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Abstract: Titanium dioxide (TiO2) nanoparticles are widely used in contaminant remediation, 

photocatalysis, and solar cell manufacturing. The low-cost production of TiO2 nanoparticles via 

the combustion of titanium tetrachloride (TiCl4) in oxygen is thus an important industrial 

process. To accurately model the flame synthesis of TiO2 nanoparticles, reliable thermodynamic 

data of Ti-O-Cl species are indispensable but often unavailable. We therefore carried out 

benchmark calculations, using the left-eigenstate completely renormalized singles, doubles, and 

perturbative triples (CR-CC(2,3), aka CR-CCL) method with the cc-pVTZ basis set, to obtain the 

equilibrium structures and vibrational frequencies of selected Ti-O-Cl species; we then 

performed single-point CCSD(T)/aug-cc-pVLZ (L = 3-5) calculations to extrapolate the 

CCSD(T)/CBS energies. After analyzing the experimental and calculated enthalpy of selected 

Ti-O-Cl species, the standard enthalpy of formation of the TiOCl2 molecule is determined to be -

600.5 kJ/mol at 298 K. The standard enthalpy of all other Ti-O-Cl species are determined 

accordingly. Finally, we assessed the accuracy of 42 popular density functionals for the Ti-O-Cl 

species. Among these assessed functionals, the B98 functional, tightly followed by B97-1 and 

B3LYP, exhibits the best overall performance in the prediction of the thermochemistry of the Ti-

O-Cl species. 

 

Keywords: titanium oxide; titanium dioxide; thermochemistry; density functional theory; 

coupled-cluster; CR-CC(2,3); complete basis set; B98; B97-1; B3LYP 
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1. Introduction 

Titanium dioxide (TiO2) nanoparticles have been extensively studied because of their 

applications in contaminant remediation,1 photo-catalysis,2–4 and dye-sensitized solar cell 

manufacturing.5,6 The recently found self-structural modification ability of the TiO2 

nanoparticles make them appealing for other applications.7 The low-cost production of TiO2 

nanoparticles via the combustion of titanium tetrachloride (TiCl4) in an oxygen flame is thus a 

very important industrial process. Despite the importance of this process, fundamental 

experimental studies of the thermodynamic properties of TixOyClz species are scarce, and these 

experiments often disagree with each other significantly.8–11 For example, ∆ܪ௙,ଶଽ଼௄
௢  of TiCl2 and 

TiCl3 are -237 kJ/mol and -539 kJ/mol in the NIST compilation,8 which differ by over 30 kJ/mol 

from Hildenbrand’s experimental values of -205 kJ/mol and -508 kJ/mol.9 Moreover, theoretical 

calculations sometimes disagree significantly with experiments. In 1963, it was estimated based 

on experimental data that ∆ܪ௙,ଶଽ଼௄
௢ (TiOCl2) is -546 kJ/mol.11 This value is formally recorded in 

the NIST-JANAF table8 and  had not been challenged until ~40 years later when Kraft et al. 

suggested updating ∆ܪ௙,ଶଽ଼௄
௢ (TiOCl2)  to -598 ± 20 kJ/mol based on their CCSD(T)//B3LYP/6-

311+G(d,p) calculations in 2007.12  Dixon et al. later calculated ∆ܪ௙,ଶଽ଼௄
௢ (TiOCl2) to be -593.3 

kJ/mol based on their coupled-cluster calculations extrapolated to a complete basis set (CBS).13 

Both Kraft et al.’s12 and Dixon et al.’s13 results are ~50 kJ/mol more negative than the NIST 

data.8 Between the two theoretical studies, Dixon et al.’s calculations are likely more accurate 

because they not only employed larger basis sets but also included core-valence correlation, 

scalar relativistic effect, and spin-orbit coupling corrections. While Dixon et al. were mostly 

interested in the Tix(OH)yClz species,13 we are focused on the TixOyClz species involved in the 

combustion of TiCl4 in pure oxygen. We thus aim to obtain accurate thermochemical data of 
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small TixOyClz species via couple-cluster calculations; these data also serve as benchmark for 

assessing various density functionals for the calculations of much larger TixOyClz species. This 

assessment will enable us to choose the most accurate density functional(s) for the realistic 

Kinetic Monte Carlo (KMC)14 modeling of the flame synthesis of TiO2 nanoparticles in a future 

work; the physical insight gained from the KMC modeling will not only unveil the fundamental 

mechanism of the TiO2 flame synthesis but also offer theoretical guidance on how to manipulate 

the synthetic conditions to obtain TiO2 nanoparticles with desired properties.  

Several theoretical studies have resorted to DFT methods for the calculations of the 

medium to large-sized TixOyClz species. West et al. carried out B97-1 density functional theory 

(DFT) calculations to obtain thermochemical and kinetic data of the gas-phase reactions between 

TixOyClz species at high temperatures.12,15 They compared the B97-1 calculations with the 

B3LYP, BPW91, PW91, mPWPW91 DFT calculations as well as the MP2, CCSD, and 

CCSD(T) ab initio calculations. B97-1 was found to provide reasonably close energy surfaces to 

the CCSD(T) ones for selected small TixOyClz species. Wilson et al. assessed various DFT 

methods regarding their accuracy for the third-row transition metal elements and suggest B98 is 

the most accurate methods for the selected Ti species;16–18 a composite approach was used in 

their work to estimate the benchmark CCSD(T)/CBS energy within a small average ~3 kcal/mol 

(~13 kJ/mol) error. Other than B97-1 and B98, B3LYP was also used to study the molecular 

structures, energetics, vibrational spectra and other physical properties of TiClm(OH)n,13 

(TiO2)n,19 TinOm (n = 2-4; m = 1-2n),20 and TiClm(NH2)n species.21 While B3LYP has been more 

commonly used than B98 and B97-1 for the calculations of TixOyClz and other Ti-containing 

species, it is likely due to the inertia of chemists sticking to this most popular density functional22 

without solid evidence suggesting its advantage over B98 and B97-1 for the Ti-O-Cl system. 
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Moreover, there exist hundreds of other DFT methods that may or may not be more suitable than 

B97-1, B98, and B3LYP for modeling the TixOyClz species. A more comprehensive comparative 

study is thus desirable to find a DFT method that balances the accuracy of molecular structures, 

energy, and thermodynamic properties of TixOyClz species. Herein we assess 42 DFT methods 

for selected TixOyClz species. These 42 methods can be categorized as pure DFT methods, hybrid 

methods with Hartree-Fock (HF) exchange, and double-hybrid methods with HF exchange and 

MP2-type correlation. They can also be categorized into local spin density approximation 

(LSDA), generalized-gradient approximation (GGA) which uses the gradients of the electron 

density, and meta-GGA which includes the second derivative of the electron density or 

alternatively the kinetic-energy density. Some of the assessed DFT methods include empirical 

long-range correction to account for dispersion. 

In the following sections of this paper, we will introduce the methodology of the coupled-

cluster benchmark calculation and provide a brief description of the 42 assessed DFT methods. 

We will then present the coupled-cluster benchmark results and assess the 42 DFT methods 

before concluding remarks. 

 

2. Computational Methods 

2.1. Benchmark coupled-cluster calculations 

The geometries of all studied TixOyClz species were optimized at the CR-CC(2,3)/cc-pVTZ level 

of theory, where CR-CC(2,3) stands for the left-eigenstate completely renormalized singles, 

doubles, and perturbative triples method,23–26 and cc-pVTZ stands for the correlation consistent 

polarized valence triple-ζ basis set. Although CR-CC(2,3) calculations require more computing 

power and memory than CCSD(T), it was chosen for geometry optimization as we find it slightly 
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more accurate than the standard CCSD(T) in the prediction of the geometric parameters and 

potential energy surfaces especially for bi-radical systems.23–28 Among the 4 formulations (A-D) 

of the CR-CC(2,3) method,23–26 formulation A is used to determine the energy gradients. The 

matrix of energy second derivatives was calculated numerically also using the CR-CC(2,3)/cc-

pVTZ method, formulation A. The vibrational frequencies and zero-point vibrational energies 

(ZPVE) were calculated with the harmonic-oscillator-rigid-rotor approximation.  

Because the CR-CC(2,3)/aug-cc-pV5Z calculations of several TixOyClz species demand a 

prohibitively large amount of memory, the standard CCSD(T)/aug-cc-pVLZ (L = 3-5)  single 

point energies were used to extrapolate the complete basis set (CBS) energy. Hartree-Fock (HF) 

limit was obtained using a two-point extrapolation ܧ௔௨௚ି௖௖ି௣௏௅௓
ுி ൌ ௔௨௚ି௖௖ି௣௏ஶ௓ܧ

ுி ൅

ܮሺܣ ൅ 1ሻ݁ିଽ√௅	with ܮ ൌ 4, 5.29 The correlation was obtained using a three-point extrapolation 

௔௨௚ି௖௖ି௣௏௅௓ܧ
௖௢௥௥௘௟௔௧௜௢௡ ൌ ௔௨௚ି௖௖ି௣௏ஶ௓ܧ

௖௢௥௥௘௟௔௧௜௢௡ ൅ ܤ ∙ ܮ with	ଷିܮ ൌ 3, 4, 5.30 Although the core-valence 

correlation, scalar relativistic effect, and spin-orbit coupling are not included in our calculations, 

the error due to the omissions of these corrections is found small after comparison with 

CCSD(T)/CBS calculations that include these corrections.13  

The CR-CC(2,3) geometry optimization and vibrational frequency calculations were 

carried out using the GAMESS program.31,32 The CCSD(T)/aug-cc-pVLZ (L = 3-5) single-point 

energy calculations were carried out using the Gaussian 09 software.33 

 

2.2. DFT calculations 

Table 1 groups all assessed DFT methods into the LSDA, GGA, and meta-GGA categories 

regarding their locality. Besides the B97-D and ωB97X-D methods that include dispersion 

correction specifically designed for B97 and ωB97X, we also selected several widely used DFT 
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methods including B3LYP, B3PW91, B97, B2PLYP, and M06  to evaluate the empirical 

dispersion formulas by Grimme with zero-damping D3 parameters34 and/or with D3BJ 

parameters with Becke-Johnson damping.35 Table 2 groups all assessed density functionals into 

the pure, hybrid (with HF exchange), and double-hybrid (with both HF exchange and MP2-type 

correlation) categories.  

 

Table 1. Categorization of the assessed DFT methods regarding their locality. 

 Density Functionals 
LSDA SVWN36–39 
GGA B2PLYP40, B2PLYP-D3BJ35,40, B3LYP41–43, B3LYP-D334,41–43, B3LYP-

D3BJ35,41–43, B3P8641,44, B3PW9141,45–48, B3PW91-D334,41,45–48, B97-149, B97-
250, B97-D51, B97-D3BJ35,51, ωB97X52, ωB97X-D53, B9854, BHandH55, 
BHandHLYP42,55, BLYP42,56, BP8644,56, BPBE56,57, BPW9145,46,56, CAM-B3LYP 
58, HCTH59, OLYP42,60, PBE57, PBE061, PW9145–48, mPW2PLYP62, mPWLYP 
42,63, mPWPW9145–48,63, X3LYP64 

meta-GGA BMK65, τ-HCTH66, τ-HCTHhyb66, M0667, M06-2x67, M06-D334,67, M06-HF68, 
M06-L69, TPSS70, TPSSh70,71 

 
 
Table 2. Categorization of the assessed DFT methods regarding the inclusion of HF 
exchange and MP2-type correlation. 

 Density Functionals 
Pure DFT B97-D, B97-D3BJ, BLYP, BP86, BPBE, BPW91, HCTH, τ-HCTH, M06-L, 

OLYP, PBE, PW91, mPWLYP, mPWPW91, SVWN, TPSS 
Hybrid B3LYP, B3LYP-D3, B3LYP-D3BJ, B3P86, B3PW91, B3PW91-D3, B97-1, 

B97-2, ωB97X, ωB97X-D, B98, BHandH, BHandHLYP, BMK, CAM-B3LYP, 
τ-HCTHhyb, M06, M06-2X, M06-D3, M06-HF, PBE0, TPSSh, X3LYP  

Double 
Hybrid  

B2PLYP, B2PLYP-D3BJ, mPW2PLYP 

 

The DFT calculations of geometry optimization and vibrational frequencies were carried 

out using the Gaussian 09 software.33  In these DFT calculations, the 6-311G basis set was 

employed on O,72 the McLean-Chandler “negative ion basis set” on Cl,73 and the Wachters-Hay 

all electron basis set on Ti.74,75 These basis sets for O, Cl, and Ti augmented by polarization and 
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diffuse functions are denoted 6-311+G(d) in Gaussian33 and also referred to as 6-311+G(d) in 

this paper. 

 

3. Results and Discussion 

3.1. Benchmark coupled-cluster calculations 

The CR-CC(2,3) geometric parameters (Figure 1) are compared with available experimental 

data.8 The experimental bond distance of Cl2, O2, and TiCl4 are 1.988, 1.208, and 2.185 Å;8 the 

CR-CC(2,3) bond lengths are slightly longer than the experimental values by 0.018, 0.002, and 

0.002 Å, respectively. The experimental Ti-O bond lengths in 3TiO and TiOCl2 were estimated 

to be 1.62 Å,8 while the corresponding CR-CC(2,3) bond lengths are 1.635 and 1.620 Å. In all 

cases, the CR-CC(2,3) bond lengths are found to be fairly accurate within a 0.02 Å deviation 

from the available experimental data. 
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Figure 1. CR-CC(2,3)/cc-pVTZ  optimized geometric parameters of the studied TixOyClz 

species. Grey, red, and green spheres are Ti, O, and Cl atoms, respectively. Although 28 species 

are calculated and sorted by the numbers of Ti, O, and Cl atoms, in that order, only 24 structures 

are illustrated because species 1, 3, 5, and 6 are 2Cl, 3O, 1Ti, and 3Ti atoms. Each molecular 

structure is labeled with its molecule formula, multiplicity, and point group.  

 

The CR-CC(2,3)/cc-pVTZ vibrational frequencies are also compared with experimental 

ones.8 The CR-CC(2,3) vibrational frequencies of Cl2 and 3O2 are 553 and 1600 cm-1, very close 

to the experimentally determined 560 and 1580 cm-1.8 The CR-CC(2,3) and experimental  

vibrational frequency of 4TiCl are 374 and 379.7 cm-1,8 differing by 6 cm-1.  The CR-CC(2,3) 

vibrational frequencies of TiCl4, 114 (e), 134 (t2), 386 (a1), and 506 (t2) cm-1, are also in good 
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agreement with experimental data 111 (e), 131 (t2), 368 (a1), and 498.5 (t2) cm-1.8  

Despite the neglect of the core-valence correlation (CV), scalar relativistic (SR) effects, 

and spin-orbit (SO) coupling, our CCSD(T)/CBS atomization energy is very close to Dixon et 

al.’s CCSD(T) calculations13 that carefully included the aforementioned CV, SR, and SO 

corrections: our atomization energy of TiCl4, TiOCl2, and TiO2 are 1703, 1550, and 1238 kJ/mol, 

in good agreement with Dixon et al.’s 1706, 1548, and 1245 kJ/mol.13  

To further assess the accuracy of our CCSD(T)/CBS energy calculations, the enthalpy of 

formation of various TixOyClz species at 298 K were calculated and compared with available 

experimental data.  For convenience, 3O2 and Cl2 are chosen to be the O-containing and Cl-

containing references in the calculations of enthalpy of all TixOyClz species. TiOCl2 is chosen to 

be the Ti-containing reference as in Kraft et al.’s paper.15  Because of the significant discrepancy 

between experiments,8–10 we derived ∆ܪ௙,௘௫௣
௢ (TiOCl2) from all available experimental 

enthalpies.8–10 The enthalpy of a TixOyClz species can be related to those of TiOCl2, 3O2 and Cl2 

using the following balanced chemical equation: 

ଶ݈ܥܱ݅ܶݔ ൅
ݕ െ ݔ
2

ܱଶ ൅
ݖ െ ݔ2
2

ଶ݈ܥ → ܶ݅௫ ௬ܱ݈ܥ௭																																						ሺ1ሻ 

Assuming the calculated enthalpy relative to the TiOCl2, 3O2 and Cl2 is close to experimental 

ones, ∆ܪ௙,௘௫௣
௢ (TiOCl2) can easily be derived using the following equation: 

஼஼ܪ																				
௢ ൫ܶ݅௫ ௬ܱ݈ܥ௭൯ െ ஼஼ܪݔ

௢ ሺܱ݈ܶ݅ܥଶሻ െ
ݕ െ ݔ
2

஼஼ܪ
௢ ሺܱଶሻ െ

ݖ െ ݔ2
2

஼஼ܪ
௢ ሺ݈ܥଶሻ	 

										≅ ௙,௘௫௣ܪ∆	
௢ ൫ܶ݅௫ ௬ܱ݈ܥ௭൯ െ ௘௫௣௢ܪ∆ݔ ሺܱ݈ܶ݅ܥଶሻ																																																																									ሺ2ሻ 

where ܪ஼஼
௢  is the sum of the CCSD(T)/CBS electronic energy and the CR-CC(2,3)/cc-pVTZ 

enthalpy correction at 298 K. Note that ∆ܪ௙,௘௫௣
௢ (3O2) and ∆ܪ௙,௘௫௣

௢ (Cl2) are zero at 298 K. 

Equation 2 is rearranged to express ∆ܪ௙,௘௫௣
௢ (TiOCl2) in terms of the ∆ܪ௙,௘௫௣

௢ (TixOyClz) and 
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couple-cluster enthalpies of TixOyClz, TiOCl2, 3O2, and Cl2: 

௙,௘௫௣ܪ∆ݔ
௢ ሺܱ݈ܶ݅ܥଶሻ 																																																																																																														

≅ ௙,௘௫௣ܪ∆
௢ ൫ܶ݅௫ ௬ܱ݈ܥ௭൯ െ ஼஼	ܪ

௢ ൫ܶ݅௫ ௬ܱ݈ܥ௭൯ ൅ ஼஼ܪݔ
௢ ሺܱ݈ܶ݅ܥଶሻ ൅

ݕ െ ݔ
2

஼஼ܪ
௢ ሺܱଶሻ

൅
ݖ െ ݔ2
2

஼஼ܪ
௢ ሺ݈ܥଶሻ																																																																																																									ሺ3ሻ 

The NIST compiled ∆ܪ௙,௘௫௣
௢ 	of 3Ti, 4TiCl, 3TiCl2, 2TiCl3, TiCl4, 3TiO, 2TiOCl, TiOCl2, 

and TiO2,8 Hildenbrand’s experimental data of 4TiCl, 3TiCl2, 2TiCl3,9 and Yungman’s 

compilation of 3TiCl2 and 3TiO data10 were used to calculate ∆ܪ௙,௘௫௣
௢ (TiOCl2) in Table 3. The 

mean value of ∆ܪ௙,௘௫௣
௢ (TiOCl2) is determined to be -600.5 kJ/mol, which is very close to -598 ± 

20 kJ/mol calculated by Kraft et al.12 and to -593.3 kJ/mol calculated by Dixon et al..13 Taking 

the mean value of -600.5 kJ/mol as the enthalpy of formation for TiOCl2 at 298 K, the standard 

enthalpies of all other TixOyClz species were calculated using Eq. 2 and listed in the last column 

of Table 3 for comparison with experimental values. Despite the neglect of core-valence 

correlation, relativistic effect, and spin-orbit coupling, our calculated enthalpy of formation of 

TiCl4 and TiO2 (-753.4 and -288.3 kJ/mol) are in good agreement with Dixon et al.’s calculations 

(-759.4 and -283.7 kJ/mol) that carefully include those corrections.13  

 

Table 3. Experimental standard enthalpy of formation of TixOyClz species and our derived 

standard enthalpy of formation for TiOCl2 at 298 K. All numbers are in kJ/mol. 

 
Electronic 

state 
௙,௘௫௣ܪ∆

௢  a ∆ܪ௙
௢(TiOCl2)b ∆ܪ௙,௖௖

௢  c 

3Ti 3F2 473.6 ± 16.7 -588.1 461.1 

4TiCl 4Σg
 154 ± 42 -634.2

187.6 
(171.1 ± 8.4) -617.0

3TiCl2 3Δg 
-237.2 ± 8.4 -618.1

-219.7 (-205.0 ± 8.4) -585.9
{-238.5 ± 12.6} -619.4
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2TiCl3 2A1 
-539.3 ± 6.3 -618.1

-521.8 
(-508.4 ± 8.4) -587.1

TiCl4 1A1 -763.2 ± 3.8 -610.4 -753.4 

3TiO 3Δ 
{54.4 ± 8.4} -603.8

57.7 
57.3 ± 9.2 -600.9

2TiOCl 2A′ -244 -561.0 -283.5 
TiOCl2 1A1

 -546 -546.0 -600.5 
TiO2 1A1 -305.4 ± 12.6 -617.6 -288.3 

 

a Experimental data enclosed in parenthesis and curly brackets are taken from Hildenbrand’s 

paper9 and from Yungman’s compilation10, respectively. All other experimental data are taken 

from the NIST database.8 

b Calculated using Eq. 3. The mean value of the 14 derived ∆ܪ௙
௢(TiOCl2) is -600.5 kJ/mol. 

c Calculated using Eq. 2 assuming ∆ܪ௙
௢(TiOCl2) = -600.5 kJ/mol (this work) at 298 K.  

 

The CR-CC(2,3)/cc-pVTZ molecular geometries and frequencies, the CCSD(T)/aug-cc-

pVLZ (L = 3-5) single-point and extrapolated CBS energies, the thermal corrections of the 

standard enthalpies of formation,  the values of the entropy and heat capacity of all studied 

TixOyClz species at 0-3000 K are included in Supplemental Material.  

 

3.2. Assessing the accuracy of the DFT energies 

Figure 2a illustrates the mean absolute deviation (MAD) and mean signed deviation (MSD) of 

DFT/6-311+G(d) atomization energies against the CCSD(T)/CBS//CR-CC(2,3)/cc-pVTZ 

benchmark. The atomization energy of the TixOyClz species uses the ground electronic states of 

the 3Ti, 3O, and 2Cl atoms as zero references. 
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Figure 2. (a) Mean absolute deviations (blue bars) and mean signed deviations (red bars) 

calculated energies relative to 3Ti, 3O, and 2Cl. (b) Mean absolute deviations (blue bars) and 

mean signed deviations (red bars) of calculated energy relative to TiOCl2, 3O2, and, Cl2. The 

CCSD(T)/CBS//CR-CC(2,3)/cc-pVTZ energies are taken as the benchmark.  
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Five assessed methods have a MAD of atomization energy below 20 kJ/mol: B98 (15), 

ωB97X-D (18), B97-2 (18), B3LYP-D3BJ (19), and B97-1 (19); the numbers enclosed in 

parentheses are the corresponding MADs in kJ/mol. Five other methods have a slightly larger 

MAD between 20 and 25 kJ/mol: PBE0, ωB97X, B3LYP-D3, B3PW91 and B3LYP. Note that 

these ten most accurate density functionals are all hybrid ones containing 20-25% Hartree-Fock 

(HF) exchange except for ωB97X (16% HF exchange). The density functionals with either 

higher or lower HF exchange perform significantly worse: BHandHLYP, M06-2X, and M06-HF 

(with 50%, 54%, and 100% HF exchange) severely underbind with a MSD of -191, -81, and -175 

kJ/mol, respectively; meanwhile, pure DFT methods with 0% HF exchange such as BP86, 

BPBE, BPW91, PBE, and PW91 methods overbind by more than 120 kJ/mol. We may conclude 

that, among the pure and hybrid density functionals, the inclusion of 20 ̶ 25% HF exchange 

works the best for the TixOyClz species. Furthermore, we find the inclusion of the MP2-type 

correlation unsuitable for the TixOyClz species as the B2PLYP and mPW2PLYP double-hybrid 

methods both perform poorly with MADs of 33 and 42 kJ/mol, respectively.  

We also evaluated the accuracy of the DFT/6-311+G(d) energy calculations via 

comparison of energies relative to TiOCl2, 3O2, and Cl2. Taking the TiOCl2, 3O2, and Cl2 

molecules instead of the 3Ti, 3O, and 2Cl atoms as the zero references for computing the relative 

energies, the MAD of many DFT methods decreases significantly (Figure 2b). However, only six 

DFT methods now have smaller than 25 kJ/mol MAD: B98 (22), B97-1 (22), B3LYP (23), 

X3LYP (24), B3LYP-D3 (24), and B3LYP-D3BJ (25). Ten more methods have a MAD below 

30 kJ/mol: CAM-B3LYP, B3P86, B3PW91, B3PW91-D3, B97-2, ωB97X-D, BLYP, mPWLYP, 

τ-HCTHhyb, and TPSSh. Most of the top sixteen methods include 20-25% HF exchange. The 

density functionals with ≥ 50% HF exchange such as BHandHLYP, B06-2X, and M06-HF have 
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the most negative MSD of -30, -21 and -111 kJ/mol, respectively. Pure DFT methods such as 

BP86, BPBE, BPW91, PBE, and PW91 methods have a positive MSD of 32 ̶ 36 kJ/mol. Overall, 

when TiOCl2, 3O2, and Cl2 are taken as zero references, DFT methods with moderate 20-25% 

exact HF exchange still perform better than those with 0% or ≥ 50% HF exchange. The double-

hybrid methods again perform poorly: both B2PLYP and mPW2PLYP have a large MAD of ~40 

kJ/mol. 

We then take the average (denoted MADതതതതതതത) of the MAD of energies relative to 3Ti, 3O, and 

2Cl atoms and the MAD of energies relative to TiOCl2, 3O2, and Cl2. Seven DFT methods have a 

MADതതതതതതത smaller than 25 kJ/mol: B98 (18), B97-1 (21), B97-2 (22), B3LYP-D3BJ (22), ωB97X-D 

(22), B3LYP-D3 (23), and B3LYP (24). These seven methods fall into either the B97 family 

(B97-1, B97-2, ωB97X-D, and B98) or the B3LYP family (B3LYP, B3LYP-D3, and B3LYP-

D3BJ), all with 20-25% HF exchange. Note that our top choice B98 is also ranked the most 

accurate by Wilson et al. for a mostly different set of Ti-containing molecules.16–18  

Because none of the test molecules contains significant dispersion, the inclusion of 

empirical dispersion has little effect on the accuracy of the assessed density functionals: B3LYP-

D3BJ and B3LYP-D3 have 1-2 kJ/mol smaller MADതതതതതതത than B3LYP; ωB97X-D has ~5 kJ/mol 

smaller MADതതതതതതത than ωB97X; M06-D3 and M06 have essentially the same MADതതതതതതത (33.8 vs 33.7 

kJ/mol); B3PW91-D3 has ~1 kJ/mol greater MADതതതതതതത than B3PW91. Although the inclusion of 

empirical dispersion is important for larger systems such as bulk TiO2 structures,76,77 it is much 

less so for the small species. 

To further analyze the source of energy errors, additional B98 optimization calculations 

were carried out using various basis sets. The B98 method with the 6-31G(d), 6-31+G(d), and 6-

311+G(2df) basis sets yield MADതതതതതതതs of 25.5, 18.7, and 18.8 kJ/mol, respectively, which shows the 
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6-311+G(d) basis set (B98 MADതതതതതതത = 18.4 kJ/mol) well balances computational cost and accuracy. 

B98/6-311+G(d) single-point energies were also computed at the benchmark CR-CC(2,3) 

geometries. The B98//CR-CC(2,3) MADതതതതതതത (19.2 kJ/mol) is close to the 18.4 kJ/mol MADതതതതതതത of B98/6-

311+G(d) optimization calculations; the differences between the B98 and benchmark coupled-

cluster geometries have little effect in the relative energy accuracy.  

Having analyzed the effects of basis sets and geometries in the DFT energy calculations, 

we suggest the dominant source of error resides in the exchange and correlation functionals, 

particularly in the exchange functionals. Our atomization energy calculations show that pure 

DFT methods overbind. It is because the unphysical self-interaction error in pure density 

functionals overestimates the relative energy of high-spin states such as the 3Ti and 3O,30,78 

which consequently results in greater atomization energies of the TixOyClz species. Conversely, 

HF underestimates the relative energy of high-spin states.30,78 As a result, hybrid GGAs with 

large HF exchange underestimate the TixOyClz atomization energies. To examine the errors from 

only the exchange functionals, we compare the BLYP, B3LYP, and BHandHLYP methods, 

which contain different 0%, 20%, and 50% HF exchange but the same LYP correlation 

functional; their MSD of atomization energies are 77, -14, and -191 kJ/mol, respectively. The 

trend is clear that the MSD decreases as the percentage of HF exchange increases. The same 

trend is observed for the M06-L, M06, M06-2X, and M06-HF functionals with 0%, 27%, 54%, 

and 100% HF exchange; their MSDs of atomization energy are 81, 27, -81, -175 kJ/mol, 

respectively. When TiOCl2, 3O2, and Cl2 replace the 3Ti, 3O, and 2Cl references in the relative 

energy calculations, similar dependence of energy errors on the HF exchange is observed due to 

the high-spin 3O2 reference. The dependence, however, is to a lesser extent because the high-spin 

3Ti reference is replaced by the singlet TiOCl2 molecule.   
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In sum, the hybrid DFT methods with moderate 20-25% HF exchange are the most 

accurate for the energy prediction of the TixOyClz species. More specifically, the B98 and B97-1 

are the two best choices for the TixOyClz species. B97-2 has accuracy similar to B97-1 in energy 

calculations but has much greater MAD in bond lengths (see subsection 3.3). The performance of 

the B3LYP method, although slightly behind B98 and B97-1, is also quite satisfactory.  

 

3.3. Assessing the accuracy of the DFT predicted geometric parameters 

The accuracy of the DFT/6-311+G(d) bond distances were assessed against the CR-CC(2,3)/cc-

pVTZ benchmark data (Figure 3a). All 42 DFT methods have a negative mean signed deviation 

(MSD) which indicates that DFT in general underestimates the bond distances for the TixOyClz 

species. B2PLYP, B2PLYP-D3BJ, and mPW2PLYP have the smallest mean absolute deviations 

(MAD) of 0.02 Å or less. The better performance of these double-hybrid functionals originates 

from the fortuitous cancelation between the overestimate by DFT and the underestimate by MP2. 

Four assessed hybrid DFT methods have rather small MAD under 0.025 Å: B3LYP (0.024 Å), 

B3LYP-D3 (0.025 Å), B3LYP-D3BJ (0.025 Å), and TPSS (0.024 Å). Several other hybrid 

functionals have an acceptable MAD around 0.025 ̶ 0.03 Å, which include B97-1 (0.027 Å) and 

B98 (0.029 Å), the two most accurate methods for energy calculations. Most pure DFT methods 

also have small MADs less than 0.03 Å. Although B97-2 is nearly as accurate as B97-1 in 

energy prediction, it has a much larger 0.037 Å MAD in bond lengths. Only two assessed density 

functionals have a MAD greater than 0.04 Å: BHandH (0.057 Å) and SVWN (0.058 Å); their 

MSD’s are both -0.057 Å. SVWN is well known to overbind and underestimate bond lengths.79 

BHandH also has a large negative MSD in bond lengths partly due to its inclusion of 50% HF 

exchange and 50% LSDA exchange. 
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Figure 3. (a) Mean absolute deviations (blue bars) and mean signed deviations (red bars) of 

calculated bond distances. (b) Mean absolute deviations (blue bars) and mean signed deviations 

(red bars) of calculated bond angles. The CR-CC(2,3)/cc-pVTZ geometric parameters are taken 

as the benchmark.  

 

Ten bond angles are used to assess the accuracy of the DFT methods (Figure 3b): the 



19 
 

bond angles of 1TiCl2 and 3TiCl2, the Cl-Ti-O angle in 2TiOCl, the Cl-Ti-Cl angle in 1TiOCl2, 

3TiOCl2, 1TiO2Cl2, and 3TiO2Cl2, the O-Ti-O angle in the bent structures of 1TiO2 and 3TiO2, and 

the Ti-Ti-O angle in Ti2O4. The benchmark CR-CC(2,3) bond angles are given in Figure 1. 

Besides having the smallest MADs in bond lengths, the B2PLYP and mPW2PLYP double-

hybrid methods also have small MADs of bond angles: 1.6o and 3.2o (Figure 3b). The B98, B97-

1, and B3LYP methods have fairly large MADs of 6.7o, 6.8o and 6.0o because they all 

erroneously predict the 1TiCl2 and 3TiCl2 structures to be bent while both experiments8 and our 

CR-CC(2,3) calculations suggest they be linear. After excluding the errors of 1TiCl2 and 3TiCl2, 

the MADs of B98, B97-1, and B3LYP methods are reduced to 2.7o, 2.8o, and 3.1o. Pure DFT 

methods perform poorly with a MAD of bond angles greater than 10o due to their large errors in 

the bond angles of 1TiCl2, 3TiCl2, and 2TiOCl.  

In general, the double-hybrid DFT methods are more accurate in the prediction of bond 

lengths and angles than the hybrid DFT ones, which are in turn more accurate than the pure DFT 

methods. More specifically, we recommend using the B2PLYP and mPW2PLYP functionals if 

acquiring accurate geometric parameters for TixOyClz species is of the most importance. 

 

3.4. Assessing the accuracy of the DFT predicted enthalpy and Gibbs energy at finite 

temperatures  

Because the flame synthesis of TiO2 nanoparticles occurs at high temperatures, we assessed the 

performance of selected DFT methods concerning their performance in the prediction of 

enthalpy and Gibbs energy at temperatures up to 3000 K. Six DFT methods, B3LYP, B3LYP-

D3BJ, B97-1, B97-2, ωB97X-D, and B98, were chosen for the assessment because they have 

overall better performance than others, especially in the prediction of energies. Figure 4a shows 
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the MADതതതതതതത of enthalpy has little dependence on the temperature. B98 remains the most accurate 

method (with MADതതതതതതത	=18.3 ̶ 18.8 kJ/mol) in the whole 0-3000 K temperature range; B97-1 ranks 

second with a MADതതതതതതത	of 20.2-20.6 kJ/mol. The B97-2, B3LYP, and B3LYP-D3BJ calculations are 

also fairly accurate with a MADതതതതതതത of approximately 22, 24, and 22 kJ/mol, respectively, at all 

temperatures. ωB97X-D has a reasonable MADതതതതതതത of 22 kJ/mol at the room temperature but this 

MADതതതതതതത rapidly increases to 32 kJ/mol at 3000 K, which makes it the least appealing for the 

calculation of TixOyClz species at high temperatures. 
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Figure 4. Mean absolute deviations of DFT calculated (a) enthalpy and (b) Gibbs energy. 

 

Figure 4b shows that B98 is again the most accurate in Gibbs energy calculations; its 

MADതതതതതതത of Gibbs energy is 19 kJ/mol at 298 K and 31 kJ/mol at 3000 K. The larger MADതതതതതതത of Gibbs 

energy at higher temperatures is due to the propagation of the errors in entropy. B3LYP, B3LYP-

D3BJ, B97-1, B97-2 are reasonably accurate with a 21-24 kJ/mol MADതതതതതതത at 298 K and a larger 32-

36 kJ/mol MADതതതതതതത at 3000 K. The ωB97X-D has a reasonable  MADതതതതതതത of 22 kJ/mol at 298 K but a 

much larger 58 kJ/mol MADതതതതതതത at 3000K due to its exceptionally large entropy errors. At 

temperatures between 1000 K and 2000 K, which is a typical temperature range for the flame 

synthesis of TiO2 nanoparticle, the B3LYP, B97-1, and B98 MADതതതതതതതs of Gibbs energy are 25-28 

kJ/mol, 24-29 kJ/mol, and 21-25 kJ/mol, respectively. These MADതതതതതതതs are small enough for the 

B3LYP, B97-1, and B98 methods to be used for making reasonably accurate prediction of the 

thermochemistry of the flame synthesis of TiO2 nanoparticles. 
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4. Conclusions 

We calculated the geometric parameters and vibrational frequencies at the CR-CC(2,3)/cc-pVTZ 

level of theory and then extrapolated the CCSD(T)/CBS energies for small TixOyClz species. We 

derived ∆ܪ௙
௢(TiOCl2) to be -600.5 kJ/mol at 298 K from all available experimental data and 

coupled-cluster calculations; this value is in good agreement with previous calculations by Kraft 

et al. (-598 ± 20 kJ/mol)15 and Dixon et al. (-593.3 kJ/mol)13. Although the core-valence 

correlation, relativistic effect, and spin-orbit coupling are not included, our coupled-cluster 

calculations are still in good agreement with calculations that include those corrections13 and also 

with experiments.8–10 Accurate thermochemical data for more than 20 small TixOyClz species are 

calculated and used as benchmark for the assessment of 42 DFT methods for the TixOyClz 

molecules. We find the density functionals with moderate 20-25% HF exchange perform 

significantly better than the pure functionals and those with ≥ 50% HF exchange for the TixOyClz 

species. However, extending this statement to other transition metal compounds must be done 

with caution as suggested in Cramer and Truhlar’s review of DFT methods and the references 

therein.78 In general, we recommend using methods from the B97 or B3LYP family for the 

energy prediction of the TixOyClz species. In particular, the B98 method is highly recommended 

tightly followed by the B97-1 and B3LYP methods and their variations. The B98, B97-1, and 

B3LYP methods are also the most accurate in predicting enthalpy and Gibbs energy at high 

temperatures. We recommend using these three methods in thermochemical study of the TiO2 

nanoparticles synthesis via the combustion of TiCl4 in oxygen. 
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