
south-central Chile.

Depth of Slip in 1837: Model Setup

Beyond the inference of a southern location for the 1837
earthquake drawn above, we attempted to constrain the depth
range of its coseismic slip. We took advantage of the strong
sensitivity of both land-level changes and tsunami generation
to the depth of slip along the Chilean megathrust. This sen-

Historical evidence:

O Smaller earthquake ¥ Subsidence

Graphical summary of the compiled evidence for the 1575-1960 earth-
quake sequences along the length of the 1960 region. Plot of the geologic and historical
evidence for each event. Geologic evidence from Cisternas et al. (2005), Ely et al.
(2014), Moernaut et al. (2014), Garrett et al. (2015), Cisternas et al. (2017), and Kempf
et al. (2017). Historical evidence from Lomnitz (1970), Cisternas et al. (2005), and this
study. The color version of this figure is available only in the electronic edition.

depth), and deep (43-61 km depth) slip,
and a wide one represented by the dislo-
cation of the entire megathrust seismo-
genic zone (7-61 km depth). The width
and geometry of the seismogenic zone
was obtained from geophysical studies
conducted in south-central Chile (Volker
et al., 2011; Rotman and Spinelli, 2014).
We considered a wide seismogenic zone
extending from the buried trench to about
60 km depth below sea level. Such a wide
seismogenic zone is in agreement with
the thermally inferred seismogenic zone
by Rotman and Spinelli (2014), which roughly matches that
of Volker et al. (2011) if the transitional zone is included.
For simplicity, we represented the curved megathrust
geometry by a planar fault dipping at 18.5°, according to
the average dip angle of the local megathrust (Volker et al.,
2011). Based on the along-strike extent of the reported
land-level changes, we considered minimum rupture
lengths of 500 km, extending from northern Chiloé to
the southern limit of the 1960 rupture. Because of the im-
precision of the currently available evidence, all tested rup-
tures assume a unit amount of uniform slip. For the same
reason, we did not attempt to estimate the amount of
1837 slip.

Finally, tsunami simulations across the Pacific Ocean
basin were conducted for each hypothetical rupture. The
initial tsunami waveforms were inferred from the seafloor
deformation due to earthquake faulting (Okada, 1985). The
tsunami propagations were computed using the linear long-
wave approximation and a finite-difference method (Liu
et al., 1998; Wang, 2009) on General Bathymetric Chart of
the Oceans (GEBCO) bathymetry, with a grid size of 30 arc-
sec. All simulations were run for 30 hrs.

O Smaller tsunami

A Uplift



Written Records of the 1737 and 1837 Earthquakes

In this section, we summarize new and previous docu-
mentary information about the 1737 and 1837 earthquakes
(Fig. 2). Details, including quotations in extenso from the
newly found original documents and bibliographic sources,
are in ® Text S1.

The 1737 Earthquake

We found 12 first-hand accounts of the 1737 event that
complement the two secondary sources previously available.
The accounts, found in the Archivo Nacional in Chile and
Archivo de Indias in Spain, show that the 1737 earthquake
damaged buildings along the strike of the subduction zone
for 640 km (Fig. 2).

Notably, two of these accounts extend the area of 1737
earthquake damage far north to Concepcién, where the
cathedral was so badly damaged that it was subsequently de-
molished. The Bishop of Concepcidn told the King about the
damage to his cathedral: “...with the earthquake that this
City and Bishopric suffered, the connections of the building
came apart, removing the support that they provided, and the
walls were tilted out....” A second manuscript, a letter sent
by Chile’s governor to the King, also refers to the Concep-
ciéon cathedral: “With the formidable earthquake... the
material of the building of this holy cathedral church suffered
to the extent that it was left in a useless state...., it was expedi-
ent, even necessary to disassemble it... indeed this diligence
was carried out....”

Eight of the new primary sources confirm great damage in
Valdivia. The city’s fortresses, temples, royal storehouse, and
walls were completely destroyed, as were its riverside docks.

In Chiloé, two sources report that the 1737 earthquake
destroyed the main church of Castro. When the auxiliary
Bishop of Concepcién visited Castro four years after the earth-
quake, he tells: “...this inclement climate has prevented me...
building the church... in the city of Castro... because the par-
ish was ruined by the earthquake of the year [17]37....” Later
his secretary wrote in another document: ... his lordship went
to the shack that was serving as a church... the priests did not
give a reason other than that the church... was ruined by the
earthquake of the year [17] thirty-seven....”

Although the 1737 earthquake damaged buildings along
the great distance that separates Concepcidon from Castro,
written evidence for an associated tsunami is notably lacking,
from both Chile and Japan. If there was a Pacific Ocean tsu-
nami associated with the 1737 earthquake, it must have been
quite small. None of the 12 accounts mentions unusual seas,
even though some are testimonies focused on shaking dam-
age to buildings fringing the shoreline. Other reports de-
scribe the effects of the earthquake, but not of a tsunami,
at places where tsunamis associated with later earthquakes
caused significant damage. No tsunami in 1737 is reported
in the written records in Japan, even though an era of political
stability under Tokugawa shoguns yielded Japanese written
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records of transpacific tsunamis that came from Peru in 1687,
Cascadia in 1700, Valparaiso in 1730, and Concepcién in
1751 (Watanabe, 1998; Atwater et al., 2005).

The 1837 Earthquake and Tsunami

In contrast to the 1737 earthquake, much is known about
the event that struck south-central Chile on 7 November
1837 at 8 a.m. (Cisternas et al., 2005). In Concepcién, Val-
divia, and Ancud, intendentes (provincial governors) set
down eyewitness accounts of the earthquake and the ensuing
tsunami. South of Chiloé, newly found and previously
overlooked evidence from whaling logbooks indicates that
shaking, land-level changes, and tsunami effects extended
southward into the Chonos Archipelago (Fig. 1b,c).

Shaking from the 1837 earthquake was felt for 800 km
between Concepcion and the Chonos Archipelago (Fig. 2). In
Concepcién, which had been relocated inland after the 1751
tsunami, the 1837 earthquake was felt rather strong (Cisternas
et al., 2005), but unlike in 1737, there was no reported dam-
age. In Valdivia, shaking was much stronger than in Concep-
ci6én and people were thrown off balance. Its fortresses were
destroyed again, as in 1737, and the roads were impassable
due to ground cracks, fallen trees, and landslides. Profuse
landslides were also reported in Chiloé, along with fallen trees
and ground failures. It was reported that millstones jumped off
their seats and plowed-under grass rotated upright in potato
fields (Cisternas et al., 2005). A previously overlooked source
reports strong shaking south of Chiloé, off Guafo Island at
43.63° S (Fig. 1b), when the masts of the French whaling ship
I’Ocean, commanded by Simon Coste, were violently shaken
by the 1837 earthquake. The southernmost evidence of shak-
ing in 1837 comes from another, newly found, whaler account
(Fig. 3). The master of the U.S. whaling ship Ohio, Charles
Coffin, felt at 8 a.m. two shocks within 15 min while sailing
off the Chonos Archipelago at 44.17° S-76.33° W. A third
shock was recorded the next day at 8 p.m.

The 1837 earthquake was accompanied by land-level
changes along the southern half of the 1960 earthquake rup-
ture area, from the latitude of Ancud southward to San Rafael
Fjord (Fig. 1b). One month after the earthquake, I’Ocean
anchored at Lemu, a western island of the Chonos Archi-
pelago (45.20° S—-74.52° W). Captain Coste, who had visited
the island before the earthquake, found the anchorage 2.5 m
shallower. The uplift was evident as rocks, previously always
submerged, were then exposed. A large quantity of still de-
composing shellfish convinced him that the emergence was
recent. A second overlooked source, perhaps including
Coste’s testimony but based on additional witnesses as it uses
the plural “several captains,” also describes uplift in the Cho-
nos. Joseph du Bouzet, hydrographer of a French exploration
expedition that visited Chile early in 1838 (Dumont d’Urville,
1842), reports that several French whaling captains working in
the Chonos told him that soon after the 1837 earthquake, the
islands in the archipelago were found to have been raised.
Whalers described the rocky point of a bay that they fre-
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RECORD 15 in 1871 found that tides were flooding land
that had been arable before. The residents
told him that this subsidence resulted from
the 1837 earthquake. Similarly, at Tac Is-

2 el land (42.39° S: Fig. 1b and ® Fig. Sla),

= where the level of the land probably did
not change in 1960, a clergyman in the
1890s found trunks from old trees that were

4 still in growth position yet were flooded
by high tides. In still another account,
collected by Vidal Gormaz from a local
ship’s pilot who was in the Chonos during
the earthquake, some islands were said to
have vanished while shorelines at others
emerged. The southernmost written evi-
dence of land-level changes in 1837 comes
from San Rafael Fjord (46.60° S), at the
southern end of the 1960 rupture (Fig. 1b).
Exploring the fjord in 1857, Vidal Gormaz
found the remains of a forest partially sub-
merged on the floor of the fjord. He inferred

o that the 1837 earthquake had lowered the

of the drowned trees. In 1871, explorer
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Figure 3.

Southernmost evidence of shaking in 1837. Account from the logbook of the
U.S. whaling ship Ohio, registered in Nantucket and skippered by Charles Coffin, the au-
thor of the log. The logbook was found in the New Bedford Whaling Museum, New Bed-
ford, Massachusetts. (a) Entry on the day of the earthquake, 7 November 1837. Although
the ship was sailing off the Chonos Archipelago (44.17° S-76.33° W), ~50 km west of the
trench on the Nazca plate, Coffin recorded two shocks in 15 min at 8 a.m. (b) Drawing
included in Coffin’s logbook showing a whaling campsite with tents and fires to boil blub-

Enrique Simpson resurveyed the fjord
(® Fig. S1), described the drowned forest
again, and reached the same conclusion.
However, in a subsequent report in 1873
Simpson retracted his earlier inference that
the 1837 earthquake submerged the forest
only once, concluding that subsidence re-
peated over time.

The 1837 tsunami is much better

RecorDp 15

ber. An early U.S. side-wheel paddle steamer stands out in the foreground. (c) The next day,

Coffin reported an aftershock at 8 p.m. while sailing northward off Guafo Island. The color

version of this figure is available only in the electronic edition.

quented as covered for a long distance with mussels, limpets,
and other shellfish that were discomposing but still attached to
the rocks. These accounts of uplift reported by the whalers in
Lemu Island and the Chonos Archipelago in 1837 contrast
notably with the subsidence reported in this region associated
with the 1960 earthquake. In 1960, Lemu subsided 0.5 m and
most of the archipelago subsided more than 1 m (Plafker and
Savage, 1970). The opposing sense of land-level change in
this region is a fundamental difference between the 1837
and 1960 earthquakes.

Additional information about land-level changes in 1837,
which could include postseismic signals, was obtained in the
latter part of the nineteenth century, when the Chilean Navy
was charting Chiloé and the Chonos Islands (Fig. 1c and
® Fig. S1). At Guar Island (41.69° S), where land level
was unchanged in 1960, surveyor Francisco Vidal Gormaz

known from its effects on distant shores,
in Hawaii, Japan, and Polynesia, than from
those near its source. Chilean accounts re-
port unusual sea movements, including a slight withdrawal
and anomalous tides, in Concepcion; a bay that usually am-
plifies tsunamis. Near Ancud, which faces inland waters, sea
water was observed 700 m inland in an unidentified low-lying
area, although it was not reported to have run inland in most
places near the town. In the Pudeto Estuary and Chacao Chan-
nel (Fig. 1b and ® Fig. S1a), uncommon surges left algae and
shellfish stranded, swept from their bed. One of the whalers’
accounts may refer to the southernmost known effects of the
1837 tsunami. At Lemu Island, one month after the 1837
earthquake, Captain Coste noted that “A great quantity of
trees, torn up by the roots and carried to sea in those shocks,
were to be seen along the shore.” A brief analysis of the char-
acteristics of the 1837 tsunami on the Chilean coast, including
the computed tide curve of the day of the earthquake (® Text
S2) and some hypotheses to explain its relatively modest local
effects (® Text S4), are offered in the electronic supplement.
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According to four Japanese chronicles
that were translated and analyzed as a part
of this study (Fig. 4 and ® Text S1), the
1837 tsunami affected towns on the north-
east coast of Honshu, between Kamaishi
and Miyagi (Shiogama), located in today’s
Iwate and Miyagi prefectures (Fig. 4a). The
tsunami flooded the residential area of
Kamaishi. It destroyed salmon traps in the
Imaizumi River. In Akasaki and Ofunato,
salt-evaporation works and a salt store-
house were damaged and 2000 bales of salt
were lost. Although the damage was less in
Otomo and Osabe, the water inundated the
lower neighborhoods there. After midnight,
the 1837 tsunami caused great disturbance
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Figure 4.

Comparison of the effects of the 1960 and 2010 Chilean tsunamis with
those of the 1837 Chile tsunami along the Japanese coast. (a) Surveyed heights reached
by the 1960 tsunami (Committee for Field Investigation of the Chilean Tsunami of 1960,
1961), and those of the 2010 tsunami (Tsuji er al., 2010). Shaded area shows the in-
tersection between the 1- to 2-m range of heights and the latitudinal range of the 1837
chronicles in (b). (b) Japanese chronicles describing the effects of the 1837 tsunami on
the coastal towns between Kamaishi and Miyagi (full records and details are in ® the

the amplitudes of their tsunamis in Japan
(Carvajal et al., 2017), a range of ~1-2 m
suggests that the magnitude of the 1837
earthquake was likely between M, 8.8
and 9.5. This rough estimation also agrees
with the tsunami magnitude of 9% assigned
to the 1837 event by Abe (1979).

electronic supplement). Based on the reported effects, the 1837 tsunami was probably
between 1 and 2 m high on that coast. This range overlaps the highest waves of the 2010

tsunami, triggered by an M, 8.8 earthquake, and the lowest of the 1960 tsunami

Synthesis, Modeling, and Discussion

(M, 9.5). If so, the size of the 1837 earthquake was likely between M, 8.8 and

9.5, in agreement with the tsunami magnitude of 9% estimated by Abe (1979), which

Source of the 1737 Earthquake

implies nearly half the seismic moment of the 1960 mainshock. The color version of this

figure is available only in the electronic edition.

In contrast, in the Gambier Islands (French Polynesia),
the 1837 tsunami reached at least 2 m and produced strong
currents and extensive inundation (Dumoulin, 1840). In the
Samoan Islands, the tsunami attained ~1 m height and pro-
duced hours-long flooding and ebb tides (Dumoulin, 1840;
Wilkes, 1845). The tsunami had catastrophic results in the
Hawaiian archipelago, particularly in Hilo, where it reached
a height of 6 m, with loss of life and destruction of houses
(Rooke, 1839; Coan, 1882).

Both written and geologic evidence all
point to a source of the 1737 earthquake
located south of Concepcién and north of

Chiloé, namely the northern half of the region that ruptured
in 1960. Accounts indicate that the 1737 earthquake was
destructive along a 640-km stretch of south-central Chile, be-
tween Concepcion and Castro, producing the greatest destruc-
tion roughly midway between the two, at Valdivia. Geology
helps to constrain the location of the strongest 1737 shaking
within this stretch. Shaking triggered slope failures in Villarr-
ica, Calafquén, and Rifiihue lakes (Moernaut et al., 2014),
all located roughly at the latitude of Valdivia, but it did not
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produce failures in the Gulf of Reloncavi (St-Onge et al.,
2012) or at Cocotué (Cisternas et al., 2017), both at the lat-
itude of Ancud, in northern Chiloé.

The great north—south extent of the 1737 earthquake
effects suggests a megathrust source. But, if so, how can such
a large megathrust earthquake be reconciled with the appar-
ent lack of a tsunami in Chile and Japan? The absence of a
tsunami could imply that the 1737 source did not occur at the
interface between the Nazca and South America plates, but
instead was on a fault within one of those plates. Yet, it is
difficult to explain its large extent by an intraplate rupture, as
they are usually relatively short, in both extent and duration,
and their shaking seems to attenuate rapidly along the strike
of the subduction zone (Moernaut et al., 2014). Examples of
these spatially focused intraplate events are the 1939 Chillan
earthquake, which ruptured deeper than the plate interface
within the subducted Nazca plate (Beck et al., 1998), the
shallow upper-plate events of Aysén in 2007, associated with
the Liquifie-Ofqui fault (Lange ef al., 2008) and Las Melosas
earthquake of 1958, linked to the Andean folding around
Santiago (Alvarado et al., 2009). Taking all these factors into
account, a more plausible explanation is that the 1737 earth-
quake resulted from a deep rupture in the megathrust, thus
explaining the lack of tsunami reports, the strong shaking in
the Andean lakes, and the large spatial extent of shaking. As
shown by Carvajal et al. (2017), a deep rupture along the
Chilean megathrust would produce strong shaking and favor
uplift of the land rather than beneath the sea, thus producing
a small tsunami. This sort of long and deeper-than-average
rupture was inferred for the 1906 central Chile earthquake on
the basis of the strong shaking, coastal uplift, and a small
tsunami (Carvajal et al., 2017). Thus, we believe that the evi-
dence favors a deep source along the northern half of the
1960 region for the 1737 earthquake.

Source of the 1837 Earthquake and Tsunami

The rupture of the 1837 earthquake clearly differed from
those of the 1737 and 1960 earthquakes. It was mainly con-
centrated in the southern half of the 1960 region with a length
between 550 and 800 km as evidenced by land-level changes
or by shaking. Nonetheless, the damage in Valdivia and the
triggering of turbidites in lakes within the northern half of
the 1960 region (~250 km north of Chilo€) suggest that
the 1837 rupture propagated into the northern fault area where
substantial slip occurred in 1960. Alternatively, a rupture con-
fined to the south might have produced strong motions in the
north owing to focusing, rupture propagation, or site effects. A
further possibility, also in agreement with the evidence, is that
the southern rupture in 1837 extended into the northern half of
the 1960 region but only along the deeper part of the mega-
thrust. As in 1737, the extension of a deep rupture to the north
in 1837 could explain the lacustrine turbidites, the destruction
of Valdivia, and the lack of tsunami reports on that portion of
the coast.

This inferred deep slip at the latitude of Valdivia in 1837
would not conflict with the large slip during the 1960 main-
shock, as the latter occurred mainly on the shallower plate in-
terface (Wang et al., 2007; Moreno et al., 2009), but it might
conflict with the large-scale deep slip hypothesized to
explain the slow giant precursor in 1960 (Kanamori and Cipar,
1974; Cifuentes and Silver, 1989). However, the source loca-
tion of this hypothetical event, if real, is still a matter of debate.

Land-Level Changes and Tsunami Size Constrain the
Depth of 1837 Slip

Unlike the 1960 event, which was characterized by
coastal subsidence along its source area (Plafker and Savage,
1970), the 1837 earthquake uplifted the coast. In northern
Chiloé, the 1837 accounts of strong shaking and a tsunami
in the inland sea around Ancud agree well with the geologic
evidence of slope failures (St-Onge et al., 2012; Cisternas
et al., 2017) and of a medium-size tsunami (Cisternas et al.,
2017; Kempf et al., 2017). However, this congruent evidence
contrasts sharply with the absence of geologic evidence for
coastal subsidence in 1837 at this latitude (Cisternas et al.,
2005; Garrett et al., 2015). Evidence from trees killed by the
1960 subsidence but that had survived 1837 also argues
against subsidence on the coast in 1837 (Bartsch-Winkler
and Schmoll, 1993; Cisternas et al., 2005). Absence of
coastal subsidence in 1837 could imply, besides differences
in size with the 1960 event, a difference in the distribution of
the slip in the dip direction.

Moernaut et al. (2014) suggest that slip in 1837 was
largely concentrated in the southern half of the 1960 region,
which would explain the relatively lower slip inferred for that
region later in 1960. The same authors further propose that
most of the slip in 1837 occurred on the shallow part of the
megathrust, which would also explain both the 1960 slip dis-
tribution and the thermal model results of Volker et al.
(2011). The inference of a shallow dislocation seems also
to be in agreement with the large 1837 tsunami observed
in Hawaii and Japan.

We tested the feasibility of the shallow rupture proposed
by Moernaut et al. (2014) by comparing the evidence of both
land-level changes and tsunami size with those predicted by
hypothetical dislocations at different depths on the plate in-
terface (Fig. 5). We found that instead of a narrow shallow
rupture, only a wide one, extending from the buried trench to
about 60 km depth, predicts land-level changes and tsunami
amplitudes compatible with all of the evidence from 1837.
The rupture of only a shallow part of the fault, as proposed
by Moernaut et al. (2014; Fig. 5a,b), although yielding a
large tsunami in the Pacific, including high amplitudes in Ha-
waii and Japan, raises and lowers locations that actually
moved in the opposite vertical sense in 1837. The rupture
of only the intermediate portion of the fault (Fig. Sc) fails
to produce the pattern of land-level changes indicated by ob-
servations in Lemu and the Chonos, and it does not produce a
significant tsunami in Hawaii and Japan. Interestingly, this
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A wide rupture in 1837 in the southern
half of the 1960 region as inferred above
would call into question the hypothesis
that the seismogenic zone always narrows
to the south as a consequence of the ther-
mal regime controlled by the age varia-
tions of the Nazca plate (Wang et al,
2007; Volker et al., 2011). However, it
would be in accord with the proposal of
a constant width based on thermal models
that consider the effects of the hydrother-
mal circulation within the oceanic crust
and the frictional heating on the plate in-
terface (Rotman and Spinelli, 2014). In
these models, hydrothermal circulation
cools the younger and warmer subducting
lithosphere in the south while frictional
heating warms the older and cooler litho-
sphere in the north. The combined effects
produce a remarkably constant thermal
state of the plate interface along strike, im-
plying a uniform ~200 km wide seismo-
genic zone all along the 1960 region.

A wide rupture in 1837 also has impli-
cations for the current tectonic deformation
of the 1960 region. GPS measurements
conducted over the last decades along the
1960 rupture area show a pattern in which
coastal sites move landward while those lo-
cated inland, near the Andes, move seaward
(Klotz et al., 2001; Khazaradze et al., 2002;

Hawaii

compared with the 1837 and 1960 land-level changes projected onto a cross section
through Isla Chiloé. (a) Plate-boundary profile, including the interplate geometry and seis-
mogenic and transition zones based on thermal models (modified from Volker et al.,
2011). The actual curved fault is represented as a simple plane dipping 18.5°. The plane
is equally divided into three parts: (b) shallow, (c) intermediate, and (d) deep. (e) A wide
rupture combines these three. Sites with historical or geologic evidence are projected onto
the profile line. Predicted tsunami amplitudes through the Pacific are shown graphically at
right of each hypothetical rupture, including close ups of the amplitudes in Japan and
Hawaii. The color version of this figure is available only in the electronic edition.

Hu et al., 2004). Although this pattern, in-
terpreted as prolonged postseismic defor-
mation by mantle stress relaxation after
1960, is observed all along the 1960 area,
the GPS observations exhibit a remarkable
southward decrease of the landward veloc-
ities along the coast (Wang et al., 2007).

intermediate rupture produces a similar pattern of land-level
changes to that observed in 1960. A deep fault rupture
(Fig. 5d), although its results match well with the 1837
land-level changes, fails to generate a large transpacific tsu-
nami, because vertical deformations are restricted to very
shallow water and beneath the land. Thus, it seems that only
an earthquake rupturing a wide section down the plate inter-
face is capable of explaining both the sense of coastal land-
level changes and the size of the 1837 tsunami (Fig. Se).
Therefore, taking all the evidence into account, we conclude
that the most reasonable and simple explanation is an earth-
quake produced by a wide rupture, extending from or near
the trench to depths of about 60 km of the plate interface.

Such a decrease could be explained either

by a southward narrowing of the 1960 rup-
ture, and a subsequent narrower locked zone, or by a uni-
formly wide 1960 rupture, all along its extent, but with
much less slip in the south. However, the current locking dis-
tribution suggests that locking is most pronounced at some
asperities that released the highest slip in 1960, implying both
some degree of persistence of the major asperities and that the
locking varies with time (Moreno et al., 2011). Thus, it seems
that the plate interface accumulates slip deficit in a spatially
and temporally variable manner toward the next large earth-
quake. In other words, the zone of accumulated slip, and po-
tentially capable of producing large earthquakes, changes
throughout the seismic cycle and perhaps between seismic
cycles.
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If the uplift at Lemu Island, observed just one month
after the 1837 earthquake, was indeed coseismic, our conclu-
sion of a rather wide 1837 rupture supports the hypothesis of
a temporal evolution of the seismogenic zone. Regardless of
the simplicity of our modeling, to raise Lemu Island and si-
multaneously produce a large transpacific tsunami, the slip in
1837 must have extended from or near the trench to depths
significantly deeper than the down-dip limit of the seismo-
genic zone currently inferred from GPS observations.
Although other possibilities could explain the evidence of
coastal uplift in 1837 (e.g., a localized slip patch beneath
or eastward Lemu Island, rapid after slip, slip in a foreshock
and/or aftershock, and/or splay faulting), by applying the law
of parsimony to the sum of available data, the simplest ex-
planation is that of a wide rupture in 1837.

Conclusions

New documentary findings together with previously re-
ported geologic evidence provide the opportunity to analyze
the historical seismic sequence preceding the giant 1960
earthquake and infer relevant information about the seismo-
genic zone of the subduction thrust in south-central Chile.

There are significant differences in the along-strike and
depth distribution of the ruptures in the 1737, 1837, and 1960
earthquakes. While the 1737 rupture likely occurred in the
northern half of the 1960 region, on a narrow and deep por-
tion of the subduction thrust, the 1837 rupture took place
mainly in the southern half and most likely slipped over a
wide range of depth on the fault.

Because modeling of geodetic observations supports a
current southward narrowing of the seismogenic zone along
the 1960 region, the inference of a wide southern rupture in
1837 strongly suggests a significant temporal dependence of
the width of the seismogenic zone along this region. While
challenging some assumptions about the thermal and tec-
tonic processes occurring along the megathrust, this time-de-
pendent seismogenic zone probably helps to explain the
evident variability in both size and location of the great meg-
athrust earthquakes that have struck this region over the last
five centuries, as evidenced by written history, and through
millennia, as inferred from paleoseismological studies.

Data and Resources

Primary written records of the 1737 and 1837 earthquakes
used in this study were physically collected in the historic ar-
chives of Archivo Nacional in Chile (www.archivonacional.cl,
last accessed October 2017), Archivo de la Nacién in Peru
(http://agn.gob.pe, last accessed October 2017), Archivo Gen-
eral de Indias in Spain (www.mecd.gob.es, last accessed
October 2017), and in the archives of the Peabody Essex
(www.pem.org, last accessed October 2017), Falmouth
(http://museumsonthegreen.org, last accessed October 2017),
and New Bedford (www.whalingmuseum.org, last accessed
October 2017) whaling museums in New England, U.S.A.

Japanese original chronicles were excerpted from Tokyo
Daigaku Jishin Kenkyusho (University of Tokyo, Earthquake
Research Institute) (1989). Shinshu Nihon jishin shiryo (Newly
collected materials on historical earthquakes in Japan). All re-
cords used in this article are available to the public.

Acknowledgments

This work was funded by Chile’s Fondo Nacional de Desarrollo Cien-
tifico y Tecnolégico (FONDECYT) project 1150321. Additional support
was provided by the Iniciativa Cientifica Milenio (ICM) through Grant
Number NC160025 “Millennium Nucleus CYCLO: The Seismic Cycle
Along Subduction Zones.” R. W. and L. L. E. were supported through Na-
tional Science Foundation (NSF) Grants EAR-1145170 and EAR-1624542.
Initial versions of the article were greatly improved by reviews from B. At-
water. Special thanks to M. Moreno, who gave insightful and constructive
comments. The authors also acknowledge the suggestions provided by an
anonymous reviewer.

References

Abe, K. (1979). Size of great earthquakes of 1837-1974 inferred from tsu-
nami data, J. Geophys. Res. 84, 1561-1568.

Alvarado, P., S. Barrientos, M. Sdez, M. Astroza, and S. Beck (2009). Source
study and tectonic implications of the historic 1958 Las Melosas
crustal earthquake, Chile, compared to earthquake damage, Phys.
Earth Planet. In. 175, 26-36.

Angermann, D., J. Klotz, and C. Reigber (1999). Space-geodetic estimation
of the Nazca—South America Euler vector, Earth Planet. Sci. Lett. 171,
329-334

Atwater, B., M. Cisternas, E. Yulianto, A. Prendergast, K. Jankaew, A. Ei-
pert, S. Fernando, I. Tejakusuma, L. Schiappacasse, and Y. Sawai
(2013). The 1960 tsunami on beach-ridge plains near Maullin, Chile:
Landward descent, renewed breaches, aggraded fans, multiple prede-
cessors, Andean Geol. 40, 393-418.

Atwater, B., S. Musumi-Rokkaku, K. Satake, Y. Tsuji, K. Ueda, and D. Ya-
maguchi (2005). The orphan tsunami of 1700: Japanese clues to a parent
earthquake in North America, U.S. Geol. Surv. Profess. Pap. 1707, 133 p.

Barrientos, S., and S. Ward (1990). The 1960 Chile earthquake: Coseismic
slip from surface deformation, Geophys. J. Int. 103, 589-598.

Bartsch-Winkler, S., and H. Schmoll (1993). Evidence for late Holocene
relative sea-level fall from reconnaissance stratigraphical studies in
an area of earthquake subsided intertidal deposits, Isla Chiloé, southern
Chile, in Tectonic Controls and Signatures in Sedimentary Succes-
sions, L. E. Frostwick and R. J. Steel (Editors), International Associ-
ation of Seismologists, Blackwell Scientific Publications, Oxford,
England, 91-108.

Beck, S., S. Barrientos, E. Kausel, and M. Reyes (1998). Source character-
istics of historic earthquakes along the central Chile subduction zone,
J. S. Am. Earth Sci. 11, 115-129, doi: 10.1016/S0895-9811(98)00005-
4.

Carvajal, M., and A. Gubler (2016). The effects on tsunami hazard assess-
ment in Chile of assuming earthquake scenarios with spatially uniform
slip, Pure Appl. Geophys. 173, 3693-3702.

Carvajal, M., M. Cisternas, A. Gubler, P. Catalan, P. Winckler, and R. Wes-
son (2017). Reexamination of the magnitudes for the 1906 and 1922
Chilean earthquakes using Japanese tsunami amplitudes: Implications
for source depth constraints, J. Geophys. Res. 122,4-17, doi: 10.1002/
2016JB0132609.

Cifuentes, 1. (1989). The 1960 Chilean earthquakes, J. Geophys. Res. 94,
665-680.

Cifuentes, 1., and P. Silver (1989). Low-frequency source characteristics of
the great 1960 Chilean earthquake, J. Geophys. Res. 94, 643-663.


www.archivonacional.cl
www.archivonacional.cl
www.archivonacional.cl
http://agn.gob.pe
www.mecd.gob.es
www.pem.org
http://museumsonthegreen.org
www.whalingmuseum.org
http://dx.doi.org/10.1016/S0895-9811(98)00005-4
http://dx.doi.org/10.1016/S0895-9811(98)00005-4
http://dx.doi.org/10.1002/2016JB013269
http://dx.doi.org/10.1002/2016JB013269

12

Cisternas, M., B. F. Atwater, F. Torrejon, Y. Sawai, G. Machuca, M. Lagos,
A. Eipert, C. Youlton, I. Salgado, T. Kamataki, e al. (2005). Prede-
cessors of the giant 1960 Chile earthquake, Nature 437, 404—407.

Cisternas, M., E. Garrett, R. Wesson, T. Dura, and L. Ely (2017). Unusual
geologic evidence of coeval seismic shaking and tsunamis shows vari-
ability in earthquake size and recurrence in the area of the giant 1960
Chile earthquake, Mar. Geol. 385, 101-113.

Cisternas, M., F. Torrejon, and N. Gorigoitia (2012). Amending and com-
plicating Chile’s seismic catalog with the Santiago earthquake of 7
August 1580, J. S. Am. Earth Sci. 33, 102-109.

Clark, A. H. (1887). History and present condition of the fishery, in History
and Methods of the Fisheries, G. B. Goode (Editor), The Fisheries and
Fishery Industries of the United States, Section V, Vol. II, Government
Printing Office, Washington, D.C., 3—128.

Coan, T. (1882). Life in Hawaii; An Autobiographic Sketch of Mission Life
and Labors (1835-1881), Anson Randolph & Company, New York,
New York.

Committee for Field Investigation of the Chilean Tsunami of 1960 (1961).
Report on the Chilean tsunami of May 24, 1960, as observed along the
coast of Japan, Maruzen Co., Ltd., Tokyo, Japan 397 pp.

Dumont d’Urville, J. (1842). Voyage au Pole sud et dans I'Océanie sur les
corvettes “I’Astrolabe” et “la Zélée”, exécuté par ordre du Roi pendant
les années 1837-1838-1839-1840, Gide éditeur, Paris, France (in French).

Dumoulin, C. (1840). Coincidence de date de quelques mouvements extraor-
dinaires de la mer, observés dans 1’Océanie, avec le tremblement de terre
qui en 1837 renversa la ville de Valdivia au Chili, Extrait dune lettre de
M. Dumoulin a M. Arago, C. R. Acad. Sci. 21, 835-837 (in French).

Eaton, J., D. Richter, and W. Ault (1961). The tsunami of May 23, 1960, on
the Island of Hawaii, Bull. Seismol. Soc. Am. 51, 135-157.

Ely, L., M. Cisternas, R. Wesson, and T. Dura (2014). Five centuries of tsu-
namis and land-level changes in the overlapping rupture area of the
1960 and 2010 Chilean earthquakes, Geology 42, 995-998.

Garrett, E., I. Shennan, S. Woodroff, M. Cisternas, P. Hocking, and P. Gul-
liverd (2015). Reconstructing paleoseismic deformation, 2: 1000 years
of great earthquakes at Chucalén, south central Chile, Quaternary Sci.
Rev. 113, 112-122.

Greve, E. (1948). La Vida Marina en su relacién con la pesca y la caza, Rev.
Hist. Geog. 1725, 1-23 (in Spanish).

Hu, Y., K. Wang, J. He, J. Klotz, and G. Khazaradze (2004). Three-dimen-
sional viscoelastic finite element model for postseismic deformation of
the great 1960 Chile earthquake, J. Geophys. Res. 109, no. B12403,
doi: 10.1029/2004JB003163.

Kanamori, H., and J. Cipar (1974). Focal process of the Great Chilean earth-
quake May, 22, 1960, Phys. Earth Planet. In. 9, 128-136.

Kempf, P, J. Moernaut, M. Van Daele, W. Vandoorne, M. Pino, R. Urrutia, and
M. De Batist (2017). Coastal lake sediments reveal 5500 years of tsunami
history in south central Chile, Quaternary Sci. Rev. 161, 99-116.

Khazaradze, G., K. Wang, J. Klotz, Y. Hu, and J. He (2002). Prolonged post-
seismic deformation of the 1960 great Chile earthquake and implica-
tions for mantle rheology, Geophys. Res. Lett. 29, doi: 10.1029/
2002GL015986.

Klotz, J., A. Abolghasem, G. Khazaradze, B. Heinze, T. Vietor, R. Hackney,
K. Bataille, R. Maturana, J. Viramonte, and R. Perdomo (2006). Long-
term signals in the present-day deformation field of the central and
southern Andes and constraints on the viscosity of the Earth’s upper
mantle, in The Andes—Active Subduction Orogeny, Frontiers in Earth
Sciences, O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Gotze, V.
Ramos, M. Strecker, and P. Wigger (Editors), Springer, Berlin, Heidel-
berg, Germany, 65-89.

Klotz, J., G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, and O.
Cifuentes (2001). Earthquake cycle dominates contemporary crustal
deformation in central and southern Andes, Earth Planet. Sci. Lett.
193, 437-446.

Lange, D., J. Cembrano, A. Rietbrock, C. Haberland, T. Dahm, and K. Ba-
taille (2008). First seismic record for intra-arc strike-slip tectonics
along the Liquifie-Ofqui fault zone at the obliquely convergent plate
margin of the southern Andes, Tectonophysics 455, 14-24.

M. Cisternas, M. Carvajal, R. Wesson, L. L. Ely, and N. Gorigoitia

Liu, P, S. Woo, and Y. Cho (1998). Computer programs for tsunami propa-
gation and inundation, Technical Report, Cornell University, 111 pp.

Lomnitz, C. (1970). Major earthquakes and tsunamis in Chile during the
period 1535 to 1955, Geol. Rundsch. 59, 938-960.

Melgar, D., S. Riquelme, X. Xu, J. Baez, J. Geng, and M. Moreno (2017).
The first since 1960: A large event in the Valdivia segment of the Chil-
ean subduction zone, the 2016 M 7.6 Melinka earthquake, Earth
Planet. Sci. Lett. 474, 68-75.

Moernaut, J., M. Van Daele, K. Heirman, K. Fontijn, M. Strasser, M. Pino,
R. Urrutia, and M. de Batist (2014). Lacustrine turbidites as a tool
for quantitative earthquake reconstruction: New evidence for a vari-
able rupture mode in south central Chile, J. Geophys. Res. 119,
1607-1633.

Moreno, M., D. Melnick, M. Rosenau, J. Bolte, J. Klotz, H. Echtler, J. Baez,
K. Bataille, M. Bevis, and H. Hase, et al. (2011). Heterogeneous plate
locking in the south-central Chile subduction zone: Building up the
next great earthquake, Earth Planet. Sci. Lett. 305, 413-424.

Moreno, M. S., J. Bolte, J. Klotz, and D. Melnick (2009). Impact of mega-
thrust geometry on inversion of coseismic slip from geodetic data: Ap-
plication to the 1960 Chile earthquake, Geophys. Res. Lett. 36,
L16310, doi: 10.1029/2009GL039276.

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a
half space, Bull. Seismol. Soc. Am. 75, 1135-1154.

Pereira Salas, E. (1971). Los primeros contactos entre Chile y los Estados
Unidos, Editorial Andrés Bello, Santiago, Chile, 1778-1809 (in
Spanish).

Plafker, G., and J. Savage (1970). Mechanisms of Chilean earthquakes of
May 21 and May 22, 1960, Geol. Soc. Am. Bull. 81, 1001-1030.

Reed, D., R. Muir-Wood, and J. Best (1988). Earthquakes, rivers and ice:
Scientific research at the Laguna San Rafael, southern Chile, 1986,
Geogr. J. 154, 392-405.

Rooke, T. (1839). Notice of remarkable agitations of the sea at the Sandwich
Islands, on the 7th November 1837, Edinburgh New Philos. J. 27, 141—
144.

Rotman, H., and G. Spinelli (2014). Remarkably consistent thermal state of
the south central Chile subduction zone from 36°S to 45°S, J. Geophys.
Res. 119, doi: 10.1002/2013JB010811.

Ruiz, S., M. Moreno, D. Melnick, F. del Campo, P. Poli, J. C. Baez, F. Ley-
ton, and R. Madariaga (2017). Reawakening of large earthquakes in
south central Chile: The 2016 M,, 7.6 Chiloé event, Geophys. Res. Lett.
44, doi: 10.1002/2017GL074133.

Sievers, H. (1963). The seismic sea wave of 22 May 1960 along the Chilean
coast, Bull. Seismol. Soc. Am. 53, 1125-1190.

St-Onge, G., E. Chapron, S. Mulsow, M. Salas, M. Viel, M. Debret, A.
Foucher, T. Mulder, T. Winiarski, M. Desmet, et al. (2012). Compari-
son of earthquake-triggered turbidites from the Saguenay (eastern Can-
ada) and Reloncavi (Chilean margin) Fjords: Implications for
paleoseismicity and sedimentology, Sediment. Geol. 243, 89-107.

Torrejon, F., M. Cisternas, and A. Araneda (2004). Efectos ambientales de la
colonizacién espaiiola desde el rio Maullin al archipiélago de Chiloé,
sur de Chile, Rev. Chil. Hist. Nat. 77, 661-677 (in Spanish).

Tsuji, Y., K. Ohtoshi, S. Nakano, Y. Nishimura, K. Fujima, F. Imamura, T.
Kakinuma, Y. Nakamura, K. Imai, K. Goto, et al. (2010). Field inves-
tigation on the 2010 Chilean earthquake tsunami along the comprehen-
sive coastal region in Japan, Coast. Eng. 66, 1346—1350 (in Japanese).

Ueda, K., and T. Usami (1990). Number of earthquakes in historical records,
Hist. Earthq. (Rekishi Jishin) 6, 181-187 (in Japanese).

Volker, D., I. Grevemeyer, M. Stipp, K. Wang, and J. He (2011). Thermal
control of the seismogenic zone of southern central Chile, J. Geophys.
Res. 116, no. B10305, doi: 10.1029/2011JB008247.

Wang, K., Y. Hu, M. Bevis, E. Kendrick, R. Smalley, R. Vargas, and E. Lauria
(2007). Crustal motion in the zone of the 1960 Chile earthquake:
Detangling earthquake-cycle deformation and forearc-sliver translation,
Geochem. Geophys. Geosys. 8, no. Q10010, doi: 10.1029/
2007GC001721.

Wang, X. (2009). User Manual for COMCOT Version 1.7 (First Draft), Cor-
nell University, New York, New York, 59 pp.


http://dx.doi.org/10.1029/2004JB003163
http://dx.doi.org/10.1029/2002GL015986
http://dx.doi.org/10.1029/2002GL015986
http://dx.doi.org/10.1029/2009GL039276
http://dx.doi.org/10.1002/2013JB010811
http://dx.doi.org/10.1002/2017GL074133
http://dx.doi.org/10.1029/2011JB008247
http://dx.doi.org/10.1029/2007GC001721
http://dx.doi.org/10.1029/2007GC001721

Exploring the Historical Earthquakes Preceding the Giant 1960 Chile Earthquake 13

Watanabe, H. (1998). Comprehensive List of Destructive Tsunamis to Hit
the Japanese Islands, Univ. Tokyo Press, Tokyo, Japan (in Japanese).

Wilkes, C. (1845). Narrative of the United States Exploring Expedition dur-
ing the Years 1838, 1839, 1840, 1841, 1842, C. Sherman, Philadelphia,
Pennsylvania.

Xu, W. (2017). Finite-fault slip model of the 2016 M 7.5 Chiloé earthquake,
southern Chile, estimated from Sentinel-1 data, Geophys. Res. Lett. 44,
doi: 10.1002/2017GL073560.

Escuela de Ciencias del Mar
Pontificia Universidad Catdlica de Valparaiso
Avenue Altamirano 1480
Valparaiso, Chile
marco.cisternas @pucv.cl
matias.carvajal.ramirez @ gmail.com
nga2043 @gmail.com

M.C., M.C.,, N.G)

U.S. Geological Survey

Denver Federal Center

PO Box 25046, MS-966

Denver, Colorado 80225

rwesson @gmail.com
(R.W)

Department of Geological Sciences
Central Washington University
Ellensburg, Washington 98926-7418
ely @geology.cwu.edu

(LL.E)

Manuscript received 29 March 2017


http://dx.doi.org/10.1002/2017GL073560

	Exploring the Historical Earthquakes Preceding the Giant 1960 Chile Earthquake in a Time-Dependent Seismogenic Zone
	BSSA-2017103 1..13

