Spring 2015

Building a History: Evaluation of Central Washington University Campus Buildings to Determine Eligibility for Listing on the National Register of Historic Places

Lauren M. Walton
Central Washington University, waltonla@cwu.edu

Follow this and additional works at: http://digitalcommons.cwu.edu/etd

Part of the Architectural History and Criticism Commons, Cultural Resource Management and Policy Analysis Commons, and the Historic Preservation and Conservation Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Student Scholarship and Creative Works at ScholarWorks@CWU. It has been accepted for inclusion in Electronic Theses by an authorized administrator of ScholarWorks@CWU.
BUILDING A HISTORY: EVALUATION OF CENTRAL WASHINGTON UNIVERSITY
CAMPUS BUILDINGS TO DETERMINE ELIGIBILITY FOR LISTING ON
THE NATIONAL REGISTER OF HISTORIC PLACES

A Thesis
Presented to
The Graduate Faculty
Central Washington University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
Resource Management

by
Lauren Michelle Walton
May 2015
We hereby approve the thesis of

Lauren Michelle Walton

Candidate for the degree of Master of Science

APPROVED FOR THE GRADUATE FACULTY

________________ __
Dr. Daniel Herman, Committee Chair

________________ __
Dr. Ellen Avitts

________________ __
Mr. Shane Scott

________________ __
Dean of Graduate Studies
ABSTRACT

BUILDING A HISTORY: EVALUATION OF CENTRAL WASHINGTON UNIVERSITY CAMPUS BUILDINGS TO DETERMINE ELIGIBILITY FOR LISTING ON THE NATIONAL REGISTER OF HISTORIC PLACES

by

Lauren Michelle Walton

May 2015

Using U.S. Department of the Interior standards, I completed an intensive inventory of 184 buildings on the Central Washington University (CWU) campus, from which I evaluated buildings to determine their eligibility for nomination to the National Register of Historic Places (NRHP). Historical research allowed me to identify the age of each building, as well as stylistic trends and historic events between the late nineteenth and early twenty-first centuries that influenced CWU architecture. Through archival research, I determined whether each historic building represented the work of a master architect, a distinct type, period, or method of construction/architecture, or was associated with individuals significant to the creation or operation thereof, or with events contributing to broad patterns of local or national history. To determine significance and integrity of each historic building, I compared research results with the architectural inventory, and found twenty buildings to be eligible for NRHP nomination (as of 2015). Through extensive research, I created an historical context for the physical development of CWU’s campus, which can be used in the future to facilitate evaluations of CWU buildings as they become historic. All findings were provided to CWU Facilities Management Department for incorporation into CWU’s Campus Master Plan, and to the Washington State Department of Archaeology and Historic Preservation as a public archive of CWU’s 2015 campus. It is recommended that eligible buildings be nominated to the NRHP.
ACKNOWLEDGMENTS

A mi amor, Jesse, que estaba de apoyo durante este proceso—y siempre.

Shane Scott of the CWU Facilities Management Department presented me with the university’s cultural resource management situation and invited me to assist with a small portion of it, specifically the recordation of the built environment. I am grateful to him for having provided me the opportunity to contribute to the management of the cultural resources of my alma mater.

As architectural history was a wild frontier for me at the beginning of this process, it was the expertise and special insights of Dr. Ellen Avitts, architectural historian extraordinaire, that allowed me to venture bravely forward, developing a perspective of the built environment as a product of intricate cultural happenstances. Her assistance was essential to the success of my field work.

While conducting research necessary for the interpretation of CWU’s architecture, my historical approach was guided by Dr. Daniel Herman. He challenged me to think like an historian and to speak to a broader audience (with my own voice). His participation in my research was key to the completion of this thesis.

Many historical documents, books, and photographs from the CWU Archives, CWU Facilities Management Department Archives, Dr. James E. Brooks Library, Central Regional Branch of the Washington State Archives, and Ellensburg Public Library allowed me to piece together the stories of each campus building within the context of the university’s existence. Of especial help to me during my research was Maurice Blackson and Carlos Pelley of the CWU Archives. I am thankful to them for participating in the detective work and for making their expertise and archival materials totally accessible to me! Their efforts contributed greatly to the
discovery of each building’s significance. I would also like to thank Christine Tuft of CWU Facilities Management Department Archives for providing me with invaluable architectural drawings and campus building information. The architectural drawings that she made available to me allowed me to identify architects, build and remodel dates, and to compare early concepts with final construction. At CWU Facilities Management Department, Doug Ryder, Joanne Hilleman, and Bill Yarwood provided me with needed information and expert opinion.

My friend and map extraordinaire, Christopher Goodner, deserves special thanks for his assistance in creating the visual representations of my data.

My interactions with Russell Holter and Michael Houser of the Washington State Department of Archaeology and Historic Preservation helped shape my understanding of the field of cultural resource management as pertains to the built environment. I am grateful.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Problem, Purpose, and Significance</td>
<td>3</td>
</tr>
<tr>
<td>Study Area</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>7</td>
</tr>
<tr>
<td>BIOPHYSICAL CONTEXT</td>
<td></td>
</tr>
<tr>
<td>Geomorphology</td>
<td>7</td>
</tr>
<tr>
<td>Climate</td>
<td>9</td>
</tr>
<tr>
<td>Vegetation</td>
<td>10</td>
</tr>
<tr>
<td>Historical Significance of the Biophysical Context</td>
<td>11</td>
</tr>
<tr>
<td>III</td>
<td>17</td>
</tr>
<tr>
<td>CULTURAL CONTEXT</td>
<td></td>
</tr>
<tr>
<td>Ethnohistoric Background</td>
<td>17</td>
</tr>
<tr>
<td>Historical Background</td>
<td>19</td>
</tr>
<tr>
<td>IV</td>
<td>26</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td></td>
</tr>
<tr>
<td>Historic Preservation</td>
<td>26</td>
</tr>
<tr>
<td>Documentation and Analysis Paradigms</td>
<td>29</td>
</tr>
<tr>
<td>Campus Heritage Plans for U.S. Institutions of Higher Education</td>
<td>37</td>
</tr>
<tr>
<td>Implementation of Common Methodologies</td>
<td>46</td>
</tr>
<tr>
<td>V</td>
<td>48</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>49</td>
</tr>
<tr>
<td>Survey</td>
<td>51</td>
</tr>
<tr>
<td>Evaluation</td>
<td>52</td>
</tr>
<tr>
<td>VI</td>
<td>54</td>
</tr>
<tr>
<td>HISTORICAL CONTEXT</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>ARCHITECTURAL CONTEXT</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>VII</td>
<td>ARCHITECTURAL CONTEXT</td>
</tr>
<tr>
<td></td>
<td>Picturesque</td>
</tr>
<tr>
<td></td>
<td>Proto-Modernism and American Academic Architecture</td>
</tr>
<tr>
<td></td>
<td>Early Modernism</td>
</tr>
<tr>
<td></td>
<td>Mid-Century Modernism</td>
</tr>
<tr>
<td></td>
<td>Transition between Mid-Century Modernism and Late Modernism</td>
</tr>
<tr>
<td></td>
<td>Late Modernism</td>
</tr>
<tr>
<td></td>
<td>Post Modernism</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>ARCHITECTURAL DESCRIPTIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII</td>
<td>ARCHITECTURAL DESCRIPTIONS</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Anderson-Moore Hall</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Aquatic Center</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Auxiliary Services Storage</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Aviation Training Center</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Barge Hall</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Barto Hall (New) and Residence Life Office</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>The Bassettis</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Black Hall</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Bledsoe and Washington Archives</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Botany Greenhouse</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Bouillon Hall</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Brooklane Village</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Button Hall</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Chimpanzee and Human Communication Institute</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Computer Center (Campus Bookstore)</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Copy Cat Shop and Kamola Laundry Services</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Dean Hall</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Dorothy Purser Hall</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Facilities Administration Annex</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Grounds Shop</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Grounds Warehouse</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>Heating and Cooling Plant</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>Hebeler Hall</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Hertz Hall</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Hogue Technology Center</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>International Center</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Jansen Warehouse</td>
<td>190</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jongeward Facilities Administration and Plant Services</td>
<td>192</td>
</tr>
<tr>
<td>Jongeward Warehouse</td>
<td>195</td>
</tr>
<tr>
<td>Kamola Hall</td>
<td>196</td>
</tr>
<tr>
<td>Language and Literature Building</td>
<td>201</td>
</tr>
<tr>
<td>Library Complex</td>
<td>207</td>
</tr>
<tr>
<td>Lind Hall</td>
<td>213</td>
</tr>
<tr>
<td>Mary Grupe Conference Center</td>
<td>217</td>
</tr>
<tr>
<td>McConnell Hall</td>
<td>219</td>
</tr>
<tr>
<td>McIntyre Music Building</td>
<td>224</td>
</tr>
<tr>
<td>Michaelsen-Randall Hall</td>
<td>226</td>
</tr>
<tr>
<td>Mitchell Hall</td>
<td>228</td>
</tr>
<tr>
<td>Munson Hall</td>
<td>231</td>
</tr>
<tr>
<td>Nicholson Pavilion</td>
<td>236</td>
</tr>
<tr>
<td>North Hall</td>
<td>240</td>
</tr>
<tr>
<td>Old Heating Plant</td>
<td>243</td>
</tr>
<tr>
<td>Peterson Hall</td>
<td>249</td>
</tr>
<tr>
<td>Power Technology Laboratory</td>
<td>252</td>
</tr>
<tr>
<td>President’s Residence</td>
<td>253</td>
</tr>
<tr>
<td>Psychology Building</td>
<td>258</td>
</tr>
<tr>
<td>Public Safety and Police Services</td>
<td>260</td>
</tr>
<tr>
<td>Samuelson Union Building</td>
<td>261</td>
</tr>
<tr>
<td>Science Building, Phase I</td>
<td>267</td>
</tr>
<tr>
<td>Shaw-Smyser Hall</td>
<td>272</td>
</tr>
<tr>
<td>Short-Getz Apartment</td>
<td>284</td>
</tr>
<tr>
<td>Stephens-Whitney Hall</td>
<td>287</td>
</tr>
<tr>
<td>Student Medical and Counseling Center</td>
<td>290</td>
</tr>
<tr>
<td>Student Union and Recreation Center</td>
<td>292</td>
</tr>
<tr>
<td>Student Village North</td>
<td>296</td>
</tr>
<tr>
<td>Sue Lombard Hall and Dining Services</td>
<td>306</td>
</tr>
<tr>
<td>Surplus Property Warehouse</td>
<td>313</td>
</tr>
<tr>
<td>Tomlinson Stadium</td>
<td>315</td>
</tr>
<tr>
<td>Tunstall Commons</td>
<td>318</td>
</tr>
<tr>
<td>Wahle Complex</td>
<td>321</td>
</tr>
<tr>
<td>Welcome Center</td>
<td>324</td>
</tr>
<tr>
<td>Wendell Hill Hall</td>
<td>326</td>
</tr>
<tr>
<td>Wilson Hall</td>
<td>330</td>
</tr>
</tbody>
</table>

IX EVALUATION OF SIGNIFICANT HISTORIC BUILDINGS 333

Historicity .. 333
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria for Evaluation</td>
<td>333</td>
</tr>
<tr>
<td>Criteria Considerations</td>
<td>336</td>
</tr>
<tr>
<td>Integrity</td>
<td>337</td>
</tr>
<tr>
<td>Statements of Significance for Potentially Eligible Properties</td>
<td>338</td>
</tr>
<tr>
<td>RESULTS, DISCUSSION, AND RECOMMENDATIONS</td>
<td>377</td>
</tr>
<tr>
<td>Results</td>
<td>377</td>
</tr>
<tr>
<td>Discussion and Recommendations</td>
<td>383</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>388</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1.1</td>
<td>Aerial view of CWU in Ellensburg, Washington</td>
</tr>
<tr>
<td>2.1</td>
<td>Field log of test pit beside Barge Hall foundation</td>
</tr>
<tr>
<td>2.2</td>
<td>Earthquake activity and fault lines near Ellensburg, Washington</td>
</tr>
<tr>
<td>3.1</td>
<td>Pre-1880 Native American encampments, trails, and petroglyphs in the Kittitas Valley</td>
</tr>
<tr>
<td>6.1</td>
<td>The school’s first steam heating plant, built in 1907 and remodeled in 1914, served as the “Science Hall,” and was converted into the “Industrial Arts Building” in 1917. Though the smoke stack was present when the photograph was taken, it was removed from the photograph. This building is no longer standing</td>
</tr>
<tr>
<td>7.1</td>
<td>Washington Public School and Washington State Normal School in Ellensburg in the Richardsonian Romanesque style in the last decade of the nineteenth century, looking northwest</td>
</tr>
<tr>
<td>7.2</td>
<td>Floor/roof plan of the WSNS</td>
</tr>
<tr>
<td>7.3</td>
<td>Administrative Building (now Barge Hall) in 1908, looking north</td>
</tr>
<tr>
<td>7.4</td>
<td>Edison Hall, Barge Hall, and the school’s first steam heating plant in 1911, looking south</td>
</tr>
<tr>
<td>7.5</td>
<td>Munson Hall circa 1950. The original construction has a gable roof, while the addition has flat roofs. Looking northeast</td>
</tr>
<tr>
<td>7.6</td>
<td>Wahle Complex in 1960, looking northwest</td>
</tr>
<tr>
<td>7.7</td>
<td>Muzzall and Courson Halls under construction in 1965</td>
</tr>
<tr>
<td>7.8</td>
<td>Psychology Building in 1980, looking north</td>
</tr>
<tr>
<td>7.9</td>
<td>Chimpanzee and Human Communications Institute (now an “Athletics Annex”) in 1995, looking north</td>
</tr>
<tr>
<td>7.10</td>
<td>New Barto Hall in 2014, looking south</td>
</tr>
<tr>
<td>8.1</td>
<td>Anderson-Moore Hall in 1970, looking northeast</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Aquatic Center in 2015, looking northeast</td>
<td>110</td>
</tr>
<tr>
<td>8.3</td>
<td>Auxiliary Services Storage in 2014</td>
<td>112</td>
</tr>
<tr>
<td>8.4</td>
<td>Aviation Training Center in 2014</td>
<td>113</td>
</tr>
<tr>
<td>8.5</td>
<td>Barge Hall main entrance cupola being restored in 1993</td>
<td>114</td>
</tr>
<tr>
<td>8.6</td>
<td>Barge Hall in 2010. Compare the main entrance cupola in this figure to that in Figure 7.3</td>
<td>115</td>
</tr>
<tr>
<td>8.7</td>
<td>Structural design of New Barto Hall. Refer to Figure 7.10 for representative photograph of exterior</td>
<td>117</td>
</tr>
<tr>
<td>8.8</td>
<td>Residence Life Office in 2014</td>
<td>119</td>
</tr>
<tr>
<td>8.9</td>
<td>Main entrance of Meisner Hall of the Bassettis Complex in 2014</td>
<td>121</td>
</tr>
<tr>
<td>8.10</td>
<td>Black Hall in 2014, looking southeast</td>
<td>123</td>
</tr>
<tr>
<td>8.11</td>
<td>Bledsoe and Washington Archives in 2014</td>
<td>128</td>
</tr>
<tr>
<td>8.12</td>
<td>Botany Greenhouse in 2014</td>
<td>131</td>
</tr>
<tr>
<td>8.13</td>
<td>Bouillon Hall in 1961, looking northeast</td>
<td>133</td>
</tr>
<tr>
<td>8.14</td>
<td>Bouillon Hall in 1961, looking south</td>
<td>134</td>
</tr>
<tr>
<td>8.15</td>
<td>Office space at Brooklane Village in 2014</td>
<td>137</td>
</tr>
<tr>
<td>8.16</td>
<td>Well and storage units at Brooklane Village in 2014</td>
<td>138</td>
</tr>
<tr>
<td>8.17</td>
<td>Childhood Learning Center and Laundromat at Brooklane Village in 2014</td>
<td>139</td>
</tr>
<tr>
<td>8.18</td>
<td>Single-story apartment duplex at Brooklane Village in 2014</td>
<td>140</td>
</tr>
<tr>
<td>8.19</td>
<td>Two-story apartment four-plex at Brooklane Village in 2014</td>
<td>141</td>
</tr>
<tr>
<td>8.20</td>
<td>Button Hall in 2014</td>
<td>143</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>8.21</td>
<td>Campus Bookstore (now the Computer Center) in 1960, looking south</td>
<td>148</td>
</tr>
<tr>
<td>8.22</td>
<td>Computer Center in 2014, looking northwest. Note that only two windows of</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>the original window ribbon remain on the east face.</td>
<td></td>
</tr>
<tr>
<td>8.23</td>
<td>Copy Cat Shop and Kamola Laundry Services in 2014</td>
<td>151</td>
</tr>
<tr>
<td>8.24</td>
<td>Dean Hall (after remodel) in 2014, looking west</td>
<td>157</td>
</tr>
<tr>
<td>8.25</td>
<td>Dorothy Purser Hall in 2014, looking southeast</td>
<td>161</td>
</tr>
<tr>
<td>8.26</td>
<td>Facilities Administration Annex in 2014, looking southwest</td>
<td>163</td>
</tr>
<tr>
<td>8.27</td>
<td>Grounds Shop in 2014, looking northwest</td>
<td>165</td>
</tr>
<tr>
<td>8.28</td>
<td>Grounds Warehouse in 2014, looking southwest</td>
<td>167</td>
</tr>
<tr>
<td>8.29</td>
<td>Heating and Cooling Plant in 2014</td>
<td>169</td>
</tr>
<tr>
<td>8.30</td>
<td>Hebeler Hall in 1940, looking northwest</td>
<td>171</td>
</tr>
<tr>
<td>8.31</td>
<td>Hebeler Hall in 1940, looking east-southeast</td>
<td>172</td>
</tr>
<tr>
<td>8.32</td>
<td>Hertz Hall in 1965, looking northwest</td>
<td>176</td>
</tr>
<tr>
<td>8.33</td>
<td>Hogue Technology Center in 1975, looking southwest</td>
<td>183</td>
</tr>
<tr>
<td>8.34</td>
<td>Hogue Technology Center in 2012, looking northeast</td>
<td>184</td>
</tr>
<tr>
<td>8.35</td>
<td>Kennedy Hall (now the International Center) in 1950, looking northeast</td>
<td>187</td>
</tr>
<tr>
<td>8.36</td>
<td>International Center in 2014, looking southwest</td>
<td>188</td>
</tr>
<tr>
<td>8.37</td>
<td>Jansen Warehouse in 2014, looking southwest</td>
<td>191</td>
</tr>
<tr>
<td>8.38</td>
<td>Jongeward Facilities and Plant Services circa 1970, looking northwest</td>
<td>193</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>8.39</td>
<td>Jongeward Warehouse in 2014, looking southwest</td>
<td>196</td>
</tr>
<tr>
<td>8.40</td>
<td>Kamola Hall in 1912</td>
<td>197</td>
</tr>
<tr>
<td>8.41</td>
<td>Kamola Hall in 1920</td>
<td>198</td>
</tr>
<tr>
<td>8.42</td>
<td>Kamola Hall in 1960</td>
<td>198</td>
</tr>
<tr>
<td>8.43</td>
<td>The 2003 addition between north and south Kamola</td>
<td>199</td>
</tr>
<tr>
<td>8.44</td>
<td>Language and Literature Building in 1980</td>
<td>202</td>
</tr>
<tr>
<td>8.45</td>
<td>Dr. James E. Brooks Library in 1980</td>
<td>207</td>
</tr>
<tr>
<td>8.46</td>
<td>Farrell Hall in 1975</td>
<td>210</td>
</tr>
<tr>
<td>8.47</td>
<td>Lind Hall in 2015</td>
<td>214</td>
</tr>
<tr>
<td>8.48</td>
<td>Mary Grupe Conference Center in 1965</td>
<td>218</td>
</tr>
<tr>
<td>8.49</td>
<td>McConnell Hall in 1950</td>
<td>220</td>
</tr>
<tr>
<td>8.50</td>
<td>The 1979 addition to the northern end of McConnell Hall</td>
<td>220</td>
</tr>
<tr>
<td>8.51</td>
<td>McIntyre Music Building in 2014</td>
<td>225</td>
</tr>
<tr>
<td>8.52</td>
<td>Michaelsen-Randall Hall in 2014</td>
<td>227</td>
</tr>
<tr>
<td>8.53</td>
<td>Mitchell Hall in 1990</td>
<td>229</td>
</tr>
<tr>
<td>8.54</td>
<td>Munson Hall in 2015</td>
<td>232</td>
</tr>
<tr>
<td>8.55</td>
<td>Nicholson Pavilion in 1960</td>
<td>236</td>
</tr>
<tr>
<td>8.56</td>
<td>North Hall in 2014</td>
<td>240</td>
</tr>
<tr>
<td>8.57</td>
<td>Old Heating Plant circa 1950</td>
<td>243</td>
</tr>
<tr>
<td>8.58</td>
<td>Peterson Hall in 2014</td>
<td>250</td>
</tr>
<tr>
<td>8.59</td>
<td>Power Technology Lab in 2014</td>
<td>252</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>8.60</td>
<td>President’s Residence in 2014</td>
<td>255</td>
</tr>
<tr>
<td>8.61</td>
<td>Psychology Building in 2014</td>
<td>258</td>
</tr>
<tr>
<td>8.62</td>
<td>Public Safety and Police Services in 2014</td>
<td>260</td>
</tr>
<tr>
<td>8.63</td>
<td>East face of the original (1926-1928) Samuelson Union Building in 1990</td>
<td>262</td>
</tr>
<tr>
<td>8.64</td>
<td>The 1935-1937 addition to the Samuelson Union Building as it looked in 2014</td>
<td>263</td>
</tr>
<tr>
<td>8.65</td>
<td>The 1951 addition to the Samuelson Union Building as it looked in 1960</td>
<td>265</td>
</tr>
<tr>
<td>8.66</td>
<td>The 1970 addition to the Samuelson Union Building as it looked in 1980</td>
<td>266</td>
</tr>
<tr>
<td>8.67</td>
<td>The Science Building, Phase I in 2014</td>
<td>269</td>
</tr>
<tr>
<td>8.68</td>
<td>Smyser Library as it looked in 1930</td>
<td>272</td>
</tr>
<tr>
<td>8.69</td>
<td>Northwest corner of Shaw Memorial Hall circa 1957</td>
<td>274</td>
</tr>
<tr>
<td>8.70</td>
<td>The 1994 addition to Shaw Memorial Hall</td>
<td>276</td>
</tr>
<tr>
<td>8.71</td>
<td>Short-Getz Apartment Complex in 2014</td>
<td>285</td>
</tr>
<tr>
<td>8.72</td>
<td>Stephens-Whitney dormitories in 2014</td>
<td>288</td>
</tr>
<tr>
<td>8.73</td>
<td>Student Medical and Counseling Center in 2014</td>
<td>291</td>
</tr>
<tr>
<td>8.74</td>
<td>Student Union and Recreation Center in 2014</td>
<td>292</td>
</tr>
<tr>
<td>8.75</td>
<td>Green Hall of Student Village North</td>
<td>296</td>
</tr>
<tr>
<td>8.76</td>
<td>Student Village North, Phase I, Units H-K</td>
<td>304</td>
</tr>
<tr>
<td>8.77</td>
<td>Student Village North, Phase II, looking north</td>
<td>306</td>
</tr>
<tr>
<td>8.78</td>
<td>Sue Lombard Hall and Dining Services</td>
<td>307</td>
</tr>
<tr>
<td>Figure</td>
<td>Figure Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>8.79</td>
<td>Surplus Property Warehouse</td>
<td>314</td>
</tr>
<tr>
<td>8.80</td>
<td>Tomlinson Stadium and concession stand</td>
<td>317</td>
</tr>
<tr>
<td>8.81</td>
<td>Tunstall Commons in 2014</td>
<td>320</td>
</tr>
<tr>
<td>8.82</td>
<td>Wahle Complex</td>
<td>322</td>
</tr>
<tr>
<td>8.83</td>
<td>Welcome Center</td>
<td>325</td>
</tr>
<tr>
<td>8.84</td>
<td>Wendell Hill Hall</td>
<td>326</td>
</tr>
<tr>
<td>8.85</td>
<td>Wilson Hall in 1970</td>
<td>330</td>
</tr>
<tr>
<td>10.1</td>
<td>Map of the CWU campus with buildings (in red) that are historic, significant, and have integrity</td>
<td>378</td>
</tr>
<tr>
<td>10.2</td>
<td>Proposed South Campus Historic District</td>
<td>380</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Central Washington University (CWU) is a public institution of higher education physically composed of 380 acres of landholdings (CWU 2014) and 184 facilities that provide space for classrooms, laboratories, offices, library/study areas, special and general uses, support, health care, and residences. The Facilities Management Department (Facilities) of CWU plans and manages the operation, maintenance, and development of said facilities in a manner that is consistent with the university’s evolving needs and is compliant with resource management regulations. Guiding Facilities in this capacity is the ongoing and comprehensive development and implementation of the CWU Campus Master Plan (CMP). The CMP focuses on the treatment of CWU’s physical resources, both natural and cultural.

Of CWU’s physical properties, buildings are the dominant and most visible cultural resource. They make up a substantial portion of the physical setting of the school’s operations, and they provide those who see the buildings with a sense of collegiate atmosphere. The placement, design, and function of each building, individually and as a whole campus, visually communicate the evolution of the school within the context of, and as a component of, local and national history. The significance and values of the historical events, influential ideas and/or people, and/or methods of using materials and space, which provided the context for each resource’s creation, are sometimes so strongly present in a resource that the resource takes on the significance and value of its original context, making the resource an artifact of its conditions.

Identification and preservation of significant resources can make the unique facets of local or national history that are imbedded in that resource more accessible to the public, establishing and revealing a greater context for present space. Because of the prominence of the buildings on the
university’s landholdings, and because of their role in university life, it is especially important that Facilities tend to their management with care to preserve the heritage each resource represents.

As a state institution utilizing state and federal funds to undertake capital construction projects, CWU is required by law to consider the potential impact of its projects on significant cultural resources. To assure compliance with cultural resource law, a Cultural Resource Management Plan (CRMP) (Jones, Schroeder, and Vaughn 2010) was officially integrated into the CMP in 2010, providing a basic procedural strategy and set of standards by which to document and preserve CWU’s cultural resources. Actualization of the CRMP’s goal to guide campus planning requires the identification, inventory, and evaluation of CWU’s cultural resources, or “historic properties” (i.e. buildings and artifacts, as defined by the National Historic Preservation Act [NRHP] of 1966, as amended, 12 U.S.C. 470 et seq.), prior to the implementation of campus development projects that might impact said properties. Seldom in the industry of cultural resource management are agencies afforded the luxury of foresight or funding to proactively manage resources before a threat is posed to said resources. As a matter of this common circumstance, it has been the practice of Facilities to plan a capital construction project, to conduct archaeological and architectural history investigations for the identification and evaluation of historic properties that have the potential to be impacted by the planned project, and then to avoid or mitigate damage to the property if it is discovered to be significant (according to NRHP eligibility standards). This process can be lengthy as an existing project plan must be revised as significant, or potentially significant, historic properties are discovered. Though this is necessarily the case for subterranean historic properties (i.e. artifacts and sites) because their location and significance is unknown until excavation reveals them, this is not
necessarily so for historic properties located above ground (i.e. buildings). Because buildings are readily discernible cultural resources, it is possible to identify, inventory, and evaluate all above-ground historic properties on CWU’s landholdings prior to the planning of a project.

Incorporating a complete inventory into the initial planning stages of any campus project would allow for greater certainty and fewer delays in the implementation of a plan, since above-ground cultural resources could be anticipated.

It is important, therefore, that Facilities identifies its cultural resources and documents their potential significance in order to adequately plan a project that may impact said resources. Intensive survey and in-depth research, as well as the application of criteria that establish the eligibility of a cultural resource for nomination to be placed on the NRHP would allow for proper project planning.

Problem, Purpose, and Significance

The impetus of this thesis was the awareness of Facilities’ desire to plan projects in a manner that proactively, rather than reactively, managed significant historic properties on CWU’s landholdings. Proper management of significant cultural resources is expedited when it is known what resources are present and if, and how, those resources are significant. Prior to this study, the significance of CWU’s above-ground cultural resources, more specifically its buildings, was not fully known, apart from what previous project-specific investigations revealed. This thesis aimed to provide Facilities with sufficient information about its buildings in order for Facilities to be able to plan projects in a manner that is consistent with the CMP, considering which resources would be best preserved, remodeled/repurposed, or demolished. To date, one campus building (Barge Hall) has been placed on the NRHP, one building (Button Hall) is located within an historic district (the First Railroad Addition to Ellensburg), and several historic buildings and
districts (e.g. the First Railroad Addition, Downtown Ellensburg, and the Ellensburg Rodeo Fairgrounds) surround the campus. Given the high incidence of NRHP eligible properties in the surrounding area, it is prudent for Facilities to identify and establish the significance of all CWU’s buildings prior to the execution of the CMP.

The purpose of this thesis was to create a complete, intensive architectural inventory of CWU’s built environment (184 buildings) and to evaluate said buildings for significance using NRHP criteria. Buildings found to be potentially eligible for NRHP nomination—either individually or as a district—are recommended for nomination. Also, this information is made readily available for use by Facilities to further develop the CMP in compliance with the CRMP and, by extension, with Washington State cultural resource management law.

The significance of this thesis is that it provides the first complete inventory of buildings for a Washington State campus. The existence of such an inventory contributes greatly to the historic knowledge of Ellensburg, Washington; of Washington State institutions of higher learning; and of the evolution of United States normal schools into colleges and universities. Moreover, the facilitation of Facilities’ CMP planning will conserve time and money on capital construction projects, and will support the current university values of preserving and enhancing the existing campus.

Study Area

CWU is located in the city of Ellensburg in central Washington State at latitude 46° 58’ 12.56” N and longitude 120° 39’ 08.06” W (Hammond 2009). CWU’s landholdings cover about 1.54 km² (CWU 2014), making up a relatively small portion of the 17.2 km² area of Ellensburg City (Hammond 2009). The majority of the campus is located within Township 18 North, Range 18 East, Sections 35 and 36, Willamette Meridian, though CWU leases a property for aviation
training in Section 25, and leases a food storage warehouse in Township 17 North, Range 18
East, Section 2. Figure 1.1 shows the current boundaries of the main CWU campus, exclusive of
city-owned roads and said CWU-leased properties.

The historic core of the CWU campus, that is, the portion of campus that has been within the
school’s ownership for the longest period of time and where buildings are predominantly fifty
years old or older (Honegger 2002), is bound by Seventh Avenue to the south, ‘D’ Street to the
west, Chestnut Street to the east, and roughly Eleventh Avenue to the north. Although all CWU
properties were inventoried as part of this study, it was anticipated that the majority of
historically significant buildings would be located within the historic core of the campus. For this
reason, the research to generate an historical context for the campus’ development was
conducted more intensively for the buildings of the historic campus core.
Figure 1.1. Aerial view of CWU in Ellensburg, Washington. Campus boundaries are highlighted in yellow and CWU-owned buildings are highlighted in orange (leased properties are not shown here). (Source: ESRI, Digital Globe, GeoEye, Earthster, Geographics CNESAirbus, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community 2014).
CHAPTER II

BIOPHYSICAL CONTEXT

Geomorphology

The landholdings of CWU are located within the Kittitas Valley in an area known as the Ellensburg basin (Vaccaro 1991). The Ellensburg basin represents the northwestern margin of the Columbia Basin (Reidel et al. 2003), which is composed of over three-hundred layers of basaltic lava flows, known collectively as the Columbia River Basalt Group (CRBG), covers an area roughly 200,000 km², and originated from a fissure near the present day border of Washington, Oregon, and Idaho states approximately 17.5 to 6 million years ago (Cheney and Lasmanis 1994; Reidel et al. 2003). Eastward and southward tectonic compression during the CRBG flows caused a series of anticlinal ridges and synclinal valleys, known as the Yakima fold belt, to form just south and east of the Ellensburg basin (Reidel et al. 2003).

Intercalating the layers of the CRBG in the Ellensburg basin are deposits of ash and sedimentary rock, such as mudstone, sandstone, and conglomerates (Smith 1988), which are collectively known as the Ellensburg Formation (Reidel et al. 2003). The surficial sediments are mainly aeolian deposits of loam, silty loam, and clay loam, interspersed with Holocene alluvial deposits, Pliocene gravels, and Pleistocene glacial deposits (Waitt 1979). Excavations on the CWU campus have provided sediment descriptions consistent with this general Ellensburg basin stratigraphy. Below a layer of asphalt and crushed rock near the base of Barge Hall (constructed 1891 – 1893), Gifford Consultants (1990) excavated a test pit and found a layer of soft, wet, clayey silt at 0.9’ - 2.0’ below surface, and a very dense, wet, silty gravel with ¼” - 3” subrounded and rounded cobbles and boulders at 2.0’ - 4.0’ below surface. The contiguous layers of poorly sorted gravels and silt at Barge Hall’s location are consistent with general Kittitas
Valley stratigraphy of aeolian silty and clayey loams above a horizon of alluvial deposits. An artificial layer of asphalt and crushed rock was laid down around the peripheral of Barge Hall at some point. The absence of ash in the sediments just below the asphalt pavement indicate that the pavement was laid prior to the volcanic eruption of Mt. St. Helens in 1980 (Figure 2.1). Other CWU landholdings, which were not covered by pavement during the 1980 eruption, do have ash incorporated into their uppermost layers in the form of ashy loam, ashy silt loam, and gravelly ashy loam (Schroeder 2010).

Figure 2.1. Field log of test pit beside Barge Hall foundation. (Source: Gifford Consultants 1990).

While finer sediments are found beneath the buildings of the southern portion of campus, the northern half of campus (i.e. the area north of what was once the Chicago, Milwaukee, St. Paul, and Pacific Railroad) has courser sediments. During the 1967 construction of the Language and
Literature Building, “subsurface explorations revealed the presence of dense to very dense silty sand with gravel and cobbles at depths varying from 1 to 4 feet (Grant, Copeland, Chervenak, and Associates Architects 1967).

Along the southern edge of the Kittitas Valley, the Yakima River flows northwest-to-southeast across the valley floor, exiting the valley at a low elevation of 1,490’ asl. The floor of the Ellensburg basin rises gradually from the Yakima River northeast to about 2,100’ asl, and southwest to about 2,000’ asl. The Ellensburg basin is bordered to the north, south, east, and west by fingers of the Cascade Range. The range consists of the Wenatchee Mountains to the north and east of the basin, the Boylston Mountains to the southeast, and the Manastash Ridge (i.e. the northwesternmost ridge of the Yakima fold belt) to the south. The Hog Ranch-Naneum Ridge, a north-to-south trending anticline of the Columbia River Basalt Group (CRBG) (Cheney and Lasmanis 1994), crosses the Yakima fold belt (Reidel 1990) east of the Ellensburg basin. The position of the surrounding mountains, and the elevation change across the valley floor, are such that surface water migrates toward the Yakima River as naturally meandering tributaries from the north and northeast mountains. With the arrival of settlers in the later nineteenth century, many tributaries were rechanneled across the valley floor into human-made ditches for agricultural and urban planning purposes. Wilson Creek is one such example, initially bifurcated in 1885 and since rerouted several times to run through and around what is now the CWU campus (Glauert and Kunz 1972). The portion of Wilson Creek that runs through campus is known as the Town Ditch.

Climate

The relationship between the heterogeneous geologic and physiographic features of the Kittitas Valley and the nearby mountain ranges to the east and west contribute to variations in
humidity and temperature in the Kittitas Valley. East of Washington State, the Rocky Mountains trend north-to-south and block the majority of cold Canadian air masses that move southeastward. The effect is a consistent shielding of central Washington State from cold air masses in the winter months. Bordering the Kittitas Valley on the west is the Cascade Mountain range, also trending north-to-south, which forms an immediate barrier to the moist maritime air that moves east from the Pacific Ocean toward central Washington. Moisture drops west of the Cascade Mountains before reaching the Kittitas Valley, providing an average annual precipitation of 190 to 229 cm on the western aspect of the Cascades just outside the Kittitas Valley (Western Regional Climate Center 2013). A rain shadow effect is created, whereby the area immediately east of the Cascades receives as little as 38 to 76 cm precipitation annually, resulting in a semiarid climate in eastern Washington, including the Kittitas Valley (Western Regional Climate Center 2013). These differences in precipitation patterns are concurrent with regional soil group changes, which, in turn, affect vegetation growth (Baker 1973).

Vegetation

The Kittitas Valley is part of a greater vegetation zone known as the shrub-steppe. The base of the valley was naturally abundant in Basin Wild Rye (*Elymus cinereus*) and Bluebunch wheatgrass (*Agropyron spicatum*), and also sagebrush (*Artemesia tridentata*), bitterbrush (*Pershia tridentata*), rabbitbrush (*Chrysothamus nauseoseum*), and various grasses in drier areas of the valley (Franklin and Dyrness 1973). Situated on the northwest margin of the Columbia Basin Plateau and east of the Yakima Floodplain, the Ellensburg basin receives much of its water from the southeasterly flowing Yakima River and eleven of its tributaries, including Wilson Creek, which currently runs through the CWU campus. Along these wetter areas, Willow (*Salix*
Salix), cotton wood (*Populus trichocopa*), and fruit trees are known to have naturally grown historically (Franklin and Dyrness 1973).

Following the introduction of ranching and agriculture to the Ellensburg basin in the late nineteenth century, the long-term average annual recharge of the soil became 6% greater than soil conditions prior to Euro-American settlement (Vaccaro 1991), a result of irrigation activity. This has lessened the sensitivity of the Ellensburg basin to moisture extremes. Beginning in the 1870s, Ellensburg became largely agricultural and sub-urban. The CWU campus, positioned in the largest urban center of the Kittitas Valley, is nearly devoid of naturally occurring native vegetation, having been replaced by decorative plants, grasses, and trees, some non-native invasive species, and some reintroduced native plants.

Historical Significance of the Biophysical Context

Elements of the biophysical setting of the Kittitas Valley, in which the CWU campus is located, have influenced aspects of the campus in various ways. From the beginning, the sediments have been significant because of their use in construction materials for local projects and because they limited (at least until technological advances allowed otherwise) where buildings could be located. In 1893, when an effort was made to construct the school’s first campus building (i.e. Barge Hall) on the Grandview Addition of Ellensburg, it was discovered that the soil was too alkaline to support non-native, decorative vegetation and was too “unstable” to allow construction without a deep foundation (Mohler 1967). Because creating a deep foundation was not possible in 1893, the site for the building was moved to a more stable plot on the First Railroad Addition and foundation stones of native basalt were laid down (Mohler 1967). Stability of the ground remains an issue for the school. In 1967, the architects of the Language and Literature Building indicated, but did not elaborate on, “abnormal site conditions,” but it
seems that these abnormalities were overcome, since construction on the site moved forward (Grant, Copeland, Chervenak and Associates 1967). In 1973, the site chosen for the Library Complex, consisting of a library (Dr. James E. Brooks Library) and an instructional classroom building (Farrell Hall), was also identified as having unstable soil (Ibsen, Nelsen and Associates 1973). The sediment instability apparently was the cause for the classroom building to be built a greater distance west from the library than had been planned originally.

At the turn of the twentieth century, when the school’s first buildings were constructed, virtually every sizeable town in Washington State had at least one brick yard (Washington State Department of Archaeology and Historic Preservation [DAHP] 1989), and Ellensburg was no exception. In or near Ellensburg, the A.O. Fowler Company had a brickyard that produced clinker bricks for campus and other local construction projects (Mohler 1967).

Also, historically, there have been large quantities of iron ore, coal, and limestone within or in close proximity to the Kittitas Valley, which were regularly used by local residents (Mohler 1967), including the school. Large coal deposits near Roslyn and Cle Elum, Washington, for example, inspired the forging of contracts between Roslyn and Cle Elum mining companies and Washington State for use by state-run schools. Of the money appropriated for fuel costs to three of the state-run schools, including the Washington State Normal School (WSNS) of Ellensburg (now CWU), each school was contracted to use 30-35% to purchase coal (Central Washington University Archives [CWUA] 1957d). Even as late as the 1950s, when cheaper sources of fuel were available and desired, the school (by then, named Central Washington College of Education) was bound by contract to purchase 15,000 tons of coal per year (CWUA 1957d). This contract was intended to support local industry (CWUA 1958a), since trains running through the Kittitas Valley switched to using diesel fuel or electricity instead of coal (Bechtel 2014). The
amount of coal burned by the college had a profound impact locally. The Old Heating Plant, which had three coal-fired boilers, apparently produced a great deal of fly ash that continually blanketed the surrounding Ellensburg neighborhoods (CWUA 1957b), making many local inhabitants quite unhappy. To work towards solving this problem, school president Robert E. McConnell and the Central College Board of Trustees planned to replace the coal-fired heaters, but faced so much political opposition that they compromised by converting only one of the three boilers with a gas-heating unit (CWUA 1957a). Unfortunately, this did not solve the problem, and it was clear that the coal heaters of all three boilers would have to be replaced with gas heaters in order to make a difference in local air quality (CWUA 1957b). Two forces opposed a complete conversion: lack of funding (CWUA 1957c) and political pressure from Kittitas County labor unions, coal producers, and a local development organization (CWUA 1958a). Within three years, President McConnell was able to secure a new contract through Washington State (CWUA 1958b) and a local company (CWUA 1960) to convert the coal-burning boilers of the Old Heating Plant to all gas-powered boilers.

Apart from coal, other natural resources were of importance for local uses. A 1978 mineral resources map of the Columbia Basin indicates an extensively used sand and gravel pit in operation near Ellensburg (Washington State Department of Natural Resources [DNR] 1979). Its size in 1978 indicates that the pit may have been either in heavy use in those recent years, of light continual use over many years (the map indicates that the pit was active in 1978). It is possible that sand and gravel from the pit were used in the construction and landscaping projects of the campus.

Part of the goal of this thesis is to foster the preservation of CWU’s physical heritage; therefore, some background on tectonic activity and its effects in and around the Kittitas Valley
Earthquake activity has presented, and continues to pose, a threat to the structural integrity of the buildings on campus. The Ellensburg basin is within the Yakima Fold Belt sub-province, which is a tectonic region of parallel synclinal valleys and anticlinal ridges (Vaccaro 1991). According to John D. Schelling, the Earthquake / Tsunami / Volcano Program Manager for the Washington State Emergency Management office (personal communication 2013, e-mail), Ellensburg has identifiable active faults (Figure 2.2). Historic earthquake activity has been recorded, and there are known and suspected earthquake faults beneath the Ellensburg basin. Active faults, including the Saddle Mountain Fault, Gable Mountain Fault, and Frenchman Hills Fault, are near the city of Ellensburg and have the potential to produce crustal (shallow) earthquakes (John D. Schelling personal communication 2013, e-mail; Cascadia Region Earthquake Workgroup 2009). The nearest geomorphological evidence of tectonic activity to the CWU campus has been the formation of steep-faced pediments on the north slopes of Kittitas Valley, which confine the east branch of the now channelized Wilson Creek (Waitt 1979), the west branch of which runs along the east edge of Brooklane Road (along a CWU property) and through the City of Ellensburg.

The impacts of earthquake activity to the buildings of the campus have been few, but noticeable. According to alumnus Stanley Hart (personal communication 2015, e-mail), an earthquake damaged the tallest cupola of the Administrative Building (now Barge Hall) when he was a student at the school in 1928. This earthquake activity was recorded by Heck and Bodle (1930) and it reportedly produced several roaring shakes and aftershocks that were felt across Washington and Oregon States. Startup, Washington, which is within one-hundred miles of Ellensburg, reported “cracking of plaster and paper” (Heck and Bodle 1930). Mr. Hart recalls another earthquake in 1949 that caused enough damage to Barge Hall’s tallest cupola that it had
to be removed the following year (personal communication 2015, e-mail). Indeed, Murphy and Ulrich (1951) recorded an earthquake in 1949 with an intensity of 7.1 on the Richter scale, which was felt at an intensity of five in Ellensburg, and an article in the campus Observer newsletter, indicates that the tallest cupola of Barge Hall had been removed in 1950 due to earthquake damage (Asher 1991).

It is possible that any number of earthquakes could have been responsible for a crack in the west face of Shaw-Smyser Hall. The portion of the building that is cracked was once an open arched breezeway (built in 1957 and incorporated into the west face of an addition in 1994). Between 1957 and 1994, there have been several high intensity earthquakes that reportedly did damage to properties in Ellensburg (Eppley and Cloud 1961; Talley and Cloud 1962).
Figure 2.2. Earthquake activity and fault lines near Ellensburg, Washington. Yellow and pink squares represent historic earthquake activity, purple lines demonstrate known earthquake faults, and blue dashed lines show the location of suspected earthquake faults. (Map adapted from DNR, Geology and Earth Resources Division 2013).
CHAPTER III
CULTURAL CONTEXT
Ethnohistoric Background

The area of the Columbia Plateau in which CWU is now situated (i.e. the Kittitas Valley) represents a portion of an historically much larger, culturally cohesive region (Splawn 1958,13) of Ichishkiin Sínwit-speaking people who shared resources and intermarried with Salish-speaking people of the Wenatchi and Moses-Columbia areas north and northeast of the Kittitas Valley (Ruby and Brown 1995), all of whom have “lived in the area since the beginning of time” (Yakama Nation 2010). Oral tradition and ethnographic accounts maintain that groups in the Kittitas Valley and neighboring Yakima Valley traditionally moved across the landscape on a seasonal round, utilizing resources as they peaked in availability (Hunn 1999; Yakama Nation 2010). Figure 3.1, drawn by foreign settlers in the late 19th century, depicts the Kittitas Valley as the hub of a large network of Native American trails, intersecting at the location where the City of Ellensburg later developed. The centrality of the Kittitas Valley to regional groups allowed for a massive annual summer gathering at C’laxin (Spaulding 1956), also known as Che-lo-han, approximately seven miles northeast of what is now Ellensburg (Kittitas County Centennial Committee [KCCC] 1989).

The Pschwánapam (also known as the Kittitas) focused much of their subsistence on the resources of the Kittitas Valley (Schuster 1998), using a seasonally semi-nomadic strategy (Schuster 1975). During the winter, the Pschwánapam camped in villages in the Kittitas Valley along the Yakima River and its tributaries, including Wilson Creek (Allen Aronica, Kittitas Band personal communication 2008, conversation; Ray 1936), which currently flows very near to the CWU campus and through the City of Ellensburg. Because these winter village locations
provided reliable resource access and elemental protection during the most challenging weather conditions of the year, winter villages were often well-established areas that were revisited annually (Schuster 1975). Figure 3.1 illustrates several such locations along major water ways in the Kittitas Valley (as recorded by foreign settlers almost a century after contact with the Pschwánapam).

Figure 3.1. Pre-1880 Native American encampments, trails, and petroglyphs in the Kittitas Valley. (Kittitas County Centennial Committee 1989, 5).
The Kittitas Valley is home to a diverse resource base, situated between two ecological zones; semi-arid shrub-steppe to the east and south, and the wetter sub-alpine to the north and west. Thus, the Pschwánapam were able to traditionally and historically construct multi-family, partially subterranean pit houses with tule grass and earth mat coverings over a conical or semispherical wooden pole frame (Gelernter 1999; Schuster 1975), an easily-adaptable form of architecture more commonly used in the wooded areas of North America as early as the Archaic (Gelernter 1999). In the Kittitas and Yakima Valleys, these structures were built on a large scale in the winter, and on a smaller scale in the summer (Schuster 1975). For many Native American groups of the Columbia Plateau, the introduction of horses (reportedly during the early part of the 18th century) increased mobility, inspiring the adoption of surficial, rather than subterranean, living structures (Hunn 1990; Schuster 1998). This was true for the people of the Kittitas and Yakima Valleys as well (Schuster 1975). According to Ray (1939), greater mobility enabled interaction with distant groups from the Plains, which resulted in the adoption of several Plains cultural traits, including the use of the tipi, a conical wooden pole frame traditionally overlain with animal hides.

Historical Background

Contact

In 1807, one year after the Lewis and Clark expedition made contact with the Yakama along the Columbia River, the North West Fur Company began establishing trading posts throughout the Oregon Territory (Meinig 1968), followed by John Jacob Astor’s Pacific Fur Company (Smith 1982). Seeking horses for trade, Alexander Ross of the Pacific Fur Company, visited the Kittitas Valley in 1812 during the annual C’laxin gathering, becoming the first [known] foreign
visitor to the valley (Spaulding 1956). Trade led to the eventual integration of cattle into the livelihood of the people of the Kittitas Valley (Schuster 1975).

By 1846, the United States and Great Britain had settled their territorial dispute over the Oregon Territory, and the portion of the territory below the 49th Parallel (to where a great many U.S. settlers had emigrated by means of the Oregon Trail) was acquired by the U.S. government. The increase in foreign contact with the native population led to an outbreak of small pox, scarlet fever, and measles among the native peoples of the Oregon Territory (and throughout North America). Southeast of the Kittitas Valley, in 1847, the Cayuse, suspecting the diseases were the result of intentional contamination from missionaries, attacked missions along the Yakima River (Ricard 1976). The organization of a retaliatory Oregon Territory militia against the Cayuse (Galm et al. 1981) catalyzed the Cayuse War, which continued into 1855. Despite this conflict, a mission was established in the Kittitas Valley near Manastash Creek in 1848 (Glauert and Kunz 1976).

The Treaty and Foreign Settlement

Eager to settle the west as part of a perceived Manifest Destiny, the U.S. government encouraged settlement westward, beginning with the Donation Land Law of 1850 (DAHP 1989). The Washington Territory was carved from the Oregon Territory in 1853 and a team of surveyors traveled throughout the territory, studying flora, fauna, geology, ethnology, and climate regions, and identifying locations for future wagon and rail roads (Morrissey et al. 1989).

As part of the expedient settlement effort, Washington Territorial Governor Isaac Stevens and representatives of several indigenous Columbia Plateau groups signed the Treaty of 1855, which legally ceded to the U.S. federal government the majority of the lands traditionally used by the groups (and by other groups, who were not represented at the treaty signing). The treaty
included representatives of the “Yakama, Palouse, Pisquouse, Wenatshapam, Klikatat, Klinquit, Kowwas-say-ee, Li-ay-was, Skin-pah, Wish-ham, Shyiks, Ochechotes, Kah-milt-pah, and Se-ap-cat . . .” (12 Stat. § 951, preamble), and thenceforth grouped said peoples (as well as many groups who were unrepresented) into one political entity, “The Confederated Tribes and Bands of the Yakama Nation.” Groups who did not sign the treaty were not recognized by the terms of the treaty. Signatories of the treaty were promised reserved areas of land, as well as legal protection by the U.S. government to continue to use the resources of all “usual and accustomed stations, in common with the citizens of the United States . . .” (12 Stat. § 951, Article 3). Also, they were assured there would be no further intrusion by settlers and travelers into reserved lands; however, Governor Stevens publicized the lands east of the Cascades as open to settlement almost immediately following the treaty signing (DePuydt 1990). This treaty breech (i.e. the influx of foreign settlers through traditional and reservation areas) instigated the Yakima War, which took place across much of the Columbia Plateau, including the Kittitas Valley, from 1855 to 1858 between the United States and the newly treaty-formed Yakama, Walla Walla, Cayuse, Nez Perce, and Umatilla Tribes. According to DAHP (1989), settlement east of the Cascade Mountains was to be banned until after the war, but a gold rush in 1854 meant little attention was paid to the ban (DePuydt 1990). Another gold rush in 1857, as well as the Homestead Act of 1862, a cattle ranching craze of the 1860s and 1870s, and the Timber Culture Act of 1873 all contributed to increased settlement of the Kittitas Valley (DAHP 1989). Tribal members, and other people indigenous to the lands that were ceded to the U.S. government, either moved to reservation lands or remained in the areas in which they traditionally lived. Of the latter, many maintained a seasonal migratory lifestyle and/or staked private land claims.
Though the eventual claiming of all lands limited or inhibited the migratory nature of traditional life ways, the varied traditions of groups indigenous to the area continue to be practiced.

Ellensburg(h) and the Washington State Normal School

In 1872, businessman John Shoudy purchased the Kittitas Valley’s first trading post, Robber’s Roost (established in 1870 [Owen 2009]), along with 160 acres of surrounding land, from Andrew Jackson Splawn (Ellensburg Downtown Association [EDA] n.d.). From the property, Shoudy platted the city of “Ellensburgh” in 1875. As representative for the Washington territorial legislature of 1882, Shoudy pushed through a bill that carved out “Kittitas County” from the previously larger Yakima County that had encompassed both the Kittitas and Yakima Valleys (Caveness and the Ellensburg Public Library 2009). In 1883, the city of Ellensburgh was officially incorporated by a Washington Territorial Act (EDA n.d.). Subsequent urban allotments reduced the amount of grazable land for cattle, though not for sheep (Meinig 1968). The cattle industry dramatically decreased in the valley as a result of both overgrazing and a devastating winter in 1880 (Meinig 1968). In 1884, the Seattle and Walla Walla Trail and Wagon Road Company, with a group of local investors, completed a major wagon road to open year-round travel between the Kittitas Valley and the Puget Sound area (Ott 2014). However, a different form of transportation soon came to overshadow the road’s significance.

The discovery of massive deposits of coal in the northwest portion of the Kittitas Valley during the 1860s eventually encouraged the Northern Pacific Railroad to establish a main line through the valley to the Puget Sound area in 1887 (DePuydt 1990). Not only did the construction of the tracks trigger a booming timber industry in the valley (to supply materials for the construction and upkeep of the tracks), it increased the transport of trade goods through the valley, catalyzing population and commercial growth in Ellensburgh (City of Ellensburg 2013).
The success, as well as the central location, of Ellensburgh gave promise that the city would gain the honor of state capital when Washington achieved statehood in 1889. However, a great fire that year destroyed much of the downtown area and, despite a massive local effort to quickly rebuild, the title of state capital was awarded to Olympia (Mohler 1967). According to Owen (2009), “record business losses follow[ed] the calamitous fire, contentious failure to gain the state capital, a Roslyn coal mine disaster, the closure of Ben Snipe’s Roslyn and Ellensburgh banks, a three year drought, and dwindling farm incomes” (p.15) weighed down upon the people of Ellensburgh. Because the rebuilding of downtown Ellensburgh had depended largely upon non-local investments, and because the city had not gained the distinguished title nor the economic benefit of state capital, many residents found themselves unable to pay back investments (Mohler 1967), foreclosing on lands and delinquent on taxes as property values declined (Owen 2009), and/or bankrupt (Mohler 1967). As a result, the city fell into a recession.

However, included in the constitution of the new State of Washington was a provision for a uniform school system, requiring teacher-training schools called “Normal Schools” for the instruction of teachers (Bolton and Bibb 1935). One-hundred thousand acres of land were to be granted for this purpose (Bolton and Bibb 1935), and the first session of the Washington State Legislature of 1890 selected Ellensburgh as a location for one of three State Normal Schools (Becker 2003; Caveness and the Ellensburg Public Library 2009). Russell and Cohn (2012) state that the site selection was made as a consolation prize to Ellensburgh for not having been selected as the state capital; however, the first Normal School was placed in Cheney, not in Ellensburgh (Mohler 1967). Only after a long struggle did Washington State Senator Wilson secure Ellensburgh as the location for the next normal school. Also, despite land promised for the Normal School by the Legislature, no money was appropriated for that purpose, and the local
Ellensburg newspaper had to plead for local donations to ensure the presence of the school (Mohler 1967).

Normal Schools sprung up all over the Midwestern and Western states throughout the first half of the nineteenth century to train teachers and to meet a demand created by graduates of the “common school campaign” of Horace Mann, which made free public elementary schools widely available (Fitzgerald 2001). According to Fitzgerald (2001), many Normal Schools were “located in widely scattered small towns, so that they would be geographically as well as economically accessible to the rural population” (p.226), Ellensburg Normal School included.

Ellensburgh’s population continued to grow exponentially, and, with what Owen (2009) describes as “typical pioneer spirit” (p. 9), the people of Ellensburgh recovered the viability of the city. Citizens passed a local bond issue to build the Washington Public School, in which the city’s children—and, for a short while, the Normal School teachers—learned (Owen 2009). In 1891, Block 23 of the Grand View Addition to the City of Ellensburgh was donated to the State by a local real estate firm for a Normal School campus, the land was cleared and graded, a canal was dug near it for irrigation purposes, and two-hundred thirty six trees were planted to ready it for future buildings (Mohler 1967). According to public record, anticipated construction on site did not take place, though the land remained in possession of the State (Stratton 1903).

Local recession was compounded by a nationwide financial crisis referred to as the Panic of 1893 (Caveness and the Ellensburg Public Library 2009), affecting Ellensburgh severely until the end of 1896 (Owen 2009). This economic hardship reframed for the citizens of Ellensburgh the presence of the Normal School in their community (who, reportedly, had not previously acknowledged the institution’s presence as significant) as a possible economic benefit to the area. In 1893, there was little money available from the State Legislature for any of the three
State Normal Schools, but the soundness of financial operations at the Normal School in Ellensburgh impressed the Legislative Committee, and money was appropriated for the construction of the school’s first campus building (Mohler 1967). Construction involved hiring local labor and purchasing local materials as much as possible, which brought into, and kept money in, the community (Mohler 1967). The school equally benefited from this arrangement, taking advantage of the low cost of materials and labor as a result of the depression.

When the land for the school was first acquired, it had been anticipated that the city would grow substantially by the time the school was built; however, the economic downturn equated to very little development towards the Grand View Addition (north and east of the downtown area), and the community argued that the Normal School should be built closer to the core of the city (Mohler 1967). The Board of Trustees agreed to relocate the school’s future campus, placing it on the north side of Eighth Avenue, closer to the downtown area, on Block 8 of the First Railroad Addition to the City of Ellensburgh. The argument made by the city was apparently just a contributing factor for the move, as it was also discovered that the soil of the Grand View Addition was unfavorable for construction and landscaping (Bean 1894).

The school’s first building (now “Barge Hall”) was completed in 1894, and the same year the “h” was dropped from the city’s name. “Ellensburgh” became “Ellensburg.” The city—with a new name and a new Normal School campus—began to recover economically within three years “with banking consolidation, a strong return of foreign investments, and the revived export of manufacturing goods and farm products . . .” (Owen 2009, 17). This became common on a national level as the United States began to recover economically. In 1895, Washington State appropriations to the Normal School were supplemented with federal grant money (Bolton and Bibb 1935).
The first government statute to protect United States historic items and structures for present and future generations was the Antiquities Act of 1906 (34 Stat. 225, 16 U.S.C. 431-433). The act criminalized the removal and/or harm to “any historic or prehistoric ruin or monument, or any object of antiquity” (34 Stat. 225, 16 U.S.C. 433) on federal property without a permit from the agency overseeing said property (since 1916, the National Park Service [NPS] has served this role [King 2011]). The intent of the act was to expand public awareness of antiquities of “historic or scientific interest” (34 Stat. 225, 16 U.S.C. 431) and to facilitate the expansion of knowledge gleaned from such antiquities by means of preservation. Preservation, through this act, has been accomplished by placing antiquated objects in “reputable museums, universities, colleges, or other recognized scientific or educational institutions” (34 Stat. 225, 16 U.S.C. 432), and by presidential declaration of landmarks, structures, and sites, and associated land as “national monuments” (34 Stat. 225, 16 U.S.C. 431). The act was later amended by the Archaeological Resources Protection Act (ARPA), but the core philosophy remained intact. In 1935, the Historic Sites Act (16 U.S.C. §§ 461-467) organized the national landmarks created by the Antiquities Act under the authority of the Secretary of the Interior.

The National Historic Preservation Act (NHPA) of 1966 (16 U.S.C. §§ 470a to 470w-6), specifically Section 106 of said act, further requires that, during the planning process of a federal undertaking, the lead agency of the project considers historic preservation values and attempts to
balance them with federal needs. “Consideration” has come to entail the identification of historic properties that are likely to be affected by a given federal undertaking, the evaluation of possible impacts to said properties as a result of said undertaking, and the exploration of various ways in which to avoid or mitigate impacts to said properties. To assist in this process, the NPS developed a national program for the identification, evaluation, and preservation of sites, objects, buildings, structures, and districts that are fifty years old or older, possess integrity, and are found to be “significant” based on four main criteria of significance.

Section 102 of the National Environmental Policy Act of 1970 ([NEPA] 42 U.S.C. 4321 § 102 et seq.) mandates a careful, informed decision-making process for any undertaking that may cause adverse effects to the environment (natural or built) due to activity that is either federally funded, overseen by a federal agency, is on federal lands, or requires the approval of a federal agency. The NEPA is essentially procedural (and very similar to the requirements of the NHPA), except that it mandates judicially enforceable duties that are aimed at ensuring that agencies identify, evaluate, and plan for the avoidance or mitigation of damage to the environment.

In 1976, CWU instructor and historic preservation specialist Florence Lentz nominated CWU’s Barge Hall for eligibility to the NRHP. The Washington State Office (now Department) of Archaeology and Historic Preservation agreed with Lentz’s assessment of the property for eligibility, and Barge Hall was officially placed on the NRHP (Lentz 1976). Further efforts were made by Lentz and her students to move toward nominating the buildings of the “campus core” (i.e. Hebeler, Shaw-Smyser, McConnell, Kamola, Sue Lombard, the Old Student Union Building, Lind, Munson, and the Old Heating Plant), to the NRHP as an historic district (Lentz 1999); however, NRHP nominations were not submitted to the DAHP.
Throughout the legal history of federal cultural resource management laws, basic elements have remained constant: identification and preservation of cultural resources in order to expand public and scientific knowledge of our shared human history.

Washington Statute

On the state level, the federal government has partnered with State Historic Preservation Officers (SHPO) to implement the NHPA and other cultural resource management regulations. In Washington State, the SHPO is the DAHP, whose primary role is to review and process NRHP nomination applications for historic properties, and to assist federal agencies in the fulfillment of their NHPA obligations.

When state or local agencies begin planning projects that require the approval of federal agencies, the state and local agencies are required to comply with the State Environment Policy Act ([SEPA] RCW 43.21C.030). The SEPA process is modeled after that of NEPA, providing a regulatory framework for local and state agencies to address concerns regarding the impact of certain actions. As with NEPA, SEPA requires the completion of an Environmental Impact Statement (EIS) that focuses on significant issues that may impact the natural or built environment.

As a state agency receiving state, and sometimes federal, funds, CWU must comply with SEPA regulations. Each capital construction project that is planned for the CWU campus must first complete an Environmental Impact Statement, which includes considerations of potential project impacts to both the natural and cultural environment.

Clarifying and highlighting the importance of tribal consultation during projects that are likely to affect cultural resources in particular is the Washington State Governor’s Executive Order 05-05 ([GEO 05-05] State of Washington Office of the Governor 2005). The GEO 05-05
process is informal compared to other state and federal regulations regarding cultural resources, but its spirit is in line with the above mentioned regulations, and consultation with tribes and the DAHP are required.

Ellensburg Local Ordinance

Along with state-level partnerships, the federal government partners with Certified Local Governments to fulfill NHPA regulations. The Ellensburg Landmarks and Design Commission (Chapter 15.280) is one such local government that is certified by the DAHP to “identify, designate, protect, enhance, and perpetuate historic places within the City of Ellensburg . . .” (City of Ellensburg 2015). The Certified Local Government Program of the NPS assists the Commission through regulatory compliance, encourages the Commission’s participation in NHPA programs, and ensures that at least ten percent of the Washington State appropriation of funds through the Historic Preservation Fund goes to the Commission (National Trust for Historic Preservation 2015). Ellensburg’s local ordinances provide incentives for property owners to preserve and continue to use historic properties (City of Ellensburg 2015), including a tax incentive (Ord. 4656 § 1 [Exh. 02] 2013), which encourages the rehabilitation of certain historic properties through a special program.

Documentation and Analysis Paradigms

A review of the literature demonstrates how architects, historians, architectural historians, social geographers, and cultural resource managers, each within their respective fields of study, have addressed the documentation and analysis of the built environment of U.S. campuses within historical context.

Description, interpretation, and evaluation of architecture, according to U.S. architect Juan Pablo Bonta, are acts infused with the bias of the architectural historian (1979,12). Bonta
explains that this bias is inevitable in the social sciences (e.g. anthropology and cultural resource management [CRM]) for the reason that the fields attempt to apply scientific method, such as field survey and repeatable historical interpretation, to the “non-scientific” beliefs of people and their reality (1979,13). Bonta divides the method of architectural analysis into two foci: function and form. He considers function through an investigation of a building’s materials and their interaction with the surrounding physical environment, the manner in which a building was constructed, the durability of a building, and what purpose a building has served (1979,14). An investigation of form interprets how value systems and ideologies are expressed in building design, the effect a building has upon the people who use and view it, and the historical significance of a building (1979, 14). Bonta’s approach to architectural description and interpretation are, therefore, applicable to this study because this study aims to uncover relationships between the architectural and historical components of buildings and to offer a generalized historical record of the cultural influences on the built environment of CWU.

However, Bonta is also weary of attempting to extrapolate meaning from architecture, since the intentions of the architect may not align with how the architecture is perceived (1979, 14). There are also other factors that influence a building’s form and function, such as available technology and/or resources at the time of construction (1979, 14), that can determine how and where a building is constructed. Such factors would change the original intent of the architect in regards to how the building is to be perceived. The architectural culture en vogue during construction can have a similar impact. As Bonta points out, architectural forms convey certain social conventions under the guise of functionality (1979, 19). This study draws upon this architect’s perspective, taking care to consider how environmental setting, construction method
and material, and available sources may have affected the architecture present on the CWU campus.

The approach of architectural historians in the field of CRM often stresses the importance of studying and assessing the built environment (King 2011), though such tasks can vary from historian to historian. Kathryn Kuranda, a CRM architectural historian, notes that much of what is done in CRM is rooted in historic preservation laws and regulations, which are upheld by the implementation of standards provided by government agencies. These standards offer CRM-specific approaches to uncover and interpret the meaning and significance of the built environment in a way that “bridges theory, regulation, and real property” (King 2011, 13). In this way, Bonta’s theoretical analysis of form and function can be embraced by standard CRM practice. Indeed, this thesis approaches the inventory and analysis of CWU’s campus buildings from a CRM perspective and for CRM purposes.

The development of an historical context to interpret the development of a campus from an historical perspective requires extensive historical and archival research. Such research was conducted by Drs. Karen Blair and Samuel R. Mohler, emeritus history professors of CWU who taught during different eras of CWU’s history. Each sifted through mountains of information about the school in order to offer interpretations of the school’s history. In 1967, Mohler published *The First Seventy-Five Years*, providing information on the origins of the institution, as well as discussions on student life, departments, school presidents, the influences of peace and war on the school’s activities, achievements of prominent professors, and campus expansion during the first 75 years of the institution’s existence (i.e. 1891 - 1966). Mohler’s work focuses on the institution rather than on the campus buildings, so references to construction and demolition of campus buildings provide little to no information about the intentions behind
design choices affecting the campus; however, much is gleaned from historical context of the changing institution in relation to the campus buildings. This study not only references Mohler’s interpretations of CWU’s historical context for the first seventy-five years, it also seeks to generate an equally useful historical context for “the next fifty years.”

In 2008, Dr. Karen Blair contributed historical research for another comprehensive CWU history, *By Teaching We Learn* (Bach and Blair). Like Mohler, Blair’s approach to CWU’s history was to arrange a chronological narrative of the institution into categories, such as sports and school leadership. Blair’s narrative, although less historically detailed, is temporally further-reaching than Mohler’s narrative (i.e. 1891 - 2008) and discusses additional topics such as civic engagement, campus community, and the relationship of the school with the Ellensburg community. Also like Mohler, Blair excludes reference to changes in architectural styles that resulted from the historical changes she discusses in her narrative. Rather than grouping historical narratives by topic, this study uses a continuous, chronological historical narrative to highlight the impacts of certain historical events, circumstances, and trends on CWU’s building material, style, placement, function, alterations, etc. This study attempts to bridge the gap between the historical context of the campus, upon which Blair and Mohler reflect, and the architectural data of the CWU campus inventory.

Christian Norberg-Schultz, a social geographer interested in the interrelationship of the built environment with history, uses an abstract theoretical approach to uncover meaning in architecture, relying on a subjective analysis of the integral parts of a building, including the context in which it functions (1975). A built environment, Norberg-Schultz affirms, has the character of a cultural tradition by virtue of being a place where people experience the meaningful events of their existence. In this way, the components of a place (i.e. its character)
are considered holistically in terms of its physical, social, and cultural aspects. In other words, architecture is a symbol system that expresses characteristics and spatial relations of the total human-environment interactive relationship. Norberg-Schultz suggests that the significance of a place lies in how this human-environment interaction is expressed in components of the built environment, such as the architecture. This theoretical framework is consistent with both national legal perspective of cultural resources (i.e. NHPA 1966) and Bonta’s perspective as an architect because Norberg-Schultz insists that a building’s many parts are open to interpretation in a manner that reveals its history and cultural influences. However, this theoretical approach may be too abstract to apply to the interpretation of CWU’s architecture because it is not easily repeatable.

Since this thesis attempts to understand CWU’s architecture through the reconstruction of its history, the social geographic theory of Spiro Kostof is relevant. Kostof turns to the non-physical form of the built environment for interpretive guidance (1985), considering the identity of a building’s patrons, as well as the financial circumstances and motivations surrounding a building’s construction, the identity and careers of the architects, and the provenance and types of materials used. Each are considered components of a broader framework of history in which a particular building was built. This social geographic theory is similar to that of Norberg-Schultz in that it reconstructs the history of a given building based on the physical clues present in a given building’s architecture. Architecture, Kostof asserts, is a social act, both in purpose and in method, because it is created by, and serves, a particular group of people (1985). Therefore, every building is a social artifact, and it is the duty of the architectural historian to reveal the nature of those artifacts as they constitute part of a community’s heritage. Because each building on CWU campus was created to serve a particular group of people with particular needs,
expectations, and stylistic preferences, this thesis aims to record CWU campus architecture as a product of such social factors. Through the integration of socio-geographical and CRM approaches, architectural components of the CWU campus can be recorded, analyzed, and interpreted, and their historical and architectural significances identified.

To date, the CRM approach taken by Facilities in the management of its built environment has included the use of the Historic Property Inventory (HPI) form, an important part of GEO 05-05 and SEPA compliance that requires documentation of a building’s exterior physical appearance and its historical and architectural significance as determined by the meaningful information about our shared past that the building provides and/or represents by means of its association with particular events, people, and cultural trends that have significantly influenced history (NPS 2013). Since it is the goal of this thesis to inventory and evaluate CWU’s buildings for CRM purposes, HPI forms will be used as a tool for collecting important architectural and historical information for each building.

Previous CRM investigations of the CWU campus have been conducted (Lentz 1999; Orvald and Scott 2008; McClean, Schroeder, and Scott 2010; Schroeder, McClean, and Vaughn 2010; Schroeder, Nauer, and Scott 2008; Vaughn and Scott 2010; Vaughn, Steinkraus, and Scott 2012). The investigation undertaken by William D. Schroeder, a graduate student of the CWU Resource Management Program, resulted in the creation of a working model for Facilities’ CRM plan. Until the time of Schroeder’s thesis (2010), an informal CRMP for the school existed. In Schroeder’s thesis, eight archaeological sites on the CWU campus were assessed for their cultural significance, using common U.S. CRM guidelines and practices in compliance with GEO 05-05, and one historic building was identified and recommended for NRHP eligibility evaluation (2010, 6). Based on the results of Schroeder’s study (that nearly all CWU capital
construction projects impact significant culturally significant sites), Schroeder recommended that a thorough assessment of CWU campus buildings be conducted, specifically of historic properties (defined as 50 years old or older by State Certified Local Government [Honegger 2002]), or buildings soon to become historic (Schroeder 2010, 133). This thesis aims to meet those needs in two parts; first, by identifying significant historic buildings and evaluating them for eligibility to be nominated to the NRHP, and second, by generating a broad historical context for the entire history of the campus between 1893 and 2015 in order to serve as a research resource for future evaluations of CWU’s buildings as they reach historic age.

Past efforts to nominate CWU campus buildings to the NRHP include a successful nomination of Barge Hall in 1974 (Central Washington State College 1977) and an un-submitted (to-date) collection of historical information on: Shaw-Smyser Hall, McConnell Auditorium, Lind Hall, Hebeler Hall, the Old Heating Plant, Sue Lombard Hall, Kamola Hall, Munson Hall, and the Samuelson Union Building (Lentz 1999). The information on these buildings is an unpublished collection of reports written by CWU graduate students in 1999 under the guidance of Dr. Florence Lentz, who was at the time an historic preservation professor at CWU and a principal investigator at an Ellensburg-based CRM consulting firm. The reports of Lentz’s students are historical investigations intended to be used for the completion of HPI forms (under the “Statement of Significance” sections) to nominate said buildings together as an historic district to the NRHP. These reports, although never submitted to the Washington State Department of Archaeology and Historical Places (DAHP), are currently used as reference materials by Facilities during campus planning. Thus, there is a need to make this information, as well as other historical and architectural information, available to Facilities and to DAHP in the HPI format. In the course of this thesis, if it is found that a number of buildings collectively
qualify for eligibility to be nominated to the NRHP as an historic district, then it will be recommended that such buildings be nominated as such.

In 2007, CWU applied to the Getty Foundation for grant money to satisfy the need for a complete survey of the built environment of CWU’s campus. The Getty Foundation grant temporarily supported the nation-wide effort to record and preserve campus buildings as part of a national Campus Heritage Initiative that was implemented between 2002 and 2007 (J. Paul Getty Trust 2014). Through it, $13.5 million were awarded to 86 colleges and universities across the United States to assist with the management and preservation of campuses’ significant historic buildings, sites, and landscapes (J. Paul Getty Trust 2014). Efforts focused on survey and research of historic campus buildings, and the preparation of detailed conservation and preservation master plans for the colleges and universities completing the surveys. Miami University of Oxford, Ohio, for example, systematically inventoried its buildings and created a public archive of its landscapes and architecture (J. Paul Getty Trust 2014). The University of Texas at Austin generated an interpretive campus history in addition to a cultural resource and landscape inventory (J. Paul Getty Trust 2014). Moravian College of Pennsylvania evaluated its campus development patterns and the evolution of its historic properties as part of a greater need to integrate historic preservation into its master plan. Unfortunately, CWU was not a recipient of Campus Heritage Initiative funds. However, the desire of CWU to complete such an undertaking demonstrates a clear need for a CRM survey of the CWU campus. This thesis integrates several approaches utilized by the Getty Grant recipients to research and survey CWU’s campus buildings for use in Facilities’ CMP.
Campus Heritage Plans for U.S. Institutions of Higher Education

A methodology that considers, and is consistent with, cultural resource management law and architectural history standards as they pertain to campus management and planning is central to this thesis. The following U.S. campus heritage preservation plans were chosen for review because they address the identification, survey, documentation, and assessment of U.S. campus buildings in the context of campus planning and development. Although not pursued in this thesis, there are a number of historical components of the CWU campus landscape that require heritage resource management consideration (e.g. walkways, streetscapes, heritage trees dedicated annually by graduating classes, etc.). Campus landscape preservation plans are also reviewed here to demonstrate how such information could be collected and used by CWU in the future as part of the CMP.

The methodologies of the following studies are pragmatic. Each study focuses its research on the natural and/or cultural resources present in each respective area of study, and each surveys and documents said resources to generate a flexible and useable architectural history context. In many cases, this architectural history is used to generate an Historic or Heritage Preservation Plan to be incorporated into an existing or evolving Campus Master Plan for resource management and historic preservation purposes. The unique setting and circumstances of each study influence the techniques employed; each study follows a variation or combination of techniques of a common methodology. Many use the methodologies set forth by the United States Secretary of the Interior standards for historic architecture, landscape preservation, and/or determination of eligibility for nomination to the National Register of Historic Places. The simplicity of the methods and guidelines intentionally allows for the adaptation of the method through technique, according to available finances, access to experts and professional
consultants, time, amount and type of heritage resources, and the vision, mission, and goals of
the institution employing the method.

Lake Forest College Historic Preservation Campus Master Plan

Between 2004 and 2006, Lake Forest College created an Historic Preservation Campus
Master Plan to address concerns about preserving and restoring the historic character of three
campuses composing the physical facilities of the college. First, information was gathered about
the history of the campus architecture, landscaping, and planning. Second, a team of experts (an
historic certifier, college archivist, and several interested students) was completed detailed
interior and exterior visual surveys of the campus buildings to identify architectural elements that
both distinguished buildings from each other and contributed to an overall theme across all three
campuses. “Preservation design principles” (2006, 9) were drafted to guide future campus
development and to preserve existing attributes that contributed to the overall campus character,
including those that integrated all three campuses with the surrounding community, blended the
campus with the natural topography, contributed to the picturesque setting of the campuses, and
represented each stage of campus development. Third, an architectural firm surveyed the
buildings in great detail, focusing on the integrity of the architectural elements and the need for
physical restoration or rehabilitation. Fourth, landscape architects compared the planned
arrangement of buildings and vegetation with the current condition of the campus landscapes, as
well as with historic campus plans. Lastly, the Preservation Plan was integrated into the Campus
Master Plan.

U.S. Secretary of Interior standards for preservation, restoration, and reconstruction act as a
guideline for future preservation, restoration, and reconstruction decisions on the campuses, but
site-specific recommendations remain broad. The architectural and historical detail produced
During the surveys and research has created an in-depth reference for historians and campus planners, which is part of what this thesis aims to provide for CWU’s Facilities.

University of Arkansas Campus Preservation Master Plan

Between 2008 and 2009, the University of Arkansas collaborated with a team of professional architects, landscape architects, and historic preservation planners to create a comprehensive cultural resource report on the campus, its satellite Agricultural Research and Extension Center, and its sorority and fraternity houses (Lord, Aeck, and Sargent Architecture 2009). Historic buildings and landscapes, acknowledged as defining characteristics of the university, were inventoried and assessed for historical and architectural significance and eligibility for nomination to the National Register of Historic Places (NRHP). Secretary of Interior’s Standards for Preservation Planning (NPS 2002) were used as a framework for historical research; inventory and evaluation of the campus; planning recommendations concerning the campus properties; a treatment plan for the cultural resources identified on the University’s properties; suggestions for how to interpret the survey and implement the plan; a method to incorporate the plan into regular maintenance performance; and nomination of an area of campus to the NRHP.

This thesis similarly employs Secretary of Interior Standards for historical research, inventory, and evaluation of CWU properties, excluding landscapes, for NRHP eligibility. Because landscapes are an important aspect of campus heritage and are worthy of study and consideration in campus planning, a future landscape survey of the CWU campus would be beneficial. For this purpose, CWU could use the methodology employed by the University of Arkansas as a model. The University of Arkansas assembled a team of landscape and architect consultants to conduct extensive background research to establish a chronology of campus landscape development. This was used to identify “patterns or trends in history by which a
specific occurrence, property, or site [was] understood, and its meaning (and ultimately its significance) within history [was] made” (Lord, Aeck, and Sargent Architecture 2009, 33). Historic contextual information was combined with data from condition reports and architectural surveys to determine the current significance and condition of each property. Survey data was gathered for buildings forty years old or older, possessing integrity of original appearance, and this information was integrated with landscape data for the topography, soils, vegetation, hydrology, spatial relationships, land use, and hardscape features of the campus landscapes (Lord, Aeck, and Sargent Architecture 2009, 35). All information was compiled into a “Catalog of Resources” for future use by the school, and properties were evaluated for NRHP eligibility using Secretary of the Interior criteria.

Rocky Mountain College Campus Heritage Preservation Plan

Rocky Mountain College worked collaboratively with a consulting team of architects, landscape architects, an arborist, structural engineer, mechanical engineer, electrical engineer, hazardous materials testing firm, professional photographer, virtual tour designer, and research assistants to create a preservation plan for the management of cultural and natural resources composing its campus (Rocky Mountain College 2009). Historical research was conducted to establish an historical context of campus development and to identify cultural trends, events and circumstances that affected, influenced, or could explain each phase of campus development. Field surveys were conducted for the college’s landscape features and buildings in order to determine the current condition of the resources. The survey consisted of measuring and creating floor plan drawings of each of the historic buildings, and the interior and exterior details were photographed professionally. The survey also included research and documentation of architectural statistics, such as building use, building codes, and existing descriptions of the
buildings. Campus landscaping was also surveyed, and a database was generated for the location, size, species, and age of all trees that contribute character to the campus. Preservation techniques were included, such as digitizing historic documents and photographs, creating a registry of all campus drawings, and curating historic documents for archival storage.

For the natural setting of the campus, an assessment was made of tree health and environmental impacts to trees. This was incorporated into the landscaping database in the form of water allotment needs and individual tree health. Recommendations were made for pest control, pruning, and whether trees should be removed, replaced, or included in the preservation plan. Architectural condition reports for the historic buildings were reviewed and recommendations were made for improvements to the interior and exterior features. Assessments were made of the safety, electrical and mechanical components, and structural settling, movement, and possible failure of portions of each building. Recommendations to enhance historical character while maintaining up-to-code functioning were made to the college. CWU has an existing Campus Tree Plan and a Buildings Conditions Report that could be incorporated into a comprehensive Campus Heritage Preservation Plan with the information collected for this thesis on CWU’s built environment.

University of Maine Historic Preservation Master Plan

The University of Maine, facing a pressing need in 2002 to accommodate the growth of the student body by constructing more buildings, conducted an architectural survey of its historic buildings to address concerns about potential impacts to historic resources during campus development (SMRT Architects Engineers Planners et al. 2007). Growing support of historic preservation theory from the campus community led to the request for an Historic Preservation Master Plan that could provide guidelines for the preservation and protection of the historic
components of campus while planning and developing to meet current and future needs and preferences. As a physical representation of the university’s heritage, the campus decidedly contributed to a broad sense of campus community and historical continuity, worthy of preservation.

Historic resources were identified by means of inventorying the campus architecture and landscaping, researching the history of each, and creating an historic context for each in order to determine which were historically significant, eligible to the National Register of Historic Places (NRHP), and/or contributing to an existing historic district on the NRHP. An historic context was generated through a discussion of the national, state, and local events leading to the establishment of the university, and a description of phases of historic campus planning, shifts in the curriculum, changing student body demographics, and docent expectations that contributed to the current placement and arrangement of certain buildings. Three distinct phases of campus planning in the school’s history were identified and documented with historical narratives. Each phase was used to establish a framework, by which historical significance of resources was ranked using a tier system. The first tier consisted of all buildings already on the NRHP. The second tier was composed of buildings likely to be eligible to the NRHP. And the third tier was made up of buildings whose integrity was compromised or less historically significant than the top two tiers.

An assessment was made of the conditions of the buildings, structures, and landscapes, leading to specific guidelines for the treatment, use or reuse, and design of existing and future buildings or landscapes on campus. This included a detailed breakdown of the materials to be used, the maintenance schedule of campus resources, and even integration of Leadership in Energy and Environmental Design standards. Recommendations were made to nominate
qualifying resources to the NRHP, and recommendations were made to the college for resource protection by means of procedural implementation and the increase of public awareness through education. This thesis encompasses only historical research, and building inventory and evaluation for NRHP eligibility; however, CWU Facilities would also benefit from integrating this information with its existing Buildings Conditions Report, as the University of Maine has done, into a greater Campus Heritage Management Plan in order to further develop its treatment plan for the campus buildings.

University of North Carolina Campus Master Plan

In 2001, the University of North Carolina implemented a Campus Master Plan for the purpose of directing campus planning during future development (University of North Carolina, 2008). Several addenda were devised over the next decade, including an Historic Landscape Framework Plan (Landscape Plan) in 2008. The Landscape Plan documented and assessed the integrity and significance of five historic landscapes that had developed on the campus over the span of five main phases of campus growth. Recommendations were made on how to preserve and reintegrate the historic components of the campus landscape into a unified campus plan.

A consulting team, composed of a horticulturalist, professional landscape architect, cultural historical landscape expert, social scientist, and arborculturalist developed the Landscape Plan. Work sessions were organized between the consulting team and the university to develop a method for documenting, analyzing, and interpreting the evolution of the campus over distinct periods of campus growth; for protecting cultural, natural, and scenic values during campus planning processes; for maintaining unique historic components of the campus while integrating them into an overall campus plan; and for accommodating the needs of civic and school
activities while preserving historic and natural features. These underlying values acted as guides to the overall methodology.

Analyses established natural and historical significance of each area, using natural, cultural, and scenic perspectives, and integrated them into the Campus Master Plan according to shared value systems inherent to each significant area. Each natural, cultural, and scenic perspective addressed specific concerns about the documentation and enhancement of the historically significant and/or unique aspects of each area, and considered campus planning and heritage preservation tools to be used to preserve unique, site-specific qualities in each area and to create a sense of campus cohesion.

The National Park Service’s Guide to Cultural Landscape Reports (NPS 1998) was used to compile reports for each area, including a site history, existing site conditions, site analyses and evaluations, a site treatment plan, and a record of site treatment. The results of this method cumulated in the completion of a Landscape Plan that was successfully integrated into the University of North Carolina’s Campus Master Plan as a “catalyst for sensitive change” (University of North Carolina 2008, 133). Given the success of this methodology, it is probable that its use on the CWU campus would provide equal benefit to CWU.

University of Cincinnati Campus Heritage Plan

The need of the University of Cincinnati to adequately plan for future campus development inspired the creation of a campus plan that would allow for an understanding and appreciation of the heritage resources of the campus (University of Cincinnati 2008). The plan included the inventory and analysis of the campus’ buildings and open spaces, consideration of possible impacts to said structures and landscapes due to future campus development, and options, such

44
as razing, complete reconstruction, restoration, and rehabilitation of buildings, to maintain campus heritage during phases of growth.

The plan was organized into four main parts, each addressing an important aspect of the campus’ heritage to be considered during campus planning. First, in order to establish current significance of campus buildings and landscapes, historical research was conducted to identify prominent periods of campus development in the university’s history and to analyze them within the context of national campus planning movements. Next, specific buildings and landscape features were selected for in-depth analysis to determine possible future historical significance to the university and/or the United States in regards to design. Landscape features and buildings that were identified as cultural resources were, thirdly, reexamined to identify possible threats to their preservation. The significance and condition of each campus resource was reiterated, combining architectural description and analysis with historical research. Recommendations were made to address any treatment concerns related to perceived future maintenance issues, repurposing needs, changes in style appreciation, and current and future management plans that can tend to “character-defining features” (University of Cincinnati 2008, 15). Then guidelines were created to address the treatment and management of the campus’ cultural resources in order to protect threatened significant design values and principles; however, no specific actions were prescribed because the plan was meant to be flexible enough to accommodate future changes to the needs and preferences of the university.

The results of applying these methods, which are based on general heritage preservation guidelines set forth by the Secretary of Interior (University of Cincinnati 2008, 16), show promise for application to the CWU campus. Following the methodology of the University of Cincinnati, this thesis provides a complete inventory of the university’s campus built
environment, which would be most helpful to CWU Facilities if it were combined with a survey of CWU’s landscaped architecture, an expansion of the contextual historical narrative created by this thesis to encompass the underlying philosophies of campus planning since the school’s inception, and a clearer definition of the university’s physical identity, a treatment plan for campus cultural resources, a guideline for proper care of existing campus buildings with respect to heritage- and character-defining elements and new stylistic and utilitarian expectations.

Implementation of Common Methodologies

The field of architectural history employs a common methodology, whether produced in the context of multi-city architectural histories or campus heritage plans and cultural resource management narratives. Techniques common to the methodology include the collection of historical information from archival and historical documents, maps, drawings, and photographs for compilation into a chronologically arranged historical narrative about the area under study. Often, architectural data is collected, either through field survey, architectural research, or architect consultation. Typically, the collected information is used to establish historical or architectural significance, which is then used to determine the need for conservation or preservation practices as part of a larger planning process.

In the context of managing historic properties (built or natural), university and college campuses represent a unique resource. The methods, techniques, and underlying theoretical constructs commonly employed in cultural resource management for the inventory and analysis of built and natural environments such as campuses is typically based on the U.S. Secretary of Interior Standards for National Register of Historic Places and Districts eligibility. However, there is a wide array of campus historical contexts, university or college needs and goals, local and state laws, and circumstances that lead to the need or want for a campus heritage or historic
preservation plan. Thus, the unique combination of these factors necessitates the development and implementation of an equally unique methodological plan for each respective campus. As such, the general techniques of the architectural history methodology are applied in this thesis to the inventory and evaluation of the CWU campus.
CHAPTER V

METHODS

The Secretary of the Interior’s Standards and Guidelines for Identification (48 FR 44716) require that an objective-specific research design drive the identification activities of a survey project, using a search procedure whose methodology, techniques, and level of detail are consistent with the needs of the managerial entity that will use the collected information for making important decisions about the surveyed resources. Research objectives can include identifying how many properties are classifiable under a particular architectural type or are associated with certain historical events, or gathering information to determine the eligibility of properties for nomination to the NRHP. Acceptable identification activities under the Standards and Guidelines for Identification include, *inter alia*, research, field survey, interviews, and property evaluations.

Facilities, which is charged with the task of planning the development and conservation of CWU’s campus facilities, has expressed a need for highly detailed physical descriptions, NRHP eligibility evaluations, and an historical narrative to contextualize each building that is under the control of Facilities in Ellensburg. These needs are based on Facilities’ responsibility to make important managerial decisions about CWU’s properties. The objective of this thesis, therefore, was to gather information to determine which properties on the CWU campus are historically and/or architecturally significant, using techniques developed by the Secretary of the Interior for Evaluation (48 FR 44716) at an intensive level. To achieve this objective, the methodology included extensive archival and historical research, the creation of an historical context for the campus’ development between the 1893 (the beginning of construction of the first campus building) and 2015, intensive field survey of CWU’s owned and leased properties within
Ellensburg, and the use of the Secretary of the Interior’s Standards for Evaluation (48 FR 44716) to determine eligibility of properties for nomination to the NRHP.

Research

Extensive historical and archival research included the use of historical reference books, online resources (including electronically scanned primary documents, recorded oral interviews, etc.), and archival maps, reports, architectural drawings, and photographs from the permanent collections of the Ellensburg Public Library, Kittitas County Historical Museum, Dr. James E. Brooks Library, and Dr. Ellen Avitts (CWU, Art Department) to establish a chronology of CWU’s campus development within the context of certain historical events, circumstances, and trends on a national, state, and local level. Other consulted materials included architectural drawings accessed at Facilities’ Archives and Dr. James E. Brooks Library Archives and Special Collections, other archival materials at the Dr. James E. Brooks Library Archives and Special Collections, Kittitas County Historical Museum, my personal collection, and electronic documents from various online sources.

Historical events, circumstances, and trends that impacted the development of the CWU campus were typically economic, ideological, and stylistic, so research drew upon related history. Historical research began with the Washington State Session Laws between 1889 (the first year of Washington statehood) and 2014 (the last full year of session laws published at the time of this writing). State actions relating to CWU in the Session Laws (e.g. the number and type of buildings financially supported, changes of name, etc.) were examined for broader economic and political context, including national and local economic depressions or booms and political and/or cultural circumstances contributing to such historical climates (e.g.
administrative policy toward education, population surges or education reform as a result of war efforts, etc.).

Archival research was less structured for the reason that a structured approach was not possible. Initially, I had planned archival research to focus on particular buildings and specific people associated with those buildings, during specific time periods; however, not all buildings, nor people affiliated with CWU, have archival materials readily and publically accessible, and, of those that do, archival materials typically represent sporadic ranges of time in the form of random correspondence, budget information, newspaper articles, maps, etc. Also, the information contained in the available materials did not always correspond with local or national events that were significant to the people and buildings of campus. Significant information drawn from archival resources, including personnel information, facts from school correspondence between various individuals and organizations, historic photographs, architectural conceptual drawings and reports, and maps, was compiled into folders by building association. Sources of information were carefully recorded in the bibliography of this thesis in order for future researchers to be able to easily locate and verify the information used for this thesis from primary sources. Collected information is available electronically in Facilities’ digital archives in folders labeled by building name. This thesis, in its entirety, is electronically available on ScholarWorks through the Dr. James E. Brooks Library website.

National architectural trends were researched by consulting various architectural guides and books on architectural history in Europe and the United States between the eleventh century (when monastic universities began to surface in Europe) and the present, focusing primarily on the late nineteenth to early twenty-first centuries. Research also focused on the philosophical and architectural development of institutions of higher education, including normal schools, in the
United States between the early colonial American period (circa 16th century) and the present (2015). National (and sometimes international) architectural trends were compared with college and university campus architectural trends, as well as with the architectural information collected during CWU campus building surveys.

By combining CWU-specific information with historical and architectural information about national, state, and local events, circumstances, and trends, a contextual historical narrative for the development of the CWU campus was generated, providing a greater understanding of the presence of specific CWU properties, as well as their position, construction materials, function, and appearance.

Survey

Prior to the field survey of any given CWU property, I visited the archives of Facilities to examine conceptual, as-built, and addition or alteration architectural drawings. Upon my request, digital copies of drawings were provided to me, which I chose for their clarity in depicting the floor plan, elevations, cross sections, and special details of the building. Drawings, as well as historic photographs from the Dr. James E. Brooks Library, were used as comparative reference materials during and after field survey to determine the original appearance of the building, and to identify any changes made to the building over time and to what extent those changes impacted the character and/or integrity of the building.

According to the Secretary of the Interior’s Standards and Guidelines for Identification (48 FR 44716), an intensive survey typically defines the survey area boundaries, documents property types and estimated extent of survey coverage, records locational information for each property, and documents information on the appearance and integrity of the building. In accordance with these standards, the survey boundaries were clearly defined in Chapter One of this thesis. All 184
CWU-owned and –leased properties (as of May, 2015) were recorded, representing a nearly 100% survey coverage of the school’s built environment under the control of Facilities. Each property was photographed to demonstrate architectural style and setting. Also for each property, locational information, architectural style types, and extensive exterior architectural descriptions were recorded and are presented in Chapter Eight of this thesis. The architectural descriptions systematically followed the guidelines set forth by DAHP (1977).

When I encountered characteristics about a building that raised questions as to its structural integrity, I contacted Facilities personnel with the inquiry and I was provided an affirmative or negative confirmation as to the physical integrity of the building. This only occurred with two buildings, Shaw-Smyser (in regards to a diagonal fracture across the archway of the west face) and the Old Samuelson Union Building (in regards to fire damage [Steinhart, Theriault and Associates Architects 1976]). Shaw-Smyser Hall is structurally sound. A portion of the Old Samuelson Union Building is not.

Evaluation

Once inventoried, the physical descriptions for each building were considered within the historical and architectural contexts generated for this thesis. Properties that were identified as historic (i.e. at least fifty years old) were evaluated for integrity. A property was determined to have integrity if it continued to represent the historical context in which it was originally built. Integrity was determined to be lost if additions, remodels, renovations, restorations, damage, compromises to structural integrity, and/or other changes to the original character, feel, setting, location, materials, and design subtracted substantially from the original historical context of the property.

Historic properties that retained integrity were evaluated for significance based on the
Secretary of the Interior’s Standards for Evaluation (48 FR 44716). Because many preservation goals are centered on NRHP eligibility, the NRHP criteria for eligibility are used widely to satisfy Federal, State, and local inventory standards. Because the inventory of CWU properties generated for this thesis is intended to serve the cultural resource management needs of Facilities, the NRHP criteria were employed for the evaluation of all historical CWU properties that possess integrity.

Each historic property possessing integrity was evaluated within its historical context in order to determine whether it represented, was associated with, or significantly contributed to events or broad patterns of history (i.e. “Criterion A”). Next, each property was evaluated within its historical context to identify whether it was associated with persons significant in national, Washington State, Ellensburg, or CWU history (i.e. “Criterion B”). Each property was also evaluated to determine whether it embodied architectural characteristics distinctive of a particular period in history, type of architectural style, method of construction, or the work of a master architect; and/or if it possessed high artistic values (i.e. “Criterion C”). Finally, each property was assessed to determine if it yielded, or was likely to yield, any information important to history.

Any historic property both possessing integrity and meeting at least one of the four criteria mentioned above (A through D) were identified as “significant.”
CHAPTER VI

HISTORICAL CONTEXT

Following the Spanish-American War of 1898, the nation as a whole experienced an economic upturn, population boom, and increase in technological innovation. As federal policy up to the closing of the frontier in the 1890s had been to encourage settlement and national development, such things as railroads and canals were federally funded as a means of catalyzing agricultural growth (Key 1996). The Kittitas Valley benefitted greatly from the installment of major irrigation canals at the turn of the 20th century. This, with the implementation of new agricultural equipment (Owen 2009), increased the success of agriculture in the Kittitas Valley, drawing in more people to the area. In 1901, the State Legislature approved money to expand the campus northward, doubling the original size of the campus by 1904.

Washington State as a whole experienced a financial strain in the first decade of the 20th century as a result of mismanaged funds by the State Legislature, and serious consideration was given to terminating all three State Normal Schools (Mohler 1967), which were state-funded. But the Normal School in Ellensburg affirmed its position as sufficiently meeting the growing demand for teachers in Washington State, and called for a correction of the financial management of the Legislature, rather than the sacrifice of the Ellensburg Normal School (Mohler 1967). This act exemplified the climate of the Progressive Era in the United States at the time, which encouraged public activism against government corruption. It is unclear how strongly this resolve on the part of the Ellensburg Normal School contributed to its continued existence, but, in 1907 a heating plant began construction, and in 1908, a Manual Training Building (later named “Edison Hall”) was constructed northeast of what is now Barge Hall. Progressive ideology also supported the “scientific” methods and the professionalization of
education and other fields of study (Fitzgerald 2001), which led to a portion of the school’s first heating plant being used as scientific and industrial arts laboratories (the heating plant was eventually remodeled to be the “Science Hall” in 1914 [Figure 6.1], and was converted into an “Industrial Arts Building in 1917 when a new heating plant was built across the street [WSNS 1916]).

Figure 6.1. The school’s first steam heating plant, built in 1907 and remodeled in 1914, served as the “Science Hall,” and was converted into the “Industrial Arts Building” in 1917. Though the smoke stack was present when the photograph was taken, it was removed from the photograph. This building is no longer standing. (WSNS 1916).
Furthering the efforts of national development, and growing the Ellensburg community once more, the Chicago, Milwaukee, St. Paul, and Pacific electric railroad was constructed in 1908 through what is presently the northern portion of campus (American Geographical Society 1911). The depot of this railroad was located just south of the portion of the Grand View Addition originally plotted for the school campus, near what is now the northeastern peripheral of the CWU campus. The depot was one of the arrival points for many non-local Normal School students, and the line brought supplies to the rural schools of the upper Kittitas County where Normal School alumnae/alumni were regularly employed. The Northern Pacific Railroad, located at the west end of Third Avenue in downtown Ellensburg, served a similar purpose for students and alumnae/alumni south of Ellensburg.

Between 1911 and 1920, the Kittitas Reclamation District constructed the High Line Canal, increasing irrigation, and thus production, of Kittitas Valley agriculture (Yakima-Kittitas Resource Conservation and Development Project 1974), and the economy of the valley surged. The population once again increased in the valley, and there simultaneously developed a state “plan to greatly expand advanced educational opportunities for the ‘masses’” (Owen 2009, 20), an extension of the Progressive Era ideology popular between the 1890s and 1930s. This translated to a greater demand for trained teachers from the Washington State Normal Schools.

By the beginning of the second decade of the 20th century, housing for students had to be found off-campus, but the high cost of such accommodations apparently discouraged the enrollment of many prospective students (Mohler 1967, 55). So, to make the Normal School in Ellensburg more appealing to students, the school requested and received state grant funds in 1911 to expand the campus eastward and to construct the first campus dormitory (officially
named “Kamola Hall” in 1917) (Eberhart and Storlie 1976). The same funding also allowed for an addition to the dormitory in 1913 (Eberhart and Storlie 1976).

Appeal by the Normal School student body to the Washington State Legislature in 1916 led to the establishment of a county-specific mill tax that would generate individual funding for each Washington State Normal School (Preston 1917), thus securing greater financial stability for all the Normal Schools henceforth (Mohler 1967). As money was being raised to build more dormitory space, student enrollment continued to rise, so the Ellensburg Normal School had to exercise creativity in order to affordably accommodate students (Mohler 1967). First, with the cooperation of local residents, a temporary plan was implemented that leased out rooms to students at a low rate in nearby private Ellensburg residences.

The entry of the United States into World War I had only positive impacts on the school, for the demand for teachers dramatically increased in 1917 and, in line with the new school president’s vision, many opportunities were taken advantage of to strengthen the school’s relationship with the community. This effort included “community sings” at Barge Hall, volunteer training for a local home guard company, community-open courses focused on “‘work for civilian relief, public information, food conservation, war-time thrift, surgical dressings, food production through war gardens, [and] industrial service for women,’” and the conversion of a portion of campus to grow potato crops (Mohler 1967, 124). Also in 1917, the Ellensburg School District No. 3 entered an agreement with the Normal School to use the Manual Training building as a free ward school for the community, renaming the building “Edison School” (Mohler 1967). During 1917, a new heating plant was constructed on the south side of Eighth Avenue to replace the one on the main campus.
By 1919, a final addition was made to Kamola Hall that, according to an undated architectural drawing (Malmgren n.d.) was designed to face 8th Avenue and to be centered to face the intersection with Sampson Street, which connected the campus to the downtown area of Ellensburg. Next, a more permanent solution to the housing problem was sought. Building on the campus ceased for several years while the school poured its resources into accommodating rural education per state expectations that all three Normal Schools invest in agricultural and industrial/mechanical arts training (Owen 2009). An agricultural and mechanical focus for education was strongly encouraged of all schools in the western states as early as the 1860s; the Morrill Act provided federal funding to establish or supplement agricultural colleges and universities (Washington State University in Pullman was one such agricultural land-grant college) in order to foster economic growth in the West by means of agricultural production (Key 1996). The Ellensburg Normal School made plans to expand its campus south and east for the purpose of teaching agriculture, but, instead, sent student teachers to learn agricultural practices by living and gaining practical experience in rural communities (Mohler 1967). The expense of the long distance aspects of the program, however, inspired the school to restrict the program to the Yakima and Kittitas Valleys (Mohler 1967).

In 1925, the Washington State Legislature appropriated money for a Library (Smyser Hall) and passed House Bill 252, which provided for the state colleges and Normal Schools an amortization plan for the construction of a dormitory, student activity building, etc., and for the purchase of land for such construction (Hinckle 1925). The school sold local bonds to pay for an amortization on two new dormitories (Mohler 1967), Sue Lombard Hall and the Men’s Dormitory (soon after named “Munson Hall”) by 1926, and began constructing a student association building the same year, which was finished in 1928.
When Sue Lombard and Munson Halls were constructed in 1926, they were made to face the relatively new Southern Division of the Sunset Highway, which connected with Eighth Avenue through Ellensburg just in front of the main entrance of Barge Hall and the 1919 addition to Kamola Hall. The road had only just become part of US 10 and US 97 in 1923, serving as the main route of traffic through central Washington State (until the construction of Interstates 90 and 82 in 1968 redirected the majority of traffic to the peripherals of Ellensburg).

The construction of the Main Canal through the valley between 1926 and 1929 again increased the success of agricultural business in the Kittitas Valley (DePuydt 1990). During this time, in 1928, the Ellensburg Normal School, retracted its rural training program to concentrate training at rural schools within the Kittitas Valley only. A year later, the Great Depression hit the nation, making it difficult for parents of school children to continue to fund the rural schoolhouses of the valley (Owen 2009). This, combined with the increased availability of transportation for rural children to tax-paid public schools, led to a severe decline of rural schools in the Kittitas Valley in the 1930s, and eventually led to a change in the focus of the Normal School’s curriculum and training program (Owen 2009).

In 1927, plans were developed to construct a building the length of a city block in piecemeal to the north, west, and east of Barge Hall. The plan would expand the existing library (Smyser Hall) northward into what would be the “west wing” of the proposed block-long building; an auditorium was to make up the east wing; and administrative offices would be built just north of Barge Hall to connect the east and west wings (Mohler 1967). Actualization of the plan began in 1929 when the Washington State Legislature appropriated money for the construction of an addition to the library (Shaw Hall [Maloney 1929]). Soon after, the effects of the Great Depression reached Washington State. The east face of the Shaw Hall addition to Smyser
Library was left unfinished in anticipation of eventually connecting to the rest of the proposed city block-long building. The east face of Shaw Memorial Hall was reportedly “left unfinished, with the steel reinforcing rods projecting from two to six feet outward . . . ” between 1929 and 1958 (Mohler 1967, 146) and architectural drawings confirm this (Maloney 1957).

As was initially proposed for the east wing of the block-long building in 1927, an auditorium (now called McConnell Hall) was constructed just east of Barge Hall in 1935. The hiatus between the construction of Shaw-Smyser Hall and McConnell Auditorium was no doubt a result of the Great Depression. According to Mohler (1967), the Washington State Legislature would not agree to appropriate funds for any more construction projects on campus unless the school acquired federal funding as well. President Robert E. McConnell therefore applied for federal grant money to finance the construction of a combined auditorium and arts and science building equal to 45% of the cost of construction. The grant was issued under the Emergency Relief Appropriation Act of 1935 (CWUA 1935) through the Public Works Administration of President Roosevelt’s “New Deal.” The legislature then approved funding for the construction of the auditorium. The plan to connect the auditorium to Shaw-Smyser Hall with an administrative building north of Barge Hall, however, never came to fruition and was officially removed from the campus plan in 1957 (the east face of Shaw Memorial Hall’s north wing was finally finished in 1958 after this decision [Maloney 1957]).

Dr. Robert E. McConnell, after whom the auditorium building is named, contributed greatly to the physical growth and professional development of the school during his presidency between 1931 and 1959. With a background in psychology and school administration, as well as teaching, McConnell accepted the position of president at the Normal School in Ellensburg because he recognized the great potential for growth at the school (Mohler 1967, 152). He made
it his goal to “lengthen the program so as to grant academic degrees” (Mohler 1967, 152), to advance the educational background of the faculty, to add buildings to the campus, and to reorganize the curriculum.

According to Ogren (2003), many Normal Schools across the United States were simultaneously seeking to “gain prestige” (p. 641) by granting bachelor’s degrees and changing their titles from “Normal Schools” to “Teacher Colleges” (pp.641-642). President McConnell requested a rating from the American Association of Teachers’ Colleges in order for the Ellensburg Normal School to achieve the right to confer degrees, as granted by a Washington State law in 1933 (Mohler 1967, 170-171). The school was granted the status (along with the other two Normal Schools of Washington State) in 1934, and by 1937, “ninety-two percent of the faculty had at least a master’s degree” (Mohler 1967, 171). Also in 1937, the Ellensburg Normal School was granted the authority to issue four-year degrees (Bach and Blair 2008) and was renamed Central Washington College of Education ([CWCE] Owen 2009, 19).

McConnell’s goal to increase the number of buildings on the campus was supplemented by the Emergency Relief Appropriation Act of 1935 (CWUA 1935). In addition to the combined industrial arts/science building and auditorium (now known as McConnell Hall), a new teacher training laboratory was built in 1937 adjacent to Edison Hall, replacing Edison Hall in function (Smith 1992, 36). Completed in 1939, the new training building was called the College Elementary School (C.E.S.) (Smith 1992, 36), and later became known as Hebeler Hall. According to Smith (1992), “[e]very member of the C.E.S. training department, as well as the Central Education faculty and staff, had some part in suggestions for the model structure” (p. 38) of the new training school. With this amount of involvement in the building’s design, the Normal School was able to create a training school that aligned with the accepted European model for
pedagogy at U.S. Normal Schools, including “a child-centered psychology that trust[s] the child’s intuitive powers based on experience and reason” (Fitzgerald 2001, 231). For instance, ten classroom suites were “designed in details to vary according to the age groups which would use it” (Smith 1992, 47), suited to serve as a Nursery, Kindergarten, and grades one through six. The school was “designed to offer a stimulating environment for cooperative living and learning. Administrative offices, a library, a 350 person auditorium, a museum, a dining room seating 100 children, a kitchen, a health suite and playrooms” (Smith 1992, 48).

In 1940, with the support of the Ellensburg Chamber of Commerce, President McConnell applied to the Federal Civil Aeronautics Authority for the school to host a Civilian Pilot Training unit (Mohler 1967, 195). In 1942, the school was informed that it was being considered as a training facility for Army Air Force cadets, so President Dr. Robert E. McConnell encouraged the school’s fulfillment of this role by writing to officials in Washington, D.C., officially offering accommodations for the cadets through housing and various physical and educational training (Mohler 1967, 197). In January of 1943, Central Washington College of Education was selected as an army training school (Mohler 1967, 197) until June of 1944 (p.202).

Money was appropriated to the College for the construction of a new science building by the 1941 Washington State Legislature; however, according to McConnell, with the onset of World War II, "the construction of the Science Building [was] held up do [sic] to the pressure of defense projects" (CWUA 1941). During the war, science professor Dr. Edmund Lind and President McConnell planned the construction of the science building (Mohler 1967, 332-333), which included a visit to three buildings in Washington and Oregon (among them, the chemistry building at the University of Washington) for ideas to incorporate into the design (CWUA 1941). Plans had to wait until 1945 (after the war) for the Washington State Legislature to appropriate
money for the construction of the building. It, along with a new heating plant (now known as the Old Heating Plant) were completed between 1946 and 1947 (CWUA 1948; Mohler 1967,209).

Most colleges, universities, and vocational schools in the United States experienced burgeoning enrollment numbers following WWII as a result of the Serviceman’s Readjustment Act of 1944 (i.e. the “G.I. Bill”), which provided veterans with money for vocational training and higher education, *inter alia* (The Ganzel Group Communications 2015; Nolo 2015; Ourdocuments.com 2013), catalyzing a burst of campus growth throughout the mid to late 1940s (CWSC 1968, 1973). Leading up to the end of the war, McConnell and the College Board of Trustees prepared for what was correctly anticipated to be a large influx of student enrollment by WWII veterans. In 1947, House Bill 131 granted all three Colleges of Education in Washington State the authority to issue the Master of Education degree (Reeves 1947). Around this time, McConnell secured funding for approximately fifty-six temporary housing units and an “Air Science” building (none of which remain extant), an addition to Munson Hall, a President’s House, and the acquisition of land north of the Chicago, Milwaukee, St. Paul, and Pacific Railroad, expanding the campus northward (Mohler 1967, 210-211). Next, a women’s dormitory named Kennedy Hall (now known as the International Center) was constructed on the newly acquired land holdings in 1948.

In 1950, McConnell supported a movement to honor those "who served their country and Central Washington College of Education," by constructing a “living war memorial” that would also serve the needs of the current students as a new student union building (CWUA 1950). McConnell consulted the blueprints of Washington State College’s Tomlinson Hall (CWUA 1950), and the building was completed by 1952 (this addition makes up the southwest corner of the current Old Samuelson Union Building). Known then as “the commons,” the building was
funded by bonds sold locally, which also funded the construction of Tunstall Commons (1950) and North Hall (1951).

With some restrictions on education benefits, the G.I. Bill was revived in 1952 following the Korean War (Department of Veteran Affairs 2010). Despite restrictions, another surge of enrollment occurred at the College. However, there was what Mohler (1967) describes as a relative “lull in building activity” at this time due to a lack of legislative funding (p.213), and the school had to restrict the growth of its physical facilities, resulting in only the construction of a College Book Store (now known as the Computer Center) northeast of the student union building in 1954, and a men’s dormitory, Wilson Hall, just south and east of North Hall in 1955 (funded by a bond issue). Construction on the campus ceased for several years until the state budget had enough funds to allow for capital projects again (Mohler 1967).

In the late 1950s, President McConnell helped resolve a local issue related to fly ash from the school’s heating plant. Of the money appropriated for fuel costs, the school (and two other state schools), were obliged to use 30-35% to purchase coal (CWUA 1957d). Central Washington College of Education (now CWU) was bound by contract to purchase 15,000 tons of coal per year (CWUA 1957d) to support local industry (CWUA 1958a). The amount of coal apparently produced a great deal of fly ash that continually blanketed the surrounding Ellensburg neighborhoods (CWUA 1957b), making many local inhabitants unhappy. To work towards solving this problem, McConnell and the Board of Trustees planned to replace the coal-fired heater of one of the three boilers of the Old Heating Plant with a gas-heating unit (CWUA 1957a).

Unfortunately, this did not solve the problem, and it was clear that the coal heaters of all three boilers had to be replaced with gas heaters in order to make a difference in local air quality.
Two forces opposed a complete conversion: lack of funding and political pressure from Kittitas County labor unions, coal producers, and a development organization. Somehow, within three years, McConnell was able to secure a contract through Washington State and a local company to convert the coal-burning boilers of the Old Heating Plant to all gas-powered boilers, despite the school’s contracts with upper county coal companies.

Beyond local issues, Central Washington College of Education also reacted to global issues. The Cold War, having begun almost immediately after the end of WWII, brewed scientific and technological competition between the United States and the Soviet Union. The effect this had on the College campus was apparent after the United States became involved in the Korean Conflict. The year following the Soviet Union launch of Sputnik in 1957, the United States created the National Aeronautics and Space Administration. Greater demand to fill these academic niches then stimulated a renewed nationwide investment in academia. Though Central Washington State College of Education did not build new science- or technology-based facilities until the late 1960s, it did push its academic goals beyond teacher training, augmenting its arts and sciences programs. Leading up to this was an increase in academic interest, which furthered the growth of the increasing enrollment numbers at the College as a result of G.I. Bill claims following the Korean Conflict.

To meet growing demand, the College called upon the local community to vote in favor of Referendum 10 to provide funding for state educational institutions, which passed in 1958, making way for substantial growth over the following decade. The College negotiated a bond through the Federal Home and Housing Financing Agency to supplement state funds, which allowed for the construction of an addition to Shaw-Smyser Hall
(completed 1958), a Radio Building in 1958 (located just west and south of where Bouillon Hall is now, but no longer standing), and Stephens-Whitney dormitory for men (completed 1959). The Button Apartments (now Button Hall, Student Housing Services), which had been built in 1947 by a local business owner, were purchased by the school and converted into student apartments in 1958. In 1959, Legislative appropriations allowed for Leo Nicholson Athletic Pavilion to be constructed, culminating five to six years of careful philosophical and specific need-based planning by Health and Physical Education staff, including faculty visits to other educational institutions for inspiration, and collaboration between faculty and the architect (Mohler 1967). The building was one of the first in the world to have a cable-supported roof (CWUA n.d. [e]; NPS 1999), demonstrating the College’s participation in the global atmosphere of technological innovation. Through the same Legislative appropriation, land was acquired just north of Nicholson Pavilion, Tomlinson Field was relocated to it (from the location of present-day Black Hall and Mary Grupe Conference Center), and a stadium was built (Meyers 1959).

It was in 1959 that Dr. McConnell resigned as school president, ending an era of somewhat conservative practices on campus (according to Mohler [1967], McConnell opposed political meetings on campus). For the next two years, acting President Perry Mitchell opened the door to profound change on the campus, introducing an honors program, moving the College toward “closer cooperation with the City of Ellensburg regarding ordinances, regulations, and planning for future expansion” (Mohler 1967, 279), advocating more student civic liberties, and initiating the decentralization of administrative responsibilities and authority. During Mitchell’s presidency, the rising number of students was accommodated with the construction of more dormitories and other buildings for student-life activities. As such, the bond issue from the 1957 FHHFA supported the construction of the Short-Getz Married Students Apartments (completed
1960) and the first section of what was the Holmes Dining Hall (1960), the Duplicating Center/Central Stores (1960). Also, an addition to the northwest face of the Student Union Building was made between 1960 and 1961 (by means of the FHHFA), as well as a two-story walkway to connect the Student Union Building and the 1936 gymnasium/original Student Association Building (Bassetti and Morse Architects 1961). Referendum 10 of 1958 provided funding for a new library (now Bouillon Hall), which was completed in 1961 and outgrown by 1965 due to a continued rise in student enrollment (Mohler 1967).

In addition to appropriating money for the construction of new buildings, the Washington State Session Law of 1961 officially changed the name of the school from “Central Washington State College of Education” to “Central Washington State College.” Although the Washington State Session record declares the switch to be “a change of name only” (Meyers 1961, 1968), the school nonetheless underwent a large transition over the next few years beyond just a name change. According to the Bureau of the Census (Bruno 1984), “[t]he beginning of the Vietnam [War] Era influenced new growth in enrollment [at colleges and universities] for men in the mid-1960’s and enrollment stayed high into the early 1970’s . . . College attendance to maintain a draft deferment most likely caused increased college enrollment rates among young men in the 1960’s” (pp.1-2).

Mohler (1967), once a professor at the school, noted a shift in campus life atmosphere during the 1950s and 1960s, which he attributed to “a larger proportion of students hav[ing] become interested in serious discussion and in personal involvement in public issues” than prior to the Korean Conflict Era (e.g. student involvement in political and international issue-related activities grew in the 1950s on the College campus). The massiveness of the student body and an increase in commuting students, Mohler asserts, led to a depersonalization of the student body,
reflected in a decline of faculty involvement in the design of school buildings, and of student
government-led activities for campus community comradery (e.g. “social events, special
observances, and perpetuation of college traditions” [1967, 259]). It is possible that these
changes among the student body were occurring as an extension of a national paradigm shift in
the 1960s.

When Dr. James E. Brooks was appointed President of the College in 1961, the campus was
still expanding, this time with instructional or other educationally directed facilities being built
alongside new student housing; namely, the new psychology building (Black Hall) and the Mary
Grupe Conference Center just north of the Bouillon Library. Anderson-Moore dormitories and
the Wahle Married Student Housing were built, followed by the construction of Barto dormitory
(completed in 1962). Within another year, a campus security facility was established to monitor
and assist the larger than ever student body present on and around the campus. Another addition
was made to Shaw-Smyser Hall in 1963, and the Hertz Music Hall was constructed.

In the midst of the Cold War, the school was granted money from the Atomic Energy
Commission in 1963 for science equipment ("CWSC Announces Faculty Promotions, Trustees
of State Colleges Plan Session” 1963). That same year, the Student Union Building (now the Old
Samuelson Union Building) was designated a local defense shelter, officially filing for such
status through the Ellensburg Civil Defense Director ("CWSC Announces Faculty Promotions,
Trustees of State Colleges Plan Session” 1963). Also in 1963, the State Legislature authorized all
three State Colleges to grant Master of Science and Master of Arts degrees (Meyers 1963),
though the primary mission of the school remained the training of teachers. Meanwhile, student
enrollment, and student accommodations on campus, steadily rose. A 1962 bond issue allowed
for an addition to the Holmes Dining Hall (which is no longer standing) the same year, and more
dormitories (Beck, Hitchcock, Meisner, and Sparks Halls) were erected in 1964-1965, as well as Quigley and Davies dormitories in 1965-1966. An addition was made in 1965 to Tunstall Commons that joined it to the Sue Lombard dormitory dining hall (i.e. Sue Dining Room). At the rapid rate of increase in student enrollment, it was believed that high-rise buildings would meet the demands of future growth best (Bechtel 2014; Mann 1969), and two nine-story buildings, Muzzall and Courson dormitories (no longer standing) were built just west of Munson Hall using another bond issue between 1966 and 1967.

While the rapid physical growth of the campus that began in the 1940s was geared predominantly toward student housing accommodations, plans were begun in the late 1960s to also expand the academic facilities of the campus (CWSC 1968, 1973). A slew of reports were written by various divisions (now “departments”) at the College, justifying the construction of more academic buildings for their respective departments; among them, the divisions of Science, Music, Speech, and Fine and Applied Arts (Kollmeyer n.d. [ca. 1965]). Between 1966 and 1972, in anticipation of meeting these demands with future expansion at the same rates the College had been experiencing, the College purchased fifty-six acres of land as part of the Federal Urban Renewal Project in 1966, doubling the size of the campus (Bach and Blair 2008). The College’s “operating budget more than doubled . . . and research grants grew twentyfold” (Bach and Blair 2008, 19). That same year, a new science building (Dean Hall) was built, which was planned to be the first of many of a science neighborhood (the exact plan for which never reached fruition). Further construction for academic purposes was shelved in order to put more funds toward more student housing and student-life accommodations in order to retain the increasing number of students pursuing an education at the College. In 1967, Alford-Montgomery, Carmody-Munro, Green, Kennedy (adopting a name previously in use by the International Center), and several
buildings for Student Village North (Phase I) were erected. The following year, the President expanded his residence in order to host functions at his home, and additions were made to Barto Hall and Tomlinson Stadium. In 1969, a Fine and Applied Arts Complex (Randall-Michaelsen Hall) was built, a new administrative building (Mitchell Hall) was completed, more married-student housing (Brooklane Apartments) was constructed removed from the main roads of Ellensburg and northeast of the main campus, an addition to the Old Student Union Building was made (completed 1970), and a Student Medical and Counseling Center went up (completed 1970). Simultaneously, departments in education, the arts, and the sciences all created new master’s degree programs (Bach and Blair 2008).

A 1969-1971 biennium report (Mann, 1969) reveals that “non-residential floor space north of the [Chicago, Milwaukee, St. Paul, and Pacific Railroad] tracks” was expected to far exceed that south of the tracks (p. 2) because of a plan to dedicate much of the northern campus to development for “direct instructional and research purposes” (p. 2). It was recommended that buildings of non-residential use be concentrated in order to allow for ease in pedestrian circulation. The same report proposed the removal of the section of railroad running through and dividing the campus, since it acted as a psychological barrier to pedestrian traffic and separated the campus into two incohesive areas (Mann 1969).

A Language and Literature Building, Technology Building (Hogue Technology Center), the second phase of Student Village North, and the Jongeward Plant Services and Facilities Administration Building were all constructed in 1970. The Allan Apartments, located north of the campus, were purchased in 1970 as well, and were converted into living quarters (Peterson Hall) for the U.S. Air Force and Reserve Officer Training Corps, which has remained in such use into the present (2015).
It was in the early 1970s that physical growth of the campus began to slow, reflecting a national trend in decreasing student enrollment. A possible explanation for the decline in college and university enrollment across the United States in the 1970s was that there was a decline in “the economic attractiveness of a college education—that there [was] a glut of college graduates, that a college diploma [was] no longer a ticket to a professional job, and that new college graduates [had] not been recruited as enthusiastically by private industry as in the past . . .” (Bruno 1984). Another explanation for, or perhaps a contributing factor to, the decline in college and university enrollment was that the Vietnam War Era was coming to a close and “the elimination of the draft in the early 1970’s probably had some negative impact on enrollment rates in the succeeding years” (Bruno 1984, 1-2). According to Atkinson and Blanpied (2008), President Richard Nixon lessened government support of research universities between the mid-1960s and 1974 (the year of his resignation) because he perceived the general climate of universities to be in general opposition to the Vietnam War and, thus, unsupportive of his Administration. In the years leading up to Nixon’s resignation, Central Washington State College did not physically grow much in the way of academic facilities. Buildings near the Jongeward Building, which had previously been warehouses along the Chicago, Milwaukee, St. Paul, and Pacific Railroad, were purchased by the school to serve as storage, increasing the Facilities Management Department’s capacity to tend to campus facilities. This included the Jongeward Warehouse (which had been built in 1937 and served as a warehouse for the Green Giant® industry) and the Grounds Warehouse (originally a cannery built some time prior to 1953); and a Grounds Shop was constructed in 1972 nearby. The only academic building constructed during the early 1970s was a Psychology Building (1972).
Development of the College as a state institution was, and is, intimately tied to global and regional economic factors. It was noticeably impacted by a side theater of the Cold War in the form of the 1973-1974 oil crisis. Nationwide, institutions of higher education experienced a lull in campus construction (“Central Library Online in 1975” 1974), and budget restrictions for Central Washington State College forced a 1968 plan for a library complex, consisting of Dr. James E. Brooks Library and an the Farrell Hall instructional building, to be reworked and postponed until a library bond issue could be secured in 1973 (“Central Library Online in 1975” 1974). When the library opened in 1975, its decidedly oversized interior (CWUA n.d. [f]) drew attention to just how low student enrollment had become.

As G.I. Bill benefits for veterans of the Vietnam War Era began expiring, enrollment in U.S. colleges and universities lowered even more (Bruno 1984). Since state legislative funds to the College are based on enrollment numbers, and because the 1976 “student enrollment [was] a grave concern,” the 1976 biennium budget for Central was reduced to a minimum (“College Looked Back and Ahead in Bicentennial” 1976). Thus, the seemingly unending physical expansion and development of the Central Washington State College campus reached a distinct end.

After President Nixon’s resignation and the inauguration of President Gerald Ford, government funding to support academic research was increased to strengthen the relationship between education, industry, and the government (Atkinson and Blanpied 2008). Central Washington State College benefited from this political shift in 1976 when “[f]unding from various federal, state and private agencies for research and special training projects” rose from the previous year (“Research Funding Shows Research” 1976). As such funding was only a benefit to academic programming and not to capital construction projects, the College, predicting
no growth in student enrollment, requested of the State Legislature only enough money “to meet existing problems and inadequacies not for expansion” (“College Asks ‘Realistic’ Plan” 1976). Budget restrictions to all state agencies, CWU included, led the school to implement “energy saving projects” (“Bouillon Hall Remodeling Project Contract Awarded” 1977). A new heating and cooling plant was built (1975) just south of the Chicago, Milwaukee, St. Paul, and Pacific Railroad and west of Dean Hall to better regulate heating on campus. Bouillon Hall was remodeled 1977, an addition was made to McConnell Hall in 1979 (the largest capital construction project on campus for years), and a small botany greenhouse was constructed next to Dean Hall in 1979. Student enrollment, however, declined to the point that faculty were let go (Bach and Blair 2008).

The Washington State Legislature of 1977 allowed the Central Washington State College to change its name to Central Washington University in order to reflect its status as an institution with the ability to confer master’s degrees (White 1977; Yakima Herald 1975), and, according to President Brooks, to “boost student morale” (Lee 1975). The school’s budget was decreased in 1978 (Central Washington University Archives and Special Collections 1978), and a second national oil crisis hit the United States in 1979. Despite CWU’s new title and authority, campus facilities were not able to develop aggressively until national economic recovery over a decade later.

Private industry support for university research had begun to increase in 1975, and the Bayh-Dole Act of 1980 renewed that support by granting universities rights to their findings, which, consequently, increased private company investment in academic research (Atkinson and Blanpied 2008). This coincided with the Economic Recovery Act of 1981, which was introduced by President Ronald Reagan to encourage private investment in education and technology. In
Washington State, fiscal state investment for education began to decline in the early 1980s (Mortenson 2012), while private grant money began to increase (Geiger and Feller 1995).

A portion of the Reagan Administration’s economic philosophy was to link private industry with education and technology, which contributed to an increase in computer use in the United States (Einstein and Franklin 1986). In turn, computer-based instruction intensified throughout the 1980s (Bialo and Sivin-Kachala 1996). But CWU was already participating in a growing national trend that was moving U.S. colleges and universities between the 1960s and 1990s toward the use of computers and other education-assisting technologies (Kulik 2003). In 1969, a portion of the interior of McConnell Hall was remodeled for computer installation. In 1977, Bouillon Hall was remodeled to accommodate the Computer Sciences Department, Speech Pathology and Audiology Program, and Audio-Visual Services (“Bouillon Work Nearly Completed” 1978). CWU’s College Book Store (west of Black Hall and just east of the Old Samuelson Union Building) was converted into a Computer Center in 1979, followed by the interior remodel of the Power Technology Laboratory Building in 1981. State budget constrictions caused the state-funded College Elementary School (Hebeler Hall) to close in 1982 (Smith 1992), but the University was able to adapt without physical growth because of a “Renewal and Utilization of Campus Buildings” policy that was in effect (Cooper 1987). Thus, when CWU adopted a new academic plan to require students to become computer literate (“Academic Plan Includes New Requirements” 1982), campus development to accommodate computer laboratories was achievable through the remodeling of existing buildings. In 1985, the Hebeler Hall received a minor interior remodel “for instructional purposes in the area of computer science, flight technology and engineering graphics” (CWUA n.d. [c]; Cooper 1985). Between 1993 and 1994, a portion of the Dr. James E. Brooks Library was remodeled to allow
for classroom space for the Washington Higher Education Telecommunications System (WHETS) program (long distance learning, using a camera and television screen to connect the professor and students with others off of the main campus).

In the early 1980s, the rail line of the Chicago, Milwaukee, St. Paul, and Pacific Railroad was abandoned, and the school acquired rights to the portion that passed through campus (Alberter Staeger Associates 1986). The 1986 Campus Master Plan developed conceptual plans for the thirty-two acres at the center of campus that had once served the railroad and mid-campus parking purposes, though only portions of some of the plans were fulfilled in some way over the next few decades (e.g. construction of landforms and axial campus greens throughout the center of campus, relocation of power poles from the rail line away from the campus core, construction of an amphitheater, development of walking malls through campus, and grading the railroad berm [Alberter Staeger Associates 1986]). Budget restrictions forced the plans to be tabled until future construction planning.

Money was to be appropriated by the 1987 Legislature for School of Business accreditation, but this was vetoed when it was decided that providing extra funds to one state university for a special program would be inconsistent with the Legislature’s mission to allow institutional self-determination through the use of funds equally divided between the regional universities (Cooper 1987). The capital construction budget for CWU was also tight, so CWU met its needs as economically as possible. The Physical Education Building (now Dorothy Purser Hall) was built in 1987 and an Aquatic Center was erected nearby in 1989 (Cooper 1987), using very inexpensive materials.

The coinciding end of the Cold War and the end of United States’ involvement in the Persian Gulf Crisis were followed by an economic boom in the United States in the 1990s, which has
been attributed to the investment in technological industries and research during the 1980s (Mowery 2004; Tevlin and Whelin 2003). It was in the 1990s that CWU’s campus began to grow again, though intermittently, under CWU President Ivory Nelson, despite reported budget cuts (Bach and Blair 2008). In 1991, the Chimpanzee and Human Communications Institute building was constructed to provide more space for the Psychology Department’s animal research program, which had overgrown the Psychology Building. Also for the purpose of accommodating an outgrown space, CWU built the Bledsoe-Washington Archives Building in 1993, replacing the Old Hospital Building (razed in 2013) as the base of operations for the Central Regional Branch of the Washington State Archives. The following year, in 1994, an addition was made to Shaw Memorial Hall, but the school would not build again until the late 1990s.

The University received many private grants throughout the 1990s, and the lowest inflation and unemployment rates in the United States since 1965 were experienced by 1998 (Katz and Krueger 1999). In the early 1990s, the school placed a pre-fabricated modular building just south of Wilson Hall (“Naneum Modular”), moving it to its current location as an annex to the Facilities Management Department in 1997. A New Science Building was built in 1998 as part of the first phase of an expanding science building “neighborhood” on campus. The same year, Black Hall was extensively remodeled.

In the year that President Ivory Nelson resigned, the 1999 Washington State Legislature authorized all three state universities, including CWU, to waive some resident and nonresident tuition fees to encourage a “higher education western undergraduate exchange program” (RCW 28B.15.544). Acting CWU President James Norton “encouraged greater use of distance education and the university centers on community college campuses” (Bach and Blair 2008,
25), including those in Des Moines, Everett, Lynnwood, Pierce County, Moses Lake, Wenatchee, and Yakima Valley. Under CWU President Jerilyn McIntyre, CWU constructed buildings at each of the aforementioned satellite schools between 2002 and 2006. In 2003, as the U.S entered the Iraqi War, Kamola Hall was renovated, then Sue Lombard was renovated in 2005, a new Student Union and Recreation Center was completed in 2006, the Jerilyn McIntyre Music Education Facility in 2007, the Wendell Hill Hall dormitories in 2008. Despite the onset of the Great Recession in 2008, capital construction projects continued through 2009, including the Aviation Training Center and remodel of Dean Hall, as a result of increased appropriations of funds to CWU (Thiessen 2008). In the first decade of the twenty-first century, private grants for research and programming at the school reportedly tripled (Bach and Blair 2008, 76).

In 2009, Dr. James Gaudino became the President of CWU. The Washington State Session Laws of 2010 and 2012 both provided an increase in funds appropriated to CWU for capital construction projects (Thiessen 2010, 2012), which allowed for the remodel of, and addition to, the Hogue Technology Center, and the complete reconstruction of Barto Hall and the addition of an associated Residence Life Office building. The 2014 State Legislature specified the use of CWU funds for the development of an “online degree granting entity” and to increase computer sciences and engineering enrollment (Thiessen 2014). The same year, CWU began construction on a new science building just east of Hertz Hall (the second phase of developing a science “neighborhood” on campus).
CHAPTER VII
ARCHITECTURAL CONTEXT

Buildings exhibiting a wide array of architectural characteristics from a number of historical periods collectively compose the campus of CWU. Despite their individual and combined uniqueness, these buildings convey a unified campus feeling, as well as a sense of historical depth that parallels national architectural trends. Much has been written in regards to architecture and its evolution under the conditions of various combinations of cultural ideologies and values, regional environment, resource availability, technology, and functional purpose. A study of such writings, as well as a consideration of certain historical circumstances, helps to place into a greater historical and architectural context the presence and appearance of the buildings on the CWU campus.

Picturesque

Despite budget restrictions, local circumstances, and a variety of architect intentions, most buildings generally conform to broad architectural patterns throughout history (Gelernter 1999). The campus architecture of the WSNS in Ellensburg (CWU) has been no exception. For the first three years of its operation, the WSNS operated out of the Washington Public School, which was built in 1890 in the Richardsonian Romanesque style (Figure 7.1). In 1893, at the height of a local depression in Ellensburg, and just before the onset of a national depression (1893-1898), the Washington State Legislature appropriated money to the WSNS for the construction of its first campus building. Located in a sea of shrub-steppe in the open country of what had recently become Washington State, the architecture chosen for the first WSNS building was also Richardsonian Romanesque. This style was often used on the United States frontier for public
buildings because “[o]n the still treeless and intimidating prairie, the powerful Richardsonian forms could stand their ground against the landscape” (Gelernter 1999, 185). As shown in Figure 7.1, the WSNS and the Washington Public School towered above the City of Ellensburgh as the only Richardsonian Romanesque architecture in the Kittitas Valley at the end of the nineteenth century.

Figure 7.1. Washington Public School (at left) and Washington State Normal School in Ellensburg (at right) in the Richardsonian Romanesque style in the last decade of the nineteenth century, looking northwest. (photograph courtesy of the Kittitas County Historical Museum).

The Richardsonian Romanesque style, which first developed on the east coast of the United States in the 1870s through the designs of Henry Hobson Richardson, was a unique expression of the then-popular High Victorian Gothic style, but with French, English, Syrian, and Spanish influences. Of the buildings designed in this style by Richardson himself, the exterior massing generally expressed the use of the building’s interior space (e.g. the apse of a church’s interior would be accentuated on the exterior as a visually distinct massing). The Washington Public
School, which was designed by an Ellensburg architect (not Richardson), was consistent with Richardson’s style of massing, arranging the interior space in a crossing and situating a tall cupola (housing the bell tower) over the intersection of the crossing massing.

Between 1893 and 1894, the WSNS constructed its first building (now known as Barge Hall), using the architectural design and guidance (during construction) of local architect E. C. Price (Mohler 1967). The building Price designed emulated the monumental and picturesque Richardsonian Romanesque style. The exterior massing, to a small degree, expressed the interior use of space, and a bird’s eye view of Barge Hall reveals a crossing of the massing (Figure 7.2), though the components of the massing do not build upward from “primitive forms” into a dramatic tower, as Gelernter (1999) suggests it should, given the presence of various towers and projecting blocks. The tallest cupola is above the main entrance on the south face of the building, rather than atop the intersecting cross of the massing, and the other components of the massing are fairly level with each other, and do not build upward toward the cupola of the main entrance.

Barge Hall has the effect of “venerability and stability” (Gowans 1992, 185) that was characteristic of the Richardsonian Romanesque style—a monumentalism that would have been desirable for a new educational institution (and, indeed, continues to be desirable). As shown in Figure 7.3, Barge Hall has a picturesque asymmetrical massing and ornamentation from eclectic regional and temporal sources, such as the Syrian arcading with “squat colonnettes and arcades” (Gowans 1992, 204), elaborate brick dentils and cornices, a roof reminiscent of the antecedent Gothic Revival style, and fenestration grouped by twos and threes with “stubby medieval-looking columns in between but nonmedieval [sic] sash openings” (Gowans 1992, 204). The use of brick and stone for bold ornamentation (belt courses, corbels, etc.), several towers (three of which with conical roofs), and arcaded windows are common for the style.
One would expect such an elaborate style to be impractical for the WSNS during an economic depression; however, contrarily, the depression lowered the cost of labor and materials (Mohler 1967, 32), and the national shift from individual artisan crafting to factory-produced
ornamental detailing (Gowans 1992, 206) made the acquisition of zinc elements (e.g. for the finials) relatively inexpensive. Richardsonian Romanesque had become especially popular in the western United States at the turn of the nineteenth century because of the sense of venerability the style provided to new buildings, becoming used “on many campuses . . . almost exclusively.”
by 1890” (Gowans 1992, 185). A sense of stability and permanence is evoked, which lends itself well to colleges and universities.

Worthy of note is the all-inclusiveness of Barge Hall, which housed instructional classrooms, a gymnasium, library, art studio, administrative offices, and training classrooms (as the function of the Normal School was to train teachers). Although it is possible that the all-inclusiveness of the building was largely due to a limited budget that could not allow for the construction of more than one building, it is important to consider that the layout was intentionally designed to function as a normal school. On a national level, normal schools instructed predominantly women students. According to Horowitz (1999, 126), higher education for women in the nineteenth century had adopted a mental asylum philosophy that orderly, isolated surroundings would inspire internal psychological order. As young women were perceived to have disorderly and easily agitated minds, women’s schools (e.g. normal schools) were designed as single buildings (as opposed to the academical villages common to the campuses of men’s colleges) located in country settings away from urban areas (Horowitz 1999, 126). At the time of Barge Hall’s construction, its setting was rural and removed from large cities. Barbara Owen’s interviews with women who attended the WSNS confirm that there was a strict and tightly controlled lifestyle for the women training to be teachers there (2009, 25). However, at the time of the building’s construction, the student body was co-educational and nearly evenly split between women and men (it was not until after Barge Hall’s construction that women outnumbered their male peers, a situation that persisted into the mid-1930s), so it is unclear how much of the mental asylum philosophy was translated into the architecture of Barge Hall. Also, women who arrived to Ellensburg to attend the WSNS were encouraged to seek room and board with local residents, and did not live within Barge Hall. Regardless of ideological intention,
Barge Hall solely served the needs of the WSNS for the next decade, until a growing student body necessitated the construction of a separate building for teacher training.

Proto-Modernism and American Academic Architecture

By the time the WSNS constructed its second building, the picturesque style had waned in popularity and the influence of the Chicago School of Architecture was waxing. Architectural schools across the United States encouraged less reliance on historical precedents and more attention to meeting utilitarian needs (Tyler et al. 2009). This ideology became known as the “American Academic Architecture” because it was perpetuated through academic instruction, rather than through individually trained architects, as was previously the vehicle for changes in architectural mode.

In 1908, a training school building was erected on campus, possessing an entirely different architectural style from Barge Hall (Figure 7.4). Because the building (later named “Edison Hall”) was to serve the specific function of training teachers, the architectural design described by Mohler (1967, 54) and by Smith (1992, 10) very closely fit the standard at the time for public elementary schools (Engelhardt and Engelhardt 1940). Architecturally, schoolhouses at the turn of the 20th century were standardized box designs (a predecessor to the early Modernist movement, “proto-Modernism”) with basements or lawns set aside for play (previously unincorporated in the primary school design), and central heating plants were replacing schoolhouse stoves (Engelhardt and Engelhardt 1940, 135). Edison Hall was very much a plain box design, and it had a playroom situated in its basement (Mohler 1967, 54). The money appropriated by the Legislature for Edison Hall’s construction also provided for the construction of the WSNS’s first central heating plant (Mohler 1967, 54), congruent with the national trend.
Engelhardt and Engelhardt indicate that, at the turn of the 20th century, elementary schools were accommodating urbanization and greater numbers of students by adding more rooms and stories (like a compartmentalized factory building [Kowalski 2002]) to meet a utilitarian need more than an aesthetic one, usually in a T- or H-shaped floor plan (Engelhardt and Engelhardt 1940,135). Edison Hall was three stories and had a T-shaped floor plan (CWUASC 1909). The design was well-suited for the WSNS teachers and students, and for the local children (Kindergarten through 6th grade) who attended it.

For the first half of the 20th century in the United States, economic prosperity, massive influxes of immigrants to city centers, and the emergence of the United States as a world power fostered the birth of several unique American architectural styles that embraced expedient, inexpensive, and adaptable new technologies and materials (Crouch 1985, 279), such as steel. These movements spread quickly by means of Academic architecture. Academic architecture, so-named for its reliance on historical architecture as a source for diverse approaches to serving public needs (Crouch 1985, 279; Gowans 1992, 211), inspired romantic American nationalism and served the social purpose of creating an American architectural heritage that paid homage to its “democratic” roots, pulling visual metaphors from its earlier architectural forms. Arts and
Crafts, Prairie Style, Art Deco, and the Gothic, Classical, and Colonial Revivals were some of the many expressions of this period in architecture (Gelernter 1999, 193-200). On the campus of the WSNS, several of these styles were expressed.

Between 1911 and 1919, WSNS’s first dormitory, Kamola Hall, combined architectural elements of proto-Modernism with Spanish Colonial Revival and faint hints of Gothic Revival. In common with Edison Hall is Kamola Hall’s fenestration: on the first story is a series of single, four-paned, double-hung windows with plain trim, header brick slip sills, a flat radiating brick voussoir, and no side surrounds; on the second and third stories, windows are identical to those of the first story, except that head surrounds are vertical stretcher brick lintels with header brick trim that sometimes extend over two or three windows. Elements of Spanish Colonial Revival are the most apparent in Kamola’s exterior style, as evidenced by the use of balconets, curvilinear gables, decorative wooden window grills, and low-pitched clay tile roofing. Elements of Gothic Revival are quaintly expressed by means of brick buttresses at the base of the first story and a small number of Gothic casement windows on the fourth story. Kamola Hall’s milieu of styles was copied on the WSNS campus in 1926 with the construction of two new dorms, Munson Hall and Sue Lombard Hall.

Alongside Colonial Revival on the WSNS campus was Neo-Classical Revivalism that, common to campus and government buildings of this period, emulated the academical village of Thomas Jefferson’s University of Virginia (Gowans 1992, 224). Even Jefferson’s “University Plan” of campus buildings arranged around large, open lawn spaces (Lasala 2009, 10) was considered by the WSNS (Registrar Services Collection 1917). Common architectural details of the Neo-Classical style include: symmetrical massing, grand fluted columns and pediments of stone, and ornamental balcony balustrades. All such details are found adorning Smyser Hall
(constructed 1925 as the school’s new and separate library facility), the initial section (now the southeastern portion) of the Samuelson Student Union Building (constructed 1926-1928), the south façade of McConnell Hall (built 1935), and the 1937 addition to the west face of the Samuelson Union Building.

Built in 1938, thirty years after the construction of the first Manual Training Building, Hebeler Hall was a complete elementary school, including a gymnasium, museum, auditorium, children’s library, and specialized classrooms tailored specifically for each stage of childhood development, Kindergarten through 8th Grade [Smith 1992, 46-58]). The differences between Hebeler Hall and the preceding Manual Training Building (built in 1908) reflected a changing educational philosophy, which extended from the Progressive Movement. Instead of “pouring knowledge” into passive student minds, teachers recognized a need to address the variations of student needs (Weiss et al. 2005), and this was translated into the architecture of Hebeler Hall.

The WSNS campus plan adhered to some of the symmetrical architectural and landscaping design concepts of the Beaux-Arts school of Architecture that was typical of U.S. campuses of the time (University of Cincinnati 2008, 32). McConnell Hall and Smyser Hall were to flank the sides of Barge Hall symmetrically (Associated Students of CWU 1925). This same campus plan for WSNS was responsible for the eventual locations of Sue Lombard Hall (reflecting Kamola Hall), the addition to Munson Hall (reflecting Munson Hall’s original plan), Hebeler Hall (reflecting Edison Hall), and the expansion of the second heating plant (which was instead replaced with a third heating plant). The library, Smyser Hall, and the science building, McConnell Hall, were planned to adorn the Classical Revival style, which, although was most likely a reflection of national architectural trends, seems to have conformed with the ideology of Thomas Jefferson that U.S. campus libraries and institutions of science ought to be housed in
buildings of “‘the purist forms of antiquity’” (Lasala 2009, 11), representing “triumph, knowledge, and reason over ignorance and demagoguery” (Lasala 2009, viii).

Nestled within these Revival styles on the WSNS campus was Art Deco, “the first widely popular style in the United States to break with the reviverist tradition represented by the Beaux-Arts” buildings (Poppeliers et al 1966, 88). The style emerged in the United States as a culmination of new, emerging art forms and technologies. According to Herbertson (2014), Art Deco “didn’t come with a philosophy,” but represented a “[a] dedication to industry.” The style embraced geometric forms, stepped and zigzag forms, and foliage designs (Couch 1985, 325; Gelernter 1999, 243). Shaw Hall, the construction of which began in 1929 just before the onset of the Great Depression, displays floral bas relief panels, circular geometric décor, and vertical brick battens that protrude from the main wall as raised zigzag patterns. Similar features can be found on the east and west faces of the original McConnell Hall building (but square instead of circular geometric embellishments). Besides later additions to Shaw-Smyser Hall, the only other campus building to display the Art Deco style is Button Hall. Button Hall has an anachronistic late Art Deco Moderne style, despite having been built in 1947 (long after the height of Art Deco popularity). Its original appearance, still retained, includes: flush stucco walls, a centered main entrance with a single leaf door inset with a single circular window, sidelights of vertically stacked glass blocks, and a cloth, striped awning over the main entrance.

Early Modernism

In 1937, the WSNS became the Central Washington College of Education (CWCE). Under its new title, the school ambitiously applied in 1940 for a Civilian Pilot Training unit from the Federal Civil Aeronautics Authority (Mohler 1967, 195-196) to be trained at the Ellensburg Airport north of CWCE campus. Between 1944 and 1946, a myriad of pre-fabricated structures
were erected on campus (on the present location of the Student Union and Recreation Center, and on the lawn south of the Language and Literature Building) and at the airport to house and provide services for those receiving military training (no architectural details are available for these buildings at the archives of Facilities). Nearly all of these structures have since been removed from the campus due to their limited physical life span, as well as decreased student enrollment demand (Lane 1978).

At the end of the war, architecture, in general, adopted an ahistorical, technologically-driven spirit called Modernism. Beginning in Europe, Modernism migrated to the United States and was transformed by a handful of American architects into the American style, since the booming U.S. population and economy translated to a mass-production of new buildings and houses. According to Gowans (1992, 273), Modernism “is stark utility, or made to look so, via exposed steel-cage structure, undisguised concrete slabs, pole-like pillars, strips of plate glass windows with factory vents . . . rising on American campuses.” Dismissing traditional architectural expressions and superfluous décor, Dober (1996) describes the characteristics of Modern architecture as typically including: simple geometry, hard edges, clean lines, a flat roof, steel frame, and glass-paned linearity. The 1946 addition to the men’s dormitory, Munson Hall, is exemplary of this new utilitarian Modern style (Figure 7.5), which contrasts with the milieu revivalist style of the original portion of the building. The addition, stripped of exterior embellishments, has a flat roof, clean horizontality, and vertical elements of glass-paned linearity (including a glass block feature that extends through the two upper stories on the east face). In what appears to be an attempt to tie the addition stylistically to the original structure, its fenestration is nearly identical to that of the original section of the building, except that the decorative head surrounds were excluded. Located just west of Munson Hall is the school’s third
heating plant (constructed 1944-1946), which also employs a bare facade, horizontal strips of windows, and flat roofs.

Figure 7.5. Munson Hall circa 1950. The original construction (at left) has a gable roof, while the addition (at right) has flat roofs. (Photograph courtesy of Brooks Library Digital Collection 2014t). Looking northeast.

The post-WWII demand for skilled workers in the applied sciences resulted in nationwide expansion of university science programs, making its way to the CWCE campus in 1947 with the construction of Lind Hall. Curiously, Lind Hall adopted a Classical Revival style of architecture (e.g. stone columns and pediments), but with an austerity and linearity that is characteristic of early Modern architecture. One explanation for this melding of styles is offered by Dober (1996), who states that, at the time that Modernism surfaced in the United States, universities had relied heavily on traditional architecture to convey a sense of continuance and educational
monumentalism; however, institutions of higher education were also expected to be centers for innovation and new ideas, so the emergence of an architecture that both rejected traditional forms and embraced wholly new forms posed a unique struggle for universities, who wished to exude both traditional and cutting edge styles. The result, as with Lind Hall of CWCE, was a cautious exploration of Modernism on U.S. campuses.

However, the overt expression of early Modernism on the campus of CWCE continued with the building of Kennedy Hall (now named the “International Center”) in 1948 as a women’s dormitory, and the 1950-1952 addition to the Samuelson Union Building. Both buildings have flat roofs, unadorned façades, and exhibit a horizontality in their massing design. The International Center also uses early Modern pole-like pillars.

Mid-Century Modernism

Mid-Century Modernism, a reaction to early Modernism, maintained the basic principles of early Modernism, but also adopted textured and sculpted elements to escape the monotony of Modernism’s typically stark appearance (Dober 1996). Contemporaneous with the emerging movement of Modernism in the United States was a massive expansion (nationwide) of college and university enrollment. Campus facilities across the United States expanded to accommodate seemingly endless growth when the Baby Boomers of WWII and veterans of the Korean Conflict (supported by the G.I. Bill) began attending college. Modernism proved a convenient and expedient solution; its material and formal simplicity and its focus on programmatic function meant that construction materials could be quickly and economically mass-produced and adapted to different sites and purposes.

Central Washington College of Education became Central Washington State College (CWSC) in 1961 while enrollment was growing even more than previous years. The College
began expanding northward, constructing buildings to accommodate student needs on fifty-six acres of land newly purchased just north of the Chicago, Milwaukee, St. Paul, and Pacific Railroad, including twenty-six duplexes for family housing, called the Wahle Complex (Figure 7.6). Each duplex had serial panels of brick veneer with austere design (and raised brick detailing used conservatively) that was characteristic of the early beginnings of the Mid-century Modern style (the veneers have since been replaced with vertical wood siding). From a bird’s eye view, the buildings of the Wahle Complex have an accordion-like arrangement, a characteristic typically exhibited more prominently in Mid-century Modern architecture (e.g. folded plate roofs or walls), but subdued here.

During this time on CWSC’s campus, there was an explosion of experimental shapes, textures, materials, and massing applied to the “Modern” buildings being constructed. Nicholson
Pavilion, built in 1959, has a cable-suspended roof (one of the first in the United States), and uses folded plate, rock-textured, pre-cast concrete panel walls (maintaining a “Modern” appearance through the use of horizontal window ribbons and the glass curtain of the main entrance). Black Hall (built 1959-1961 and since rebuilt) made use of the same folded plate walls on the first story of its south façade, but with window curtains in lieu of concrete panels. The second story, supported by characteristically Modern pole-like piers, had an undecorated brick façade whose windows bore no head surround. The Mary Grupe Conference Center, erected simultaneously with Black Hall, has a round floor plan; a domed, shell-like, pre-fabricated concrete roof; and a façade of local basalt boulders set in concrete. Bouillon Hall (constructed 1961) has pre-fabricated, folded plate walls and roof, but experimentation with texture was reserved for the honeycomb-like, latticed brick sun screen that is cantilevered out from the east and west faces of the building to shade the main windows of each story. Hertz Music Hall (built 1963) is strikingly similar to Nicholson Pavilion in its use of folded plate, rock-textured concrete panel walls. At the time of Hertz Hall’s construction, awnings of slatted metal were (but are no longer) positioned above the main windows as sun screens. This, and the sun screens of Bouillion, are what Gowans refers to as a Subliminal Eclectic Modern substyle, specifically the substyle “Screen,” which is most readily identified “by open-work screens applied to façades and walls of buildings, especially over windows” (1992, 299-313).

Transition between Mid-Century Modernism and Late Modernism

Following Mid-Century Modern expressions was a period when architecture began to revert back to simpler forms of early Modernism (i.e. featureless facades), except that traditional shapes, forms, and materials were loosely emulated. This was the emergence of Late Modern architecture. The Bassettis dormitories (planned and built between 1964-1966), the 1968-1970
addition to the north face of the Samuelson Union Building, and Michaelsen-Randall Hall (built 1969) all exhibit featureless brick facades with fewer and/or smaller windows than earlier buildings. Mitchell Hall (1967-1969), constructed to house administrative offices, has a neo-formalism that emphasizes its pre-fabricated, serial panels of concrete, brick veneer, and vertical tinted window ribbons.

The Brooklane Apartments, built in 1969, are representative of a shift that occurred in the 1960s in regards to the planning of urban developments. In the 1940s, during WWII, military housing needs were met with the industrialization of home manufacturing, resulting in massive suburban developments in what were previously rural areas (Freeman 1999). Housing developments typically consisted of thousands of homes constructed together in an assembly-line fashion by a series of specialized construction crews. Materials, equipment, and construction were highly efficient and, although initial housing developments lacked such things as centralized sewage, houses sold quickly, owing to military housing benefits, as well as a process of home viewing, selection, and mortgage application completion, that was equally assembly line-like. Between the end of WWII and the 1960s, a second wave of suburban housing developments occurred, which employed more comprehensive urban planning, including such things as centralized sewage, schools, churches, and parks (Massey and Maxwell 2013). The Brooklane Village, built near the end of this trend, was constructed away from the main urban area of Ellensburg, and was designed to be comfortable for married couples and families. Typical of the second wave of suburban planning, Brooklane Village was designed as a community with curving roads, cul-de-sacs, mailboxes, and a centralized laundry and child care facility (Olson, Richert, and Bignold 1970).
Late Modernism

Emerging from the late Mid-Century Modern period was a very different kind of Subliminal Eclectic Modern substyle called “Brutalism.” As early as 1966, this substyle established its presence on the CWSC campus with the construction of two high-rise buildings, Courson and Muzzall Halls (Figure 7.7), designed completely of textured, vertically linear concrete panels. That same year, Dean Hall was constructed. While Courson and Muzzall Halls had been built at the southern peripheral of campus, Dean Hall was positioned within the campus and, although inherently Brutal, had brick elements to integrate it with neighboring buildings. Dean Hall was essentially a concrete block (veneered with brick) whose upper stories loomed over its first story, supported by pre-fabricated concrete piers that doubled as divisions between a repetitive series of panels on the main exterior wall. The windows, shielded by precast concrete eyebrow labels with tinted glass screens continue the box-like feel. The building was to be the first unit of a much larger science neighborhood—all similar in box-like design to accommodate quick physical growth through ease of additions (overcoming the challenges presented by adding to older, more decorative buildings). The Language and Literature Building, built in 1970, came the closest to fully expressing Brutalism within the main campus. It had raised upper stories (similar to Dean Hall), which connected two large towers of precast concrete and brick, this time with windows whose concrete basal surrounds recessed at 45° angles into steep slip sills.

In 1972, at the northern margin of the campus, on newly acquired lands, the Psychology Building (Figure 7.8) was erected, exhibiting all identifiably Brutal characteristics, including a massing of adjoined towers stripped of decoration, jutting upper stories with far-projecting window surrounds, and textured exposed concrete. It has been rumored among students (at least within the past decade, to the knowledge of this author) that the choice of Brutalism for the
Psychology Building was a social and political one; specifically, that the building was designed to protect faculty and staff from students during potential rioting. It is worth examining this rumor, as the scape of the Psychology Building apparently has a particular psychological impact on the people who observe and experience it to this day.

The rumor is bolstered by the political and social atmosphere of the early 1970s, particularly on college campuses. When President Nixon announced an escalation of the U.S. involvement in
the Vietnam War (i.e. the Cambodian Campaign) in 1970, protests erupted across the country, particularly on campuses. When campus protests ended with the deaths of students at the hands of military and police on the campuses of Jackson State College and University of Iowa, respectively, nationwide protests were organized by students against the use of excessive force on protestors (University of Iowa Libraries, 2010), including a protest march to the Washington State Federal Courthouse by University of Washington students (The Seattle Times 2015), which reportedly closed down Interstate 5 for a period of time. The Nixon Administration responded by creating the President’s Commission on Campus unrest, which monitored “university response to campus disorder . . . , university reform, government and campus unrest . . . , the university, and the students” (President’s Commission of Campus Unrest 1970, 1). In the report, the Commission Chairman, William Scranton, informed the President that most college protests are
non-violent, and that protests represent a healthy democratic and intellectual process that should be encouraged by the administration (President’s Commission of Campus Unrest 1970, 5). A chapter of the Students for a Democratic Society was present on the Central Washington College campus as early as 1963, but there were no reports in 1970 of violence on campus. Although demonstrations against the Army Reserve Officer Training Corps were common on Washington State college campuses (United Press International 1970a), there were no such demonstrations on the Central Washington College campus. Peaceful protests and speaker events were held on campus to speak out against the U.S. involvement in the Vietnam War, and some departments chose not to hold class or to lead special discussions about the student protests (United Press International 1970b). It is most likely coincidental that the site chosen for the Psychology Building, which was on newly acquired land in the northern half of campus, was and still is located near the ROTC headquarter on campus.

Although the austerity, the heavy, reinforced concrete, and the fortress-like massing of the upper stories over the lower stories of the Psychology Building seem to speak to the atmosphere of tension on U.S. campuses in the 1970s, it is unlikely that the construction of the Psychology Building in the Brutalist form in 1972 was a conscious action to create a “safe haven” for professors during possible student riots, nor to reinforce college authority over the student body. The construction of the Psychology Building was done under the presidency of Dr. James E. Brooks, who was well-noted for his encouragement of student organization and debate, and for inviting controversial speakers to the campus, including those who were openly against the U.S.-Vietnam War (Mohler 1967). Indeed, Central has a long history of peaceful protests that extends beyond the Brooks presidency, including the protest by the school’s Board of Trustees against, and the urged repeal of, the “loyalty oath” required by the National Defense Loan application
process (Mohler 1967, 277). It is more likely the case that the Brutalist style was chosen for its economy, as the University was facing budget constrictions and the Brutalist style provided an inexpensive and *en vogue* solution to capital construction funding limitations.

Despite evidence that suggests the “innocence” of the Psychology Building’s architecture, there remains the somewhat unsettling psychological effect that the building has on its visitors, brought about by the windowless, repetitive use of exposed concrete, the absence of clocks, and the constriction of the stairwells above student access points. The deliberate use of space in the building has produced this effect, whether intended to be overbearing or not by the architect, Facilities Management Department, or the administration.

Gowans describes the Brutal substyle as “the ugliest of all Modern styles; therefore . . . a style to be employed only where users had no say—in schools, where teachers and pupils could be counted upon to accept with meekness whatever designers said was good for them” (1992, 304). However, Crouch (1985, 326) heralds the substyle as abounding with opportunity for originality, since the main construction material of the substyle is concrete, which is very easily poured and set according to design. Regardless of one’s feelings about the Brutalist style, its original intent was to convey an honest expression of form and material, and was generally built to be monumental. Brutalism was easily—and often—adopted by colleges and universities striving to build monumentally.

The year following the construction of the Psychology Building, the Library Complex (consisting of Farrell Hall and Dr. James E. Brooks Library) was constructed. Although immediately across the street from the Psychology Building, the architects did not adopt the pure Brutalist form for the Library Complex. Because of its location near the brick buildings of the main campus, Brooks Library and Farrell Hall were made primarily of brick as well. The
proximity of the Library Complex to Dean Hall and the Language and Literature Building, which both exhibit some Brutal elements, made it appropriate for the use of exposed concrete features on the exteriors of both the Library and Farrell Hall. The form of the Library Complex buildings is Late Modern, using shapes and materials formally and simply. Both buildings have flush brick façades, horizontal board-formed (and “wood” textured) concrete belt courses, and tinted fixed windows with no surrounds. Having more in common with the Bassettis built almost ten years previous than with the Psychology Building built one year previous, the Library Complex may represent the beginning of the end of pure Modern expression on the CWSC campus (as opposed to the use of Modern characteristics in Post-Modern architecture).

The years 1973 (Gelernter 1999, 293) and 1975 (Gowans 1992, 349) are each referred to by architectural historians as the end of Modernism and the beginning of Post-Modernism; there is no consensus on an exact end date. Instead, one might define the transition between these two architectural eras as having coincided with the death of Brutalism (Crouch 1985), which encompasses the mid-1970s range. The construction date of the Library Complex coincides with this transition, though a hiatus in campus construction during the late 1970s does not lend a clearer example on campus of the national trend away from Brutalism.

Post Modernism

The rise of a new architectural style on the CWU campus did not emerge until the United States was able to climb out of the economic recession of the 1980s (Gelernter 1999, 307). Indeed, CWU experienced a construction hiatus in the 1980s. Near the end of the economic crisis, CWU constructed the Physical Education Building (now Dorothy Purser Hall) in 1987 and an Aquatic Center nearby in 1989 (Cooper 1987). Only inexpensive materials (e.g. brick veneer and concrete) were used, creating an effect closely resembling that of the Library Complex,
except box-like (less detail equals less building cost). The prosperity of the 1990s gave rise to new architectural expressions.

The break from Modernism was ideological (i.e. Modernism’s rejection of all traditional architectural forms was what was ended), but its architectural expression survived its philosophical demise, and it continued to be used aesthetically alongside eclectic Post-Modern styles (Gowans 1992, 350). The Chimpanzee and Human Communication Institute (CHCI) is an example of the Post-Modern use of inherently Modern features (Figure 7.9). The CHCI employs flush stucco façades, tinted windows, exposed metal (utilitarian) cage bars (over the chimpanzee courtyard), and slatted metal sun screens over the south windows.

Figure 7.9. Chimpanzee and Human Communications Institute (now an “Athletics Annex”) in 1995, looking north. (Photograph courtesy of Brooks Library Digital Collection 2015g).
Central Washington University explored Post-Modern ideologies on campus. Embracing once retired uses of historical architectural elements, as well as adventurous decoration, Post Modernism came to be characterized by its use of applied décor, variegated colors (especially pastel and psychedelic schemes [Gowans 1992, 356]), historical gestures, and “insistent exaggeration of elements that serve as semiotic signals, like ‘door’ [and] ‘window’” (Gowans 1992, 357). The 1993 Bledsoe-Washington Archives Building, the 1997 Science Building (Phase I), and the 1998 remodel of Black Hall all exhibit such characteristics, including polychromatic brick patterns on all three buildings (as well as on the 2009 remodeled portions of Dean Hall) reminiscent of 16th century Quaker architecture, brick arcades on Black Hall and the Science Building (Phase I) reminiscent of 18th and 19th century architecture, and exaggerated glass tower entrances on Black Hall and the Science Building (Phase I), mimicking the steeples of an older Gothic period.

In response to growing environmental concerns in the 1980s and 1990s, “New Urbanism” made waves across the United States, encouraging a standard of sustainable architecture through the use of ecologically sound materials (Gelernter 1999, 317). In the same vein, CWU adopted a “Renewal and Utilization of Campus Buildings” policy in the late 1980s that led to the remodel of Hebeler Hall, Bouillon Hall, Hogue Technology Center, and Shaw Hall (Cooper 1985), rather than the construction of new buildings. It is possible that the national trend of “green” architecture did not reach U.S. university campuses until the 2010s, as Swan and Brown suggest had occurred when the United States as a whole shifted its ideals in regards to how it consumes energy and it came to be reflected in both new and remodeled architecture (2013). According to Swan and Brown (2013), many U.S. universities and other institutions responded to the cultural ideals of “green” living by retrofitting existing buildings (as Dean Hall and Hogue Hall were) to
adhere to new regulations and laws regarding the improvement of energy performance and the reduction of carbon emissions.

By 2005, Washington State law required all state-funded construction and renovation projects to meet “green building standards” (RCW 39.35D.010). Since CWU’s CMP is regularly implemented utilizing capital funding, the new law has been applied to many subsequent campus development projects. One of the “green building standards” recognized by the law is the Leadership in Energy and Environmental Design (LEED®) standards (Department of Ecology 2005), which Facilities employed during the remodel of Dean and Hogue Halls in 2009 and 2012, respectively (CWU 2010). As part of meeting the new standards, Hogue Hall installed solar panels, wind turbines, and solar radiant heating systems (CWU 2010). Local basalt columns and native or drought-resistant vegetation have been used in the landscape architecture of nearly all new construction or renovation projects on the CWU campus of the 21st century, including the Student Union and Recreation Center, McIntyre Music Building, Wendell Hill dormitories, Dean Hall remodel, Hogue remodel, and Barto Hall reconstruction.

Worthy of consideration is how the sustainability movement has been changing the one characteristic that, according to Dober (1996), defines U.S. universities and colleges: the vast, grassy lawns of the campus. According to Hough (2010), colleges and universities across the United States who are adopting the LEED® standards as part of the “green building movement” are threatening the preservation of the traditional campus lawn. LEED® standards, which encourage the replacement of grass lawns with gardens and native meadows, may become more common, inherently breaking up the uniformity of campus lawns, and perhaps replacing them. Hough argues that environmental sustainability should be balanced with careful consideration of heritage preservation (2010); however, this practice could be seen as a return to truly historic
landscape architecture (i.e. without artificially seeded grasses). Areas surrounding buildings on CWU’s campus that meet LEED® standards and that would normally be reserved for lawn space contiguous with the campus greens have been planted with native drought-resistant plants instead. Contrary to Hough’s fears, this practice is not threatening CWU’s campus lawn. Rather, the native vegetation is simply an extension of space for any given building. Also, the arid climate of the Kittitas Valley makes the use of native, drought-resistant plants on CWU’s campus a demonstration of responsible water conservation practices.

Although there is currently insufficient historical perspective to truly understand or interpret the most recent architectural expressions of the 21st century, there is a vocabulary of materials and forms that speaks to the contemporary ideology. The current trend appears to be one of adventure in color, shape, and texture, balanced with a concern for sustainable practices on the CWU campus (Figure 7.10). Collectively, the buildings of the CWU campus convey a progression of intricate historical influences on the manner in which architecture is brought to the task of serving the academic, social, and educational needs of the student body and faculty.

Figure 7.10. New Barto Hall in 2014, looking south. (Photograph taken by Lauren Walton).
CHAPTER VIII
ARCHITECTURAL DESCRIPTIONS

Anderson-Moore Hall

Anderson-Moore Hall (Figure 8.1) is a multi-story dormitory complex that was built one building at a time in 1961 (Cowan and Paddock 1961). Its unit massing is double and attached. Moore Hall has a rectangular plan and makes up the west half of the complex. Anderson Hall also has a rectangular plan and makes up the east half of the complex. A lounge extends from each dormitory building toward the lounge of the other, connecting between the dormitories and giving an H-shape to the overall plan of the complex. Dormitory sections have three stories, while the lounge areas each have one story. There are no attics or basements. The foundation is poured concrete. The roofs are flat and overhang the east face third-story balcony only; there is no overhang on the south, north, or west faces, nor above the outer three panels of the east face of the buildings (where there is no balcony). The roof material is asphalt composition, while the eaves are smooth concrete with metal flashing. There are two chimneys; one at the west end of Anderson Hall lounge, and one at the east end of Moore Hall lounge. A small central courtyard is located in the covered breezeway between the two lounges. The architectural style is a Neo-Formal expression of Mid-Century Modern.

Majority of exterior wall material is brick with concrete elements. Exterior wall design is serial paneling, whereby concrete pilasters with a single flute separate sections of wall, and muntins further divide each panel into three smaller vertical sections, into which windows are set in varying arrangements. Each face is symmetrical about a vertical axis. Windows have no trim. Muntins and window framing are aluminum.
Anderson Hall

Anderson Hall has a rectangular plan that is oriented north-south. The north and south faces each have an exterior wall design of flush stretcher bond brick divided by five pilasters into four featureless, vertical panels. The east face is symmetrical about a centered vertical axis. At the center of the east face, on the first story, is a one-story block of brick that extends $\frac{1}{2}$-room deep from the east face. Roof is flat with metal trim. Block shelters a recycling nook and a solid single leaf service door with lower louver. A louver near the ceiling of the block interior is located beside the service door nearest the east face of the building. The block also shelters an off-center single leaf door with off-center vertically rectangular window that is flush with the east face of
the building. A flush square concrete transom heads the door. At the southeast corner of the block’s exterior, a freestanding metal staircase with metal railing ascends to the central entrances of the second and third stories. These central entrances are each recessed into an umbrage with a brick façade; door is solid wood single leaf with wood transom and six-pane side light (upper four panes are glass). The balconies of the second and third stories each run continuously across the east face to each story’s outermost entrances, which are each set in an umbrage three panels in from an edge of the building (entrances are identical to central entrances). On the third story, between the central entrance and the north entrance, from south to north, the first panel has two vertically stacked windows in the upper two-thirds of each of the panel’s three sections (six windows total, the bottom center of which is top-hinge). The second through fifth panels north of the central entrance each have one window in the upper one-third of their respective three sections (i.e. each panel has three windows total, the center of which is top-hinge). The panel just before the north entrance is identical to the first panel north of the central entrance (i.e. six windows). Balcony terminates at north entrance, beyond which are three more panels; the first panel has six windows, while the outer two panels each have three windows. The south half of the third story mirrors the north half just described. The second story is identical to the third story. The first story is nearly identical to the second and third stories with some exceptions. The first panel south of the central entrance (sheltered by the brick façade block) is featureless flush brick, followed to the south by two six-window panels, two three-window panels, and then one three-window panel before the south entrance. A metal side stair and concrete switch-back ramp with metal railing lead to the south entrance. The three panels south of the south entrance are identical to those of the second and third stories. North of the central entrance, the first two panels each have a flush brick façade with central three-louver ribbon, above which is a ribbon
of three fixed windows (the first panel’s northernmost window was replaced with a fan). The north entrance of the first story has a concrete side ramp with metal railing.

The west face of Anderson Hall is similar to the east face, but with several variations. In lieu of the outer panels with entrance umbrages, the outer panels of the west face have a brick façade; a solid, off-center, one leaf door with a concrete step on the first story; and a block (encasing a stairwell) that extends from the central three-fifths of the west face with a vertical ribbon of six fixed windows; framed in concrete. As late as 1970, the original pyramidal windows were in place on the facades of the stairwells (refer to Figure 8.1), but have since been replaced with flat panes. In lieu of the central entries panel, the central panel of the west face has a lounge extending west from its center on the first story. On the first story, between the lounge and each of the outer stairwell panels are four panels, each with nine windows (bottom-center window is top-hinge). Beyond each of the stairwell panels, the first panel has six windows, followed by two panels that each have three windows. On the second story above the lounge is a block that extends from the west face, is framed in concrete, and has a nine-pane window curtain. A brick façade finishes the upper portion of this panel. Between this panel and each of the outer stairwell panels, there is a six-window panel, followed by four panels with three windows, and then a panel with six windows. Beyond the outer stairwell panels is one panel with six windows, followed by two panels of three windows. Third story fenestration is identical to that of the second.

From the west face of Anderson Hall extends a one-story lounge from the center of the first story. The lounge is rectangular, situated east-west. The roof of the lounge is flat with metal trim, and is supported by precast concrete T-beams. The T-beams are partially visible as pilasters separating each of the four panels of the lounge’s north face. On the north face of the lounge,
nearest the west face of the main building, is a two leaf, three-panel door (center panel of each leaf is wood, upper and lower panels are glass) with large square light transom and a four pane light transom that is located opposite the west face of the main building. The next two panels of the lounge’s north face have twelve panes, the upper nine of which are glass. The outermost panel is flush brick and extends west from the west face of the lounge. West face of lounge is symmetrical about a central chimney, which has a wood storage door on its face. To either side of the chimney is a two-pane fixed window with lower and upper light transom and brick dado. The roof overhangs an open breezeway just west of the lounge’s west face. The south face of the lounge is identical to the north face. The stairwell windows of the west face of Anderson Hall were originally pyramidal panes, but these were replaced with flat panes some time after 1970.

Moore Hall

The north and south faces of Moore Hall are identical to those of Anderson Hall. The west face of Moore Hall nearly mirrors the east face of Anderson Hall with some exceptions. The outer first-story entrance has a metal railing flush with the west face that creates a closed porch area. There is no fan in the north panel nearest the brick façade block. Also a ladder rises through the roof of the southern third-story entrance umbrage ceiling.

The east face of Moore Hall mirrors the west face of Anderson Hall. The central lounge areas of Anderson and Moore Halls mirror each other, sharing a roof that opens in the center to allow light for a small central planting area.

Aquatic Center

The unit massing of the Aquatic Center (Figure 8.2) is single and detached. The floor plan is square. Two stories define the building layout, although the majority of the interior space is utilized for the pool (i.e. vaulted ceiling). There is a partial basement and no attic. The roof shape
is a very low gable, not visible behind a flat parapet with square scuppers and stone coping (Doudna, Williams, Weber Architects, 1989). No chimneys are present. Built in 1989, the building is stylistically plain, but its overall uniformity and box-like form place it within Late Modern.

Figure 8.2. Aquatic Center in 2015, looking northeast. (Photograph taken by Lauren Walton).

The exterior wall material is stretcher bond brick veneer. The exterior wall design includes two belt courses of precast concrete, one parallel with the top of the main entrance and another with the top of the second-story windows. The flush concrete foundation wall is visible, tiered
with topographic transitions. A single pile hallway projects westward from the west face, and is comprised of brick and a slightly downward sloping, corrugated metal roof.

Besides four groups of fixed windows on the west face of the projecting hallway, the building lacks windows. The outer two window groups each have two vertically rectangular sashes, and the inner two groupings each have five vertically rectangular sashes. Each window has a flat structural opening with no trim, surround, or sill. Each sash is separated by a thin metal mullion. The south face of the hallway has a similar two-sash grouping. The north face of the hallway has a single leaf, single panel glass door with a light transom and west side light, and no trim or surround. The main entrance, which is located off-center west on the south face, has a flat structural opening shape. The main entrance is a double leaf, single panel glass door with side lights and a light transom. Above the transom and sidelights, there is a flush, three-panel blind transom. Above the blind transom is a flush, three-panel light transom. The building underwent asbestos abatement modifications in 2006.

Auxiliary Services Storage

Unit massing of the Auxiliary Services Storage (Figure 8.3) is single and detached. The plan is rectangular, oriented east-to-west. The building is two stories (interior is one story with a mezzanine). There is no basement or attic. The roof is standing seam metal in a gable form and the eaves are slightly curved downward. Exterior wall material is standing seam metal. The only windows are skylights. Entry doors are single leaf and solid metal with a flat structural opening and no trim or surround, but with a small metal sill to redirect water from the structural opening. At one time there was a large bay door on the east face, but this has since been covered and a single leaf entry door has been installed in its stead. Upon close examination, it appears that some of the sheet metal siding was replaced across the lower one-third of the east face when the
bay door was replaced. A portion of the sheet metal siding on the north face near the east corner of the building has been replaced. On the north face, there is a large, hanging, side-sliding door of standing seam metal on metal tracks. Restroom modifications were made in 1996.

Figure 8.3. Auxiliary Services Storage in 2014. (Photograph taken by Lauren Walton).

The date of original construction is unknown, but it first appears on maps of CWU property in 1964. The property is not shown on a 1958 USGS; however, it is unclear if this is because it was not present or if this was because it was present, but was considered an out-building and therefore not included in the map as a permanent structure. The manufacturer emblem “Butler” in the gable peak helps define a date range for its construction. The company began construction of this rigid wall model (providing on-site construction as part of the company’s service) during WWII (Butler Building Parts Online 2015). The pre-fabricated, deep drawn corrugated metal
siding, hand screwed bolts, and sliding hanging doors are indicative of the post-WWII era (Rimmer 1949). A new model of wall replaced all previous style used by Butler by 1959.

Aviation Training Center

The Aviation Training Center (Figure 8.4) is located within the Airport Operation Zone as defined by the Ellensburg Certified Local Government, and therefore is subject to Chapter 15.350 ECC. The airfield, Bower’s Field, has a rich history that is important to both the school and to the community of Ellensburg.

![Aviation Training Center in 2014. (Photograph taken by Lauren Walton)](image)

Figure 8.4. Aviation Training Center in 2014. (Photograph taken by Lauren Walton).

The current Aviation Training Center was constructed in 2009, having replaced a structure that had been constructed by CWU in 1993. Unit massing of the Aviation Training Center is single and detached. The plan is irregular. The building is one story. There is a crawl space and an attic. The roof is standing seam metal in a shed form. The exterior wall design is vertical corrugated metal, and the attic has a horizontal corrugated metal façade. Typical windows are horizontal aluminum sliders, horizontal three-sash fixed, double two-panel, and two-panel
storefront. Typical doors are single or double leaf, flush, hollow metal or glass with a flat structural opening and no trim or surround. There is a top-rolling door on the east face.

Barge Hall

Barge Hall was placed on the NRHP in 1974. To avoid duplicating work, only reconnaissance survey and research was conducted to determine integrity. The only exterior changes to the building since 1974 have not compromised the integrity of the building. A cupola was installed on the main entrance tower in 1993 to restore the cupola that was removed in 1950 after a 1949 earthquake damaged the original cupola beyond repair. Although the uppermost portion of the brick tower appears to have been either removed or covered by the installation of a new cupola in 1993, the integrity of the building’s original feeling, location, and appearance remains intact, and the original building materials were mimicked in the new cupola.

Figure 8.5. Barge Hall main entrance cupola being restored in 1993. (Photograph courtesy of Central Washington University Archives and Special Collections. ca. 1991-1993).
Barto Hall (New) and Residence Life Office

Barto Hall

The original Barto Hall was constructed in 1962 and had a roughly T-shaped plan with a north-to-south rectangular wing located south of a north-to-south rectangular central hub, to the east and west of which were east-to-west rectangular wings. Between 2009 and 2011, Old Barto Hall was razed and completely reconstructed.
New Barto Hall was completed in 2012, adhering to Leadership in Energy and Environmental Design (LEED®) standards at the highest rating (Platinum Certified) of the green building rating system for the consideration of waste management, use of recycled materials, water and energy efficiency, use of alternative energy sources, encouragement of alternative transportation use, reduction of carbon dioxide emissions, and resource stewardship. As of 2014, New Barto Hall is the only residence hall of CWU’s campus to have such a rating. Part of meeting the LEED® standards included reusing thirteen million pounds of concrete from the Old Barto Hall as structural fill for the New Barto Hall and the Residence Hall Office (Owen 2012). The new plan is similar to that of the original residence hall, except that the T-shape is skewed so that there is a north-to-south wing (henceforth referred to as the "south wing") attached at the north end to a central hub, from which there is also a southwest-to-northeast wing (henceforth referred to as the "west wing") and a southeast-to-northwest wing (henceforth referred to as the "east wing"). Additionally, the plan of each wing is no longer completely rectangular, but is a staggered grouping of rectangles, squares, and wedge shapes. The building has four stories, but sections of the building are also one, two, or three stories. The multiple roof levels are typically either flat or shed; however, there are also gabled, hipped, and butterfly sections of roof (Figure 8.7). Where there is a shed roof, the roof either slightly or greatly overhangs the wall. In the case of the latter, struts support the cave. The material of the shed roofs is a standing seam metal with a plain box cornice. The roof material of the flat roofs is asphalt shingle. Solar panels are located on the roof.
No basement was noted during survey (at which time [2014] final architectural drawings for
the New Barto Hall were unavailable, and bid set architectural drawings did not reference a
basement). It appears that there is an attic and/or mechanical penthouse above the fourth story.
The exterior wall material is a patchwork of brick veneer, insulated metal paneling, and wood
clapboard. Areas of the exterior wall that are brick veneer have numerous recessed string
courses. Areas of the exterior wall that are insulated metal paneling have a cottage cheese
texture. Areas of the exterior wall that are wood clapboard have either medium or large planks.
Clapboard sections of the walls that do not extend from ground level to roof level are raised from
the main façade. The interior wall material is concrete.

Nearly all window structural openings are flat, except for triangular windows that abut the
shed-shaped roofs. Window design differs depending on the exterior wall material/design into
which a window is set. Where the exterior wall is insulated metal paneling, there are either one
or two double-hung windows, or one- to four-sash fixed two-pane windows, that occupy a structural opening that has/have no trim, sill, or surround. Where the exterior wall is brick, either one or two double-hung windows share a structural opening, separated by a flush metal mullion, has a brick slip sill, and has/have no trim or surround. The exception to this is the first through third story façades on the north face of the central hub, which frame sections of glass curtain. Where the exterior wall material/design is wood clapboard with large planks, either one or two double-hung windows share a structural opening, separated by a flush metal mullion, or there is a single, four-pane window; the window is recessed slightly, has plain trim, and has no sill or surround. Where the exterior wall material/design is wood clapboard with medium planks, there is either one or there are two double-hung windows that share a structural opening, separated by a flush metal mullion, or there is a single four-pane window with flush plain trim (larger than that of the large-planked clapboard sections of wall), and no sill or surround. Flat, slatted sun screens overhang many of the windows on the south faces of both the east and west wings.

All public access entrances have a flat structural opening, and are single or double leaf, two-pane glass and metal doors with side lights and light transoms, and no trim or surround. All maintenance entrances are single leaf, solid metal doors with no trim or surround.

A plaque is located near the main entrance on the south west face of the central hub that reads, "Central Washington University. Barto Hall. Ellensburg, Washington. James L. Guadino, University President. Boards of Trustees. Approved for Construction: Sid Morrison, Chair; Keith Thompson, Vice Chair; Annette Sandberg; Dan Dixon; Kate Reardon; Ron Erickson; Patricia Notter; Logan Bahr, Student Trustee. Dedication: Sid Morrison, Chair; Keith Thompson, Vice Chair; Annette Sandberg; Dan Dixon; Kate Reardon; Ron Erickson; Chris Liu; Lindsey Sires,

Residence Life Office

The Residence Life Office is a single, detached unit located just south of the south wing of Barto Hall. It has a rectangular plan, is one story, and has a skillion and lean-to roof. Its exterior wall material, windows, and doors are similar to those of Barto Hall. Fixed, single pane windows make up the clerestory of the west face of the skillion that rises above the lean-to roof. Above the main entrance is a porch overhang that is askew, rising slightly higher on its southern edge, supported by brick piers.

Figure 8.8. Residence Life Office in 2014. (Photograph taken by Lauren Walton).
The Bassettis

Between 1964 and 1966, six detached apartment complexes were constructed, which comprise the Bassettis complex (Figure 8.9), including Beck Hall, Davies Hall, Hitchcock Hall, Meisner Hall, Quigley Hall, and Sparks Hall (Fred Bassetti and Company 1964). The style exhibited by these buildings represents the transition from Mid-Century Modern architectural style into Late Modern. Each building has a similar J-shaped pavilion floor plan and has a nearly identical exterior design. Each building is three stories. No basements or attics are noted in the original architectural drawings; however, there is crawl space below each building. The roof of each building is gabled and made of standing seam metal. The roof overhangs each wall, and has exposed wood rafters. Although there were originally two detached chimneys, each complex now has a pair of base-linked chimney stacks rising above the roofline above the building’s respective lounge. Extending one-room deep from the face of each building’s lounge is a one-story block with a brick façade, two bay windows, and a hipped roof. Each lounge block has at its entrance a concrete patio surrounded by brick privacy walls and sheltered by shed roofs that have exposed rafters and are supported by wood piers. Occasionally, there is a raised panel that projects from the second and third stories with a basal trim of concrete.

The exterior wall material is brick. There is a board-formed concrete plinth. The exterior wall design is flush stretcher bond with a flush header brick course aligned with the head of the first story windows, and an identical course aligned with the head of the second story windows. Occasionally, the courses are tiered downward across the face of a wall. Decorative bricks designed by the architect and others randomly dapple the walls.
All windows have a flat structural opening. The typical window is square or vertically rectangular, and side-hinged with no trim, an outward-angled brick side surround, brick slip sill, and precast concrete eyebrow (either a flush or projecting lintel) head surround. There are also two- and three-story bay windows situated on the main façades and corners of each building. Bay windows are typically fixed with two side-hinged sidelights, and no trim or surround. Each bay has a clapboard facade. Skylights are set an angle atop the third stories. Louvers sometimes take the place of windows, but are of the same style as nearby windows.

Stairwell exits are typically single leaf, solid metal doors with vertically rectangular side panel of glass, no trim, and a head surround of precast concrete similar to the nearby window head surrounds. Main entrances are typically double leaf, two-panel glass and wood doors with
bay windows to either side, and a hipped roof that is supported by brick on concrete piers that are linked by concrete benches. Concrete balconies with metal railing typically have a single leaf glass door, no trim or surround, and a one- or two-paned side light or clapboard. When a balcony is present, it is set in a recessed panel, and there are balconies on both the second and third stories. Above the recessed panel, the roof either rises slightly in a flat peak or recedes.

All buildings have a date stone of either “1965” or “1966.” Hitchcock Hall has a special plaque that reads: “Dormitory Buildings, Central Washington State College. Board of Trustees: Dr. Archie S. Wilson, Chairman; Mrs. Frank Therriault, Vice Chairman; Dr. Roy Patrick Wahle; Mrs. Frederick W. Davis; Mr. Joseph Panattoni. Dr. James E. Brooks, President. Architects: Fred Bassetti and Company. Contractor: Absher Construction. 1965.”

In 1982, stairway exit doors were replaced. Fire and life safety systems were installed in Hitchcock Hall in 2002, in Beck Hall in 2003, and in Meisner Hall in 2006. In 2003, several windows of Beck Hall were replaced. The roof of Davies Hall was replaced in 2010, and that of Sparks Hall was replaced in 2012.

Black Hall

The original Education and Psychology building (later known as Black Hall) was completed in 1960 in the Modern Style, along with and a small conference center (now called Mary Grupe Conference Center), which shall be described separately from Black Hall. A remodel in 1998 almost completely rebuilt Black Hall (a structural portion of the interior is still present, but all surfaces have been rebuilt) and an addition was made to the north face (Figure 8.10). The new style is Postmodern, embracing brick patterns reflective of early American Quaker design.
Figure 8.10. Black Hall in 2014, looking southeast. (Photograph taken by Lauren Walton).

Unit massing of the building is single and detached. The original plan was rectangular, oriented west-to-east, but the 1998 remodel nearly tripled Black Hall’s size and the floor plan is now irregular. Henceforth, the original portion of Black Hall shall be referred to as the south wing. All wings are two stories and have an attic. There is no basement. The foundation is poured concrete. There are no chimneys.

During the 1998 remodel, the flat roof of the original building (i.e. the current south wing) was replaced with a gambrel roof, the sides of which are steeply inclined, and the top of which has a low ridge. The west and east ends of the south wing each have two gable faces. Doghouse dormers and gables project perpendicular from the roof on the north and south sides of the south
wing. The addition to Black Hall is comprised of an irregularly shaped central block and a north wing that is parallel to, and shorter than, the south wing. The north wing consists of a steep, east-to-west gable, two flat-roofed blocks that extend from the north face at the base of the main gable, and three gable faces that project perpendicular from the main gable. A steep, north-to-south gable runs between, and perpendicular to, the north and south wings, creating an H-shape. To the west and east of the center block gable, there are flat-roofed blocks with an irregular plan. Also, on both the west and east face, there is a gable face tower. Extending east from the west face gable tower is a glass gable that runs across a flat roof and meets the north-to-south gable of the center block. Roofing is metal.

Exterior wall material is brick laid in a stretcher bond. Exterior wall design consists of elaborate red and grey masonry, including string and belt courses, basal and roof trim, quoining, and motifs. The basal trim is a row of grey, vertical header brick atop a row of red, horizontal stretcher brick atop a belt course of grey, vertical header brick atop a row of red, horizontal stretcher brick atop a row of grey, vertical header brick. On both the first and second stories, there is a grey, vertical header brick string course that aligns with the base of the window transoms; and there is a grey, vertical stretcher brick string course that heads the windows. A string course of grey, stretcher brick aligns with the base of the second story windows. A string course of grey, horizontal stretcher brick runs across the top of the second story. Where the roof is flat, there is a roof trim of grey, vertical stretcher brick. This roof trim continues on the gable faces, but is stepped. A row of single grey header bricks runs below the stepped roof trim of the gable faces. On the gable face, above the uppermost string course, is a lattice design of individual grey header bricks. Between the uppermost string course and the uppermost belt course, there are grey brickwork motifs. Between the uppermost string and belt courses of the
first story of the gable faces, there are grey brickwork motifs. Between the basal trim and the first story string course, there is a pattern of grey header brick diamonds. On the gable faces, between the string course that heads the first story windows, and the string course that runs below the second story windows, there is a large, grey header brickwork motif. Grey stretcher brick quoining runs up all the edges of the building, including the edges of each block. Brick partition walls situated west of the main entrance create a courtyard space. The concrete patio of the courtyard has an inset brick design and extends west beyond the partition walls in a circle that intersects the walking mall just west of Black Hall. On the south face, there are two balconies, each supported by fluted, industrial style iron columns that are set in concrete block piers with decorative brickwork, and that have flush, concrete block capitals. Each balcony provides shelter to an entrance below it.

The typical window is flush; has a flat structural opening; has two sashes, each with a four-pane light transom; has no side surround or trim; and has a plain metal trim that matches the mullion and muntins. There are some single-sash windows that are similar in design. There are some windows with a segmental structural opening that have a similar design, except that the sashes, light transoms, and muntin designs differ from one another depending on their placement on the building. For example, the segmental windows of the west face of the north wing have two sashes and additional lower light transoms, while the segmental windows of the north face of the north wing have four sashes, more muntin divisions in the upper light transoms, and no lower light transoms. The segmental windows of the towers are also unique.

The typical door has no trim or surround, and is a two-panel glass door with a light transom that is muntin-divided similarly to the window light transoms. Doors range from one-leaf to three-leaf; some have no transoms, and some have no side lights, one side light, or two side
lights. The tower entrances are each recessed in a porch. The west entrance has three single-leaf, two-panel doors, each separated by a two-panel side light, headed by a continuous light transom ribbon. A mullion separates the entrance transom from a larger light transom, above which is a window curtain that projects up and outward at a 45° angle to meet the main face of the tower. Above this is a large segmental window with a complex muntin design and a radiating voussoir of grey stretcher brick. Above this window is a smaller segmental window, also with a muntin design and identical voussoir. Above this window is a four-pane ocular window with grey trim. To either side of the main (west) entrance, there is a window curtain on the first story. The tower is supported on each side of the entrance with a brick pier and iron columns. The east tower entrance is less grandiose than the west tower entrance. For example, the east tower does not have an upper segmental window like the west tower, and has no glass curtains and has only one light transom ribbon. The entrance is off-centered to the south of the tower piers, rather than centered between the piers. Also, the northernmost door of the east entrance is separated from the other two doors by a brick mullion.

Bledsoe and Washington Archives

The Bledsoe and Washington Archives was completed in 1993 in a Postmodern style that embraces brick patterns reflective of early American Quaker design. Unit massing of the Bledsoe-Washington Archives Building is single and detached. The building has one story. The plan is T-shaped with a rotunda at the southeast end of the south wing. Attic and basement are not noted in original architectural drawings (The Tsang Partnership 1993). Roof form varies: roof is gabled north-to-south through the center of the building (i.e. the south wing) and east-to-west across the north wing of the building; roof is flat surrounding the central gable of the south wing; roof of the rotunda is eight-sided, pyramidal. No chimneys noted. All windows and doors have a flat structural opening, and have no trim or surround. Foundation is poured concrete. Concrete foundation wall is visible where topography is lowest.

Exterior wall material is flush stretcher bond brick of an orange color. Exterior wall design consists of multiple string and belt courses, as well as elaborate brick designs of varying colors and arrangements (Figure 8.11). The roofline is trimmed with a two-tiered belt course of maroon-colored vertical stretcher brick. The rotunda roofline rises slightly taller than the main roofline, so the trim of the main roofline runs across the rotunda face as a belt course; an additional, identical belt course trims the rotunda roofline. Below the main roofline trim is a flush belt course of maroon-colored vertical stretcher brick. Below this is a flush string course of maroon header brick. Below this is a flush belt course comprised of a top row of maroon-colored vertical stretcher brick and a bottom row of maroon-colored horizontal stretcher brick. Below this, near the base of the wall, is a raised string course of maroon-colored header brick.
The north wing has a rectangular plan that is oriented east-to-west. The north, west, and east faces of the north wing have no doors or windows. The north face is featureless. The west face has five metal louvers. The east face is dappled with an elaborate, flush brick design, and the roof trim is a course of header and stretcher brick in an icicle design. On the south face of the east half of the north wing is a solid, single leaf door. On the south face of the west half of the north wing, from west to east, there is a solid, single leaf door, headed by a louver, then there is a one-room deep umbrage, in which is a concrete loading dock with straight, off-center east stairs. On the south face of the umbrage, above the dock, is a metal rolling garage door and a solid single leaf door. The string course of the wall design heads both doors. The east wall of the umbrage is part of the west face of the south wing.

The south wing runs north-to-south. The center of the south wing roof is gabled, meeting the north wing perpendicularly, but the roof surrounding the gable of the south wing is flat and wraps around the northwest half of the rotunda and the west side of the north wing’s south face. The south end of the south wing gable is triple-hipped. There is a clerestory of windows around
the south face of the gable where the gable meets the flat roof (two fixed windows on each of the three sides of the hipped gable end, and six fixed windows on both the east and west broadsides of the gable). One doghouse dormer with a louver face juts from each broadside (east and west) of the south wing gable.

On the west face of the south wing are two, two-sash windows with a two-panel light transom. South of the southernmost window, the wall angles to the southwest at 45°. On the face of this brief northwest-facing section of wall is a single window with a light transom. The wall immediately angles southeast at a 90° angle, creating the first of three angled blocks on the south face of the south wing. The southeast face of each angled block has a floor-to-ceiling, two-sash window with two-panel side light, except for the easternmost block, which has a single leaf, six-panel glass door with a four-panel sidelight to the southwest, and a light transom. This is the main entrance. Extending from the upper one-third of each angled block is a brick porch overhang, supported by brick piers. Typical exterior wall design wraps around the upper façade of the porch overhang and piers. The two-tiered capitals of each pier consist of vertical stretcher brick atop vertical header brick of the main wall brick color (orange). A small square of the same design as the pier capitals adorns the wall just under the porch overhang where the overhang meets the wall at the westernmost and easternmost ends of the angled blocks. The southeast face of the porch of the westernmost angled block is flush with a section of wall that meets the south half of the rotunda. This section of wall has a large, horizontally rectangular, four-sash window with a four-panel lower light transom and four-panel upper light transom. Heading the window is the vertical stretcher brick belt course of the wall design.

The east face of the south wing is located between the north half of the rotunda and the south face of the north wing’s eastern half. The east face of the south wing is a window curtain with a
metal dado. Entire curtain, including dado, is muntin-divided into 16 sashes, each with a light transom. In place of three of the sashes is a single leaf, one-panel glass door with sidelights and three-panel light transom. Window curtain is sheltered by the overhang of the upper one-third of the east face. Overhang is supported by brick piers identical to those on the south face of the south wing. A metal fence extends north from the northeast face of the rotunda to partition off a courtyard that is just east of the window curtain.

Where the wall just northeast of the main entrance meets the southern half of the rotunda, there is a vertically rectangular, fixed window with light transom. Heading the windows of the rotunda is the vertical stretcher brick belt course of the wall design. Wrapping around the rotunda from this window to the north half of the rotunda are three pairs of identical windows, followed by a solid single leaf door with a light transom. At due north, the rotunda meets the east face of the south wing.

Botany Greenhouse

The Botany Greenhouse (Figure 8.12) was completed in 1979. Its massing is single and detached. The floor plan is rectangular, oriented east-to-west. There are four bays on the concrete masonry base walls of the south face, but the window ribbon and roofline are flat above the concrete bays, such that the bays are not easily discernible. There is one story and a mezzanine. On both the east and west gable faces, there is a double leaf, solid door with a flat structural opening; a small, fixed, vertically rectangular window; with no trim. There is no basement or attic. The roof is gabled with the south pitch and the upper two-thirds of the north pitch a glass “glaze” (Fred Bassetti and Company 1977) and mullions, and the lower one-third of the north pitch is a standing seam metal. The original base walls of concrete masonry units have been retained. To either side of the entrances, the masonry rises to the top of the doorway, and
standing seam metal extends from the head of the door to the roofline. A ribbon of top-hinge windows runs along the top of the masonry wall at the roofline on the south face. The entire north face has a concrete masonry unit façade with some louvers. Northwest of the greenhouse is the Marshall W. Mayberry Arboretum.

Figure 8.12. Botany Greenhouse in 2014. (Photograph taken by Lauren Walton).

Architectural drawings (BCRA 2009) for the Dean Hall renovation (just east of the greenhouse) indicate that, in 1991, there was a “reroofing and greenhouse replacement;” however, this “greenhouse replacement” is not noted in the architectural drawings available for
the Botany Greenhouse itself at the archives of Facilities. Miscellaneous steel and water damage repair was performed in 1980. The 2004 architectural drawings for the Botany Greenhouse (Schreiber and Lane Architects 2004) indicate that much of the original 1979 structure (Fred Bassetti and Company 1977) remains, but that the original glazing and mullion system on the north pitch of the gabled roof were replaced, as were the doors, plywood flooring, wall and ceiling panels, and partial corrugated aluminum roof (north pitch of gable roof) replaced with standing seam metal.

Bouillon Hall

In 1961, the Bouillon Library was completed. By 1965, the library was outgrown, another library was eventually built to replace it (Dr. James E. Brooks Library), and the interior of Bouillon was remodeled to accommodate classroom instruction. The exterior style is definitively Subliminal Eclectic Modern – Screen (Gowans 1992, 299-313), for which it won the 1961 Honor Award through Washington State AIA.

The unit massing of the building is a single and detached. The plan is rectangular, oriented north-to-south. There are two stories. The exterior wall material is concrete; a stretcher bond brick façade covers the north and south faces. The exterior wall design consists of a plain concrete belt course that divides the two stories horizontally. Perpendicular to the belt course is an arrangement of concrete pilasters (some terminating at the belt course) that divide the face of the first story of the north and south faces into five panels, and the second story into three panels. Large, brick, honeycomb screens are cantilevered from the roof, shading the east and west faces (Figure 8.13). Each screen is anchored centrally to the walls by a five-foot horizontal concrete beam.
Figure 8.13. Bouillon Hall in 1961, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2015e).

The roof is precast concrete in a squat monitor form; the uppermost portion of which is flat, and the northern and southern halves to either side of the flat section are composed of precast concrete folded plates. The roof overhangs all faces (the upturn of the folded plate roof over the north and south faces, and the cross-section of the folded plate roof over the east and west faces).

In the westernmost panel of the first story of the south face, there are two off-center east, single, fixed windows with down-tilted, precast concrete eyebrow labels. In the panel east of this, there is an off-center west entrance, which is a single leaf, solid door with a down-tilted, precast concrete eyebrow label. Straight concrete stairs with metal railing lead to the stoop of this door.
In the easternmost panel of the first story of the south face, there is an off-center west door that is identical to the other south face door. In the westernmost panel of the second story (from west to east), there are two windows identical to those of the first story. In the panel east of this, there is an identical off-center east window. In the panel east of this, there are two identical off-center west windows.

On both stories of the north face, there is a vertical folded plate arrangement of precast concrete. Each northeast aspect of the folded plates has a fixed, flush, round-cornered window with a flat structural opening (Figure 8.14).

Figure 8.14. Bouillon Hall in 1961, looking south. (Photograph courtesy of Brooks Library Digital Collection 2015d).
On both the first and second stories of the east and west faces, the exterior wall design is a flush concrete wall divided by concrete pilasters into a series of panels. A window ribbon runs across the face of each story, divided by the pilasters into groups of three windows on the first story and into single windows on the second floor. A narrow horizontal panel of brick runs across the head of the window ribbon of the first story, and flush concrete heads the windows of the second story. The main entrance is located off-center south on the west face and has three sets of double leaf, two-panel glass doors with plain wooden trim and flush light transoms, and flush side lights with flush light transoms. A precast concrete portico extends over the main entrance; its soffit is a raised geometric design painted in multiple colors. A concrete patio extends from the west face of the building in a rectangular plan, raised several feet above the surrounding school grounds by a concrete retaining wall that has been impressed with a corrugated metal pipe. Original 1960 architectural drawings indicate the plaza and podium off the west face of the building were comprised of exposed aggregate paved panels with insets of scoured brick; however, the current surface is poured concrete with random leaf impressions. A wide straight staircase off the stoop of the main entrance extends north, creating the impression that the main entrance is actually centered on the west face.

North of the building, between Bouillon Hall and the Mary Grupe Conference Center, is the concrete of what used to be a reflecting pond surrounding the Mary Grupe Conference Center. The rectangular water feature had extended from the north face of Bouillon, under a footbridge, and wrapped around the raised patio foundation of the Mary Grupe Center. Water was no longer in the feature by 2004, and the foot bridge and some of the concrete foundation of the feature were removed by 2013.
In 1980, the landscaping received an update, and the interior of Bouillon Hall was remodeled. Stair modifications were made in 1983 to meet ADA standards. Asbestos abatement and a “modernization” remodel were done in 1994. The exterior remains nearly untouched.

Brooklane Village

The Brooklane Village is composed of twelve apartment complex clusters (each cluster comprises five buildings), a daycare/laundromat, two storage units and well, and a converted two-part residential unit for storage and office space.

Office Space

The unit massing of the office space building is two detached buildings (Figure 8.15). Connecting the southeast corner of the northernmost unit to the northwest corner of the southernmost unit is a timber archway with matching exterior wall design. The northernmost unit has a square plan and the southernmost unit is L-shaped. Both units are one story and have no basements. It appears that both units have some attic space. Both units have gabled roofs of standing seam metal with eaves. The gable of the northern wing of the southernmost unit is shorter than that of the western wing, such that the north gable face of the western wing projects as a triangular dormer on the roof of the northern wing. The exterior wall material and design is dilapidated wood clapboard. A wood string course runs across the top of the main story, above which is an exterior wall design of wood paneling with vertical wood battens. All structural openings of windows and doors are flat. The typical door is single leaf and solid wood with plain trim and no surround. A top-rolling, twelve-panel garage door is located on the north face of the northernmost unit. The northernmost unit has only one window, which is sliding and located off-center on the north face. The southernmost unit has several window types. On the north face of the southernmost unit, there is a fixed, horizontally rectangular window with four-pane casement
sidelights, wood mullions and muntins, and plain trim. Also on the north face of the southernmost unit, there is a double hung, vertically rectangular window (each sash is divided horizontally into two panes) with plain trim. The south face of the west wing of the southernmost unit has two fixed two-sash windows that are divided horizontally into three panes each by wood muntins. On the west face of the west wing of the southernmost unit, there is a small square sliding window and there are two fixed, horizontal, three-pane windows (all with plain trim). On the east face of the west wing of the southernmost unit, there is a large, fixed, horizontally rectangular window with five-pane sidelights, wood mullions and muntins, and plain trim. On the south face of the north wing of the southernmost unit, there are three double hung windows (each sash has two panes) with plain trim. On the east face of the north wing of the southernmost unit, there are two double hung windows (each sash has two panes) with plain trim.

Figure 8.15. Office space at Brooklane Village in 2014. (Photograph taken by Lauren Walton).

Well and Storage Units

The unit massing of the Brooklane Village well and storage units is two detached buildings (Figure 8.16). Each has a rectangular plan, is oriented north-to-south, is one story, and has no
basement. It appears that the southeast building has some attic space. The northwest building has a gabled standing seam metal roof, and the southeast building has a skillion and lean-to standing seam metal roof. The exterior wall material and design of the northwest building is standing seam metal and the southeast building is vertical wood planking with horizontal plank belt courses at the base and top of the main story. The typical storage unit entrance is a top-rolling metal door with plain trim. The typical door is single leaf and solid with plain trim. On the south face of the southeast building, there is a large ocular window with a wooden muntin chevron dividing three panes. The well is located in the southern half of this southeast building. Louvers are located on the face of the skillion and on the main walls. In 2004, improvements were made to the irrigation system associated with the well. In 2015, the irrigation lines, which run under Eighteenth Street from the well to portions of CWU campus greens, were once again improved.

Figure 8.16. Well (at right) and Storage Units (at left) at Brooklane Village in 2014. (Photograph taken by Lauren Walton).
Early Childhood Learning Center

Originally the “multi-purpose building” (Olson, Richert and Bignold 1970), this building now houses a daycare and a laundromat. In 2005, the building was renovated, though the basic plan and exterior design were apparently retained. The plan is rectangular, oriented east-to-west. The roof is skillion and lean-to, and partially hipped (Figure 8.17). Roof material is standing seam metal that slightly overhangs a large plain frieze. The exterior wall material and design is vertical wood planking. Typical windows are large, fixed, and square with plain trim. There are a variety of door types, including: single leaf, solid wood with off-center, vertical, single-pane lights; single leaf, two-panel doors (upper panel is glass); and double leaf, single panel glass doors. Louvers are located on all faces. A fenced playground is located just south of the building.

Figure 8.17. Childhood Learning Center and Laundromat at Brooklane Village in 2014. (Photograph taken by Lauren Walton).

Apartments

There are twelve apartment complex clusters. Each apartment complex cluster is comprised of five buildings that are arranged in a hexagonal shape with one open side. The five buildings of
each cluster are in an alternating pattern of one-story duplexes (Figure 8.18) and two-story four-plexes (Figure 8.19). Both types of apartment buildings have elevated front porches of wood and ground level back patios of concrete. Storage space projects from the backs of the buildings. Both types of apartment buildings have skillion and lean-to roofs of standing seam metal that either slightly overhang the walls or have close eaves. Exterior wall material and design is plywood sheathing with the appearance of vertical planking, and raised vertical and horizontal coursing. Typical windows are sliding, either square or vertically rectangular, and have no trim. Typical main entrances are single leaf, solid doors of wood. Typical back doors are sliding glass doors with no trim. At the center of each apartment complex cluster is a courtyard of grass and trees. The roof originally asphalt shingles over asbestos with metal trim, but has since been changed (date unknown) to completely metal.

Figure 8.18. Single-story apartment duplex at Brooklane Village in 2014. (Photograph taken by Lauren Walton).
Figure 8.19. Two-story apartment four-plex at Brooklane Village in 2014. (Photograph taken by Lauren Walton).

Button Hall

The property was purchased by the school from Frank Button in 1960. The interior was remodeled 1977-1978 to convert the apartments into offices (Steve Hussman of CWU Archives, conversation 2014). Circa 1989, an external elevator was added to south face of building. A house and garage came with the property, but were demolished at an unknown date.

Unit massing of the building is single and detached. The floor plan is square. There are two stories above a full basement. Foundation and basement are poured concrete. No chimneys noted. Roof shape is flat. Roof trim in a double tier, plain boxed cornice. No parapet or roof trim.

Exterior wall material of the exposed portion of the basement is concrete. Exterior wall material of the two stories appears to be flush stucco over a horizontal plank wall construction, which begins above the basement windows and is slightly raised from the face of the basement wall. Entire exterior wall, including exposed portion of basement wall, have uniformly applied
cottage cheese texture. Exterior wall design is completely flush with the exception of two raised panels to either side of the main entrance on the south face of the building. Within each raised panel are the south windows of each story (excluding the stairwell window).

The structural openings of all the windows are flat. All window surrounds are a plain trim. Sills are absent. On the south face, main window divisions are sash with sidelights. The sash is fixed and divided by muntins into panes two across and four tall. Sidelights are slender and double hung; a muntin divides each sash of the sidelights in half. The stairwell window, located above the main entrance, is a single fixed sash divided by muntins into four vertically stacked panes. Basement windows are narrow and rectangular single sash with sidelights. The sash is fixed and divided by a muntin into two side-by-side panes, and the sidelights are single sash and hinge outward.

Windows on the west face of the building vary. There are five basement windows, which are narrow and rectangular. From north to south, the first window is two-sash, horizontal sliding; the second through fifth windows are single-sash, outwardly hinged windows. The third through fifth windows each have a muntin dividing the window into two side-by-side panes. On the first story, from north to south, there is a single double hung window with muntins that divide each sash into two vertically stacked panes; next is a pair of windows identical to the first, divided by a mullion; last is a fixed, single-sash window with muntins that divide the window into panes two across and four tall. The second story windows are identical to the first story windows. The east face of the building is identical to the west face except that there are only two basement windows, which are both narrow, rectangular, and horizontally sliding.

Windows on the north face vary. On the basement level are three narrow, rectangular, outwardly hinged, single sash windows, each with a muntin that divides the window into two
side-by-side panes. On the first story, from east to west, there is a single double hung window with muntins that divide each sash into two vertically stacked panes; next are two double-hung windows that are half the size of the first window; next is a window identical to the first. Windows on the second story are identical to those on the first story, with the exception of the westernmost window of the first story (it is absent from the second story).

The main entrance (Figure 8.20) is centrally located on the first story of the south face. Its structural opening shape is flat with no trim and no architrave. To either side of the door is a light transom consisting of ten vertically stacked glass blocks. Door is single leaf and flush with a single circular window centered at top. An awning heads the main entrance. On the north face, a single leaf, four-panel door is on the first and second stories.

Figure 8.20. Button Hall in 2014. (Photograph taken by Lauren Walton).
On the north face, a grated metal stair case with railing leads to each door. The staircase to the main entrance on the south face is a straight, side that faces east. The steps are on a metal frame while the landing appears to be flush stucco over a nailed frame construction. The landing extends over the mechanical system of an ADA access elevator between ground level and the first story. The elevator is encased in a box-like structure that is textured to match the main building walls. The roof of the structure is flat with a boxed cornice and decorated frieze. The door on the east face of the structure, which is at the first story level on the landing of the staircase, has a flat structural opening and is single, flush, and metal with one square window centered at top. The west face of the structure has an identical door as the east face, but is level with the ground. Above the west face door is a fixed, single sash window with muntins that divide it into panes two across and three tall. On the south face of the structure at both ground and first story level is a window identical to the west face window.

Chimpanzee and Human Communication Institute

Unit massing of the Chimpanzee and Human Communication Institute (CHCI) is single and detached. The building is one story. The plan is irregular. There is no attic or basement noted in the original or remodel architectural drawings (Schreiber, Starling and Lane Architects 2006; Sparks 1991a and 1991b). The foundation is poured concrete. The roof of the building is hipped, and the cover of the caged outdoor area is gabled. The roof material over the building is corrugated sheet metal. Extending west from the building, the cover of the caged outdoor area is a gabled steel grid structure with metal wire screen overlay. The roof slightly overhangs all faces of the building, except for caged outdoor area. The roof trim of building is a plain, boxed metal cornice. The roofline follows each angle change of the exterior wall. No chimneys are noted.
The CHCI (Figure 7.9), built in 1990 in the infancy of Post-Modernism, is inherently

Modern. It employs flush stucco facades, tinted windows, exposed functional cage bars (over the chimpanzee outside area), and has a slatted metal sun screen over the south windows.

The exterior wall material of the caged outdoor area is flush poured concrete. A bamboo-

slatted fence conceals the upper portion of the south, southwest, and northwest faces, as well as the northwest, northeast, and southeast faces of an uncovered staircase that extends northeast from the north face of the caged outdoor area. The ground has been built up and landscaped to conceal the exterior concrete walls of the caged outdoor area. This is also the case with the northwest wall of the staircase and the retaining walls used throughout the landscape architecture. Retaining walls are poured concrete with an impressed vertical board design.

The east side of the caged outdoor area meets the west face of the building. The west face of the caged outdoor area is gable face and extends westward into a point. A nook is created by the exposed concrete north and northeast faces of the caged outdoor area; the southeast wall of the uncovered staircase, which has an impressed vertical board design; and the west face of the building. The north face of the caged outdoor area is featureless. The northeast face has a double leaf, single panel door. The southeast face has an off-center southwest, solid, single leaf door.

The exterior wall material of the building is flush, textured stucco. All windows and doors have a flat structural opening and no trim, surround, or sill. The wall of the building is flush with the concrete wall of the caged outdoor area. Beyond the south face of the outdoor caged area, the built-up ground and landscaping continues south, following a north-to-south retaining wall that hooks to shield a grassy area just south of the building. On the section of the south face of the building that is flush with the caged outdoor area, there is one structural opening that is shared by an off-center west, double leaf glass door with a two-panel light transom and a row of three
vertical side lights, each with a light transom as well. Overhanging this flush section of the south face is a structural steel sun screen. Dense vegetation covers the doors and windows. East of the structural opening, the wall angles 45° southeast. The wall then runs east-west again; the west half of which is flush stucco and the east half is a structural opening for two columns of floor-to-ceiling windows, each with four horizontally rectangular panes. Original architectural drawings reveal that the main entrance was once recessed in an umbrage on this portion of the south face of the building; however, the main entrance was remodeled in 2006 to its current appearance. The wall then angles 45° northeast, upon the face of which is the main entrance. Storefront windows wrap around the south, southeast, and northeast faces of the main entrance, acting as the horizontally rectangular light transom and four-sash sidelights to the double leaf glass door of the main entrance. The southeast ridge of the hipped roof of the building runs down the overhang of the main entrance, coming to a point. The soffit of the overhang is stucco. The wall angles northwest at 90°, sharing the structural opening of the main entrance with two columns of four-pane windows, followed by flush stucco. The wall then changes angle, running south-north. This section of wall is the east face of the building and has two off-center north, two-sash windows (lower sash is top-hinge). The wall then extends eastward at 90°. This section of wall is featureless. The wall then runs south-north. On the face of this section of wall are two off-center south, two-sash windows (lower sash is top-hinge). The northeast ridge of the hipped roof of the building runs down to the northernmost edge of the section of wall just described (i.e. to the northeast corner of the building). Dense vegetation obscures all windows across the east face of the building.

Dense vegetation wraps around to the easternmost one-third of the north face of the building, ending at a retaining wall that is poured concrete with an impressed vertical board design. West
of the wall is an umbrage, in which is a single leaf door with a vertically rectangular chicken wire window. West of this door are two four-sash windows (lower sash is top-hinge). West of these is a square, solid, single leaf door. West of the door and approximately one foot north of the north face is a floor-to-ceiling concrete wall with an impressed vertical board design. Metal screens connect the edges of the concrete wall to the north face of the building. West of this is a solid single leaf door.

The west face of the building makes up the east part of the nook of the north face of the caged outdoor area. On this portion of the west face of the building, there is an off-center south, single leaf door with a vertically rectangular chicken wire window, recessed in an umbrage. The lobby was expanded and remodeled in 2006. In 2013, the chimpanzees were moved from the CHCI, and the building became vacant until 2015 when it was converted into an Athletic Annex.

Computer Center (Campus Book Store)

Originally constructed in 1954 to serve as the Campus Book Store (Figure 8.21), the building was converted in 1979 into a computer center (Figure 8.22). The unit massing of the building is single and detached. The plan is rectangular with a one-room deep block that was added to the west face between 1986 and 1988. The building is one story, and has no attic and no basement. Foundation is poured concrete. No chimneys are noted. Roof is a shed shape. Roof overhangs exterior walls and has retained its original fir timber fascia and soffit.

Exterior wall material is scoured brick laid in a common bond, except that every seventh row is in a Flemish bond. Exterior wall material of the westward block is concrete paneling. During a 1979 remodel, a raised brick panel was added around the existing brick façade of the south entrance and over the original main entrance of the east face when the door was removed. During
Figure 8.21. Campus Bookstore (now the Computer Center) in 1960, looking south. (Photograph Courtesy of Brooks Digital Library 2015).

a 1986-1988 remodel, raised brick panels were added to the existing east face to conceal the structural opening of much of the original window ribbon.

There are no windows on the north face. The structural opening of all the windows is flat. All windows were originally arranged as horizontal ribbons of fixed windows with aluminum framing and shared formica sills. The original windows of the west and south faces have no head or side surround, and are secured interiorly with bars. Original architectural drawings indicate that the windows of the west and south faces were painted-over intentionally, but this paint has since been removed. Much of the original window ribbon of the west face was covered by the
Figure 8.22. Computer Center in 2014, looking northwest. (Photograph taken by Lauren Walton). Note that only two windows of the original window ribbon remain on the east face.

1986-1988 west block addition. The original east face window ribbon had a raised formica surround. Between 1986 and 1988, all but two sashes of the original east face window ribbon were removed. The south face door is original, and is double leaf, single panel glass with aluminum detail. Apart from the 1979 and 1986-1989 remodels, much of the original 1954 construction has retained its integrity.

Copy Cat Shop and Kamola Laundry Services

Unit massing of the building is single and detached. The original plan was rectangular, oriented east-to-west (henceforth referred to here as the “south block”), but the 2002 addition of
a rectangular block that is oriented south-to-north (henceforth referred to as the “north block”) gave the building its current L-shape plan. The north block houses laundry facilities, and the south block houses the Central Washington University Copy Cat Shop (Figure 8.23). The building is one story; the south block rises slightly higher than the north block. Original architectural drawings indicate no basement or attic. Foundation is a concrete slab over compact gravel. The roof of the south block is flat with a plain metal roof stop that is slightly raised beyond the exterior wall. The north block has a shed roof that is angled downward to the east, and has a metal roof stop with a timber fascia. A tall cinderblock parapet rises from the north face of the north block.

Figure 8.23. Copy Cat Shop (at left) and Kamola Laundry Services (at right) in 2014. (Photograph taken by Lauren Walton).

The exterior wall material is concrete masonry units arranged in a stack bond coursing. The exterior wall design is comprised of a series of flush panels that are separated by vertical ground-to-roof steel beams (with the exception of the north and east faces of the north block, which have no steel beams).

The window and door arrangement of the north face of the south block varies. Of the nine panels visible on the north face, from east to west, the first panel is bare (i.e. no décor, no
windows, no doors, etc.). The second panel has two windows sharing a square structural opening, separated by a steel mullion and each divided horizontally by steel muntins into five panes, the top two of which are top-hinge. Windows have no sill or surround, but the outer edges meet beams to the east and west. West of this panel is a bare panel, followed by a panel that appears to have once had a large square structural opening across its lower two-thirds that was framed on the sides by beams and atop by a similar horizontal beam of steel, but has since been bricked up with cinder blocks. Within this panel, off-center east, is a horizontally rectangular window with a head that is half a horizontal steel beam that extends from the east vertical beam of the panel. Window is fixed with a west side shutter light. West of this panel is a panel with a single leaf, single panel door (panel is fixed glass) with a two-pane light transom that is divided horizontally. West of the door, within the same panel, is a window identical to the one in the previous panel, except its structural opening is square and it has plain steel trim. West of this panel is a panel with a centered, single leaf, single panel door (panel is fixed glass) with a two-pane light transom that is divided horizontally. West of this panel is a panel with two windows, each with square structural openings, a two-pane light transom divided horizontally, and one side abutting a panel beam; the east window of this pair is divided vertically by a thick steel mullion. A louver is located towards the roof line of this panel. West of this panel is another panel with a single leaf, single panel door (panel is fixed glass) with a two-pane light transom that is horizontally divided. The westernmost panel of the north face of the south block has a garage door from beam to beam with three horizontally rectangular windows.

The east face of the south block has four full panels and two quarter panels (one at both the north and south edges), and is symmetrical along a vertical axis. North of the center beam, the panel contains a single leaf, single panel door (panel is fixed chicken wire glass) with a two-pane
light transom that is horizontally divided, and no trim. This is the main entrance. To either side of the door is a vertical column of five windows. North of this panel is a panel with three beam-to-beam columns of windows identical to those in the adjacent panel. South of the center beam, these two north panels are reflected, except that the southernmost full panel appears to have once had a large square structural opening that has since been filled with a large, fixed six-panel window with cinder blocks below it. Roof and north and south walls extend west beyond east face to create an umbrage. The south face of the south block has twelve panels. There are three double-hung windows with plane metal trim that arranged every other panel from east to west (i.e. westernmost six panels are bare).

The west face of the south block has four panels. From south to north, the first panel has an off-center north single leaf, two-panel door (upper panel is fixed chicken wire glass). The second panel has a beam-to-beam garage door with three horizontally rectangular windows. Along the roofline within each of the four panels are four narrow louveres. The west face of the north block is flush with that of the south block and matches in exterior wall design, except that there are no louveres, windows, or doors. The north face of the north block is bare.

The east face of the north block has wall material that is similar to that of the south block, but the wall design differs in that there are no beams and, therefore, no serial paneling. The main entrance is a single leaf, single panel glass and metal door with no trim. To either side of the east face main entrance, there is a metal, top-rolling bay door, each with two stacked rows of three horizontally rectangular windows.

Dean Hall

Dean Hall was originally constructed in 1966, and was remodeled in 2009. Massing of the unit is single and detached. Plan is square. Structural system is a mix of steel framing and
reinforced concrete. There are three stories and a penthouse (remnants of the original 4th story penthouse). All windows and doors have a flat structural opening. Original second and third story windows are each fixed with a two-pane, top-hinge light transom, and have retained the original outward-angled brick side surround, brick slip sill, and precast concrete eyebrow hood (within which used to be a shading glass that has since been removed). There is a partial basement and crawl space. Original roof material appears to have been a composite overlaying concrete; current roof material is unknown. Roof is flat and overhangs the main wall. Roofs of one-room deep blocks on the east and west faces rise slightly above the main roofline, and are convexly curved.

Exterior wall material is concrete and brick veneer. Original wall design consisted of a series of vertical panels of brick and of recessed concrete, framed with raised angular concrete on all sides (second and third stories). Heading each recessed panel of concrete, between the concrete pilasters, was dental brick décor. Original design also included a breezeway about one half-room deep recessed into the entire first story (upper stories supported by concrete piers, which were extensions of the pilasters of the upper stories). The 2009 remodel retained some of these elements. The majority of the first story breezeway was filled in with a brick façade in order to maximize interior space (the recessed concrete panels of the upper stories were retained and extended down to ground level). A one-room deep block was added to both the east and west faces, rising a half-story above the main roofline. The concrete pilasters framing the sides of the recessed concrete panels were veneered with brick, so that what was once the base of the recessed panel frame (between the second and first stories) is now a concrete string course, interrupted by the brick pilasters. There are also brick veneered pilasters just before the corners of the building on all faces, and at either side of the one-room deep blocks of the west and east
faces. The outward face of each pilaster has a decorative brick design of alternating header and stretcher brick of orange and maroon colors. Original brick work was a plain stretcher bond of smooth bricks. Bricks added during the 2009 remodel are rougher and vary in color, but are also a stretcher bond. Along the façade of the first story (added in 2009) is a maroon-colored basal trim, an upper string course of vertical header brick, and a maroon-colored vertical stretcher brick belt course just beneath the concrete belt course described above.

Exterior wall design of the west face consists of three parts: two halves of the main face, separated by a one-room deep block, which is located off-center, north, and extends westward from the main face. The northern portion of the main face has an off-center, south recessed panel of concrete. There are no windows on the first story, but there is a solid, double leaf door with no trim or surround just south of the northernmost pilaster. South of this door, just north of the recessed concrete panel, is a solid, single leaf door with a metal overhang, and no trim or surround. Within the recessed panel is a solid, single leaf door with no trim or surround. The second and third stories each have three hooded windows between the northernmost pilaster and the recessed panel, and one hooded window south of the recessed panel. Within the recessed panel on the second floor are two small, square fixed windows; on the third floor is a fixed window with two top-hinge light transoms, a head surround of what used to be the upper portion of the angular concrete frame of the recessed panel; and no trim, side surround, or sill.

The one-room deep block of the west face encases a stairwell between the first story and the fourth story penthouse. On the first story of the north face of the block is a double leaf, two-panel glass door that is off-center, east. Its surround consists of two-pane vertical side lights (east side light is narrower than west side light), and a four-pane light transom. On the west face of the block, the first story has brick veneer and, at either edge, a fixed window a lower vent, a light...
transom, and a slatted metal sun shade header. On the south face of the block, the first story is identical to that of the north face, except that the entrance is off-center, west. On north face of the block, above the first story is a panel of brick veneer, framed by concrete that has a vertical window ribbon running up at the west edge. The window ribbon is a series of fixed windows of varying size with vents and no sun shades. The south face of the block is similar, except that its window sizes vary within the ribbon, and there are five regularly spaced sun shades. The west face of the block has three panels of brick veneer, separated by raised, angular concrete framing, the uppermost of which is curvilinear, following the convex roofline. At either edge of the second through fourth stories is a vertical window ribbon, whose arrangements are identical to those of the nearest ribbons (e.g. the northern window ribbon of the west face is identical to the ribbon of the north face).

The south portion of the main west face has a centered recessed concrete panel, on the third story of which is a window identical to the third story window of the north portion of the main west face. On the first story, north of the recessed panel, there are three fixed, four-pane windows with no head or side surround; a three-section, angular concrete slip sill; and a bottom surround of flush concrete that reaches to ground level. On the first story, south of the recessed panel, there are three small, horizontally rectangular, fixed, two-pane windows that are set near the top of the first story. Each window has no head or side surround, but has a bottom surround of flush concrete that reaches to ground level. To either side of the recessed panel, on the second and third stories each there are three hooded windows.

The exterior wall design of the south face has retained much of its original design, except for the first story, whose breezeway has been completely filled in, except for the easternmost edge. There are three recessed panels, which are featureless, except for the third story window of the
central panel, which has two windows, each with a two-pane light transom, sharing a structural opening, separated by a metal mullion. On either side of every recessed panel, on both the second and third stories, there are three hooded windows. Each window and door is headed by the vertical header brick string course of the main wall design. From west to east, the first story has two fixed, four-pane windows with side surround; a three-section, angular concrete slip sill; and a bottom surround of flush concrete that reaches to ground level. East of these windows, west of the westernmost recessed panel, there is a window that reaches further to the ground than the other windows; it is single, fixed, has a fixed, two-pane light transom, and has the same slip sill and bottom surround as the previous two windows. East of the westernmost recessed panel is a single leaf, two-panel glass door with a narrow, two-pane, east side light, a two-pane light transom, and a metal overhang. East of the door, and just west of the central recessed panel, there is a row of three four-pane windows, sharing one structural opening, a three-part angular concrete slip sill, and a flush concrete bottom surround that extends down to ground level. The windows and doors are mirrored on the east side of the central recessed panel, except that the easternmost window is replaced by an open breezeway with a southwest corner pier. Also, the east recessed panel has two brick gate walls with stone coping and a metal gate.

Exterior wall design of the east face (Figure 8.24) consists of four parts: a centered, one-room deep block that extends eastward to separate the two halves of the main face; the south half of the main face; and the north half of the main face, which is also halved (its southern half extends eastward from the main face, but not as far eastward as the one-room deep block). On the south half of the main face, there is a recessed concrete panel with a third story window that is fixed and has a two-pane light transom. The first-story breezeway of the south face continues across the east face (on the south half of the main face and also on the center block). The first
story of the recessed panel is open to this breezeway. The breezeway is headed by the vertical header brick string course of the main exterior wall design. The first story of the south half, from south to north, has three small, horizontally rectangular, fixed, two-pane windows that are set near the top of the first story, have no head or side surrounds, and have a bottom surround each of flush concrete that reaches to ground level. North of these windows are two fixed, four-pane windows with no head or side surround; a three-section, angular concrete slip sill; and a bottom surround of flush concrete that reaches to ground level. North of this is the vestibule of a main entrance that faces the breezeway just described. The entrance is a double leaf, two-panel glass door with two-pane side lights and a four-pane light transom. The east face of the vestibule is a glass curtain divided into nine panes. South of the recessed panel, the second and third stories each have three hooded windows. North of the recessed panel, there are two vertical window ribbons similar to those of the west face center block, but with no sun shades.

Figure 8.24. Dean Hall (after remodel) in 2014, looking west. (Photograph taken by Lauren Walton).
A breezeway wraps around the south and east faces of the center block on the first story. Under this breezeway, a window curtain wraps around the first story of the center block. Concrete dominates the exterior wall material of the center block, including the piers that support the upper stories over the breezeway. The south face of the center block is transected by angular concrete courses that vertically frame the windows of each story, and horizontally separate each story. At either edge of the face, between the horizontal concrete divides, there are vertically rectangular windows that are divided in a similar fashion to the window ribbons, including sun shades. Centered between the panels is a brick panel. The third story is identical to the second story, except it is taller. The fourth story rises above the main roof line like the west face block. Across the fourth story, framed with concrete, are three fixed, two-sash windows with no trim, surround, or sill (the westernmost window overlooks the main roof). The east face of the center block has a window curtain, divided by muntins and sunshades in a manner identical to the vertical window ribbons of the center block's south face. The second story is separated from the third and fourth stories by a raised, horizontal, angular concrete mullion. Above the fourth story windows are curvilinear light transoms that follow the convex roofline. The north face of the center block is partially covered by the north half of the main wall. The second and third stories each have vertically rectangular windows that are similar to those of the rest of the center block, including sun shades, and are separated from each other and the fourth story windows by raised, horizontal, angular concrete mullions. The fourth story windows are identical to those of the south face of the center block, except that the two westernmost windows overlook the main roof.

The north half of the main east face extends eastward on its southern half, encasing the stairwell of the east face. The east face of the stairwell block is divided vertically and
horizontally by raised, angular concrete mullions. The first story has a brick façade with a horizontal window of three panes with three lower light transoms. The upper stories also have a brick façade, but are framed by angular concrete, and are raised. At the edges of each concrete framed section are vertical windows that resemble the previous window ribbons, but with no sun shades. On the north face of the stairwell block, on the first story, is a double leaf, two-panel glass door with two-pane side lights and a four-pane light transom. The first story has a concrete façade. The second and third stories have brick facades, and are each framed in angular concrete. A vertical window similar to the aforementioned window ribbons is located at the east edge of both the second and third stories.

North of the stairwell block is the rest of the northern half of the east face. The first story has a breezeway, facing into which from the north face is a two leaf, two-panel glass door with a two-pane side light and a three-pane light transom. On the east face of the first story there are three fixed, four-pane windows with no head or side surround; a three-section, angular concrete slip sill; and a bottom surround of flush concrete that reaches to ground level. The second and third stories each have three hooded windows.

The north face has three recessed concrete panels across the brick façade. On either side of each recessed panel, on both the second and third stories, there are three hooded windows. The easternmost recessed panel has a fixed, four-pane window with no head or side surround; a three-section, angular concrete slip sill; and a bottom surround of flush concrete that reaches to ground level. The central recessed panel has a double leaf, two-panel glass door with two-pane side lights and a four-pane light transom, and a metal overhang on the first story; and a two sash window with a four-pane light transom, and no trim, surround, or sill on the third story. The westernmost recessed panel is featureless. Across the first story, east of the easternmost recessed
panel, there are two fixed, four-pane windows with no head or side surround; a three-section, angular concrete slip sill; and a bottom surround of flush concrete that reaches to ground level. Between the easternmost recessed panel and the central panel of the first story, there are three windows identical to those just described, except that the sashes of the east window are divided by a wide mullion. Between the central recessed panel and the westernmost recessed panel, there is a solid, two-leaf door with plain trim and no surround; two louvers are located to either side of the door. There are no windows or doors west of the westernmost recessed panel.

A detached, one story greenhouse with a rectangular plan is located just west of Dean Hall. It has a glass gable roof and cinderblock walls. A single leaf, solid metal door is located off-center and north on both the east and west gable faces. The current greenhouse is a 1991 replacement (Schreiber and Lane Architects). Date of original greenhouse construction is unknown.

Dorothy Purser Hall

Dorothy Purser Hall (Figure 8.25) was constructed in 1987. Unit massing of the building is single, detached. Plan is compound and irregular; a central rectangular structure adjoins the west and east halves of the building, running at a 45° angle through the main building halves, extending out on either side to the northwest and southeast in triangular points. The main building consists of two halves with a compound plan that projects these portions southwestward on the west wide of the building and northeastward on the east side of the building. Two stories define the building layout, although the central structure projects above the main building by one-half story. No basement or attic spaces are noted in the original architectural drawings.
The exterior wall material is a veneer of brick, arranged in a stretcher-bond style. Exterior wall design and detail includes an overall flush brick wall with three belt courses of precast concrete, including two in line with the top and bottom of the second story windows and one as coping to the roof pediment. The wall is flush, with the exception of two wall recesses that encompass the “side” entrances (these are not main entrances, despite their placement on the outward-most projecting portions of the building, which are nearest to the surrounding walkways). These wall recesses extend upward from the ground to the roof. Set within each recess is the door on ground level, and a 2nd-story window. The precast concrete plinth is somewhat taller than the belt course and coping design, though its style is congruent with the heading of the first-story windows. The foundation is poured concrete. Roof shape is flat with parapet. No chimneys are present.

Few windows are present on the 2nd story; two are set into the wall recesses noted above. Structural opening of 2nd-story windows is flat with no surround or sill; windows are 2-sashed with no mullion (appear fixed, but may be sliding divisions), shallow jamb, flush with wall. To
either side of the main entrances are single-sashed, fixed windows that are offset inward toward the central glass structure. First-story windows are multi-sash, sans mullion, fixed, flush. Each window has a base light transom beneath it, beneath which is the concrete plinth mentioned above. The surrounds of each 1st-story row of windows includes only a flat, precast concrete head that stops just beyond the edges of the outer-most windows. These window heads match the plinth that runs continuously around the base of the building. Windows of this fashion are located on all faces of the building in the following manner: 5-sash window row on east face of southwestern portion of building; 11-sash window row on south face of building (west of southeast entrance); 37-sash window row on east face of building. Fenestration on the north and west faces of the building nearly mirror the fenestration just described, except with fewer windows.

Structural opening of all doors is flat. There are two door types: plain, double-leaf, flush, metal maintenance doors (located on the northeastern-most and southwestern-most portions of the building halves); and plain, double-leaf, flush, glass doors with flush, light, 2-pane transoms with muntin that are set into an umbrage to either side of the outward projecting, pointed ends of the central glass structure that joins the two halves of the building. This is so on both the southeastern-facing entrance and the northwestern-facing entrance. Landscape architecture details, including specific tree species and placement around exterior of building, are provided with original architectural plans.

Facilities Administration Annex

The Facilities Administration Annex is a prefabricated modular building whose construction date is currently unknown. Available campus maps indicate that, some time between 1991 and 1994, a “Naneum” modular was placed on campus just south of Wilson Hall (Brooks Library
Digital Collection 2014c). In 1997, a concrete foundation was laid and the Naneum Modular was
moved to its current location (CWU Planning and Construction Services 1997), becoming the
“Facilities Administration Annex” (Figure 8.26).

![Figure 8.26. Facilities Administration Annex in 2014, looking southwest. (Photograph taken by Lauren Walton).](image)

Massing of the Naneum modular is single and detached. The plan is rectangular. There is one
story. There is no basement and no attic. A tall concrete foundation wall is visible around the
entire building, which was laid in 1997. Metal louvers are set into the foundation wall on all
faces. The exterior wall design is vertical wood planking with vertical battens that divide each
wall into a serial panel design. Set in each panel is a window. All windows have a flat structural
opening. Typical windows are fixed and have no trim, sill, or surround; however, one window on
the south face has two sashes and appears to be side-sliding. There are no windows on the west
face. Entrances are located on the south and north faces, and each is set in a panel beside a
window. Typical entrances are either single or double leaf, solid metal doors with a small, inset,
vertically rectangular window. Each door has plain trim. On both the south and north faces, there
is an open porch. Both a ramp and a stair case lead up to each porch; the stair case on the north
face is straight and the stair case on the south face is side. The north porch has metal railing. The south porch has wood railing. The roof is flat with a parapet that slightly projects out from the main façade. The parapet façade is also vertical planking, but is made of metal. The roof overhangs the north and south faces, each bolstered by metal pole supports on concrete piers, and each sheltering a porch. This overhang is almost full length on the south face, but does not cover the double-sash window at the west end. A portion of the north face overhang projects further out over the straight stair case. In 2004, the conference room was remodeled.

Grounds Shop

The construction date of the Grounds Shop (Figure 8.27) is currently unknown. It first appeared on a campus map in 1970 (Brooks Library Digital Collection 2014e), but it is shown oriented perpendicular to, and slightly southwest from, its current location. The Grounds Shop is not clearly visible in its current location on campus maps until 1989 (Brooks Library Digital Collection 2014d). It is unknown if the building was simply moved, drawn incorrectly on the map in 1970, or rebuilt in 1989. The current exterior wall design is identical to that of the nearby Jongeward Plant Services and Facilities Administration Building, which was constructed between 1970 and 1972, so it is possible that the Grounds Shop was designed and constructed around the same time. Architectural plans for the Jongeward Building indicate an intention to build the Grounds Shop in its current position under a different contract (Doudna and Williams 1970). It is likely, therefore, that the Grounds Shop as it currently exists was constructed shortly after the 1972 completion of the Jongeward Building.

Unit massing of the Grounds Shop is single and detached. Plan is rectangular and oriented northwest-to-southeast. The orientation of the building aligns with what was once the right of way of the Chicago, Milwaukee, St. Paul, and Pacific Railroad, which was removed in 1980.
The building is one story. There is no basement or attic. The exterior wall design is concrete masonry units in a stacked bond. The vertical, bent steel beams of the frame are exposed on the exterior wall, creating a serial panel wall design. On the southwest face, there is a recessed panel at the east edge (the roof remains flush with the main façade, providing shelter to the recessed panel. Also on the southwest face, there is an open automobile shelter at the west edge that is bolstered by metal supports on cylindrical concrete piers. The roof is flat, corrugated metal with a plain box trim of metal that rises as a parapet only on the northwest face. The horizontal, bent steel beam of the frame is exposed at the roofline in lieu of a frieze.

All windows and doors are located on the southwest face and have a flat structural opening (i.e. there are no windows or doors on the northwest, northeast, or southeast faces). Typical entrances are either a single leaf, solid metal door with small, vertically rectangular windows and plain metal trim, or a large, square, metal roll-top bay door with bent steel beam trim. Near the roofline of the westernmost bay door, there are partial side surrounds of vertical planking. There is only one window, and it is set in the recessed panel. The window is large and fixed, and has two square sashes and plain trim.
Grounds Warehouse

The construction date of the Grounds Warehouse (Figure 8.28) is currently unknown. The building was originally a cannery warehouse along the Chicago, Milwaukee, St. Paul, and Pacific Railroad. In 1953, the warehouse was purchased by CWCE for use as a warehouse. The massing of the Grounds Warehouse is single and detached. The floor plan is rectangular and oriented northwest-to-southeast (once aligned with the Chicago, Milwaukee, St. Paul, and Pacific Railroad, the right of way of which was removed in 1980). There is a square, one-room deep addition at the west edge of the north face (henceforth referred to as the “northwest addition”). The building is two stories with a one-room deep section on the east face that is one-and-one-half stories (henceforth referred to as the “east block”). There is no attic and no basement. A board-formed concrete foundation wall is visible around the base of the building. The exterior wall design is a horizontal clapboard siding (“German siding”) made of wood. End boards and vertical battens cover seams of the exterior wall design. The exterior wall design of the northwest addition is concrete masonry blocks in a common bond. All windows and doors have a flat structural opening. Typical windows are double hung with large, plain wood trim, and no sill. Downward-angled metal awnings overhang the two windows on the south face of the east block.

Originally, there were only bay doors on the north, west, and south faces, and only one public (i.e. non-bay) entrance on the east face of the east block. All original windows were/are located on the faces of the east block. The 2002 remodel added more entrances and windows (Andreotti and Associates, Inc. 2002). Now, typical entrances are single leaf, solid metal doors with an inset, off-center window that is small and vertically rectangular. Doors that are set in wood have a large, plain wood trim, and doors that are set in concrete masonry have a standing soldier concrete masonry header and no trim. The north and east faces of the northwest addition each
have a single leaf door. An entrance on the west face of the northwest addition is double leaf, has no windows, and is one-and-one-half times taller than other doors. The track of the original sliding bay door of the west face remains, but the bay door itself has been sealed and, in its place, a single leaf door has been installed. There is a large concrete platform located off the west face that is level with the base of this door. Two of the three original top-rolling bay doors of the south face remain, the easternmost of which has retained its original concrete ramp. Single leaf doors were added just east of both bay doors, and two windows were also added near the east block. All three bay doors of the north face were sealed and a single leaf door was added near the east block.

A double side stair of concrete leads up to the north face entrance of the original building. A side stair of concrete with metal railing leads up to an entrance on the eastern side of the south face of the original building. Leading up to the east entrance of the east block is a concrete ramp and straight stair with metal railing. A side stair of concrete with metal railing leads up to a single leaf door on the east face of the northwest addition. At the northeast corner on the east
face of the east block, there is a two-sided partition of glass that is divided in a grid pattern by wooden muntins. This screen is noted in architectural drawings as a smoking shelter (CWU Facilities Planning and Construction 2002).

The roof is corrugated metal with a wooden frieze and exposed rafters under the eaves. The main roof form is gable. Porch overhangs on the north and south faces are each a shed form, extending downward from just under the main roofline (the north porch roof runs continuously over the northwest addition). The roof of the east block is also a shed form, extending downward from the east face of the main building. A shed form porch overhang extends downward from just under the easternmost edge of the east block roof, giving shelter to the ramp and staircase. All porch overhangs have angular metal pole supports on round concrete piers.

Heating and Cooling Plant

A new Heating and Cooling Plant (Figure 8.29) was built in 1975 (described in the architectural drawings as a “new boiler house” that replaced pre-existing buildings [Doudna and Williams 1975]) to take over the function of the previous plant (now called the “Old Heating Plant”).

The unit massing of the Heating and Cooling Plant is single and detached. The plan is square and there is a recessed panel at the northwest corner on the northwest face. At the south edge of the southeast face there is a single-pile, one-room deep block. Abutting the single pile block to the north is a four-and-one-half-pile, one-room deep block that rises one-half story above the main roofline. The orientation of the building (northwest-to-southeast) suggests that it was originally constructed to align with the Chicago, Milwaukee, St. Paul, and Pacific Railroad, which was later removed in 1980. There is a partial basement and no attic. Although the building
is four stories tall, architectural drawings indicate that, interiorly, there are two floors and a mezzanine (Doudna and Williams 1975).

Figure 8.29. Heating and Cooling Plant in 2014. (Photograph taken by Lauren Walton).

The exterior wall design consists of concrete masonry units in a stacked bond, cast-in-place concrete, and metal insulated panels. The vertical, bent steel beams of the frame are exposed on much of the exterior wall, creating a serial panel wall design across the majority of the façade. On the southwest face, the serial panel design is comprised of alternating stacked bond concrete masonry units and vertical, metal insulated panels with louver headers and footers. The southwest face of the single-pile block has a façade of concrete masonry units only. The northeast face is similar, except that there are four large metal louvers in lieu of metal insulated
panels. Each louver is framed by bent metal beams. The westernmost louver panel has on its first story a double leaf, solid metal door. The southeast face is similar to the northeast face, except that the majority of its façade is stacked bond concrete masonry units, and it has only one panel of louvers. Also, within the panel of louvers, there is a bay door on each of the two stories with a metal top-rolling door. Metal railing runs across the structural opening of the second-story bay door. The southeast face of the single-pile block of the southeast face has a façade of concrete masonry units, and has a single fixed, horizontally rectangular window with plain trim, and a double leaf, solid metal door with a surround of bent steel beams. A flat awning of corrugated metal and bent steel beam trim overhangs the entrance of the single-pile block. Both sides of the four-and-one-half-pile block have a façade of concrete masonry units. The north half of the northwest face has a second-story façade of vertical metal insulated panels, and a first-story façade of mostly stacked bond concrete masonry units, except for vertical metal insulated panels above and south of the single leaf, solid metal door with no trim. The south half of the northwest face has a northwest and a northeast façade of vertical metal insulated panels. There is an off-center east, metal, top-rolling bay door on the first story of the northwest face’s south half.

The roof is flat. The material of the roof is unknown. Lining the top of the roof is a metal pole baluster. Two horizontal, bent steel beams of the frame are exposed at the roofline in lieu of a cornice. Three large chillers and several small metal steam vents are secured to the roof. Many electrical boxes are located just southeast of the building. A propane tank is situated just northeast of the building. A large cylindrical water tower with vertical metal planking is located northwest of the Heating and Cooling Plant.
Hebeler Hall

Hebeler Hall (Figures 8.30 and 8.31) was completed in 1938. The architectural style of Hebeler Hall “is modified colonial to harmonize with the former university library [now Shaw-Smyser Hall] and university auditorium [now McConnell Auditorium]” (Smith 1992, 46).

![Hebeler Hall in 1940, looking northwest. (Photograph courtesy of Brooks Library Digital Collection 2015)](image)

Figure 8.30. Hebeler Hall in 1940, looking northwest. (Photograph courtesy of Brooks Library Digital Collection 2015).

The unit massing of Hebeler Hall is single and detached. The floor plan is L-shaped, and is composed of a north wing oriented east-to-west (henceforth referred to as the “north wing”) and a south wing oriented south-to-north (henceforth referred to as the “south wing”). The wings adjoin into a northwest corner (a.k.a. the “elbow” of the L-shaped floor plan). The “south wing” has a varied roofline due to the presence of a “playroom block” (the original design of which served as a playroom and gymnasium), which is slightly shorter than the main roof line, and a “theater block” (the original design of which served as a theater and auditorium), which is slightly taller than the main roof line. Hebeler Hall is two stories. The “playroom block” is a single, vaulted room interiorly, but rises two stories exteriorly. No basement is noted; however, original architectural drawings (Maloney 1938) indicate a crawl space of varying depth beneath
the entire building. Attic space is noted in the original architectural drawings as well; however, this was not observed during survey.

Original architectural drawings (Maloney 1938) indicate the roof shape is a very low, almost flat, gable with parapet. The roof of the “playroom block” is domed, supported interiorly by diagonally braced trusses. The domed roof is concealed exteriorly by a flat parapet that matches that of the main roof. Interiorly, the vaulted ceiling was concealed by a suspended false ceiling during a 1985 remodel that reduces the interior room size to one-story.

Roof material was originally a composition material (Maloney 1938); however, it is unclear what roofing material is in use now. Chimneys are not prominent on the exterior of Hebeler Hall,
but there are two flues extending through the roof (not visible to pedestrians) from fireplaces.

One chimney is in the old children’s library room on the second story at the “elbow” of the floor plan where the “north wing” meets the “south wing.” The other chimney is located on the first story in the old Nursery room at the south-center area of the “north wing.”

Windows are typically double-hung (each sash divided into 12 panes by white-painted wood muntins) with white-painted wood trim, and header brick slip sills. First-story windows are typically headed by a radiating brick voussoir with a white-painted keystone. Most second-story windows (there are some exceptions) have a flat structural opening and are headed by a dentil string course. Wood wedges are affixed to the upper corners of each double-hung window.

The exterior wall material of Hebeler Hall is primarily scoured brick in a Flemish-bond with decorative detail in both brick and stone. Wall construction appears to be solid material composition (i.e. not veneer). The plinth is poured concrete, above which is a belt course of raised brick. A string course of raised header brick runs contiguously under the majority of the second-story windows. Running contiguously across the top of the second-story windows is a recessed string course with brick dentils. At the base of the parapet is a thin, stone cornice atop a recessed string course that has 45°-angled brick dentils. The parapet is coped with stone. The exterior wall design and detail vary somewhat by wing, face, and block; however, common details give the exterior wall design a cohesive theme. Variations of the exterior wall design are presented below by wing and by face.

According to a Northwest Architectural Company report written for CWU in the 1980s, the “existing structure is wood floor and roof framing spanning from exterior and corridor bearing walls. The corridor walls are poured in place, reinforced, 8" thick concrete which provides some
A Northwest Architectural Company report written for CWU in the 1980s described the building as having “become obsolete by use and [was] deficient in energy conservation and handicap accessibility” (CWUA n.d. [c]). In a 1984 letter from Northwest Architectural Company to the school’s Facilities Planning & Construction Department, a remodel of Hebeler Hall was proposed in order to provide “adequate facility for teaching Computer Science” and to address needs for “energy conservation, handicap access, and the minimal rearrangement of space to accommodate requirements of the user and the academic program” (CWUA 1984). This “remodel” appears to have included running wire through the crawl space to allow computer Internet access to the classrooms of the first floor.

The Northwest Architectural Company’s proposed a means to extend the use of the building by making minor interior alterations “for instructional purposes in the area of computer science, flight technology and engineering graphics” (CWUA n.d. [c]). According to architectural drawings at Facilities, a wheelchair access ramp was installed in 1983 at the east entrance of the “north wing.” Other architectural drawings at Facilities indicate that, in 1985, asbestos abatement, a “remodel” (apparently the one proposed by the Northwest Architectural Company), and an elevator installation took place. Apart from this and occasional electrical and HVAC updates, the building retains its integrity and character.

The building is situated such that it shields the courtyard from the southeasterly winds. The courtyard once served as a two-part playground area for the children who attended Hebeler when it was an elementary school/manual training building for students of Central Washington State College of Education (now CWU). The playground for the younger children was closest to the
building, and the playground for the older children continued beyond the courtyard toward Barge Hall (Mitchell Hall now covers most of this portion of the original lawn). In the courtyard, there is a concrete ring set in the grass that is filled with pea gravel. The ring is a remnant of what used to be a shallow pool with a centered stone fountain and bird bath. Around the pond was a concrete sidewalk. A stone slab path led from the fountain to the east face of the south wing play room. The fountain, circular sidewalk, and stone slab path have since been removed. Set in the grass near the concrete ring is a plaque that reads, “Commemorating Helen B. Smith, Kindergarten teacher, 1914-1934; Revered for her loving service to children and for her kindly human interest in all people.”

In 1983, modifications were made to the stairs. Then, in 1985, an elevator was installed, the building underwent an asbestos abatement, and the interior was lightly remodeled to accommodate the installation of a computer laboratory (CWUA n.d. [c]). The electrical wiring for the computer system was replaced in 1995. Electrical distribution one-line calling center was routed through Hebeler Hall in 1998. Improvements were made to the ‘D’ Street lighting along the west face of the building in 2000. In 2005, improvements were made to the HVAC system. The telecommunications system was revised in 2009.

Hertz Hall

Hertz Hall (Figure 8.32) was completed in 1962 in a popular Late Modern style. The unit massing of Hertz Hall is single and detached. The plan is rectangular with a west wing. Portions of the building are one and two stories. The roof shape is flat on the one-story sections, and folded-plate on the two-story sections (except for the west wing, which is two stories and has a flat roof). The roof material is metal. There are no chimneys. The foundation is poured concrete. There is no basement.
Figure 8.32. Hertz Hall in 1965, looking northwest. (Photograph courtesy of Brooks Library Digital Collection 2014k).

Exterior wall material consists of precast concrete tee beams, precast hollow-concrete masonry units reinforced with metal, and an anchored brick and stone veneer façade (stretcher bond of scoured brick and precast concrete with an aggregate finish). The use of these materials was very popular in the early 1960s.

The exterior wall design of the upper three-quarters of the west face of the west wing is a vertical folded plate arrangement of precast concrete slabs with an aggregate finish. On the lower one-fourth of the west face of the west wing, below each of the 14 peaks of the folded plates, is a brick panel. All brick panels across the lower one-fourth of the west face are separated by angular concrete pilasters. The changing topography exposes the concrete foundation wall below the brick. The southernmost panel has a solid, two-leaf door with a first-story straight, double side staircase of what appears to be newer (i.e. not original) concrete and metal railing. The eight northernmost panel has a solid, one-leaf door with an opaque transom/header. Due to
topographic changes, the door is slightly below ground level. A downward ramp with a concrete retaining wall and metal rails leads from ground level to the door. Exterior wall design of the west wing is continuous on all sides (including the interior of the building on the wing’s east face), except that there are no other exterior doors on the wing’s north or south faces. The south and north faces of the west wing each have six panels instead of fourteen. A two-tiered concrete retaining wall planting area abuts the south face of the west wing.

East of the west block on the south face of the building is the main entrance, which is a four-leaf, single panel glass and aluminum door with a left sidelight and three-panel light transom with no trim. Stairs are straight from ground level to the first story. A porch overhang with a flat, metal roof projects over the stairs and beyond the south face. East of the main entrance, and protruding approximately fifteen to twenty feet, is the main block of the building. Exterior wall design of the south face of the main block consists of a series of brick panels. Precast concrete tee frames similar to the pilasters of the west wing separate each panel and also provide support for roof overhang. A horizontal string course of angular concrete runs continuously beneath the panels above the concrete foundation wall. Above the brick panels is a narrow section of concrete that meets the roof eave. The eave of the roof overhang is concrete; its accordion shape is given by the joining of the precast concrete tee frames. Roof is metal and flat. Roof of main block extends slightly over porch roof of main entrance. Window arrangement on the south face of the main block is an inverted accordion, whereby each window angles inward in the horizontally rectangular structural opening toward a concrete pilaster/tee frame. Each panel has a fixed, single pane window with no trim or surrounds. Windows are arranged in the following pattern from west to east: one panel with no window, two panels each with a window, one panel with no window, three panels each with a window, one panel with no window, three panels each
with a window, one panel with no window, three panels each with a window, one panel with no window, two panels each with a window, and one panel with no window.

The exterior wall design of the east face varies. There are five panels each separated by wide, angular, concrete pilasters. From south the north, the first panel consists of stretcher bond, scoured brick. The angular concrete string course of the south face continues across the bottom of the brick on the east face. Exposed concrete foundation wall is tiered as topography changes (the first tier runs below the first panel only; the second tier, which rises above the first, runs below the second, third, and fourth panels; and the third tier, which rises above the first two tiers, runs below the fifth panel). The upper concrete trim is narrower than that of the south face. The portion of roof that extends over the first and second panels is the same flat metal roof of the south face main block. The eave on the east face, however, is smooth, upturned concrete. The first panel of the east face has no window. Off-center north within the first panel is a recessed entryway with a two-leaf, single panel glass door with side lights and a full light transom. Umbrage is concrete with a header that is flush with the brick. The second panel is similar to the first panel, except it has a ribbon of four windows and no door. Window arrangement is accordion style like the windows of the south face, except the windows meet each other rather than concrete pilasters, and a continuous metal sill runs below all four windows. The flat roof of the one-story section terminates at the north edge of the second panel. A long, two-story, rectangular block of smooth concrete, with an accordion roof, runs through the center of Hertz Hall, terminating before the west wing and overhanging the third and fourth panels of the east face of the building. The eave of this center block is upturned concrete. Below the overhanging second story in the third panel of the east face is brick. Third panel is nearly identical to second panel, except that there are two windows and the top of each directly meets the concrete
overhang rather than flush brick. Centered on the center block and between the third and fourth panels of the east face is a recessed panel. Within the recessed panel is a single leaf, single panel door with two south side lights and one north side light, and a three-panel light transom. Above the transom, within the recessed panel, is a section of concrete, then a fixed horizontal rectangular window with side lights. Above the window is more concrete, separated into four vertical panels by metal muntins. Above this section of concrete is a louvre with side lights, the top of which meets the eave of the roof. The fifth panel is identical to the first panel, including the one story, roof type, and exterior wall design, except there is no door.

The exterior wall design of the north face varies across (from east to west) a one-story section, a two-story section, a one-story section, a recessed one-story area, and a two-story section. The easternmost one story section of the north face consists of five panels of stretcher bond scoured brick framed on the sides by precast concrete tee beams, which support the overhang of the roof, forming an accordion-like eave. A narrow section of flush concrete lies between the brick and the eave. Unlike the south and east faces, the north face has no string course and very little of the concrete wall of the foundation is visible below the brick. No windows or doors are present. West of this one-story section is a two-story section with an identical exterior wall design to the first section, except the design is vertically elongated and there are three doors and two louvres. The easternmost door is located four panels west of the one-story section, and is a solid, single leaf, plain trim door with no surround. There are no windows. The roof shape of the two-story section is accordion. The precast concrete tee beams that separate each panel protrude at roof level to support the eave. On the first story of the panel immediately west of the door is a large, square, metal louvre. In the panel immediately west of the louvre is a solid, two-leaf, flush door with an opaque transom and no trim. Above the door on
the second story is a louvre identical to the first. Three panels north of this is a solid, single-leaf
door identical to the easternmost door of the north face. West of this two-story section is a one-
story section identical to the easternmost one-story section of the north face. West of this section
is a recessed area in which the north entrance is located. The west side of the one-story section
that terminates at this recessed area is flush stretcher bond scoured brick with no trim. The face
of the recessed area is also brick. The door is off-center west and is solid, glass, double-leaf with
a light transom and no trim. The door is at ground level. West of this recessed area is the west
wing, which protrudes beyond the north entrance but not as far as the first three sections of the
north face. The north face of the west wing is identical to that of its south face.

A courtyard is located within the center of the main building. The east wall that faces the
courtyard is stretcher bond scoured brick. The concrete foundation wall is visible below the
brick. There is a narrow section of flush concrete above the brick that meets the flat concrete
eave of the roof. The roof is identical to that of the south face of the main one-story building.
Across the brick is a ribbon of four fixed, horizontally rectangular windows with no trim, sill, or
surround. Each window is separated by a concrete mullion. The west wall that faces the
courtyard is also one story. Its face is entirely glass, divided into two rows of eight fixed,
vertically rectangular windows. Within the fifth north pane on the bottom row is a sliding glass
door. The south wall that faces the courtyard is one story and is all glass. Precast concrete tee
beams separate the glass into eleven panels, and also project at roof level to support the eave.
The eave is accordion-shaped, but the roof is flat. Within each panel, the glass is further divided
by metal muntins into four fixed panes, with two exceptions: a sliding glass door is located in the
third panel west and another sliding glass door is located in the ninth panel west). A two-story
block makes up the north wall of the courtyard. This two-story block is the second-story
projection noted above in the description of the east face. On the south face of the two-story block, the face of the first story is only visible within the courtyard. The south face of the two-story block is divided by precast concrete tee beams into eighteen panels of flush concrete. Each tee beam projects outward at roof level to support the eave of the roof overhang, creating an accordion shape to the eave. The roof itself is metal and is also accordion in shape. Window structural opening is flat (as are all windows of Hertz Hall). On the second story, each window is horizontally rectangular, three-pane, and sliding with no trim and no surround, and is located within one panel. The sides of each window meet the tee beams. Window arrangement is symmetrical. On the second story, from west to east, the arrangement is as follows: first panel has a window, second panel has no window, third and fourth panels each have a window, fifth panel has no window, sixth and seventh windows each have a window, eighth panel has no window, ninth and tenth panels each have a window, eleventh panel has no window, twelfth and thirteenth panels each have a window, fourteenth panel has no window, fifteenth and sixteenth panels each have a window, seventeenth panel has no window, eighteenth panel has a window. In the courtyard, the first story windows of the north wall are identical in design and location to the second story windows above it (totaling six windows), except that the windows are each single pane, fixed. There is one similar window on the west face of the two-story block on the second story. There are no windows on the north face of the two-story block on the second story.

A photograph from 1965 indicates that all south face windows originally had flat metal screen awnings (Brooks Library Digital Collection 2014k), which were removed some time between 1965 and 2004. At another unknown date, acoustical modifications were made to the interior. In 1966, electrical alterations and additions were made. A projection booth and new stage lighting were installed in 1968. Humidifiers were installed in 1983. Lighting was replaced
in 1984 and the HVAC system was renovated in 1985. Architectural drawings from 1989 reference an east block addition for an elevator and archival storage, but the addition does not appear to have altered the floor plan (Villesvik, Smith, and Cullen, Inc. 1989). Structural repairs were made to Hertz Hall in 1993, and the roof was replaced in 2010.

Hogue Technology Center

The original construction of Hogue Hall was completed in 1970 as a single detached unit with a rectangular plan oriented east-to-west, and a square wing off the northeast corner. Although photographs of Hogue Hall in 1967 and 1975 (Brooks Library Digital Collection 2014m, 2014l) show two stories, original architectural drawings (Kirk, Wallace, McKinley, and Associates 1970) indicate three stories and a mechanical penthouse; this is because the second story is a split level, such that there are two stories on the north half of the original building and three stories on the south half of the original building. Split-level homes were very popular between the 1950s and 1970s; it is curious to see it used here in an educational building. The original northeast wing remains one and a half stories.

The original 1970 construction has a strict Mid-Century Modern design (Figure 8.33), while the 2012 addition has a Post Modern design with Mid-Century Modern influences (Figure 8.34). In 2012, Hogue Hall was renovated and additions were made (LMN Architects 2012). The renovation included the replacement of the windows, refurbishment of the doors, a partial reroofing, and a remodeling of the interior. A one-story, square plan addition was made to the east face of the northeast corner wing. A large, three-story, rectangular plan addition with multi-level mechanical penthouses was added at the southwest corner of the building. Metal pipes rise tall above the main roofline and penthouse roofs of the southwest addition. Louvers on the
original building are precast concrete and match the spandrels between the windows of each story. Louvers on the additions are metal.

![Image of Hogue Technology Center in 1975, looking southwest.](image)

Figure 8.33. Hogue Technology Center in 1975, looking southwest. (Photograph courtesy of Brooks Library Digital Collection 2015).

The foundation of both the original building and the additions is concrete. The original building (henceforth referred to as the "north wing") has a partial basement and a tunnel that runs around the peripheral of its foundation. The southwest addition also has a partial basement. No attics are noted. Concrete beams make up the structural frame of the original building, while the southwest addition is steel and concrete. The roof shape is flat with a short parapet. Along the north wing, the parapet has both stone and metal coping. Along the southwest wing, the parapet has metal coping. There is metal railing set back from the parapet on the north wing only. There is a steel beam frame that rises above the main roofline at the north face of the southwest
addition, behind which is a penthouse. No chimneys are noted. Solar panels were added to the roofs as part of the 2012 renovation.

Exterior wall material is brick and precast concrete. The exterior wall material of the penthouses is corrugated metal. Brick is arranged in a stretcher bond. The exterior wall design of the north wing pilaster and spandrel such that brick pilasters vertically divide each panel of the façade and precast concrete spandrels horizontally divide each panel of the façade. The exterior wall design of the northeast addition is flush brick. The exterior wall design of the southwest addition is metal paneling and raised panels of flush brick with stone coping that terminate before reaching the roofline.

Structural openings of the windows are flat. On the north face of the north wing, the windows are two-sash, floor-to-ceiling, vertically rectangular, fixed, recessed slightly between the pilasters and spandrels, have no trim, and have opaque side panes. The windows of the northeast wing are
similar, except that they are wider and have no side panes. Also, because the northeast wing is one and a half stories, the lower half-story windows are smaller than the windows of the upper full story. On the south face of the north wing, recessed between each pilaster is one fixed, horizontally rectangular window and one smaller casement window. The majority of the windows of the west, south, and east faces of the southwest addition are large, square, fixed, are flush with the metal paneling of the façade, have no sill, trim or surround, and are arranged in ribbons across the metal paneling of the façade. Dominating the south face of the southwest wing is a recessed, two-story translucent (but not transparent) glass curtain that is divided by mullions into vertical panels, and divided further by muntins into vertically rectangular panes. Smooth steel columns support the uppermost half-story directly in front of the glass curtain (see Figure 8.34). Flat, slatted sun screens overhang the windows of the southwest wing. Many of the sun screens also have a panel perpendicular to the overhang that covers the upper 1/4 of the window. There is a vertical window ribbon of fixed, vertically rectangular windows with no trim, sills, or surround that runs up through one of the brick facades of the east face of the southwest addition. On the north face of the southwest addition, there is a raised metal course that runs vertically between each pair of pilasters. To either side of the course, there is a single fixed, square window with a casement side light and light transoms. All the windows are flush with the metal paneling of the façade, and have no sill, trim, or surround.

Structural openings of the doors are flat. A rolling metal garage-sized door is located on the east face of the north wing and on the east face of the northeast wing. Maintenance doors are typically single leaf, solid metal doors with no trim or surround. Public entrances are typically single or double leaf, single panel glass doors with light transoms and one or two sidelights.
A patio is located south of the north wing and east of the southwest addition. The patio is comprised of flush concrete and grey cinder bricks. Large boulders of basalt are set within the patio. At the south edge of the patio is a flowerbed. Decorative vegetation is drought resistant. South of the southwest addition is a landscaped area with minimal vegetation. Two art pieces are located among the landscaping, one of which is reminiscent of structural steel beams and the other is interactive.

A plaque near the north entrance of the original building reads, “Hogue Technology Building, Central Washington State College. Board of Trustees: Dr. Roy Patrick Wahle, Vice-Chairman; Dr. Archie S. Wilson; Mr. Joseph Panattoni; Mr. Herbert L. Frank, Chairman; Mrs. R. Hugh Minor. President: Dr. James E. Brooks. Kirk, Wallace, McKinley, A.I.A. and Associates, Architects. Skilling, Helle, Christiansen, Robertson, Structural Engineers. Valentine, Fisher and Tomlinson, Mechanical Engineers. Sparling and Associates, Electrical Engineers. 1970.”

Between the original construction and the renovation and addition, some minor changes took place. In 1983, the stairs were modified. In 1985, a vestibule was added to the north entrance. In 1991, the roof was replaced.

International Center

Originally named “Kennedy Hall,” the International Center was constructed in 1948 as a women’s dormitory (Figure 8.35). The unit massing of the building is single and detached. The plan is U-shaped with a courtyard. A block (henceforth referred to as the "tall block") at the south end of the west wing rises a few feet above the main roofline. A one-story, single pile block (henceforth referred to as the "single pile block") extends east from the "tall block" (giving the floor plan more of a "G" shape than a "U" shape). The roof shape of the main building is a low butterfly, while that of the "tall block" is shed, that of the "single pile block" is flat, and that
of the covered walkway that runs between the west and east wings is flat. The roof material is composite with a plain boxed cornice of metal. A chimney is located on the east face of the "single pile block." The building is one story with an attic and partial basement. The foundation is poured concrete. A courtyard is located between the east and west wings of the building.

![Kennedy Hall (now the International Center) in 1950, looking northeast.](Photograph courtesy of Brooks Library Digital Collection 2014r)

Original architectural drawings reveal that the original exterior wall design was predominantly a “groove rustic” horizontal wood siding with some brick and some board and batten elements (Maloney 1948), and there was a recessed horizontal panel of vertical wood in which the windows were set. The current exterior wall material is predominantly wood shingling, which covered the recessed panels (Figure 8.36), but the brick and the board and batten elements are still intact. The restoration of the horizontal wood siding and the recessed panel could return the building’s integrity of character.

All windows, except for those on the south face of the west wing, are double-hung with plain wood trim. Pairs of windows share a structural opening and are separated by a wood mullion. All double-hung windows have a detachable two-panel, wood-framed screen. A flush concrete
foundation wall is visible at the base of the walls where the topography is lowest (i.e. at south ends of building). The windows themselves appear to have been only slightly modified, if at all. The east wing extends further south than the west wing. Thirteen windows are irregularly spaced on the east face of the east wing. The south face of the east wing has one window. The west face of the west wing has an off-center (south), double leaf, two-panel (upper panel is chicken wire glass) door with side lights. The door is recessed under an umbrage. Running from this courtyard entrance of the west wing to that of the east wing is a flat metal porch overhang supported by metal poles. Straight concrete stairs lead to the stoop of the door up from the lower elevation of the south. South of the west face entrance of the west wing are three windows. North of the entrance are seven windows.

Figure 8.36. International Center in 2014, looking southwest. (Photograph taken by Lauren Walton).
The north face of the north wing has eleven windows. At the east end of the north face is a single leaf, two-panel wooden door (upper panel is chicken wire glass), recessed under an umbrage. Straight concrete stairs lead to the stoop. At the west end of the north face is a single leaf, one-panel wood door (narrow, vertical glass window), recessed under an umbrage. An aggregate concrete ramp with metal railing leads to the door. The south face of the north wing (facing the courtyard) has nine windows, the easternmost of which is vertically narrow.

On the east face of the west wing is an entrance identical to that of the east wing courtyard entrance. North of the west wing courtyard entrance are two pairs of windows, followed by five single windows (the first of which is vertically narrow). South of the entrance is the "single pile block" that extends east from the east face of the west wing. The roofline of the "single pile block" is slightly shorter than that of the main building. The exterior wall design of the east face of the "single pile block" is board-and-batten, extending up through the roofline to meet the roofline of the "tall block." Rising above the "single pile block," visible on the east face of the "tall block," is a centered brick chimney with stone coping. Board-and-batten clads the north face of the "single pile block." On the north face of the "single pile block," there is a single leaf, single-panel door with plain wood trim. West of the door is a pair of windows. On the east face of the "single pile block" is a pair of windows. The porch overhang that covers the walkway between the courtyard entrances also shelters the north face of the "single pile block." Extending south from the chimney above the "single pile block" is a brick parapet with stone coping. Structurally, the parapet makes up the upper portion of a brick wall that frames the south face of the "tall block."

There are ten windows on the west face of the west wing. There is a recessed, board-and-batten panel at the southernmost end of the west face of the west wing. The main roof overhangs
the recessed panel, and is supported by three metal poles. The main entrance is located in the recessed panel, and is identical to the courtyard entrances. Straight concrete stairs meet the stoop of the main entrance from the south.

The "tall block" is located at the south end of the west wing. The south face of the "tall block" is framed by the roof overhang, by a brick wall to the east, and by a southward extension of the board-and-batten wall of the west wing's west face. On the south face of the "tall block" is a horizontal window ribbon of nine panes, each with an upper and lower light transom. The window head under the roof overhang is plywood. Below the window ribbon is a large, empty metal trough (architectural drawings indicate this was once a flower bed) that is raised above ground and supported by three brick stilts. The trough has a brick façade that is flush with the south face of the "single pile block." Also flush with the base of the south face of the "single pile block" is a retaining wall that extends east, bowing convexly southward. In 1963, a door call was installed. Interior remodeling took place in 1970. Utility improvements were made in 2003.

Jansen Warehouse

Unit massing of the building is single and detached. The original building was constructed in 1980 and had a rectangular plan. At an unknown date, the west portion of the original building was expanded. In 1994, office space was added in the form of a single pile block to the north face of the building. In 1996, a dry storage bay was added to the south and southeast faces of the building (Figure 3.38). The structural system of the building is steel. The exterior wall material of the south face is concrete blocks. The exterior wall material of the north, east, and west faces is standing seam metal. The exterior wall material of the 1994 addition (offices) is vertical board. A single side-sliding window with no trim, surround, or sill is located just north of, and aligned with the top of, the east face bay door. Two fixed windows with hinged lower light transoms and
plain trim are located on the east face of the 1994 addition. Two fixed windows with plain trim are located just east of the main entrance on the north face of the 1994 addition. The main entrance is a single leaf glass door with a two-panel side light and plain trim. A domed awning shelters the entrance. The main roof (of the original building) is a very low gable and is composed of a corrugated metal. The roof of the 1994 addition is flat with parapet (metal coping); the current roofing material is unknown. The main roofline rises several feet above that of the 1994 addition. The roof of the 1996 addition is a shed form and rises a few feet above the main roofline.

Figure 8.37. Jansen Warehouse in 2014, looking southwest. (Photograph taken by Lauren Walton).

The Jansen Warehouse was inventoried by Schreiber, Starling and Lane Architects in 2005. Refer to the 2005 report for architectural details about the building’s appearance and integrity. The report reference to an associated structure located north of Elliott Street from Jansen Warehouse. The associated building reportedly had “varied use, including residential, petroleum
“sales, and grocery facilities” (Schreiber, Starling and Lane Architects 2005). A construction date
is not given, but the building has the distinct characteristics of the Quonset huts popular during
and immediately following WWII (Massey and Maxwell 2013).

Jongeward Facilities Administration and Plant Services

The Jongeward Facilities Administration and Plant Services building (Figure 8.38) was
constructed between 1970 and 1972. Its unit massing is double and attached, consisting of the
"Plant Services" section to the north and the "Facilities Administration" section to the south. The
plan of the Facilities Administration section is square, and the plan of the Plant Services section
is rectangular, oriented west-to-east. The Facilities Administration section is attached on its north
face (off-center east) to the south face (also off-center east) of the Plant Services section by a
hyphen. Unlike several nearby buildings, the Jongeward building was not oriented northwest-to-
southeast to face the Chicago, Milwaukee, St. Paul, and Pacific Railroad, but was instead
oriented west-to-east (Doudna and Williams 1970). The building is one story. There is no attic
space, and there is a partial basement below the hyphen and the Facilities Administration
Building.

The exterior wall design of the Plant Services section consists of concrete masonry units in a
stacked bond with some metal insulated panels. The vertical, bent steel beams of the building’s
frame are exposed on much of the exterior wall, creating a serial panel wall design across the
majority of the façade. A typical entrance is either a large, metal, roll-top door with a bent steel
frame, or a single or double leaf, solid metal door with a small, vertically rectangular window
and plain trim. In some cases, the two door types occupy the same structural opening of one wall
panel (when this is the case, the single/double leaf door is headed by a solid metal transom, and
both doors share a large light transom that has many slender vertical panes). It appears that one
of the roll-top doors of the north face was replaced with a storefront window that is muntin-
divided into square panes. Several metal louvers are located either in the upper portion of
otherwise featureless wall panels, or as a transom to single/double leaf doors. The main north
entrance is a double leaf door in a recessed panel. A metal, triple-tiered, boxed cornice copes the
short parapet of the flat roof. On the east face of the Plant Services section of the building, there
is a flat concrete loading dock sheltered by a flat-roofed porch. The porch overhang extends from
the east face of Plant Services, has an identical cornice as the main roof, and is supported by
metal piers. A driveway leading up to the dock recesses below ground level, and is surrounded
by concrete retaining walls. This loading area is known as “Central Receiving.” On the west face
of Plant Services, there is a service station, including gasoline pumps, for school-owned vehicles.
The exterior wall design of the Facilities Administration section also consists of concrete masonry units in a stacked bond. The roof is flat with parapet and trimmed with a plain metal box cornice. The cornice is positioned just above the exposed upper horizontal bent metal beams of the building’s frame. The overhang of the roof has a batten-ribbed soffit, and is supported by bent metal beam piers. Between many of these beams on the west, south, and east faces, there are tightly spaced piers of concrete masonry units. All faces of the Facilities Administration section have storefront windows that are divided by metal mullions and muntins to have upper and lower light transoms. The main entrance is located on the south face of a block that extends one-room deep from the south façade. The piers of the main façade continue across the face of this south block in such a way that the piers make up the side surrounds of the south block’s fixed, vertically rectangular windows. Each window of the south block has an upper and lower light transom. The main entrance is a double leaf, single panel glass door with sidelights (each with upper and lower light transoms) and a double-stacked light transom. Straight concrete stairs with metal railing lead up to the concrete patio of the main entrance. A sidewalk surrounds the entire Facilities Administration section. Aligned with the base of the stairs is a retaining wall of random rubble that trims the landscaping on the south face and on portions of the east and west faces. At the center of the Facilities Administration building, there is a courtyard. A metal muntin-divided glass curtain surrounds the courtyard. At the southwest and northwest edges of the west face, and at the northeast edge of the east face, there is a fixed square window with no trim (it appears that the original windows have been replaced). On the west face, both to the north and to south of the storefront window, there is a single leaf, solid metal door with a double-stacked transom (the bottom of which is metal panel, and the top of with is glass).
The hyphen that joins the Facilities Administration section of the building to Plant Services has a flat roof. The east and west faces are muntin-divided glass curtains, each with a double leaf, solid metal door with small, vertically rectangular windows, plain trim, and a horizontally rectangular metal transom. In 1975, an automatic fire protection system was installed. An electrical remodel was done in 1999. Shop ventilation upgrades were made in 2003.

Jongeward Warehouse

The Jongeward Warehouse (Figure 8.39) was built circa 1937 as a warehouse along the Chicago, Milwaukee, St. Paul, and Pacific Railroad, and was purchased by CWCE in 1970. The unit massing of the warehouse is single and detached. The main plan is rectangular, oriented north-to-south, but the upper one-third of the plan is triangular. The north face of the Jongeward Warehouse is oriented northwest-to-southeast to face what was once the right of way for the railroad. The building is two stories tall, but the interior in one vaulted story. There is no attic or basement. The exterior wall material is both smooth and textured stucco. The exterior wall design consists of a series of panels, some of which are divided by either flush battens (material indiscernible) or stuccoed pilasters. The roof is flat (material unknown, but an asphalt composite is probable). A horizontal wood plank frieze trims the roofline just below a metal, plain box cornice. A tall parapet rises above the main roofline on both the north and south faces. A single leaf, solid metal door with no trim or surround is located at the west edge of the south face. A concrete side stair with wood railing leads to the stoop of this south door. Within one of the panels on the north face is the main entrance, which consists of a large metal roll-top bay door with no trim and a single leaf, solid metal door with a small vertically rectangular window, metal transom, and no trim. A privacy wall of concrete masonry blocks extends from the northeast corner of the building in a zigzag pattern. There are no windows.
Kamola Hall

The unit massing of Kamola Hall has changed since its original 1911 construction (Figure 8.40). In 1911, the plan of Kamola was rectangular. In 1913, a detached rectangular addition was made to Kamola off of the east face of the original building. A rectangular addition was made in 1915 between the original 1911 construction and the 1913 addition, joining the two buildings and creating a pavilion plan with a courtyard just north of the 1915 addition (Figure 8.41). The original building, along with the 1913 and 1915 additions, became collectively known as “North Kamola” when a separate L-shaped building was constructed to the south in 1919 called “South Kamola” (Figure 8.42). By 1928, it appears that a single-pile addition had been made to the east face of the original 1911 portion of Kamola Hall. A partial basement mechanical room was added in 1948. In 1955, the basement of the original 1911 portion of Kamola Hall was expanded east through the 1915 and 1913 additions. It appears that between 1919 and 2003, North Kamola and South Kamola remained separate buildings attached by a narrow, two-story walkway.
In 2003, the walkway was expanded eastward to allow room for an elevator, and upwards to connect the first through third stories of North Kamola and South Kamola. When the 2003 addition (Figure 8.43) joined North Kamola and South Kamola into a single unit, both became collectively known as “Kamola Hall.”

The section once known as “North Kamola” has four stories with no attic or basement. Historically, however, “North Kamola” was perceived as having three stories with a basement (Mohler, 1967). It appears that “North Kamola” had an attic at one time. The section once known as “South Kamola” has four stories with some attic space and no basement. The foundation of Kamola Hall is poured concrete.

The original 1911 construction (Figure 8.40) has maintained its cross-gabled roof, which consists of one north-to-south gable that is intersected at both ends by east-to-west gables. The 1913 addition appears to have a west-to-east gable roof in a 1950 photograph (Brooks Library Digital Collection 2014q).
Figure 8.41. Kamola Hall in 1920, looking southeast. (Photograph courtesy of Brooks Library Digital Collection 2015o). The original 1911 construction (at right) and the 1913 addition (at left) are joined by the 1915 addition (obscured from view here by the 1911 portion of the building).

Figure 8.42. Kamola Hall in 1960, looking north at South Kamola. (Photograph courtesy of Brooks Library Digital Collection 2014n).

Digital Collection 2014a), but then has a flat roof by 1960 (Brooks Library Digital Collection 2014n). The 1913 addition’s flat roof has been retained to date. The roof of the 1915 addition mirrors that of the 1911 construction, except that its north-to-south gable is a gambrel. The north
arm of “South Kamola’s” L-shape plan is a north-to-south gable that is crossed on the west face by a gable. The south arm of “South Kamola’s” L-shape plan is a west-to-east gable that extends eastward from the north arm. A north-to-south gable intersects the south aspect of the south-arm. The south face of “South Kamola” strongly resembles the west face of the original 1911 construction.

The style of “North Kamola” is an eclectic compilation of architectural styles, including elements of early 20th century vernacular and hints of Gothic Revival, such as the use of buttresses and gothic-arched windows (on the fourth story of the gable faces). “North Kamola” exhibits a symmetrical arrangement of gable faces around an entrance that was popular at the time of its construction. It is unclear from historic photographs from 1912, 1913, and 1915 which roofing material was used originally on “North Kamola,” but it appears to have been either
shingles or clay tiles (Brooks Library Digital Collection 2014q, 2014p, 2014o). The style of “South Kamola” is similar to that of “North Kamola,” but is dominated by Spanish Colonial Revival elements, such as curvilinear gable parapets and clay tile roofing material. Clay tile roofing has adorned both “South Kamola” and the original 1911 section of “North Kamola” since at least 1919. It is likely that the clay tile roofing was extended to “North Kamola” during the 1919 construction of “South Kamola” in order to provide a continuity of style between the two buildings. Currently, asphalt composition roofing material covers portions of the roof that are not highly visible to University Way traffic, while clay tiles cover the portions of the roof that are highly visible. The roof trim where the roof overhangs the exterior wall consists of a wooden frieze and dental molding. The roof trim of the gable faces consists of parapets that rise above the main roofline and are either angular (in the case of “North Kamola”) or curvilinear (in the case of “South Kamola”).

One chimney is located on the south gable of the east face of “South Kamola.” One chimney is located on the north face of “South Kamola.” One chimney is located on the east face of “North Kamola.” Two chimneys are located where the south face of the original (1911) building once was (the south face is covered now by the 2003 walkway that joined “North Kamola” to “South Kamola”). One chimney is located on the west face of “South Kamola,” and it appears that another chimney was once located at the peak of the southern gable of the west face of “South Kamola,” but is no longer present.

Exterior wall material of the entire building is brick laid in a flush common bond. Nearly each face of Kamola Hall is symmetrical about a central vertical axis. Henceforth (for the purposes of this report), the original (1911) construction shall be referred to as “west North Kamola.” The 1913 addition shall henceforth be referred to as “central North Kamola.” The 1915
addition shall be referred to “east North Kamola.” The north arm of the L-shape plan of “South Kamola” shall be referred to as “upper South Kamola,” while the south arm of the L-shape plan of “South Kamola” shall be referred to as “lower South Kamola.” Unless otherwise noted, the fenestration of the first story of Kamola Hall consists of casement windows that appear to be double-hung windows with an upper sash that is muntin-divided into four panes, having plain trim, header brick slip sills, a flat radiating brick voussoir, and no side surrounds. Unless otherwise noted, the fenestration of the second, third, and fourth stories is identical to that of the first story, except that the head surround is a vertical stretcher brick lintel with header brick trim. Typical door surrounds are identical to the window surrounds of the respective story, though there are some exceptions.

In 1922, interior renovations of the “Domestic Science and Dormitory Building” (i.e. Kamola Hall) were made, and exterior metal fire escapes were attached to the exterior of the building. The “toilet room” was renovated in 1943. A partial basement mechanical room was added in 1948. Interior alterations were made in 1954. In 1955, door replacements were made in the “1st Addition to North Kamola” (i.e. the 1913 addition). The doors and windows were renovated in 1963, and the electrical wiring was revised. In 1966, an intercom system was installed. The interior was remodeled in 1969. In 2003, major interior renovation were made, the chimney that was once located on south face of the 1911 portion of the building was demolished, the landscaping was redone, and the fire escapes were removed.

Language and Literature Building

The Language and Literature Building (Figure 8.44) was completed in 1971. The style of the building is an adapted form of Brutalism with a brick façade to blend it with the rest of the campus. The unit massing is a single grouping of monumental tower-like sections that are
connected by catwalks above the first story. The structural system is a mix of steel and reinforced concrete. The floor plan is irregular, but symmetrical along the north-south axis and along the east-west axis. Due to the irregularity of the floor plan, and for relative ease of description, each distinguishable block shall be labeled and discussed separately. The four corners of the building are each one story. The I-shaped center of the building (henceforth referred to as the “central wing”) is four stories with a fifth story penthouse. No basement or attic are noted. The roof material of the “central wing” and penthouse is standing seam metal. The roof material of each one-story corner of the building is unknown (appears to be an asphalt composite). Along the roofline of each one-story corner of the building is what resembles a two-tiered, plain, boxed, metal cornice; however, portions of it act as the coping to a concrete parapet that rises above, and is set back slightly from, the roofline. No chimneys are noted. The exterior wall material consists of brick in a stretcher bond and of precast concrete. The foundation is poured concrete.

Figure 8.44. Language and Literature Building in 1980, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2015p).
The exterior wall design of the north face of the northeast one-story corner block (henceforth referred to as the “northeast block”) is brick with an upper and basal trim of flush concrete. Fenestration on the north face is a horizontal ribbon of nine vertically rectangular windows in an alternating pattern of fixed, single-pane and side-hinged with a lower light transom. Windows have no trim, but are separated from each other by brick privacy blinds that meet the upper and basal concrete trim of the wall design. At the base of each window, between the privacy blinds, the concrete recesses into a 45° slip sill that nearly meets ground level. (Note: for the purpose of ease of description, this typical window style shall henceforth be referred to as a “blinded window”). East of the north face fenestration, the wall is devoid of windows, doors, and decoration. On the east face is a row of three flush fixed windows with lower light transoms, and no trim or surround that are recessed into the wall and oriented at a 45° angle to face northeast. The south face is featureless. The west face is oriented northwest-to-southeast at a 45° angle to face southwest, and it has three small, vertically rectangular, recessed, fixed windows with no trim, a brick slip sill, and a flush brick voussoir. Northwest of these windows is a single panel glass door with a side light.

The northwest one-story corner of the building (henceforth referred to as the “northwest block”) nearly mirrors the “northeast block,” except that there is a solid, single-leaf door just west of the window ribbon. Also, the westernmost portion of the roofline rises into a mansard shape of cast concrete (trimmed like the rest of the flat roof with a two-tiered, plain, boxed, metal cornice). On the northwest corner of the “northwest block” is a northwest-facing window with no trim or surround. On the southwest corner is a southwest-facing recessed panel with no window. The west face is featureless. The south face of the “northwest block” is featureless. The east face
of the “northwest block” is oriented southwest-to-northeast and has an off-center (north), single-leaf, single-panel glass door with side lights.

Between the “northwest block” and the “northeast block,” there is a centered, one room-deep, one-story block (henceforth referred to as the “north-center block”). Its north face is featureless. There is a vertical metal louver on the east face. The west face has two solid, single-leaf doors with opaque transoms (the southernmost door has a low louver and a louver is also set in its transom). Between the “north-center block” and the “northeast block,” there is an entrance that is recessed under an umbrage. The entrance is double-leaf, single glass panel door with side lights. An identical entrance is located between the “north-center block” and the “northwest block.”

Recessed back from the face of the “north-center block” is the “north block” of the “central wing.” The “north block” of the “central wing” rises four stories. The floor plan of the “north block” of the “central wing” is trilobal (the center “lobe” shall henceforth be referred to as the “north block center lobe,” and the east and west “lobes” shall henceforth be referred to the “north block east lobe” and “north block west lobe,” respectively).

The umbrages of the two north entrances create the effect that the second through fourth stories of the “north block center lobe” are resting upon the one-story “north-center block,” the east edge of the “northwest block,” and the west edge of the “northeast block.” The basal concrete trim of the second story of the “north block center lobe” runs contiguously with the upper concrete trim of the “northwest block” and “northeast block.” The north face of the “north block center lobe” is predominantly flush brick on the second and third stories, except that, at the easternmost and westernmost edges each, there is a vertical window ribbon in the “blinded window” style, each two windows wide. A horizontal brick mullion with upper and lower concrete trim separates the second story windows from those of the third story. The north face of
the fourth story is dominated by a horizontal ribbon of twelve “blinded windows” that alternate between a side-hinge with lower light transom and a fixed single pane.

On the south face of the “north block center lobe,” there is a double leaf, single-panel glass door with sidelights (chicken wire glass) that faces the breezeway. The entrance is sheltered by the second story of the “central wing.” East of the entrance, centered on the south face of the “north block center lobe” is a one-room deep projecting block, the south face of which has a solid metal, double-leaf door with opaque transom.

The north face of the “north block west lobe” is nearly identical to the north face of the “north block center lobe,” except that the fenestration on the fourth story consists of nine windows, and there is only one vertical window ribbon, which is three windows wide and located at the western edge of the north face on the second and third stories. The west and southwest faces of the “north block west lobe” are featureless, while the south face is flush with a vertical window ribbon through the second and third stories and a horizontal window ribbon on the fourth story. Both the vertical and horizontal window ribbons are in the “blinded window” style, except they extend from the face of the building with greater exaggeration, surrounded on all sides by a brick label with concrete basal trim, and each window has a concrete slab sunscreen bolted just above it parallel with the wall (henceforth, this typical window style shall be referred to as the “exaggerated blinded window”). The horizontal window ribbon has five windows, while the vertical window ribbon has two. The “north block east lobe” mirrors the “north block west lobe.”

Between the “north block” and “south block,” the first story of the “central wing center block” is supported by concrete piers, allowing for an open breezeway. The faces of the second story are irregularly shaped with use of 45° angles of varying orientations for the walls and the
windows. The west and east faces are identical. The second story has a featureless, half-room deep projecting block that is flanked on both sides by three-paned ceiling-to-floor fixed windows. The third and fourth stories have a one-room deep projecting block with a complex folded plate face. On both the third and fourth stories, there is a row of four casement windows with lower light transoms, facing northwest (on the west face) and northeast (on the east face). Each window is flush with no trim, surround, nor sill. The upper concrete trim of the fourth story does not recess like the rest of the wall, so it shelters the windows. The one-room deep block is flanked on either side by fixed ceiling-to-floor windows. The exterior of the fifth-story penthouse is a standing seam metal roof with louver.

The south half of the building mirrors the north half with some exceptions. The north face of the “south block west lobe” has fenestration that is identical to the south face of the “north block west lobe,” except that the windows are in the “blinded window” style instead of an “exaggerated blinded window” style. Also, there is a row of three recessed windows with a 45°-angle brick slip sill and no trim on the first story of the north face of the “south block west lobe.” The one-room deep projecting block centered on the north face of the “south block center lobe” has no door. The east face of the “southeast block” has six windows rather than three. The window style of the south face is identical an “exaggerated blinded window” style rather than the “blinded window” style of the north face. The west face of the “southwest block” has a row of five recessed side-hinge windows with lower light transoms that face northwest at 45°. Just north of these windows, flush with the 45°-angle face of the northwest corner of the block, there is a window with no trim or surround.

The Library Complex

Dr. James E. Brooks Library

Between 1973 and 1976, the Library Complex was constructed, composed of a library, now called the Dr. James E. Brooks Library (Figure 8.45), and an instructional classroom building, now called Farrell Hall. The style of the complex is Late Modern with flush brick facades, horizontal board-formed concrete belt courses (providing a “wooden” texture), and tinted fixed windows with no surrounds.

Figure 8.45. Dr. James E. Brooks Library in 1980, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2015f).
The unit massing of the Dr. James E. Brooks Library is single and detached. The floor plan is irregular, consisting of a north-to-south grouping of three east-to-west oriented rectangular sections, which are, from south-to-north, each successively longer toward the west. A one-story wing extends one-room deep from the north face. A rounded, tower-like stairwell extends eastward from the east face. There are four stories. The foundation is poured concrete.

The roof is comprised of a T-shaped flat section that separates the gable of the northernmost section (oriented east-to-west) from the gable of the easternmost section of the building (oriented north-to-south) and from the two perpendicular gables of the southwest quarter of the building that join in an inverted L-shape (Ibsen, Nelsen and Associates Architects 1973). On either side of the easternmost gable, the northernmost gable, and the southern half of the L-shaped gable, there is a dormer situated across from another, connecting to cross the main roof ridge. Roof material is concrete with rusted steel. Roof material of dormers is “elastic liquid roofing” (original material types).

The exterior wall material is stretcher bond brick with continuous horizontal belt coursing of board-formed concrete. Board-formed concrete is also present in the form of first-story string course, gable peak façade, vertical belt coursing (for gable face window side surrounds), sparse quoining on the corners of each gable face, and the exterior wall material of both the dormers and the T-shaped flat-roof section (Ibsen, Nelsen and Associates Architects 1973).

Windows on the broadsides of each gable are fixed, horizontally rectangular, have a smoothed brick sill, share a belt course head surround, and have no side surround or trim. Windows on the gable faces are fixed, vertically rectangular, share one vertical belt course side surround, are headed by a flush square of concrete, and have no sill or trim. These features create a cross-axis of vertical and horizontal that was quite common in Modern architecture. Windows
of the stairwell tower are fixed, narrow, horizontal rectangles with no trim of side surround, curve with the face of the tower, share a belt course header on each story, and have a smoothed brick sill.

The main (and only) entrance is located on the east face, and is sheltered by a porch with a concrete shed roof supported by brick piers. Emergency exit doors are located on all faces of the building. A covered loading dock is situated at the northwest corner of the building, attached to the west face of the north wing. Generally, doors are double leaf, three-pane glass and wood doors with no trim or surround.

In 1993, the IMC Photographic Laboratory was demolished on the interior to make more room for a WHETS classroom in 1994, which required new electrical wiring. Portions of the interior of the library were remodeled in 1997, and a new telecommunications system was installed 1999-2000. The lighting and HVAC were remodeled in 2000, and the electrical wiring was updated in 2001. The roof was replaced in 2004.

Farrell Hall (Instructional Classroom Building)

Farrell Hall (Figure 8.46) was constructed between 1973 and 1976 as part of the Library Complex, which also included the Dr. James E. Brooks Library. The unit massing of Farrell Hall is single and detached. The floor plan is rectangular, oriented north-to-south. There are four stories, a partial basement, and what is referred to in the architectural drawings (Ibsen, Nelsen and Associates 1973) as a “fifth floor,” which is a mechanical penthouse. The foundation and basement are poured concrete. There are no chimneys.

The roof shape is a low gable with no trim or eaves. According to original architectural drawings (Ibsen, Nelsen and Associates 1973), the roof material was aluminum, except for “elastic liquid roofing” over the mechanical room. Re-roofing in 2004 apparently used the same
materials. There are eight rectangular skylights, two to either side of the concrete fifth-story dormer.

Exterior wall material is predominantly stretcher bond brick with poured, board-formed concrete elements that add a “wooden” texture to the façade. Exterior wall design is flush brick with a belt course of board-molded concrete running across the top of each story. There is an off-

![Figure 8.46. Farrell Hall in 1975, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2015i).](image)

center south recessed panel on both the west and east faces, in which a main entrance is located on the first story and one window on each of the second through fourth stories. South of the west entrance, the rounded stairwell block projects slightly from the main façade, and also rises above the main roofline. On the east face, the north side of the recessed panel meets the main façade at
an obtuse 45° angle. Off-center east on the north face, the cubic stairwell block projects slightly from the face. The cubic stairwell block rises to the top of the fourth story with a concrete shed roof, but does not meet the main roofline. Above the fourth story on both the north and south faces, the wall is board-molded concrete rather than brick.

Typical windows have a flat structural opening. A large rectangle of flush, board-molded concrete interrupts the continuous trim as a head above each pair of windows of each story on the north and south faces. Windows have no side surrounds. All windows are fixed. On the west face, window types are divided by the main entrance; south of the west entrance on the first story are two pairs of large, horizontally rectangular windows with downward angled, brick slip sills. The second story windows above these windows are identical, except there are three pairs rather than two. First story window type north of the west entrance is large, horizontally rectangular with downward angled, concrete slip sill and a pair of bottom transoms (two first-story windows). Second story windows north of the west entrance are identical to the windows below them on the first story. Window size decreases by half on the third and fourth stories. Window style on the third and fourth stories are identical on both the north and south of the west entrance: vertically rectangular windows with downward angled, brick slip sills. Arrangement of windows differs between north and south sides of the west entrance; south of the west entrance, there is a pattern of single window, double, double, double, single; north of the west entrance, there is a pattern of single, double, single, double. Above the west entrance is a full length window on each story; the one on the second story has no décor; the window on the second and third stories each exhibit a waist high concrete muntin; the third story window is flush with the west face wall rather than recessed. South of the west entrance is the curved exterior of the stairwell, projecting outward from the main wall. On the first story, a board-molded concrete belt course runs midway
between the ground and the top of the first story. Similarly, a concrete belt course is present on the second, third, and fourth floors. Beneath each belt course of the staircase exterior wall is a ribbon of three windows.

Window styles and arrangements on the east face mirror those of the west face with some exceptions. The fourth story window above the east entrance has no head surround. South of the east entrance, the windows are arranged on the third and fourth stories in a pattern of single window, double, double, single. There is no protruding rounded stairwell. Instead, the recessed panel of and above the east entrance meets the east face wall at an obtuse northeast angle.

Centered on each story of the south face is a pair of vertically rectangular windows, separated by a concrete mullion. The north face is identical except that the cubic exterior of a stairwell projects outward from the east half of the wall. This stairwell also covers half of the eastern window of each pair of windows.

The main entrances are located off-center (south) in the recessed panels of the west and east faces. Each entrance has a flat structural opening. Doors have no surrounds, except for the flush, board-molded concrete belt course that runs across the top of each window and door. The architrave includes flush side lights, the lower third of which are divided by a muntin. The main doors are double leaf, two panel glass. The entrances are flush with ground level (i.e. no stairs, porches, etc.). Two side doors are located on the north face. Both have a flat structural opening. One door is located on the face of the cubic stairwell exterior, off-center (west). Its only surround is a rectangular, board-molded, concrete head. The door is single leaf, no panels, with a light transom. Of the pairs of windows centrally located on each story of the north face, the other north face door is located in the structural opening of what would be the westernmost window of
the first story pair. The door is double leaf, no panels, with a light transom and a side light (i.e. the easternmost window of the pair). Both north face doors are flush with ground level.

A telecommunications system was installed between 1999 and 2000, followed by an HVAC/Lighting remodel in 2000, and a reroofing in 2004. By 2007, the telecommunications system was replaced and some walls were removed to create more space.

Lind Hall

Plans for Lind Hall were begun before WWII, but, because of the war, construction was not undertaken until after the war, having been completed in 1947. Unit massing of the building is single and detached. The plan is rectangular with a single-pile, central block extending from the north face. There are two stories. Architectural drawings (Maloney 1947) indicate there is a basement and an attic with a “penthouse.” Centered on the roof is a 13’-diameter astrodome. The roof is flat with a parapet. Architectural drawings indicate that the “flat” roof is actually a very low, folded plate design for redirecting water off of the roof. Original roof material was a combination of “quarry tile” and “composition” (Maloney 1947). The quarry tile was located around the observatory (CWUA 1948). The current roof material is unknown, though it is most likely an asphalt composition because this is the material most commonly used on campus. No chimneys are present.

The exterior wall material is Flemish bond brick. The exterior wall design, which is contiguous across all faces, includes a predominately flush brick façade with a compositional belt course and an inward-stepping plinth. The belt course is sandstone, runs along the top of the second story just below the parapet, and is composed of a smooth frieze approximately three feet in height and two inches in thickness, topped by a plain cornice. The plinth is painted concrete at its base and carved sandstone above the base. The parapet is coped with sandstone. At
intermittent locations, there are ventilation holes (five across by three high) in the plinth and the frieze of the belt course. The style chosen for the building is a Modern-adaption of Neo-Classical Revival (Figure 8.47).

Figure 8.47. Lind Hall in 2015, looking northeast. (Photograph taken by Lauren Walton).

On both the west and east faces, there is a panel composed of smooth sandstone blocks (large, common bond arrangement). Each panel rises above the main parapet approximately one foot and is raised from the wall’s surface approximately three feet. The belt course of the exterior wall design is interrupted by each of these panels. Centered on the first story of each panel is a double-leaf, three-panel door (upper two panels are glass) with double-panel side lights (upper panel is glass), a horizontal light transom with mullion, and a flat structural opening. The entrance is headed by convex sandstone that has the word “SCIENCE” etched across it above which is a grand window that is divided into twelve panes (three across by four high) by doubled muntins and is criss-crossed by X-shaped muntins of white-painted wrought iron. Leading to the
landing of each entrance is a straight, four-step staircase of sandstone with sandstone sides and white-painted wrought iron handrails that have a similar design to the muntins of the grand window above each entrance. Above the grand window of the west entrance, there is a bas relief of a man measuring a globe with calipers. Above the grand window of the east entrance, there is a bas relief of a man pouring the contents of a beaker into another. Just south of the east face sandstone panel, there is a double-hung window (each sash is muntin-divided into six panes) with a sandstone slip sill and no trim or surround.

Like the east and west faces, the south face has a raised central panel; however, the panel is brick rather than sandstone, the panel rises approximately three feet (rather than one foot) above the main roofline, and the belt course runs contiguously across the face of the panel rather than being interrupted by the panel. Centered and recessed into this south panel is the main entrance, which is trimmed with plain sandstone. The main entrance has a flat structural opening that extends between the first and second stories and has an elaborate pattern of crisscrossing mullions and doubled muntins that incorporate the design of the double-leaf, single-panel glass door. Side surrounds of polished, pink marble are flanked by vertically stacked blocks of rough-hewn sandstone that angle outward at 45° to open the porch area in a semi-circle. The floorplan of the landing is a sandstone circle. Leading to the landing is a centered staircase that flares outward from the top step to ground level. Four fluted sandstone columns rise from the porch to support the flat-roofed, convex portico (two of the columns are engaged with the wall at the outer edges of the recessed, concave porch area). The columns have no capitals. Above each column, on the frieze of the portico, there is a raised medallion of sandstone. Surrounding the porch area, between the columns, there are white-painted, wrought iron handrails of design similar to that of the entrance mullions and muntins. Just west of the main entrance is an
inscription of “1947” in the sandstone portion of the plinth. At either side of the recessed entrance area, on the brick façade of the raised central panel, there are two double-hung windows (each sash muntin-divided into six panes (three across by two high) on each story. To either side of the raised central panel on the main façade of the south face, each story has a horizontal window ribbon of seventeen double-hung windows (each sash with twelve [four across by three high] muntin-divided panes) trimmed with sandstone, each window separated by a cluster of four engaged column-like elements (identified in the architectural drawings as “stone piers”).

The exterior wall design of the north face of the building mirrors the south face with some exceptions. Instead of a main entrance, there is a two-story, single-pile block (henceforth referred to as the “single-pile block”) that extends from the north face. The number of windows within each window ribbon varies. Many of the windows on the “single-pile block” differ from the typical window style. Centered on the first story of the north face of the block is a three-window ribbon whose structural opening and surround is similar to the typical window style; however, the ribbon is stouter and of its windows is composed of a two-pane, pivot window with a fixed lower pane. Centered on the second story of the north face of the block is a ribbon of five, vertical five-pane windows (each pane is alternately fixed or top-hinged), each separated by a thin vertical mullion of sandstone. On either side of this ribbon are similarly styled pairs of windows. A small brick and sandstone shelter for an electrical meter and back rack is situated on the west half of the first story of the block’s north face. To the east of the shelter is a single-leaf, two-panel wooden door with plain trim and a six-paned light transom.

The east face of the “single-pile block” has a stout window ribbon of five windows that are alternately fixed and casement with a design similar to that of the second-story window design of the north face. South of this window ribbon is a four-part vent with a stone cross-mullion. The
west face of the block mirrors the east face, except that the first story has a squat, single-leaf, three-panel metal door with an A/C unit, and an entrance. The entrance is a single-leaf door with a semi-circular structural opening, light transom, and solid side panel. The entrance is set in a slightly raised brick panel with sandstone coping. A straight concrete staircase and a concrete ramp lead to the door. Architectural drawings indicate that there are windows on the faces of the penthouse, but this was not visually confirmed during survey.

A mechanical and electrical installation was made to the building in 1954. The following year, in 1955, Room 207 was remodeled. Offices and laboratories were remodeled in 1963. The roof was replaced in 1969. A physics laboratory was added in 1978. An elevator was added between 1980 and 1982. Then a cooling system was installed in 1998. Lighting modifications were made in 2000. Electrical wiring and new geological laboratory fume hoods were added in 2002, and the roof was replaced.

Mary Grupe Conference Center

The Mary Grupe Conference Center (Figure 8.48), which was built alongside, and just south of, Black Hall in 1961, has a single and detached massing. It is one story. The floor plan is circular, from which a semi-circular, single-pile wedge extends west. The exterior wall material is native Basalt (Mohler 1967, 216) in a “random rubble” coursing (Office of Archaeology and Historic Preservation 1977). The roof is a folded plate design of precast concrete, the plates of which are curved to create a domed shell shape with projecting eaves. The eaves are supported by metal poles, which meet the outer edge of the semicircular concrete patio. The patio extends east from the building. Between the poles of the patio, there are decorative plants and concrete benches. The patio is raised a couple feet from the surrounding lawn because it was once surrounded by a water feature with straight concrete retaining walls that extended east and south.
of the building. A raised concrete footbridge traversed the water feature, from east to west, at the southern extent of the water feature, just north of where Bouillon Hall is now. The water feature and footbridge were eventually removed in piecemeal. A sidewalk is now located where the footbridge once was.

![Figure 8.48. Mary Grupe Conference Center in 1965, looking north. (Photograph courtesy of Brooks Library Digital Collection 2015q).](image)

The east face is dominated by storefront windows with flat structural openings, upper and lower light transoms, and no surround. At both the south and north edges of the storefront windows, there is a single-leaf, single panel glass door with a flat structural opening, side light, light transom, and no surround, facing east.
The main entrance is a single-leaf, single panel glass door with a flat structural opening, sidelight, light transom, and no surround, facing Black Hall to the north. Architectural drawings (Culler, Gale, Martell, and Norrie, 1959) indicate that there had been a walkway between the main entrance of Mary Grupe Conference Center and a side entrance on the south face of Black Hall. During the 1998 remodel of Black Hall, the entrance leading to the Mary Grupe Conference Center was removed from the south face of Black Hall; however, the sidewalk, metal walkway cover, and concrete step up to Black Hall remain.

In 1988, the interior was remodeled and refurbished. In 2010, the roof was replaced; however, great care was taken to use the same materials and form as the original roof.

McConnell Hall

McConnell Hall (Figure 8.49) was constructed in 1935. The unit massing of McConnell Hall is double and attached; interiorly comprised of McConnell auditorium (south section), Dr. Milo Smith Tower Theater (middle section), and a northern classroom and dance studio section that was historically divided into a two-story laboratory and a one-story manual training section. The 1935 floorplan was rectangular; 1979 additions contributed irregularities to the floorplan in the form of wings to the west and east faces. Original construction consisted of a multi-tiered building, ranging from one to three stories; additions in 1979 built up the northern section (Figure 8.50). A partial attic and crawl space are noted in the tower theater section. Stone coping tops the parapet of all rooflines. A partial basement is noted in both original and remodel architectural drawings (Bumgardner 1979; Maloney 1935). Foundation is poured concrete, as is the plinth surrounding the entire building. Roofs are flat. No chimneys are noted currently or historically. The architectural style of the original construction is both Classical Revival
(southern portion) and a subtle Art Deco-like style (north portion), while the 1979 addition is Modern.

Figure 8.49. McConnell Hall in 1950, looking southwest. (Photograph courtesy of Brooks Library Digital Collection 2015r). Red dashed line added to demonstrate original roof.

Figure 8.50. The 1979 addition to the northern end of McConnell Hall in 2014, looking east-southeast. (Photograph taken by Lauren Walton).
Exterior wall material is brick with some stone elements. The exterior wall design of the original construction is flush Flemish bond brick with use of symmetry, arcading, stone columns, vertical brick coursing, and brick pilasters. The exterior wall design of the 1979 addition is a flush Flemish bond brick of plainer design with horizontal concrete coursing and some rounded features.

The auditorium is two and a half stories. The south face of the auditorium, which faces University Way, has retained its historic features. Symmetrical about a central vertical axis, the south entrance comprises three separate, double leaf, six-panel doors with large stone block quoin side surrounds, arched broken pediment head surrounds with urn brisé, and elaborate fanlight transoms with stone keystones. Above each door is a floral stone motif, and to either side of the entrance is a small rectangular window with elaborate iron security bars, followed by a fluted Corinthian pilaster. The porch of the south entrance is a stone pediment with dentils, supported by six fluted stone Corinthian columns, and is set before a brick parapet with five stone urns. A date stone reading “A.D. 1936” is located east of the porch. Although the building was planned to be completed in 1935, the accidental death of the contracted construction company, Roberts and Johnson, delayed the project until the second lowest bidding construction company was hired (CWUA 1936).

The east and west faces of the auditorium section both exhibit arcading with stone keystones and brick pilaster side surrounds with stone coping. Historically, each arcade framed a first-story rectangular window with radiating brick voussoir and stone keystone (except for the northernmost arcade, which has a door) and either a large, second-story window with fanlight transom or a single second-story octagonal window. The 1979 remodel bricked up the west face arcade windows (but the southernmost door on the west face was retained), and a square wing
with inverted corners and a pyramidal roof was added to the east face, extending east from the southernmost arcade.

On the theater tower, which is just north of the auditorium, the windows have no surround and are arranged by interior design (rather than the continuous, symmetrical fenestration used on the east and west faces of the auditorium). There is a brick pilaster with an angled header brick vertical string course on the central portion of both the east and west faces that mimics portions of the Shaw-Smyser Hall exterior design. The east face of the theater tower block extends one-room deep from the east face of the auditorium, and has a centered clock on its upper face, two first-story arcades (a square window within the south arcade, and a door within the north arcade), a vertical belt course of angled header brick at either edge, and two stone urns. The entrance has been remodeled (date unknown). This portion of the theater block is flush with the roofline of the auditorium; however, the portion of the theater tower whose east face aligns with that of the auditorium, rises one and a half stories above the auditorium roofline. The east face of this portion of the theater tower has a raised central panel with vertical header brick belt courses and a centered circular concrete décor. There are three brick pilasters on the north face of the theater tower.

Just north of the theater tower is a two-story section of building that used to house the industrial arts laboratory. The 1979 addition that covers the west face of the theater tower also covers the south half of the old laboratory’s west face. The north half of the old laboratory’s west face originally extended westward from the main west face of the building, and currently retains its original exterior wall design of brick pilasters with vertical string courses of angled header brick. The east face of the old laboratory is flush with the theater tower, extends eastward slightly from the northernmost portion of McConnell Hall, and retains its historical Art Deco
features, including a raised, centered, two-story aedicule with a broken stone pediment, brick pilasters that have angled header brick string courses, and an upper floral stone motif, that frames an entrance that has a one-story aedicule of stone with a semi-circular pediment and fluted stone pilasters.

Historically, the northernmost portion of McConnell Hall was one story. In 1979, this section was built up to three stories. The second and third stories of the 1979 addition are nearly featureless on the north and east faces (except for a glass-covered balcony across the second story of the east face. Leading up to the balcony is a featureless, half-rounded, tower-like stairwell addition that connects only with the second and third stories where the old laboratory joins the northernmost section of McConnell Hall. The east and north faces of the first story of this northernmost section of McConnell Hall have retained their historical features. A second story and balcony were added to the west face, extending westward between two rounded, projecting tower-like stairwells. The northernmost stairwell of the 1979 addition connects fully with the west face of the building, while the southernmost stairwell of the addition connects only with the second story of the building. Each stairwell has a horizontal concrete coursing between the first and second stories, and has a row of vertical windows with no surround across its second story.

Besides the 1979 addition, some other changes have been made to McConnell Hall. In 1969, a portion of the interior was remodeled for computer installation (the first computer accommodations recorded on campus). An electrical renovation was made in 1974. The theatrical lighting was replaced in 1977. Roof modifications were made in 1993. The restrooms were modified in 1997, then theater lighting revisions in 1998. In 2003, the interior was
remodeled and reinforcement of steel trusses, the auditorium was remodel and a fire sprinkler system was installed. A telecommunications upgrade was made in 2013.

McIntyre Music Building

The McIntyre Music Building (Figure 8.51) was completed in 2004. Its unit massing is single and detached. The overall plan is irregular. The roof material is metal with “membrane roof” (Studio Meng Strazzara 2004). The central mass of the building has a tiered flat roof. On the west side of the central mass of the building, there is a north-to-south rectangular block with a shed roof (henceforth referred to as the “west block”). On the north side of the central mass of the building, there is an east-to-west rectangular block with a shed roof (henceforth referred to as the “north block”). There is a one-story, one-room deep block that runs across the north faces of the north block and the central mass of the building; it has a shed roof that angles outward at a southeast-to-northwest angle. Southeast of the central mass of the building is a rectangular block that is oriented northeast-to-southwest (henceforth referred to as the “southeast wing”), the roof of which is flat with a small shed-roofed penthouse rising above it. Joining the southeast wing with the central mass of the building is a cylindrical vestibule, the roof of which is a tilted concave ellipse with a parapet. Where the roof is a shed shape, the roof overhangs the wall with curved soffit of metal panels. The building has two stories and a mechanical penthouse of varying height.

The exterior wall of the central mass of the building is flush metal paneling. The lower half of the exterior wall of the west block is stretcher bond brick with raised, maroon string courses of stretcher brick. Between the first and second stories is a recessed bent steel band course. Above the recessed course, the wall has staggered insulated metal paneling. The exterior wall material and design of the north block is similar to that of the west block. The wall material of the
vestibule is glass. The exterior wall of the southeast wing is flush stretcher bond brick with flush, maroon string courses and a recessed bent steel band course across the top of the first and second stories and the parapet. Raised from the east and west faces of the southeast wing are square sections of insulated metal paneling, each with a concrete plinth. At each of the corners of the southeast wing is metal paneling below the first and second story windows. The exterior wall of the southeast wing penthouse is metal paneling. Where the west wall of the southeast wing meets the south face of the vestibule, the southeast wing’s west wall curves convexly and the south face of the vestibule curves concavely.

Windows have a flat structural opening, are flush with the wall, and have light transoms. On each face of the southeast wing, each window has two sashes that share one structural opening, and are separated by a wide vertical aluminum mullion. On the first and second stories of the southeast wing, window ribbons wrap-around the northeast and southeast corners, and are
overhung by a flat, slatted metal canopy. The windows of the west block are similar to those of the southeast wing, except that there are no corner windows or canopies, the windows are floor-to-ceiling, and there is a pane of glass in lieu of a metal mullion between the two sashes of each window. Between the windows of both stories of the west block, there is a flat, ribbed, metal canopy that overhangs each first-story pair of windows (or window and entrance). Each canopy projects outward at a northeast-to-southwest angle. On the south face of the west block there is a vertical row of small, fixed windows. On the north face of the north block, there is a horizontal row of small, fixed windows. On the south face of the central mass of the building, there is a horizontal window ribbon on the first story that has light transoms above each sash, and is overhung by a ribbed metal shed canopy, the upper portion of which angles downward to the east. Both the northeast and south faces of the vestibule are muntin-divided into horizontally rectangular panes.

Entrances have a flat structural opening and are single or double leaf, two-panel glass and metal doors with side lights and transoms (either transparent or opaque). The canopy over the south entrance of the southeast wing is identical to the window canopies of the southeast wing. The canopies over the south and northeast entrances of the vestibule are flat, semi-circular, solid metal, and have decorative liberty spikes projecting from the fascia.

Michaelsen-Randall Hall

Michaelsen-Randall Hall (Figure 8.32) was completed in 1969. Unit massing of the building is double, attached. Both Randall Hall (the west half of the complex) and Michaelsen Hall (the east half of the complex) have an irregular plan. A one-story catwalk connects the halls on the second story. Both halls are two stories. Scattered within and around the peripheral of the buildings are seven courtyards. There is no attic or basement space noted in the original
architectural drawings, but there are tunnels that run around the foundation of each building. The foundation is poured concrete, into which a structural system of steel-reinforced concrete, steel columns, and concrete beams are set. The roof is flat with a parapet, and there are skylights that rise a few feet above the main roofline and have shed roofs. Roof material is metal. Architectural style is Modern.

Figure 8.52. Michaelsen-Randall Hall in 2014, looking southeast. (Photograph taken by Lauren Walton).

The exterior wall material is brick. Exterior wall design is a flush stretcher bond with randomly placed raised square panels of various sizes. Deeply recessed and raised sections of the wall are randomly situated on the faces of both buildings, including within the courtyards.

Windows have a flat structural opening, and no trim or surround. Typical windows are floor-to-ceiling and have tall, narrow vertically rectangular sashes with single upper transoms of metal and double lower light transoms (some lower light transoms are top-hinge). Thin metal mullions separate each pane and sash. Typical window arrangements are flush panels that rise vertically through both stories (and sometimes above the roofline into a sky light). In the case where a
window arrangement rises into a sky light, the upper transom is glass. Many of the south face recessed panels have second story bay windows with shed roofs with umbraged window arrangements below them on the first story. The north and south faces of the catwalk each have a curtain of floor-to-ceiling windows, the sashes of which are each fixed, narrow, vertically rectangular with a double lower transom (some of which are top-hinge), and separated from each other by deep concrete panels.

A typical entrance has a flat structural opening and double leaf, solid wood doors with a single vertically rectangular glass pane. Main entrances have a surround of storefront windows. Some exits are double leaf, solid metal doors with no side transoms.

Student sculptures are located in many of the courtyards surrounding the buildings. On the east face of Michaelsen, there is a fireplace that faces out into a courtyard, the chimney of which is linked-top and runs up through the building and slightly above the roofline.

In 1984 lighting improvements were made to the Sarah Spurgeon Gallery. In 1985, modifications were made to the stairs. The interior was renovated of Foods Analysis Laboratory in 1990. A student computer lab was installed in 1995. ADA restroom modifications were made in 1997. Between 2003 and 2004, mechanical and electrical upgrades were made. The roof was replaced in 2007.

Mitchell Hall

Mitchell Hall (Figure 8.53) was completed in 1967 in the New Formalism substyle of Late Modernism. Unit massing of the building is single and detached. Plan is rectangular with a rear wing. There are two stories. Roof shape is flat with no trim or special features. Roof material is metal and does not overhang walls. No chimneys are noted. Foundation is poured concrete. No
basement present, but there are historic and modern access tunnels running beneath portions of the building.

Figure 8.53. Mitchell Hall in 1990, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2015s).

Exterior wall material is predominately stretcher bond brick with bush-hammered concrete elements. The wall design of the north face consists a series of seven precast concrete tee frames with rounded interior corners, surrounding flush brick walls. Within each panel are two columns of windows to either side of the brick, abutting the interior edges of the concrete frame. Each column of windows consists of three large fixed panes with no trim, muntins, or sidelights. Atop
and below these windows are light transoms that fill the interior rounded corners of the concrete tee frame. The sides of the concrete frame come down to meet a protruding, angular, concrete belt course. Within the westernmost panel of the north face are two solid, single leaf doors that are ground level. Extending outward from the fourth panel eastward is the T-shape, one-story wing that encases a vault and archival storage room; thus, there are no windows. Located off-center west on the north face of the north wing is a solid, single leaf door with no trim and no surround. Centered in the easternmost panel is a solid three-leaf access door with no trim or surround. Above it on the second story is a large square louvre.

The entire west face is brick, framed by concrete similar to that of the panels on the north face, except that it frames the entire west face rather than dividing the face into panels. The sides of the concrete frame meet a concrete string course at the base of the first story, which acts as a sill to the bottom transoms of each window arrangement. Below the string course is a section of concave brick that terminates in a concrete curb at ground level about two feet from the base of the face. On the brick face are four centered vertical window arrangements that are similar to those of the north face in that they are each comprised of three fixed panes with a top and bottom transom; however, they only abut concrete to the top and bottom (not to the side) and the structural openings of the transoms are all flat rather than curved.

The south face has nine panels nearly identical to those of the north face, except the easternmost panel is recessed (this is because the last panel is on the face of a block that was added to the building in 1989). The base of the face is identical to that of the west face (i.e. string course and concave brick). There are two main entrances on the south face, each located within the original outermost panels of the buildings (i.e. the first and the eighth panels, west to east). The structural opening of each entrance is semi-circular and is centered within the brick of the
first story. The door is two-leaf, single panel with side lights and light transom. A projecting precast concrete door surround runs continuously across the top and down the sides of the entrance. A bush-hammered concrete ramp leads to each entrance from the center of the south face. Side stairs meet the top of the ramps from the exterior sides of the stoops. The south face of the addition comprises one panel, but there are no windows. It exhibits an off-center east entrance that is single leaf, double panel with a double panel left side light and a light transom. Its structural opening is semi-circular. Door surround is header brick that slightly protrudes. The wall material of the addition is brick veneer rather than full brick.

The east face of the addition is identical to its south face, except there is no entrance. The north face of the addition is identical to the east face. The east face of the original building is nearly identical to the west face, except that only one window arrangement is present. It is off-center north.

In 1968, high velocity air conditioning was installed. At an unknown date the doors were replaced. Original architectural drawings and historic photographs indicate that the doors were double panel, but the doors are currently single panel. In 2003, improvements were made to the lighting.

Munson Hall

Munson Hall (Figure 8.54) was constructed in 1926 as the campus’ first men’s dormitory. Unit massing of the building is single and detached. Original floor plan was rectangular; current plan is a pavilion. Original construction (henceforth referred to as the “north wing”) is four stories with an attic and basement. The 1946 addition is comprised of two wings (an "east wing" that extends south from the east end of the original building, and a single pile "south wing" that extends west from the south end of the "east wing"). The "east wing" is three stories with a crawl
space and no attic. The "south wing" is one story with no attic or basement. The foundation of the entire building is poured concrete. The roof style of the "north wing" is a colonial revival of the Spanish Mission style. The roof shape of the "north wing" is cross gable (a smaller gable that is perpendicular to the main east-to-west roof ridge faces the north face). The roof material of the "north wing" is clay tiling. The eaves of the "north wing" consist of a wooden frieze, dental molding, and a projecting fascia that is supported by wooden corbels. Each gable face of the "north wing" has a curvilinear parapet with header brick coping. A chimney is located on the north aspect of the "north wing" roof just west of the north gable face. The roof shape of the 1946 addition is flat and composed of concrete with asphalt shingles and stone coping on the parapet. A chimney is located front and center near the east face of the "east wing."

Figure 8.54. Munson Hall in 2015, looking southwest. (Photograph taken by Lauren Walton).
The exterior wall material of the entire building is scoured brick in a flush stretcher bond. Exterior wall design varies between the "north wing" and the addition. Although the "north wing" is a colonial revival, the additional "east wing" and "south wing" are distinctly Modern style.

The exterior wall design of the "north wing" makes use of plain buttresses, while the addition does not. A basal belt course of soldier course brick meets the the concrete foundation. Venestration of the "north wing" is typically a double-hung window with a flat structural opening, header brick slip sill, an upper sash divided by wooden muntins into three panes, and a soldier course lintel with header brick trim heads each window. Each pair of windows shares a structural opening and is separated by a wood mullion. Typical venestration of the "north wing" is symmetrical about a vertical axis. On the face of the gable peak on the north face is a recessed quatrefoil trimmed with header brick. Some original windows and doors have been bricked in.

The brick of the west gable face parapet appears to have been modified, perhaps as a result of the reroofing of 1996. The quatrefoil of the west face is a window with wood muntins instead of a recessed panel. The southernmost window of the first story of the "north wing" has been converted to accommodate a door, which is single-leaf and single panel with an opaque "sidelight" and transom. A metal fire escape was installed on the west face of the "north wing" in 1961.

The only window of the first story of the south face of the "north wing" was apparently bricked up with the addition of a single-pile, single-story entrance where the "east wing" meets the "north wing." From the east end of the south face of the "north wing," a short section of wall (part of the original construction) runs at a 45° angle and meets the north end of the "east wing" addition. A wooden pediment with clay roof tiling heads the angled wall. Originally, there was a
single window on each story of this angled feature, but the first story window has since been covered by the addition of an entrance. Original architectural drawings indicate that there was originally an entrance located at the eastern end of the south face of the "north wing," but this was concealed by the 1946 addition of the "east wing." The quatrefoil of the east gable face is a recessed panel like that of the north face (not a window like that of the west gable face).

The exterior wall design of the addition is flush brick with a basal trim identical to that of the north block. The main entrance for Munson Hall is now located on the east face of the "east wing" where the north end of the "east wing" meets the east end of the "north wing." The entrance is a single-leaf, single panel door with a flat structural opening, a side light and glass block head and side surround. Within the doorway is a plaque that reads, “Central Washington College of Education, Robert E. McConnell – President, Munson Hall Addition, 1946, Board of Trustees, Victor J. Bouillon – Chairman, Charles A. Kennedy, Don M. Tunstall, John W. Maloney – Architect.” A concrete string course heads the door and runs continuously across the east face of the "east wing," heading the windows of the first story. Straight side stairs and a ramp of concrete with metal railing lead to the entrance. A brick privacy wall conceals mechanical boxes from view at the base of the ramp.

Typical windows of the addition are double-hung, have a flat structural opening, header brick slip sills, and no surround. Pairs of windows share a structural opening and are separated by a wood mullion. At the south end of the east face of the "east wing," there are two entrances. One entrance, which is for resident access, is a single leaf, two-panel door with a half-size north side light, a glass block transom that extends vertically through the second and third stories, and no surround. The other entrance is intended for limited access, and is located on the east face of a single-pile, single story block that extends eastward from the southern end of the east face of the
"east wing." The door for a dumb waiter is located on the north face of the single-pile block. The door is single leaf, single panel, and set in a shallow umbrage with no surround. The roof of the east face single-pile block is a shed that also shelters the resident access entrance. A series of metal cabinets line the east face of the single-pile block at ground level just south of the limited-access door.

Original architectural drawings indicate that there once was a single window and a ribbon of four windows on the first story of the south face of the "east wing," but these have since been bricked in. Set in the bottom west corner of the bricked-in window ribbon, is a pair of squat windows. West of this, there are three large, nine-pane windows whose bottom center pane is double hung. Architectural drawings indicate there was a single leaf door at the north edge of the east face of the "east wing" south of the 45-degree angled wall of the "north wing," but this entrance has since been bricked in.

The "south wing" is a double-pile, single-story block. A plaque is mounted top center between the windows of the west face of the "south wing" that reads, "Vantage Room." On the north face of the "south wing" is a double leaf, single panel door with side lights, a light transom, and no surround. A cloth awning overhangs the entrance. A concrete side stair and ramp with metal railing lead to the entrance.

In 1964, the interior was remodeled, again in 1970, and again in 1986. Fire escapes were installed in 1961. The roof was replaced in 1996 and seismic modifications were made. Many first-story windows and doors have been bricked up and/or replaced, but the dates of these modifications are unknown. In 2007, a sprinkler system was installed.
Nicholson Pavilion

Nicholson Pavilion (Figure 8.55) was completed in 1959. Unit massing of the building is single and detached. Plan of the main block is rectangular. A separate room is attached to the north face of Nicholson Pavilion by a hyphen (CWUA n.d. [e]). The hyphen once housed dressing rooms and a boiler, but is now a hallway. The room now houses a dance studio, which replaced a swimming pool in 1989. (Henceforth, the room and hyphen will collectively be referred to as the “north wing”). A concave anterior pavilion is centrally located on the south face of the main block, acting as a lobby. The first story has three main sections: main gymnasium, locker rooms, and field house/weight room. The second story consists of a gymnasium, offices, and classrooms. An attic is noted in the architectural drawings. Two single-
pile rooms extend south from the south face of the second story onto the roof of the anterior pavilion. The roof of the main building is a very low gable (nearly flat). The roofs of the anterior pavilion and the second-story offices are flat. The roof shape of the “north wing” is folded plate. Roof trim is a plain, 3-layered, boxed cornice. The structural openings of all the windows are flat. The foundation is poured concrete. No basement is noted in the architectural drawings. No chimneys are present.

The exterior walls are rock textured concrete (referred to as “cemesto” in the architectural drawings) tilt-up panels, arranged in a vertical accordion style on the west and east faces of the building. North and south walls are flush. Across all four faces, panels are separated by concrete pilasters. The “north wing” follows a similar wall design, except that the north and south walls have the vertical accordion design, while the east and west exterior walls are flush. The exterior wall design of the anterior pavilion is composed of fixed, storefront windows with a repeating pattern of vertical, diamond-shaped, concrete mullions. Originally, there were fourteen diamond-shaped mullions, but this was reduced to eight when a centrally located entrance added to the south face of the anterior pavilion. A rectilinear grid of 6 x 3 square sashes replaced the original east entrance.

On the north face of the “north wing,” narrow, vertical windows were added, each set into the outwardly projecting edges of the accordion-like exterior wall. These windows were not present in 1960, so it is possible that they were added in 1989 when the swimming pool was removed from the “north wing” and replaced with a dance studio. A clerestory of plastic windows lines the upper portion of the cemesto panels of the main block (i.e. excluding the anterior pavilion, “north wing,” and second-story single-pile rooms). The pilasters of the exterior wall design interrupt the clerestory into sections. Each section of windows is divided by muntins.
into fourteen-by-two panes, with the exception of the sections at the corners of the building, which have seven-by-two panes. A large rectangular louver occupies the space of one of these sections and is centrally positioned on the east face. Thirteen long, pyramidal skylights are arranged in a row on the roof (the seventh skylight in from the west is half-length). On the west and east faces of the “north wing,” there is a large, rectangular, three-by-six pane window centered at the top of the wall panel. There are also two narrow, vertically ascending, two-sash windows at either corner of the building.

The original windows of the “north wing” were located only on the east and west faces, and were large and square with four-by-seven panes. Three fixed, three-by-three pane windows with obscured glass are evenly spaced across the south face of the west addition (added to the west face of the pavilion after 1965).

At the corners of the east and west faces of the second-story, single-pile rooms above the anterior pavilion, there are fixed, flush windows.

All doors have a flat structural opening, and have plain or no trim. The original main doors were located at the east and west corners of the east, west, and south faces of the anterior pavilion. On the west and east faces of the south wing, three flush, single-leaf, one-panel doors with two-sash sidelights and three-pane light transoms. Similar doors were on the south face of the south wing at the west and east edges, except that the doors were five-leaf instead of three-leaf, and the light transoms were six-paned five doors. As mentioned above, the doors on the east side of the south wing were replaced with windows, and a new, centrally located door was installed that has a pair of double-leaf, two-panel doors with three-pane side lights and light transom.
Fourteen lean, angular concrete columns with entasis extend outward from the base of the building at a 60° angle from the ground (30° from the roof) on both the north and south faces of the building (twenty-eight columns total). Support cables of galvanized steel attach to the center line of the roof, run up to the tallest points of each support column, then run down to concrete anchor points in the ground away from the building. Circular benches surround two of the southern anchor points. Each bench is located in front of where the original south face doors were located.

The office area was reroofed in 1969. The field house was re-floored in 1973. In 1977, an irrigation addition to the surrounding land was made. An elevator was installed in 1981. The stairs were modified in 1983. Pool modifications were made in 1984, but then the pool was removed in 1989 and replaced with a dance studio. Narrow, vertical windows were added to the north face of the north wing, each set into the “peaks” of the folded plate exterior wall. In 1990, a new basketball backboard winch system was installed in the gymnasium. In 1992, the training room was expanded, basic structural repairs were made, the boiler was replaced with a water heater, the gym floor was refinished, and the lighting was replaced. In 2000, the HVAC system and lighting were replaced. Utilities improvements were made in 2003. In 2004: a “Title IX renovation” was made (Studio Meng Strazzara). Asbestos abatement was made in 2006. In 2007, scoreboards and clocks were installed. An asbestos abatement and renovation was made again in 2008. In 2009, a gymnasium and lobby renovation was made whereby a bathroom was added as a west wing off of the lobby and the main gym and lobby of the first floor was renovated. Originally, the west and east ends of the south wing acted as entrances, but the east doors were eventually removed and replaced with a rectilinear grid of windows, and doors were added to the center of the south face (date of alteration unknown). In 2011, the building was reroofed.
North Hall

North Hall (Figure 8.56) was completed in 1951. Unit massing of North Hall is single and detached. The plan of the building is rectangular, oriented north-to-south; however, there are recessed panels at the north and south edges of the west face that are each one-room deep. Projecting outward one-half-room deep in each recessed panel, there is a single-pile block. There are no wings; however, there is a single pile, one-story central block on the east face that houses the lobby. There are two stories. The foundation and partial basement are poured concrete. There is no attic. Roof shape is flat. All roof material, including that of the first-story blocks, is concrete with a plain box metal cornice. One chimney is located on the east face.

Figure 8.56. North Hall in 2014, looking southwest. (Photograph taken by Lauren Walton).
Exterior wall material is smooth concrete with a recessed grid pattern. There are some brick elements, which are arranged in a common bond. Each individual brick is long and thin (a.k.a. Roman style), and is accented across the center by a protruding, textured, horizontal line (a.k.a. Shadowtex). Typical windows are double-hung, have either one or two windows per flat structural opening, have an angular concrete slip sill, and have no trim or surround. Sashes are decoratively halved by a horizontal metal muntin, and, if more than one window occupies a structural opening, a vertical metal muntin separates the windows.

Each façade is symmetrical with few exceptions. On the west face, there are seven pairs of windows on both stories to either side of the central block. Under the fifth and seventh southernmost windows, there are subterranean windows that are boxed in by a concrete retaining wall with metal railing. Under the second and third southernmost windows, there is one subterranean door, which is single leaf and solid metal with no trim. A small square window with chicken wire is located just north of the door and is also subterranean. A thin metal lip overhangs the subterranean window and door.

Typical entrances have a flat structural opening, are single leaf and two-panel, and have two-panel sidelights. On the second story above each of the single pile blocks of the west face recessed panels, there is one double-hung window with no trim or surround. In addition to typical windows, the central block of the west face also has a large, fixed, vertically rectangular window with a flat structural opening that is muntin-divided into eight panes and runs up through both stories. This window lights the staircase that is located just off of the main entrance.

Extending west from the north side of the main (west) entrance, there is a two-tiered brick partition wall that provides support for the porch overhang. The overhang is curvilinear and opens around the large two-story window ribbon described above. The north and south faces are
identical, having no windows or doors, except those noted in the recessed panels of the west face.

Exterior wall design of the east face is similar to that of the west face, but with variations that alter the symmetry. The central block of the east face, which is single-pile, projects outward from the main façade further than the central block of the west face. The east central block also has a raised ribbon of nine windows on its east face, which is separated into groups of three windows by wide concrete mullions. The north face of the east central block is brick with a recessed concrete frieze and a recessed concrete niche for wood storage. A concrete chimney rises above the main roofline, projecting slightly from the second story main façade from the north edge of the central block. The roof of the eastern central block overhangs the walls of the block, and also extends southward over the south face entrance of the block. The overhang is supported by a concrete pier. A square concrete patio extends east from the central block. A concrete bench extends east from the brick of the central block at the north edge of the patio. There is a bike rack shelter at the south edge of the patio with a roof that matches that of the main building. The window arrangement of east main façade is symmetrical about the central block and includes pairs of windows like those on the west face, and also single windows. In place of a window, there is an entrance with no sidelights near the south edge of the eastern face. North of this door, it appears that two single windows on both stories have been filled in with concrete. Below the third to fifth southern windows of the east face, there are three pairs of subterranean windows that are all encased by one concrete retaining wall that has metal railing and is covered by a metal grate. At the north and south edges of the east face, the northernmost and southernmost windows, respectively, are each between stories, providing light to their respective stairwells. At an unknown date, the roof was replaced, and again in 1989 and 2011.
Old Heating Plant

The unit massing of the building portion of the Old Heating Plant (Figure 8.57) is single and detached; its piling and arrangement are characteristic of the Modern era, with a cross-axis of vertical and horizontal elements. The chimney stack is a free-standing structure that was constructed circa 1917 and connected to the north face of the current heating plant building when the building was constructed in 1946-1947. The floor plan of the building is irregular. The plan of the chimney stack is circular. The northernmost block of the building is one to two stories (henceforth, this part of the building shall be referred to as the “north block”). The middle block of the building is high rising (vaulted interiorly to accommodate the boilers) (henceforth, this high rising block shall be referred to as the “boiler block”). The southern half of the building is

Figure 8.57. Old Heating Plant circa 1950, looking southwest. (Photograph courtesy of Brooks Library Digital Collection 2015u).
one to one-and-a-half stories (henceforth referred to as the “shop block” because it has housed workshops since its construction). Each block has multiple roof levels, each of which shall be regarded henceforth as “sections.” The smoke stack rises high above the heating plant building.

Original architectural drawings indicate that there is a basement (Maloney 1944). The foundation, basement, columns, and roof are of reinforced concrete. The exterior wall material and design of the building is scoured brick in a flush Flemish bond with some sandstone elements. Typical windows have a flat structural opening, sandstone surround, steel frame, and multiple panes, and are backed by an interior metal grate. Window size and pane count vary. Windows that share a structural opening are typically separated by metal mullions, unless otherwise noted. Door types vary, but all have a flat structural opening. There is no attic. The roof is flat with a stone-coped brick parapet. Roof material is concrete, possibly sheathed with composite material. The chimney is made of large, nearly square, perforated, corrugated bricks arranged in a radial brick design (Internet Archive 2001).

On the north face of the northernmost one-story section of the north block, there is a pair of single-sash, four pane, top-hinge windows that share a structural opening. On the east face of the one-story section of the north block is a horizontal ribbon of four single-sash, four pane, top-hinge windows.

There is a two-story section of the north block that is L-shaped in plan. The northernmost wing of the L-shape plan is flush with and just west of the one-story section. On the north face of this northernmost wing of the two-story section, there is a window arrangement identical to that of the one-story section’s north face; there are no second story windows. On the west face of the two-story section, there are two vertical, three-sash window ribbons. Each sash is divided thrice: the uppermost division is fixed with six panes, the middle division is top-hinge with six panes,
and the lowermost division is fixed with three panes. The uppermost sashes of both vertical window ribbons each have two louvers in the outer two panes of their respective uppermost division. Between the two vertical window ribbons on the first story is a double-leaf, single panel door (each leaf has a window that is horizontally muntin-divided) with no surround. On the second story of the east face of the two-story section, there is a horizontal window ribbon identical to that of the one-story section’s east face.

The other wing of the L-shaped plan is oriented west-to-east, extending east from the south wing of the L-shaped plan. On its north face, there are two vertical, three-sash window ribbons. Each sash is divided thrice: the uppermost division is fixed with six panes, the middle division is top-hinge with six panes, and the lower division of the east window ribbon is fixed with three panes while the lowermost division of the west window ribbon is a metal roll-top bay door. This bay door is not in the as-built architectural drawings (date of its addition is unknown). West of these windows on the first story is a single leaf, single panel glass door that is horizontally divided by a muntin into two panes. A straight concrete staircase with metal railing leads to the door. On the second story, west of the door and above the northernmost one-story section, there is a pair of windows that share a structural opening. Each window has nine panes, the upper six of which are top-hinge. On the east face of the two-story section, there are two vertically rectangular windows identical to those of the west face of the two-story section.

North of the building, just east of the one-story section of the north block, there is a free-standing smoke stack. The smoke stack was constructed circa 1917 by M.W. Kellogg Company using “Improved Corrugated Perforated Radial Bricks” (Internet Archive 2001). There is a white tile design on the uppermost neck of the smoke stack. The top of the stack steps slightly outward. On the north side of the stack is a cast iron hatch door with an arched structural opening. The
door is embossed with the words: “The M.W. Kellogg Co. Chimney Builders. New York.” The smoke stack is connected by a large metal accordion to the second story of the north face of the building.

Rising above and between the north block and the shop block is the boiler block. The boiler block has three roof level sections, henceforth referred to as the east, center, and west sections. The north face of the boiler block is flush across all three sections and extends westward beyond the east face of the north block. On the first story of the north face, just west of the north block, there is a large square structural opening that was bricked in with cinder blocks. This structural opening once allowed access to a coal elevator (an identical door is located just opposite of this door on the south face of the boiler block). Set off-center and east within the bricked-in structural opening is a single leaf, solid door with plain trim that is raised several feet from the ground with no staircase. Centered above the bricked-in area of the wall on the second story is a double leaf, solid door with a square structural opening, no trim, and no staircase. No other doors or windows are located on the north face of the boiler block, nor on the west faces of the boiler block’s east and center sections, nor on the east face of its east section. However, on the east face of the center section, there is an off-center south, single leaf, solid door and a single top-hinge window north of the door. Between the door and window, a metal ladder leads from the roof of the east section up to the roof of the center section of the boiler block.

There are a variety of windows on the south face of the boiler block. On the first story of the south face, just west of the shop block, there was once a large square structural opening that has since been boarded up. This structural opening once allowed access to a coal elevator (an identical door is located just opposite of this door on the north face of the boiler block). Within the boarded area is a centered single leaf, solid door with two square sliding windows to either
Two squat, side-sliding windows are located above the first-story windows on the second story of the boarded up area. Just east of the boarded up area is a vertical window ribbon extending up towards the top of the center section of the boiler block. The ribbon has large, square, sandstone mullions separating six windows and one door from each other. Within this ribbon on the first story, there is a single leaf door with a glass panel that is horizontally divided by a muntin into two panes. The first window above the door has eight panes, the center four of which are joined and top-hinge. Above the first window, there is an identical window, above which is a similar window that has fourteen panes (the four panes above the bottom two panes are joined and top-hinge). Above the fourteen-pane window, there are two more windows identical to the first bottom window. Above these windows is a six-pane window whose bottom four panes are joined and top-hinge. Across the top of the south face of the east section of the boiler block, there are four small, double-hung windows. Across the bottom of the south face of the east section of the boiler block, just above the roofline of the shop block, there is a horizontal window ribbon identical to that of the east faces of the north block, except that there are ten sashes.

The shop block of the building has two roof levels, henceforth referred to as the one-and-a-half-story and one-story sections. The one-and-a-half-story section of the shop block abuts the south face of the center section of the boiler block. The one-story section of the shop block is just south of the one-and-a-half-story section and is L-shaped with its south wing extending eastward. On the second story of the west face of the one-and-a-half-story section, there is a window ribbon of three sashes. Each sash has six panes, the top four of which are joined and top-hinge. The first story of the west face of the one-and-a-half-story section has a horizontally rectangular sliding window with light transom, header brick sill, and no surround. South of this window is a
single leaf, one panel door, the panel of which is horizontally divided by a muntin into two panes. The east face of the one-and-a-half-story section has a unique sandstone façade that has an overhang with metal trim and a floor-to-ceiling privacy wall to the south that shelter an open porch with a patio. The privacy wall has five open, vertically arranged, square structural openings. An original (early Modern) decorative light fixture on a metal pole is centered in the porch and connects to the soffit of the overhang. On the first story of this sandstone panel is an off-center north door that is single leaf and single panel. The panel is horizontally divided by muntins into three panes. A horizontally rectangular window is located south of the door that is fixed and has a two-pane bottom light transom and three-pane sidelights.

The west face of the one-story section of the shop block historically had, from north to south, two large bay doors and one smaller bay door. Each of the two large bay doors were wooden, roll-top, and had 30-panels, the center row of which was a fixed window ribbon. The center bay door has since been boarded up (date unknown). Set off-center north in the boarded up bay door a single leaf, single panel door (the panel is glass). South of this and outside of the boarded up bay door, there is a narrow, single leaf, single panel door, the panel of which is glass that is horizontally divided by a muntin into two panes. South of this door is a wide, single leaf, single panel door, the panel of which is horizontally divided into two panes. South of this door, there are two horizontally rectangular, 10-pane windows (the center four panes are joined and top-hinge). South of these windows is a small, wooden, roll-top, 20-panel bay door, the central panel of which had a fixed window ribbon. On the south face of the one-story section (from west to east), there is a small, horizontal window ribbon with three fixed, four-pane sashes. East of this ribbon is a large, horizontal window ribbon that is divided complexly by metal and sandstone mullions and metal muntins. A double leaf, solid door with a light transom is situated at the
center of this window ribbon. The ribbon runs continuously around the east and north faces of the one-story section’s L-shape.

In 1952, alterations were made to the boilers, and Boiler No. 4 was added in 1961. A chiller plant carrier unit was installed in 1968, and another in 1969. In 1971, a temporary boiler room was constructed at the northernmost section of the west face of the building. This structure was removed (apparently the same year) to complete the boiler plant remodel. These plans indicate an intent to construct a second story portion across the center of the building, extending eastward from the original east face, but these plans were not carried out. In 1984, the roof was replaced. At an unknown date the bay doors to what was once the coal elevator (i.e. the westernmost section of the boiler block of the building) were bricked or boarded up and the first floor of this section was converted into office space, and a bay door was added to the lower half of the west vertical window ribbon of the north block’s north face.

Peterson Hall

The building currently known as Peterson Hall (Figure 8.58) was originally known as the “Allan Apartments,” and was purchased by the CWSC in 1970. The original build date of the building is unknown, but the Mid-Century Modern style suggests a build date circa 1950s. At the time of purchase, Villesvik and Smith Architects of Yakima, Washington remodeled the apartments to suit the needs of the U.S. Air Force and Reserve Officer Training Corps. Peterson Hall has a unit massing of thirty-two attached apartments. In 1988, CWU’s Facilities Planning and Construction interiorly remodeled the building whereby some interior doors, walls, windows, and fixtures were removed. Architectural drawings from the 1970 and 1988 remodels indicate that the south face staircases descended straight southward with one landing. At an unknown date, the two flights of stairs were removed, and a side stair was added to the southwest
and southeast corners of the building. Also, it appears that the side stair at the northwest edge of the building was recently (2014) replaced.

Figure 8.58. Peterson Hall in 2014, looking northwest. (Photograph taken by Lauren Walton).

The building is two stories. Plan is rectangular. No attic or basement noted in architectural remodel drawings. Foundation is poured concrete. Roof is low hip with triangular louvers in at each hip peak. Style is mid-century modern. Roof material appears to have originally been wood shingling, but since has been covered with asphalt shingling. Roof overhangs all faces; eave is flush plywood, and is supported by fourteen wood piers, which run up through both stories, on
both the north and the south faces. Second story balcony is concrete with slatted wood railing. Through the center of the building on each story is a breezeway with featureless, flush brick walls; first story breezeway ceiling is plywood with one wood support beam at either end; second story breezeway ceiling is concrete with five wood support beams. No chimneys noted.

Exterior wall material of entire building is brick. Exterior wall design is long, thin brick that is horizontally accented by a protruding central line (Roman style). All windows and doors have no trim or surround. Windows are all horizontally rectangular and have a header brick slip sill. All doors are solid, single leaf. On both the east and west faces, at either end of the first story is one horizontally rectangular, sliding window with no trim or surround, and a header brick slip sill. Second story is identical to first story.

Exterior wall design of the south face is arranged asymmetrically about the central breezeway. On the first story, east of the breezeway, there is a window followed by a door, beyond which is a small, more rectangular window. Beyond this is a regularly sized window, a door, two small windows, and another door. West of the breezeway there is a regularly sized window, followed by a door, two small windows, a door, two regularly size windows, a door, two small windows, and another door. Second story is identical to the first story.

Exterior wall design of the north face is arranged asymmetrically about the central breezeway. On the first story, east of the breezeway, there is a window, followed by a door, then a small window, a regularly sized window, a door, two small windows, and a door. West of the breezeway there is a small window, a door, two regularly sized windows, a door, two small windows, and a door.

On each story of the north face, the wall recesses into a nook just west off of the breezeway. On the north face of the nook are two doors. A concrete staircase rises through the second story
balcony into the second story nook, which also has two doors on its north face. Supporting the underside of the staircase on the first story is a concrete column. First story flight of stairs has a handrail of twisted metal, and the structural opening through the second story balcony for the staircase is lined with the same slatted wood as the balcony rail.

Power Technology Laboratory

The Power Technology Building (Figure 8.59) was built at an unknown date. The building was probably constructed between 1948 and 1959 at the same time as the Auxiliary Services Building. It appears on a 1964 campus map as “storage” (Brooks Library Digital Collection 2014f), but it is not present on the 1958 USGS map on North Ellensburg. Because the building could be considered an out-building, it is likely that its exclusion from USGS maps was not necessarily because of its actual absence from the landscape, but because it was not counted as a substantial portion of the built environment. Available historic photographs reveal that the
building was not present in its current location in 1930 (Brooks Digital Library 2014). The first campus map to extend as far as the current location of the building is from 1964, which shows the building present. Both the Power Technology Building and the Auxiliary Service Warehouse bear the trademark “Butler” in the peaks of their gable faces.

As early as 1939, the Butler Manufacturing Company of Kansas City was assembling buildings made of timber studs and sheet metal. The early designs were typically variations of the Quonset hut, but the company shifted its designs almost exclusively to a rigid frame buildings in 1948. The paneling of the Auxiliary Services Storage and Power Technology Laboratory is of the BR1 model (deep drawn corrugated steel sheet), which was reportedly used until 1959 when a new style of wall paneling began to be used by the company (Butler Building Parts Online 2015). Though many such buildings continue to be used, very few of these buildings remain intact in their original state (Butler Building Parts Online 2015).

The unit massing of the Power Technology Building is single and detached. The plan is rectangular. There are two stories. There is no basement or attic. The roof is standing seam metal in a gable form, and the eaves curve downward slightly. Exterior wall material is metal in a standing seam, BR1 design. There are two windows located beside each other on the first story of the north face. Typical doors are single leaf and solid metal with a flat structural opening and no trim or surround, but with a small metal lip above the door. On the south face, there are two large, hanging, side-sliding doors on metal tracks. A side staircase of metal with metal railing leads to the upper level on the west face. The interior was remodeled in 1981.

President’s Residence

The President’s Residence (Figure 8.60) was originally built in 1947, immediately following WWII. The original construction was a Ranch Style home with an L- or Z-shaped floorplan. In
1967, the floorplan became irregular when a reception wing was added to the west end of the south face, and a family wing was added to the east side of the south face. A raised concrete platform is situated between the reception and family wings, acting as an entry court. Leading up to the south end of the entry court is a double sided straight stair of concrete with a wooden ramp meeting the west side of the stair stoop. Much of the court is sheltered by the overhangs of the reception wing and family wing roofs and by a flat, wooden entryway cover that has metal flashing, a plank soffit and Japanese style exposed rafters, and is supported by wooden piers. Connecting the south ends of the wings to the piers of the court cover are wooden, vertically slatted privacy screens that are also of a Japanese style. The majority of the house is one story, with the exception of the family wing, which is two stories. There is an attic noted in the architectural drawings (The DOH Associates 2008). No basement is noted in the available architectural drawings; however, subterranean hatch doors on the north face and the east face of the original house indicate the possible presence of a basement or crawlspace (architectural drawings indicate a partial crawl space beneath the additions [Doudna, Williams, and Phipps 1967]). Exterior wall material is horizontal clapboard, except for a panel of random rubble basalt on the west half of the south face of the reception wing (contiguous with the exterior material of the southwest chimney). One horizontal and several vertical wooden battens adorn the exterior walls of the 1967 additions only. The horizontal batten is a string course between the first and second stories of the family wing.

Roof material is composite shingling. The roof is gabled, with the reception wing and family wing gables running south-to-north to meet the south face of the original house (1967 architectural drawings indicate that the original roof was extended to meet the family wing [Doudna, Williams, and Phipps]). Triangular louvers are in the north face gable peaks of the...
family wing and the upper “leg” of the L-shape of the original house, as well as the south face gable peak of the family wing. The roof of the original house is a Dutch gable on the north face of the lower “leg” of the L-shaped plan (running south-to-north, contiguous with the family wing). There is a triangular louver in the gablet peak of the Dutch gable. The roof of the upper “leg” of the L-shaped plan of the original portion of the house is gabled east-to-west with a north-facing cross gable. The north face of the cross gable of the reception wing peeks slightly over the ridgeline of the original house’s upper L-shape “leg.” The roof overhangs all faces. Supporting the roof overhangs and the balcony of only the 1967 additions are rounded wooden corbels similar to those of the court cover rafters. A square stretcher bond brick chimney rises above the west aspect of the roof at the northwest corner of the original house. Located atop the
elbow of the house’s original L-shape (just north of the family wing), there is a rectangular common bond brick chimney that rises from the first story roofline and beyond the family wing’s second-story roofline. The top of the chimney steps outward and is topped by a metal doghouse cover. It appears that this chimney originally rose only as high as the height of the northwest chimney, but then was built upward when the family wing was added in 1967. On the west face of the reception wing, there is a rectangular, random rubble chimney of basalt that is topped by a metal doghouse cover. A similar chimney is raised from the east half of the south face of the family wing, interrupting the overhang of the family wing’s south face.

Typical windows on the original portion of the house have a horizontality to their design; being either single sash or double-hung with each sash divided horizontally by a muntin into two panes. These windows have plain wooden trim and slip sill. Under the eaves of the west face of the reception wing, there are fixed horizontal windows with plain wooden trim and no sill. At the top of the first story on the west face of the family wing, meeting the south edge of the wing, there are fixed horizontal windows with plain wooden trim and no sill. On the second story of the west and east faces of the family wing, there are vertically rectangular casement windows with plain wood trim and no sill. Centered on the north face of the reception wing, there are two large, stacked, vertically rectangular storefront windows, each with four sashes that are separated by plain wooden mullions, and have plain wooden trim and no sill. The upper window meets the roofline at the gable peak, and is separated from the lower window by a wide, horizontal, wooden mullion. Extending out from this horizontal mullion is a flat, wooden, slatted screen awning of the same Japanese style as the privacy screens of the main entry court.

On the east face of the reception wing, there are two double leaf, single panel glass doors with plain wood trim, horizontally rectangular light transoms, and two-sash sidelights that are
vertically rectangular. On the west face of the family wing, there is a double leaf, solid wood door with plain trim and a north sidelight that has two fixed, vertically rectangular sashes. On the east face of the family wing, there is a sliding glass door with a north sidelight that has two fixed, vertically rectangular sashes. A wood plank deck with metal and wood railing surrounds this entrance. On the first story of the south face of the family wing, there are two fixed, vertically rectangular windows with plain wooden trim and no sill, above which is a balcony with wooden railing on the second story. The railing of the balcony has wooden, vertically slatted privacy screens identical to those of the main entry court. Exiting to the balcony are two single leaf, single panel glass doors with plain wooden trim and single pane sidelights. The doors are symmetrical with sidelights abutting. On the north face of the original house, there are two doors. The easternmost of the north face doors exhibits the same horizontality as the design of the original house’s typical windows; being a single leaf, six-pane glass door with plain wooden trim. The westernmost of the north face doors is recessed in an umbrage and is a single leaf, two-panel door (the upper panel of which is glass) with plain wooden trim.

There are two out-buildings: a storage shed/toilet rooms and a garage. The garage is noted in 1967 architectural remodel plans (Doudna, Williams, and Phipps) as pre-existing, corroborated by the identical window design of the garage and the original portion of the house. The storage shed/toilet rooms out-building was constructed in 2014. Each out-building is single and detached, has a rectangular plan, is oriented east-to-west, is set on a foundation of concrete, has a gable roof that overhangs all faces with composite shingling, and has horizontal, beveled cedar clapboard siding with vertical end boards. The toilet rooms out-building is the easternmost structure of the President’s Residence. On its east face are two single leaf, solid metal doors with plain trim. Solar light tubes are set into the roof. The storage shed is positioned at the east side of
the driveway, and is the northernmost structure of the President’s Residence. It is identical to the toilet rooms out-building, except that the roof does not overhang the east or face faces and there is a square inset casement window with plain trim that is off-center south on the east face (instead of two doors). Also, on its south face is a square inset casement window with four panes and plain trim. Two identical windows are located on the north face, and one identical window on the west face. Also on the west face, there is a single leaf, solid metal door with plain trim.

In 2008, electrical upgrades were made to the house. In 2014, a storage/toilet outbuilding was added to the property off the northeast corner of the house.

Psychology Building

The Psychology Building (Figure 8.61) was completed in 1972. Unit massing of the building is single and detached. The plan is irregular, composed of four towers of varying size that radiate

Figure 8.61. Psychology Building in 2014, looking northwest. (Photograph taken by Lauren Walton).
out from a central tower. The central tower has a square plan and encases the main staircase, elevator, bathrooms, and janitorial closets. Each corner of the central tower adjoins one of the outer four towers, the plans of which are also square. The area of each tower’s floor plan decreases in size sequentially: the floorplan of the southwest tower is the largest, the northwest tower is large-medium, the center tower is medium, the northeast tower is medium-small, and the southeast tower is the smallest (refer to the architectural plot plan). Windowless single-pile towers are attached to the outer faces of the southwest, northwest, and northeast towers, each encasing a fire escape stairwell. The central tower is the tallest, followed in size by the fire escape towers, then the remaining four corner towers.

The exterior wall material is board-formed concrete, and the design is austere. The third and fourth stories are over-sail, which, with the concrete labels of the windows, creates a fortress-like appearance inherent to the Brutalist style. The roof is flat with a parapet that conceals a very low, diamond-shaped matrix of vaults and valleys for drainage purposes. Typical windows have a flat structural opening and are fixed and single-sashed, decorated with an interior horizontal bar that provides the impression of a lower light transom. The majority of the windows are surrounded by full-length, precast concrete eyebrow labels, which serve both to screen each window from the elements and to separate each window from the next. The windows with no surrounds, which are few in number, are generally located near the interior corners of the central block. There are also two skylights above the 4th floor offices of the southwestern tower. Windows on the south face of the southwest tower are recessed into a full surround of wide, board-formed concrete.

Entrances are located on the ground level of the central block on all four faces (east, south, west, and north). Walkways to each entrance are shielded on either side by a tower. The south entrance faces Dean Nicholson Boulevard. The east entrance faces Walnut Street. The north
entrance faces a parking lot. The west entrance faces a children’s play area and large lawn. The structural opening of the doors is flat. Entrances are each comprised of six, plain, single-leaf, single-panel doors with flush, plain vertical sidelights to either side.

In 1974, emergency lighting was installed. Stair modifications were made in 1983, then the roof was replaced the following year. In 1992, Room 138 was remodeled and a hall door was installed nearby. The telecommunications system was revised in 2009.

Public Safety and Police Services

The Public Safety and Police Services Building (Figure 8.62) replaced a “traffic and security” building (built 1962) that was located on a site just north of the present-day Hertz Hall, and southwest of present-day Dean Hall (CWUA n.d. [a]). This building was apparently remodeled in 1985. In 1996, a building serving campus security purposes appears on campus maps at the present location of the Public Safety and Police Services Building, but it is unclear if the current building (whose architectural drawings refer to a 1985 remodel) was simply moved from the 1962 location, or if it was again remodeled. The current physical appearance suggests that the building was recently constructed or extensively remodeled.

Figure 8.62. Public Safety and Police Services in 2014, looking west. (Photograph taken by Lauren Walton).
Massing of the Public Safety and Police Services building is single and detached. The plan is square. The building has one story. There is no basement and no attic. A concrete foundation wall is visible around base of the entire building. The exterior wall design is vertical wood planking with vertical battens that divide each wall into a series of panels. Windows are not arranged on a parallel plane. All windows have a flat structural opening. Typical windows are fixed and have no trim, sill, or surround. Only one window is located on the north face, seven on the east face, and five on the west face. Entrances are located on the east and west faces (the main entrance is located on the east face). The main entrance is a double leaf, solid metal door with small, vertically rectangular windows set into each leaf. On the west face, there are two single leaf, solid metal doors each with a small, vertically rectangular window. Each door has plain trim. Centered on the east face, there is a ramp and a stair case that meet at the main entrance that have wooden railing. A side stair with wood railing leads to the northernmost entrance of the west face. Directly south of this stair case is a small, half-story block that appears to be in use as a shed. The roof of the building is flat with a parapet on the north and south faces. The parapet façade is also vertical planking, but is made of metal. The roof overhangs the east and west faces, bolstered by metal pole supports on concrete piers. In 1985, the interior was remodeled. In 1996, the roof was replaced.

Samuelson Union Building

The Samuelson Union Building as it is in 2015 is a result of construction that has taken place between 1928 and 1970. Massing of the unit is single and detached. The plan is irregular. There are two stories and a central block that rises three stories (the interior of which is an open student lobby). There is a partial basement and crawl space. All roof surfaces are flat, with the majority concealed behind a parapet with stone coping. Original roof material appears to have been a
composite overlaying concrete; current roof material is unknown. It appears that a chimney was once located at the north face of the 1935-1937 addition and at the northwest corner of the 1950-1951 addition, but these have since been removed. The exterior wall material is concrete with brick sheathing. Topographic change is such that a concrete retaining wall is required around the lawn of the south face of the building.

The original construction was built between 1926 and 1928 to serve as a gymnasium. The exterior wall design of this portion is a flush, common bond brick (Figure 8.63). A vertical stretcher brick belt course runs just above the concrete foundation wall. The lower frieze is flush concrete, while the upper frieze and soffit are lined with stone dentils. A stone baluster rests atop the edge of the roof overhang. There are five windows on each story of the east and south faces. The structural opening of each second story window is arched, while the structural opening of...
each first story window is flat. Each second story window has a fan light transom headed by an arch of stretcher brick with stone impost, keystone, and sill. Each first story window shares a recessed panel with each second story window, separated by a flush brick panel that is framed with header brick. First story windows have a brick slip sill. What was once the main entrance on the east face is a double leaf, six-panel door with plain trim, an opaque transom, and side and head surround of stretcher brick. To either side of the outermost windows, there is a fluted stone pilaster with a Corinthian capital. A stone cornice adorns the edges of the balcony above the porch (a portion has broken away, and a temporary wood railing has replaced the railing shown in Figure 8.63). The porch is supported by fluted Corinthian columns, above which is a window identical to the others of the second story. The overall affect is a Neoclassical Revival Style.

Between 1935 and 1937, an addition (Figure 8.64) was made to the west face of the

Figure 8.64. The 1935-1937 addition to the Samuelson Union Building as it looked in 2014, looking northeast. (Photograph taken by Lauren Walton).
gymnasium. A campus history book (Mohler 1967, 361) lists the build date as 1935, the original architectural drawings (Maloney 1937) are dated 1937, and a later architectural drawing (Bassetti and Morse Architects 1961) lists the build date as 1936. The south face is the only exposed wall of this addition, and it is set back slightly from the south face of the original building.

The exterior wall design is flush, common bond brick. The basal trim is a continuation of that of the 1926-1928 building. The roof has stone coping. The main entrance of this addition is centered on the south face with all windows arranged symmetrically about it. All windows have a flat structural opening, a brick slip sill, radiating brick voussoirs with stone keystones, and no side surround or trim. Second story windows of this addition are shorter than first story windows (and shorter than the second-story windows of the original building). The two windows above the entrance are smaller than the other second story windows. Between the first and second story windows, there is a raised square, brick panel. The entrance is a single leaf, three-panel door with a two-panel side light and light transom. The door surround consists of a pointed pediment and two engaged quarter columns that are fluted with no capitals. Above the pediment is a stone bas-relief of a crouched man in gymnasium garb. Extending west of this façade is a short section of wall that is slightly set back from the main façade. There is one window on the first and second stories of this section, each matching the window design of the addition’s main façade. However, there is no raised square panel between the first and second story windows, the coping is shorter, and a string course of vertical stretcher brick lines the top of the first story. The overall effect of the 1935-1937 addition is a variation of the Neoclassical Revival Style.

In 1951, an addition was made to the west face of the 1935-1937 addition. The 1951 addition (Figure 8.65) has a stretcher bond brick façade, and initially met the previous addition’s west face. This section has since been replaced by a recessed main entrance with a north-to-south
Figure 8.65. The 1951 addition to the Samuelson Union Building as it looked in 1960, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2014x).

gable roof that rises above the surrounding roofs. The entrance is a double leaf glass door with no trim or surround. A flat, wood canopy shelters the entrance below the top of the first story. Above the canopy is a window curtain that meets the roof, divided unevenly by wood muntins. West of the entrance, on both stories, there is a horizontal window ribbon with a stone slip sill and no trim or surround. West of these windows is a vertical window ribbon that runs between both stories. Wrapping around the southwest corner of the addition’s main block, there is a one-story block with horizontal window ribbons on both its south and west faces. Sheltering the south face window ribbon is a flat eave that extends east beyond the southwest block to shelter what was once the main entrance of this addition. The east half of the flat roof is supported by two brick piers, the bases of which each have a wrap-around brick and stone bench. The entrance has two double leaf, two-panel doors with a west two-panel side light and a three-panel light transom. Straight concrete stairs with metal railing meet a patio that meets this entrance. Overlooking the southwest block’s roof on the west face of the 1951 addition’s main block is a
horizontal window ribbon on the second story. The north face originally had at least one window ribbon (still exposed), but has since been concealed almost entirely by the 1968-1970 addition. Electrical alterations were made to the building in 1952, and the post office was remodeled in 1961.

Between 1968 and 1970, a large, multi-tiered addition was made to the north face of the preexisting Samuelson Union Building. This 1970 addition (Figure 8.66) has an exterior wall

![Figure 8.66](image-url)
design that is flush, stretcher bond brick with concrete elements, including the coping. Several areas of the exterior wall and the surrounding retaining walls use a prominent 45° angle in their design. There are no windows. All doors have a soldier course lintel, and no trim or side surround. All maintenance entrances are single-panel metal doors, while all public entrances are two-panel glass doors. The main entrances of this addition are located on the east and west faces where the addition adjoins the north face of the 1951 addition. Each entrance is six leafed and set in an umbrage. Rising two stories above the roofline between the two main entrances is a tower with a wall design of brick pilasters. The walls of the tower terminate with concrete trim, above which is an inward-stepped clerestory before a flat concrete roof.

In 1976, the building was restored after sustaining fire damage (Brooks Library Digital Collection 2015m; Steinhart, Theriault and Associates Architects 1976), and fire protection and an alarm system were installed in 1979. The book store was remodeled in 1990. The roof was replaced in 1996.

Science Building, Phase I

According to Mr. Jim Tsang, lead architect of The Tsang Partnership that designed the building (personal communication 2014, conversation), the four-story lobby/atrium of the “glass gable block” acts as a symbolic division between—and a “coming together” of—the Chemistry and Biology Departments housed in the building. Mr. Tsang noted that most university science buildings have an industrial appearance due to the presence of many visible chimneys and exhaust pipes above the main roofline; Facilities did not want the Science Building, Phase I to exude such an image, so Mr. Tsang designed the exhaust pipes of the interior fume hoods to be channeled to the chimneys at the north and south ends of the “south wing.”
The Tsang Partnership was charged with the task of creating a “timeless” design for the Science Building, Phase I, so Mr. Tsang says that they avoided using trendy designs, and instead used “classic lines and features” (personal communication 2014, conversation). Mr. Tsang wished to avoid labeling the building’s style, but was content with “Classic Modern” as a description of the design. Because Ellensburg is a small town, and the CWU campus is a hodgepodge of architectural styles, The Tsang Partnership was tasked with providing the Science Building, Phase I with a character reminiscent of Ivy League schools, so they adapted Neo-Gothic elements for their Postmodern design. The Science Building, Phase I was apparently intended to set a trend for the buildings that would follow it; however, the design of the Science Building, Phase II (under construction at the time of this writing in 2015), has taken a different form. In 1998, Black Hall was remodeled with a similar “Classical Modern” design by The Tsang Partnership, and an attempt was made to make a quadrangle between Black Hall and the Science Building, Phase I.

The unit massing of the Science Building, Phase I (Figure 8.67) is single and detached. Plan is L-shaped with some irregularities. The main block of the building is three stories and is composed of a "south wing" (rectangular and oriented south-to-north), a "north wing" (rectangular and oriented east-to-west from the north end of the "south wing"), and a steep glass gable section (henceforth referred to as the "glass gable block") that bisects the "south wing," rises above the main roofline, and projects from the main facade of both the west and east faces. The main west entrance is on the west face of the “glass gable block,” and the main east entrance is on the east face of the “glass gable block.”
The irregularities of the plot plan include blocks of varying height and roof shape that extend outward from the north, west, and east faces of the main block. A block (henceforth referred to as the "north block") extends from the center of the north face of the "north wing," has a steeply gabled roof, a centered and raised chimney on the north face, and a loading dock on the west face that is oriented northwest. Identical chimneys are located on the north and south faces of the "south wing." A rectangular two-story block (henceforth referred to as the "southwest block") extends west from the southern end of the west face of the "south wing," and has a flat roof and a cross-gable face at its southernmost extent. A three-story cross-gable (henceforth referred to as the "southeast gable") extends east from the southern end of the east face of the "south wing." The southeast corner of the "south wing" is recessed. Located in the inner corner of the recessed southeast corner of the "south wing," there is a stairwell with south and east face glass curtains. A three-story, double cross-gable (henceforth referred to as the "northeast double gable") extends
east from the northern end of the east face of the "south wing." Between the "southeast gable" and the "northeast double gable," there is a single pile, one-story block (henceforth referred to as the "breezeway") that consists of a series of arches, and is bisected by the projecting "east entrance." The northeast corner of the "south wing" is recessed and mirrors the layout and design of the recessed southeast corner of the "south wing." Housed in the gable roofs of the main block is a fourth story mechanical penthouse. On the third story of the south face of the “south wing,” there are two balconies that project slightly from the main façade in quarter-circle shapes. The balconies are separated by a central chimney.

Roof material is standing seam metal on the gables and composite roofing on the flat roofs. Several triangular dormers project from the gable roofs. In lieu of gable peaks on the “north wing” and “south wing,” there are narrow flat maintenance walkways (concealed by the rising sides of the gables). Exterior wall material is concrete and brick veneer. The main exterior wall design is flush, red stretcher bond brick with orange brick, maroon brick, and concrete elements arranged in string courses, complex belt courses, and motifs. The brick façade is also accented with raised pyramidal squares of turquoise concrete. There is a flush concrete plinth. Above the plinth are two string courses of orange vertical header brick, the lower of which aligns with the top of each first story window, and the upper of which aligns with the top of the transom of each first story window. Above the window head surrounds is a belt course comprised of a lower row of maroon vertical header brick and an upper row of orange vertical stretcher brick; the lower row of maroon brick is interrupted by the turquoise block décor and by orange brick where the course acts as a window head surround. The string and belt courses of the second story are nearly identical, except that the belt course has a serial square pattern. Belt courses and string courses are occasionally interrupted on the gable faces. Horizontal rectangles of orange and maroon brick
are also on the brick façade above the third story windows of the gable faces, and are arranged in a tiered design on the gable faces. Trimming the roofline of all flat-roofed sections is a concrete cornice that is interrupted by gaps. Turquoise metal flashing copes the gable face parapets. On many of the gable faces, there is a recessed panel of flush concrete that is cross-shaped. Orange vertical stretcher brick is arranged in radiating arches over the uppermost part of the cross-shaped panels, and above the archways of the one-story breezeways. The exterior wall material and design of the east and west towers (off of the “glass gable block”) are flatwork concrete with planking score. On each face of the “glass gable block,” above the first story, there is an ornate metal sun screen.

Each window has a flat structural opening, a two-pane light transom with a rounded concrete slip sill, no trim, and a flush concrete head surround (in the case of the third-story windows, the cornice of the roofline acts as the head surround). If there is more than one sash, or if there is a glass curtain, raised mullions divide windows either individually or in groups. A glass curtain dominates the façades above the east and west entrances behind the screens of the tower faces. Glass curtains also make up all the faces of the side entrance towers of the main block. Some windows are set in the cross-shaped panels.

Public entrances are either single leaf or double leaf, two-panel, glass doors with plain trim, no surround, and two-pane light transoms. In the case of the main entrances of the east and west faces of the main block, each entrance consists of three single leaf doors, separated by two-pane side lights that each have a light transom. Maintenance entrances are single or double leaf, solid metal doors with a soldier lintel of orange brick, and no trim.

To the west of the west entrance, there is a large circular patio of concrete, which is inset with a dinosaur fossil motif. Located in the south breezeway beside the main east entrance, there
is a plaque that reads, “Central Washington University Science Building. Board of Trustees: Gwen Chaplin, Chair; Frank R. Sánchez, Vice Chair; Amy Gillespie; Frederic L. Glover; Leslie Jones; Mike Sells; Wilfred Woods; Judy Yu. Ivory V. Nelson, Ph.D., President of the University; Ellis-Don Construction, Inc., Contractor. 1998. The Tsang Partnership, Inc., Architects.” In 2008, fiber optics were installed.

Shaw-Smyser Hall

Shaw-Smyser Hall is composed of Shaw Memorial Hall and Smyser Hall (originally the Classroom Building and the Library, respectively). Shaw-Smyser Hall is located just west of CWU’s first campus building, Barge Hall. The unit massing of Shaw-Smyser Hall is double and attached. The building was constructed in piece-meal over the course of several decades. The south half of the building, originally known as “the Library,” was constructed in 1924-1925 (Figure 8.68). It was renamed Smyser Hall in 1963 (Mohler 1967, 218). The floorplan of Smyser

Figure 8.68. Smyser Library as it looked in 1930, looking northeast. (Photograph courtesy of Brooks Library Digital Collection 2014z).
Hall is rectangular and oriented north-to-south, with the main entrance facing University Way.

In 1927, the WSNS planned to construct a building with a C-shaped floorplan that would be the length of a city block and would surround Barge Hall to the west, north, and east (Mohler 1967, 145). Although funding was unavailable for its completion, components of it were constructed. What was to be the west wing of the block-long building was the combined Library and Classroom Building (Shaw-Smyser Hall), an auditorium was planned for the east wing of the proposed building, and an administrative building was planned as the central wing connecting Shaw-Smyser to the auditorium. The 1929 Legislature appropriated money for the construction of the Classroom Building (renamed Shaw Memorial Hall in 1963 [Mohler 1967, 218]) just north of, and adjoining the Library. The floorplan of Shaw Hall was T-shaped, with its north wing oriented east-to-west, and its south wing oriented north-to-south. The south wing of the Classroom Building was originally designed to extend beyond the east face of, and overlap the northeast corner of, the Library (Maloney 1929), but was instead constructed as a two-story lecture hall that abutted the north face of the Library. Mohler (1967) reports that two faces of the Classroom Building were “left unfinished, with the steel reinforcing rods projecting from two to six feet outward” (p.146) between 1929 and 1958 in anticipation of connecting it to a future administrative building, which would itself be connected to an east wing auditorium east of Barge Hall. Architectural drawings (Maloney 1957) indicate that only the east face of the north wing of the Classroom Building was left unfinished. A 1930 aerial photograph does not show the east face of the Classroom Building’s north wing, but it does reveal a fully finished south face of the north wing (Brooks Library Digital Collection 2014b). In 1935, McConnell Auditorium, which was to make up the east wing of the proposed block-long building, was constructed. The
plan to connect McConnell Auditorium to Shaw-Smyser Hall with an administrative building, however, was officially discarded in 1957 (Mohler 1967, 146).

That same year (1957), a one-story brick wall with stone coping and four breezeway arches was constructed, running flush with, and between, the west faces of the Library and the north wing of the Classroom Building (Figure 8.69). The addition of these arches created a courtyard space between it and the south wing of the Classroom Building. Between 1957 and 1958, the east face of the Classroom Building’s north wing was permanently covered.

![Figure 8.69. Northwest corner of Shaw Memorial Hall circa 1957, looking southeast. (Photograph courtesy of Brooks Library Digital Collection 2014y). Note the breezeway arches between Shaw Memorial Hall and Smyser Library (at center).](image)
In 1962, the Classroom Building’s south wing was expanded eastward beyond the east face of the Library, and slightly southward, covering a small portion of the northeast corner of the Library. The addition was two stories (henceforth referred to as the southeast block of the south wing of Shaw Hall) and provided a corridor between the Classroom Building and the Library. In 1963, the Classroom Building was renamed Shaw Memorial Hall, and the Library was renamed Smyser Hall (Mohler 1967, 218). In 1994, the south wing of Shaw Hall was expanded westward, filling in the courtyard area between the arches and the original south wing. The 1957 arches were retained and incorporated into the west face of the 1994 addition (Figure 8.70) to the Shaw Hall’s south wing. Also, the 1994 addition built up the north two-thirds of Shaw Hall’s south wing to three stories. Above the northernmost one-third of Shaw Hall’s south, a fourth-story penthouse was constructed, expanding the fourth story of Shaw Hall’s north wing. The southernmost one-third of Shaw Hall’s south wing, as well as the southeast block of the south wing, remain two stories.

Smyser Hall has two stories. Architectural drawings indicate that Smyser Hall has a crawl space. Smyser Hall once had a full attic, but this was converted to a partial attic when the building was reroofed in 1994. The roof of Smyser Hall is a low gable, running north-to-south. This gable was originally not as wide as it is now, having accommodated a flat, L-shaped balcony area that wrapped around the north and east sides of the gable; however, the 1994 reroofing extended the gable over the entirety of the roof.

The exterior wall material of Smyser Hall is brick with some stone elements. Smyser Hall brick is arranged in an English bond. The exterior wall design is Classical Revival, and includes flush brick with a vertical stretcher brick belt course just above the concrete foundation wall. The lower frieze is flush concrete, while the upper frieze and soffit are lined with stone dentils. A
Figure 8.70. The 1994 addition to Shaw Memorial Hall, looking east. (Photograph taken by Lauren Walton 2014).

stone baluster lines the edge of the eaves on the east, west, and north faces of Smyser Hall. On all faces, the windows of the first story are aligned with those of the second story. On the east and west faces, there are six second story windows, and the structural opening of each is semi-circular. Each second story window is two-sash with four-pane side lights and a fanlight transom.
The head surround of the second story windows is a double arch of header brick with stone impost, keystone, and sill. Below each sill is a row of vertical stretcher brick. Each second story window shares a recessed panel with the first story window below it. The structural opening of each first story window is flat. Each first story window is two-sash with five-pane side lights, a head surround of vertical stretcher brick, and a stone sill. Between the first story header and the second story sill surround is flush brick.

The wall steps inward from the east face at the southeast corner of Smyser Hall. The south face is symmetrical about a central vertical axis. The south main entrance is centered on the first story. Entrance is a double leaf, one panel glass door with a three-pane light transom and a stone aedicule with stone side surround that meets the porch stoop. To either side of the door is a nine-sash window that has a stone entablature head surround and a stone side surround identical to that of the door. Below each of these windows, between the sill and the stoop, is a recessed wood panel. To either side of these windows is a window identical to the first story windows of the east face. On the second story of the south face, there are five two-sash windows with five-pane side lights and a two-pane light transom. Each second story window is slightly recessed, is headed by a continuous string course of double header brick, and has a stone sill. The outermost windows of the second story are each set in a recessed panel that is shared with the window below on the first story. On either side of the outermost windows, there is a stone pilaster that resembles a flattened Corinthian column. Straight stairs lead up to the stoop of the first story. A Classical Style entablature overhangs the porch area, supported by Corinthian columns. The undersides of the entablature cornice exhibit the same dentil molding as the frieze and soffit of the east, north, and west faces.
The floorplan of the southwest corner of Smyser Hall is stepped inward like the southeast corner. Located on the south face of the inward step is a date stone that reads, "A.D. 1925." The date stone has a head surround of vertical header brick. The west face of Smyser Hall is identical to the east face, except there are seven windows on each story instead of six.

Architectural plans by John Maloney for the 1929 Classroom Building (Shaw Hall) addition indicate that the northwest and northeast corners of Smyser Hall stepped inward like the southwest and southeast corners. A 1928 Sanborn map shows the inward step of the northwest corner as much shallower than that of the other corners (Brooks Library Digital Collection 2014g). The current northwest corner of Smyser Hall has no inward step and, interestingly, does not appear to have been altered since its original construction. A staircase was located within the northeast corner of Smyser Hall (Maloney 1957), but was sealed with the 1962 expansion of the Classroom Building. Additions since the initial construction of the Library building have since concealed the northeast corner.

It appears that the north face of Smyser Hall once had at least two second story windows with semi-circular structural openings, but these were bricked up when the upward additions to the south wing of Shaw Hall were constructed in 1994.

The roof of Shaw Hall is complex. The northern half of the north wing roof was originally a complete gable from west to east. The southern half of the north wing roof is flat. In 1994, the east end of the north wing gable was altered to be hipped, and the northern half of a single pile block at the east end of the north wing was given a flat roof. The gabled/hipped portion of the roof is metal, while the flat portion of the roof is an asphalt composite. Also in 1994, a gable was added to the east end of the southern half of the north wing, oriented west-to
east. There are cross-dormers that transect this gable. The west end of the southern half of the north wing has retained its flat roof.

The roof of the south wing of Shaw Hall is also complex, but less so than the north wing. The northern two-thirds of the south wing (the portion of the south wing that is three stories) has a gabled roof oriented east-to-west. The southern one-third of the south wing (the portion of the south wing that is two stories and connects to the north face of Smyser Hall) has a flat roof, though 1962 architectural drawings indicate that the flat section originally had a barrel roof. The southeast corner of the south wing, which is two stories, has a flat roof. There was originally a chimney rising from the roof of the north wing of Shaw Hall near the east face, but this was removed in 1994. Portions of the east and west gable faces of the north wing, however, each retain the appearance of having gable peak chimney. Architectural drawings indicate that Shaw Hall has a partial attic (in the gable of the northern half of the north wing) and a partial basement (location undetermined).

The exterior wall material of Shaw Hall is brick with some stone elements. Shaw Hall brick is arranged in a Flemish bond. The exterior wall design is Art Deco, including flush brick, some flush stucco string courses, and a stone belt course that has a floral bas-relief. The first story of the west face of Shaw Hall’s south wing is flush with the west face of Shaw Hall’s north wing and the west face of Smyser Hall. This first story is the westernmost portion of Shaw Hall’s south wing, and has stone coping. The original four breezeway arches are now each filled with a single sash window that has two-pane side lights and a fanlight transom. The structural opening of these windows is semi-circular. The head surround of each window is vertical stretcher brick with stone imposts and keystone. The windows have no sills, but are set just above the concrete foundation wall. Above each impost is a circular stone décor, framed by header brick. The
second and third stories of the south wing are set back slightly from the first story. The southernmost one-third of the south wing has stone coping and a stucco string course, which is interrupted by the central one-third of the south wing and then continues across the northern one-third of the south wing. On both the second and third stories of the central one-third of the south wing, there are two four-pane windows with no trim or sill, separated by a stucco mullion. Below each of these windows is a recessed rectangular stucco panel. The center one-third of the south wing is framed by brick façade from the base of the second story to the middle of the third story. Both the north and south sides of this brick façade have a vertical string course of angled header brick. The brick façade of the central one-third of the south wing terminates at in stone coping, and the upper half of the third story has square paneling of what appears to be either stucco or cement-covered metal paneling. There is a raised decorative circle centered on the gable peak of the central one-third of the south wing. The northernmost one-third of the south wing is similar to the southernmost one-third, except that it has a third story and a second stucco string course, which acts as the sill to a single fixed window (with no trim or surround). The floral bas-relief of the north wing extends across the west face of the northernmost one-third of the south wing. Above the bas-relief course of the northernmost one-third of the south wing is a belt course of stuccoed square paneling, above which is the metal roof.

The east face of the south wing is more complex than the west face. The southeast corner block of the south wing is two stories, has flush brick veneer with a paneled stone string course running continuously under the windows of the first story, at the top of the first story, and under the windows of the second story. The stone coping is identical to the string course. On each story are two four-pane windows with no trim or surround. The exterior wall design extends to the south face of the southeast corner block, but there are no windows or doors. North of, and
extending slightly east of, the southeast corner block is a three-story gable face block. The second and third stories are nearly identical to the gable on the west face of the south wing, except that there is one window on each story rather than two, and each window has three-pane side lights and a two-pane light transom. The first story of the east gable face has a window with four-pane side lights and a two-pane lower light transom. North of this gable face, and slightly recessed, is the northernmost one-third of the south wing, which is flat-roofed and has the same exterior wall design as the southeast corner block, except that it is three stories rather than two stories. There is a stone string course at the top of the second story, and an identical string course that acts as a sill to a small, square window on the third story. There is a stone bas relief frieze at the top of the third story just below the paneled stone coping of the roofline. A fourth story with stucco exterior is recessed back from the main roofline of the south wing, meeting the fourth story of the north wing. The east face of the south wing’s fourth story has a metal louver.

On the south face of the north wing, the upper stories of the 1994 addition to the south wing now cover the majority of the original windows, which have since been bricked-in. The brick voussoir head surrounds of the original windows of the south face of the north wing are still visible. Original architectural drawings (Maloney 1929) indicate a different plan for the south face of the north wing, so it is unknown how the south face of the north wing of Shaw Hall was originally constructed and/or changed over time prior to the 1994 addition to the south wing. Hopefully, historic photographs will surface that provide insight into the original exterior wall design of the south face of the north wing.

The west face of the north wing of Shaw Hall consists of a northern section and a southern section. The southern section of the west face is three stories, but is flush brick (i.e. no windows or doors). A stone bas relief belt course runs along the top of the third story below the parapet. A
brick parapet is set back slightly from the main west face, rising approximately one foot with stone coping. The northern section of the west face is gable faced. The west face roofline trim of the gable resembles a quarter section of a fluted column, and is apparently a remnant of the original roof. The gable peak resembles a chimney with a stone bas relief coping similar to the belt course of the southern section of the west face. Four brick pilasters, each with a centered vertical string course of angled header brick, rise up through the first, second, and third stories, terminating at the top of the third story with a stone bas relief coping. On the fourth story, there are three vertical belt courses, each comprised of five columns of angled header brick. Centered on the fourth story is a fanlight with header brick trim. Between the pilasters of each story is a four-pane window with a header brick sill and no trim. In place of a window on the first story, an entrance is between the two southernmost pilasters. It is a single leaf, single panel glass and wood door with side lights and a two-pane light transom, headed by a square, stone, bas-relief panel. A straight concrete stair with a side ramp leads up to the stoop of the entrance with solid brick balusters with stone coping.

The north face of the north wing is the broadside of the northernmost gable. On the first, second, and third stories each, there are eleven windows, each with a flush header brick sill and a radiating brick voussoir. The third story also has a stone keystone. East of these windows, there are two vertical belt courses comprised of five columns of angled header brick. Between these courses, there is a window between the first and second stories, and a window between the second and third stories. The lower window is vertically rectangular; has two sashes, each with two-pane side lights. The upper window is identical, except that it also has a fanlight transom with header brick trim. Each window has a flush header brick sill, below which is a square, stone, bas relief panel. Below the first/second story bas relief, and above the second/third story
fanlight transom, there is a section of vertical belt course identical to ones at either side of the windows. The roofline is trimmed identically to the west face of the north wing. The fourth story has four doghouse dormers extending from the broadside of the north wing gable. Each dormer has two four-pane windows with no trim or surround, separated by a stone bas relief motif. The north face of each dormer is stucco with two triangular panels in the gable peak.

Extending east from the north wing is a flat-roofed section, whose north face is flush with the main north face of the north wing. This section was added to the unfinished east face of the Classroom Building’s north wing in 1958 (Maloney 1957). The north face of this addition is brick veneer with two stucco string courses across the middle of the first story, one identical string course across the top of the first story, two identical string courses across the top of the second story, a belt course of stone bas relief at the top of the third story, and stone coping atop a brick parapet that is set back from the main face. The first story has an arch to an open breezeway. The arch is trimmed with stretcher brick and a stone keystone (the lower string courses of the first story act as the imposts to the arch). To either side of the arch is a circular stone décor, framed by header brick. Within the breezeway, on the north face is the north main entrance. It is a double leaf, single panel glass and wood door with five-pane side lights, a two-pane light transom, and no trim or surround. Within the breezeway, on the east face are two arches, within which are recessed panels. The lower first story string courses continue across the east face within the breezeway, as imposts to the header brick surround of each arch (courses do not transect recessed panels). Between the two arches is a brass plaque that lists the names of the people who were involved in the construction and remodel of Shaw-Smyser Hall.

The breezeway has a two open arches on the east face of Shaw Hall’s north wing. The masonry design surrounding the arches of the east face of the breezeway is an alternating pattern
of recessed header brick and raised stretcher brick. The east face of the north wing is comprised of two sections: a flat-roofed northern one-third that has three stories, and a gable faced southern two-thirds that has four stories. The courses of the north face continue across the northern one-third of the east face. Each header brick of the Flemish bond is recessed on the portion of wall surrounding the arches of the breezeway on both the east and north faces. On both the second and third stories, there are two double-hung windows (upper sash has four panes) with no trim or surround. The courses act as sills to the windows of each story. The southern two-thirds of the east face of the north wing are a gable face that is nearly identical to that of the west face of the north wing, except that the windows (including the fanlight) each have stone sills, and there are no vertical belt courses near the gable peak. Dormers identical to those of the north face are located on either side of the east face gable (two on the south side of the roof and one on the north side). On the south face of the north wing (on the east side of the south wing), there are two double-hung windows (upper sash has four panes) with no trim or surround on the third story. There are no courses on this south face, and the stone frieze is paneled rather than a bas-relief.

Elevators were added to the building in 1975. In 1983, modifications were made to the stairs of the entire building. Mechanical updates were made in 1999.

Short-Getz Apartments

The Short-Getz Apartment complex (Figure 8.71) was completed in 1958, composed of two unattached units (both designed for multi-family living). The northernmost massing shall henceforth be referred to as the “north hall,” and the southernmost massing shall henceforth be referred to as the “commons building” (as they were labeled in 1971 architectural drawings by F. Wayne).
The North Hall has an irregular plan and is composed of three detached blocks arranged east-to-west, connected by sheltered, open-air, concrete staircases with metal railing. Pre-cast concrete T-beams support the roof at the outer stairwells. There are twenty-four one-bedroom apartments, each 430 ft². Roof shape is flat. Original roof material and 1971 re-roofing material are concrete with a sheet metal sheathing and plain box cornice. No chimneys are noted. The roof of the blocks extends to shelter each staircase. There are two stories, and no basement or attic. The foundation is poured concrete.

Exterior wall material is concrete and brick. The exterior wall design includes a brick double-stacked stretcher bond that appears to have been used sparingly for walls that face roadways (and sometimes near apartment entrances). Exterior wall design also includes poured aggregate finish concrete from ground to roof, interrupted by either a protruding concrete belt course or recessed belt course at the base of the second story.
Typical windows have a flat structural opening, metal framing, and no window surround or sill. Main window divisions are of two varieties: a two-sash, horizontally sliding window (beside apartment entrances on the east and west faces of each block, and arranged horizontally in pairs on the north and south faces of each block); and a large, horizontally rectangular, fixed window with a lower light transom that has three sashes (the outer two of which are horizontally sliding). Typical entrances are single leaf, solid metal doors with a flat structural opening and plain trim.

The southernmost unit massing of the Getz-Short Apartments (henceforth referred to as the “Commons Building”) is comprised of seven detached units, which are connected to each other by open-air exterior features. There are 18 two-bedroom apartments total, each 600 ft². The plan is irregular, and includes a central rectangular block that is oriented north-to-south, two horizontally arranged square blocks to the north and northeast of the central block, and two horizontally arranged square blocks to the south and southeast of the central block. There is a circular sand pit for barbeques to the east of the central block. Sheltered, open-air staircases connect the blocks to each other. The steps and overhang of each staircase are concrete with metal railing. Roof shape is flat. Original roof material and 1971 re-roofing material were/are sheet metal with a plain box cornice. No chimneys are noted. The building has two stories, no basement or attic. The foundation is poured concrete.

The exterior wall material is concrete and brick with a design that is similar to that of North Hall, but with variations. Brick is arranged in a double-stacked stretcher bond, and appears to be used sparingly and only for walls that face roadways (sometimes on walls near apartment entrances). Exterior wall design and detail also include poured aggregate finish concrete from ground to roof, interrupted by either a protruding concrete belt course or recessed belt course at the base of the second story.
Typical windows have a flat structural opening, metal framing, and no window surround or sill. Main window divisions vary slightly. Beside apartment entrances are single-sashed, horizontally sliding windows. Windows on the west faces of the blocks (facing Ruby Street), and on the east faces of the two easternmost blocks, are two-sashed (top sash is fixed and makes up two-thirds of the size of the entire window; bottom sash is horizontally sliding with three panes). Typical entrances are single leaf, solid metal doors with flat structural openings and plain trim.

Landscape architecture details, including specific tree species and placement, were carefully added to the east of the building in 1962 by landscape architect, Keith Hellstrom of Spokane. In 1971, the roofing was replaced. The primary mechanical equipment was replaced in 2010, including steam heating replacement with gas heating. At the time of this writing (2015), the apartments are being renovated for continued student use after having been uninhabited for a couple years.

Stephens-Whitney Hall

The Stephens-Whitney dormitory apartment complex (Figure 8.72) was completed in 1958 in a Mid-Century Modern style. Unit massing of the building is twenty-two part; some units are attached and some are detached from each other. The plan is a hexagonal shape that is symmetrical about the east-west axis and about the north-south axis. A catwalk runs between the north and south halves of the complex, resting atop a center unit that is oriented east-to-west. The catwalk narrows in the center. The outer twenty units are three stories, while the center units are one story (the first story unit [managerial apartments and offices], and the second story catwalk). No basement or attic are noted. The foundation is a concrete slab over compact gravel. Roof material is concrete with metal sheathing. The roof shape of the outer twenty units is flat, the roof shape of the first-story center unit is flat; the roof shape of the second-story center unit is a
low-pitched butterfly. Roof trim is a plain, metal, box cornice. No chimneys are noted. Lounges are centered on the second story of both the north and south faces. Originally, an open breezeway was located below each lounge, but the breezeway of the north face was converted into another lounge during a 1970 remodel. Concrete beams support the second story above the south breezeway, and the catwalk above the central unit. Exterior wall material is concrete with a brick façade. The exterior wall design is flush, with the brick arranged in a double-stacked stretcher bond. An angular concrete string course runs at the base of each story. Each corner of the building has a pilaster that is raised approximately half an inch.

![Stephens-Whitney dormitories in 2014, looking southeast. (Photograph taken by Lauren Walton).](image-url)
Between the blocks of each unit (e.g. the north and south blocks of Unit “H”), there is a metal staircase that is open to the center of the complex, but is shielded by a multi-panel metal screen that runs flush with the outer walls of the blocks between which the respective staircase is located. The flat roof runs continuously over both blocks of each unit, sheltering the stairwell. A metal screen similar to that of the staircase’s outer screen, connects the blocks at each corner of the complex across either all three stories or across only the second and third stories. The string course of the exterior wall design runs continuously through the screens. To the north and to the south of the central first-story unit, there is a concrete staircase encased in a glass curtain.

Typical doors are single or double leaf, solid metal doors with no trim or surround, and are off-centered on the face of the wall. Certain typical window arrangements dominate any given face of each apartment block. For example, the west faces of the north and south blocks of Unit “H” have only short, horizontal window ribbons on the second and third stories, though other units may also have this window arrangement on the first story. Each ribbon has plain trim and no sill or surround, and abuts the string course that runs above it. The south and north faces of both blocks of Unit “H” have no windows. The east faces of both blocks of Unit “H” have only large, horizontally rectangular windows that are divided unsymmetrically in half by a vertical aluminum mullion and vertical louvers. The top of each window abuts the string course that runs above it. These window styles and arrangements are typical of the other units, though the faces on which the window arrangements are expressed may vary. The windows of the catwalk are short, horizontally rectangular, top-hinge, two-sash windows. The typical windows of the managerial apartments include small, horizontally rectangular three-sash windows with vertical louvers; and large, horizontally rectangular windows that are divided symmetrically by vertical aluminum mullions into several glass panes or vertical louvers (some with opaque transoms). A
glass curtain dominates the second story of the lounges on the north and south faces. Each glass curtain is bisected by the changing angle of the building’s face such that, in the case of the north face, one half of the lounge windows are facing northwest and the other half are facing northeast, and, in the case of the south face, one half of the lounge windows are facing southwest and the other half are facing southeast. Each glass curtain has a box-like concrete frame, and a lower opaque transom. Each glass curtain is divided into six main sections by vertical aluminum mullions that run down through the transoms. Each of the six sections is further divided into three sashes by vertical aluminum muntins. Each sash has either an upper or lower square, top-hinge window. The first story lounge that was added to the north face in 1970 has a horizontal window ribbon of 18 sashes, divided by vertical mullions, with plain trim. Some sashes have a lower, square, side-hinge window. Below the window ribbon is a section of brick wall.

Architectural note indicates that Stephens-Whitney was built to align on its west face with the west face of North Hall (Cowan and Paddock 1958).

Student Medical and Counseling Center

The Student Medical and Counseling Center (Figure 8.73) was completed in 1970 in a Late Modern style. The unit massing of the building is single and detached. The plan is irregular. The roof is a skillion and lean-to form with composite shingling. No chimneys are noted. There are six separate attic spaces noted in the original architectural drawings (A.O. Bumgardner and Partners Architects 1970). There is a crawlspace, but no basement.

The exterior wall material is brick in a stretcher bond. The exterior wall design is flush. A sloped header brick trim, similar to the slip sills of the main windows, lines the top of the wall below a wooden frieze under the eave of the lean-to roof. The corners of the buildings are at obtuse and acute angles, an architectural design common in the 1970s.
All windows have a flat structural opening. The typical window is a square sliding or fixed window with plain trim, a header brick slip sill, and no surround. A clerestory lines the north face of the skillion roof just above the lean-to. Three vertically rectangular windows on the west face are deeply set in structural openings that face southwest. Entrances are single leaf, solid wood doors, or they are single or double leaf, single panel glass and wood doors. Doors have no trim or surround. Non-public access doors are located on the west and east faces. The main entrance to the medical clinic side was located in an umbrage on the north face, but this entrance is no longer in use. The main entrance to the counseling clinic side has become the only public entrance, and is located on the southwest face of the building under the eave of the roof. Louvers, a slender rolling metal door, and service doors are located on the west and south faces just south of the main entrance. A patio with a privacy fence is located on the south side of the building, to
which the counseling clinic windows and an entrance open. Entrances are either flush with

ground level, have a concrete ramp or stoop.

The change made to the building (that were significant enough to be on file in the Facilities
archives) was ADA restroom modifications in 1993.

Student Union and Recreation Center

The Student Union and Recreation Center (SURC) (Figure 8.74) was opened in 2007, though

Figure 8.74. Student Union and Recreation Center in 2014, looking northeast. (Photograph
taken by Lauren Walton).
the flooring was not completed fully until 2014. The unit massing of the SURC is single and detached. Plan is L-shaped. There are two main stories and a partial third story that is dedicated to mechanical equipment. In general, the roof overhangs the walls. The soffit is corrugated metal with exposed metal rafters. Where the roof does not overhang the walls, there is a closed metal eave. No chimneys are noted. There is a basement and some attic space. Interior wall material is concrete. Exterior wall material is a compilation of brick veneer, metal paneling (ribbed and standing seam), concrete (flush or flatwork with planking score), and ceramic tiling. Exterior wall design is either a glass curtain, flush brick, or a series of recessed panels. Recessed panels each have a second story window with a metal transom and a lower panel of tile. Some panels also have a first story window or door. Third story sections have a ribbed metal façade with vertical window ribbons.

Each window is fixed and has a flat structural opening with either a light transom or flush metal transom, and have no trim or sill. If there is more than one sash, or if there is a glass curtain, muntins divide the glass into square or vertically rectangular panes. Public entrances are double leaf, single pane, glass and metal doors with no trim or surround (except for two entrances on the east face of the gym, which are headed with tile). Maintenance entrances are single or double leaf, solid metal doors with a soldier lintel and no trim.

The north wing is comprised of the gymnasium, Outdoor Pursuits and Rentals, and a rock climbing wall. The gymnasium makes up the majority of the north wing; its roof is a gablet whose ridge is separated into a series of gables with glass curtain faces. The north face of the gymnasium is flush brick with two windows. The west face of the gymnasium has a series of recessed panels. There is a one-room deep, one-story block that is angled 45° between the west face of the gymnasium and the north face of the south wing. The face of the block is a glass
curtain, and the entrance, located off-center and southwest, is comprised of two sets of doors that have light transoms and are separated by a sidelight. The roof of the block is a low shed. On the second story of the west face of the gymnasium, above the block, there is a horizontal window ribbon set in a large recessed panel of tile. The east face of the gymnasium is flush brick with two entrances. Outdoor Pursuits and Rentals (OPR) is located in a block that extends east from the southern end of the gymnasium. The roof of the OPR block is a low gable, the south end of which is hipped, and the north half of which has two upward turned shed roofs that have louvered faces. The north face of the OPR block is flush brick with one maintenance door. The east face of the OPR block has a series of second-story vertical window ribbons, three maintenance doors. The OPR entrance is a single leaf door with a side light and light transom, south of which is a horizontal ribbon of windows with a panel of tile below it. A raised panel of tile is above the entrance, meeting a second story glass curtain. The south face of the OPR block is flush with the south face of the gymnasium, across which is a series of recessed panels. A section of wall is angled at 45° between the south face of the gymnasium and the east face of the south wing, across the face of which the series of recessed panels continues. Supporting the roof overhang, before each section of brick wall, is an unenhanced metal column that telescopes in near the eave. Rising above the main roof line about two stories is the climbing wall tower, whose west face is flush with the west face of the north wing, and is located just north of the 45° angle wall. The faces of the climbing wall tower are tile and ribbed metal with vertical window ribbons.

A low, downward-turned shed roof covers the east half of the south wing, as well as the 45° angle wall of the east face. Recessed in the east face wall of the south wing, just south of the 45° wall, is a main entrance, comprised of two sets of doors that share a side light and have light
transoms. Above this east entrance is a panel of tile, above which is a window ribbon. The east face of the south wing has a series of recessed panels, in front of which are more metal columns. Centered on the east face is flush brick with a series of first story vertical windows (the upper portion of the recessed panel is absent above these windows). On the south face of the south wing (under the shed roof only), the serial panels continue and there are two maintenance doors. West of the shed roof section of the south face, the wall angles northwest at 45°, then straightens again. The roof of the south wing has a large centered gable, the south face of which is ribbed metal and flush brick. On the first story of the gable face is a loading dock with several maintenance doors. A canopy overhangs the loading dock area. West of the loading dock area, the gable roof meets a low, downward-turned shed roof (the south face of which is a continuation of the flush brick and ribbed metal of the gable face). A block extends south at the west end of the south face. At the center of the block, the roof upturns into a shed roof. On the south face of the upturned portion of the block, there are vertical, floor-to-ceiling window ribbons. On the west and north faces of this block, the series of vertical window ribbons continues. The upturned roof overhangs the west face of the block, but not the north face. North of this block, the west face is recessed about two rooms deep. The face of the recessed section has a second story glass curtain, and a first-story, one-room deep block that extends west in a split level. Each level has an entrance, which are separated by a glass curtain. Each entrance is comprised of two double leaf doors with side lights and light transoms. North of this recessed section, the west face extends beyond the main west face about one room deep, housing the radio station. A plaza is located in the center of the U-shape that is created by the recess and extending portions of the west face. The north half of the south wing has a shed roof. This shed roof extends upward as a canopy over the plaza, and has brick piers with planking score patterned concrete supports. The
south face of the radio station has a series of recessed panels. The remainder of the west face (the west face of the radio station) has a recessed first story with flush brick and windows that have no transoms. The second story of the west face of the radio station has a horizontal window ribbon, below which is a panel of tile, and above which is ribbed metal. The north face of the south wing has a series of recessed panels, interrupted by two flush metal, two-story bays that each have glass curtains on both stories.

Great attention was paid to the landscaping, which uses elements of the local setting. Basalt columns and concrete seat walls partition plaza areas, dry streambeds and cobble pavers with Kinnikinnick accent the plaza settings, and native Shrub-Steppe vegetation is used.

Student Village North

Student Village North was constructed in two phases; Phase I was completed 1968 (Figure 8.75), and Phase II was completed 1970. Three of the four buildings that were built during Phase

![Figure 8.75. Green Hall of Student Village North, looking north. (Photograph taken by Lauren Walton 2014).](image-url)
I were named for alumni who had died in WWII (Alford-Montgomery, Carmody-Munro, Green). Kennedy Hall, being the exception, was named in honor of Ora Kennedy, emeritus Director and House Mother of Kamola Hall. All six names had been used for campus buildings already at the time that they were assigned to four of the Student Village North Phase I buildings; however, the buildings originally bearing the names had been razed by 1968, with the exception of the original Kennedy Hall, which was simply renamed “International Center” (still standing as of 2015).

Three other buildings that were built during Phase I were not named, but were instead identified in architectural drawings as “I,” “J/H,” and “K.” They are architecturally distinct from each other, though they share an architectural design theme, and are also somewhat similar to the design theme of the four named buildings of Phase I.

During Phase II, buildings “A,” “B,” “C,” “D,” “E,” “F,” “G,” and the multi-purpose building were constructed. Each are architecturally similar to each other, but dissimilar to buildings “I,” “J/H,” and “K.” Although both phases were designed by Fred Bassetti and Company and completed within two years of each other, the buildings of each phase are distinct from each other in material and style. However, while the named buildings of Phase I are often considered as separate buildings, distinct from Student Village North, the unnamed buildings, including those built during Phase I, are collectively considered “Student Village North.”

Phase I

Alford-Montgomery

The unit massing of Alford-Montgomery is a single detached multi-plex. Despite having two names, Alford-Montgomery Hall is one building. It is connected to Carmody-Munro Hall by a walkway canopy, but the buildings are not joined. The plan of Alford-Montgomery is irregular and dissimilar to the other buildings constructed during Phase I (indeed, all buildings of Phase I
are unique. There are no 90° corners on the exterior of the building. Two sections of the building have three stories (dormitories) and are joined by a single-story lounge area. Extending north from the westernmost three-story section of the building, there is another single-story section (laundromat). There is no basement or attic. An access tunnel system runs beneath the building.

The roofs of the three-story sections are hipped, the roof of the laundromat section is gabled, and the roof of the lounge section is lean-to and skillion, rising a second story. Roof shingles are a composite material, and the projecting eaves have exposed wood rafters. The exterior walls are a flush stretcher brick bond with flush concrete belt courses at the base of each story; however, in some places the belt courses are discontiguous. A single exterior chimney is located west off the lounge area. There are second and third story bays with brick facades. All windows have a flat structural opening. Typical [original] windows are single, vertically rectangular and casement, and have either tall narrow side lights or light transoms. Window replacements are double-hung. Some corners of the building have tall, narrow, three-paned, fixed windows with textured glass, no trim or surround, and a flush concrete sill. The majority of the windows are flush with brick slip sills and no surround, but some second story windows project with a plain wood frame. The back entrance to the lounge area has storefront windows. A horizontal row of four square windows and a louver is located on the skillion face of an east-facing skylight on the roof of the western half of the building. The south-facing skillion of the lounge has a clerestory. All doors have a flat structural opening. The main entrance is a double leaf wood door, each with three vertical glass panels. Typical maintenance entrances are single leaf, solid metal doors with a flush concrete header and no trim. The doors to the laundromat are wood with plain metal trim, and opaque transoms (one door has a small vertical glass panel, and the other door has a square
glass panel). On the south face of the lounge area, there is also a concrete patio with no privacy walls or shelter.

It appears that an addition was made to the northwest corner of the building (date of construction unknown). The addition is a one-room deep, single story, five-sided maintenance room. Its plot plan (namely, the corners of the addition) mimic those of the main building in that they are at not 90° angles, but are instead obtuse. It has a concrete foundation. Exterior wall design is flush horizontal wood siding with vertical end boards. There are large wooden-slatted louvers with plain wood trim, and solid metal doors with plain wood trim and no surround. Roof is hipped and of the same material as the main building. A large, cylindrical metal smoke stack rises from the roof, supported by (and rising above the roofline of) the westernmost three-story section of the main building.

Carmody-Munro

The unit massing of Carmody-Munro is a single, detached multi-plex. Alford-Montgomery Hall is connected to Carmody-Munro Hall by a covered walkway, but the two units are not attached. The plan of Carmody-Munro is irregular and different from the other Phase I buildings (all Phase I buildings are unique). The dormitory sections have three stories, while the central lounge area is one story. There is no basement and no attic, but architectural drawings indicate that there is an access tunnel system that runs under the building.

The roofs of the dormitory sections are hipped, while the lounge area has a skillion and lean-to roof that rises a second story. A hipped roof covers the main entrance on the south face of the building, meeting the south aspect of the lounge’s roof. Roof shingles are a composite material, and the projecting eaves have exposed wood rafters. The exterior walls are a flush stretcher brick bond with flush concrete belt courses at the base of each story; however, there are some places
where the belt courses are discontiguous. A single exterior chimney is located west off the lounge area. There are second- and third-story bays with brick facades. All windows have a flat structural opening. Typical [original] windows are single, vertically rectangular, casement, and have either tall narrow side lights or light transoms. Window replacements are double-hung. The majority of the windows are flush with brick slip sills and no surround, but some second story windows project with a plain wood frame. A skylight with a row of four fixed windows and a louver is situated on the roof of the westernmost dormitory section, its skillion facing south. An identical skillion skylight is located on the roof of the easternmost dormitory section, facing west. All doors have a flat structural opening. The main entrance is a double leaf wood door, each leaf with two vertical glass panels. Typical maintenance entrances are single leaf, solid metal doors with a flush concrete header and no trim. The north face of the lounge area skillion has a clerestory. The north face of the lounge has storefront windows and two single-leaf, single glass panel doors with vertically rectangular sidelights. Extending north from the lounge area is a concrete patio surrounded by brick privacy walls with metal coping, sheltered by shed roofs that have exposed rafters and are supported by wood piers.

Green Hall

The unit massing of Green Hall is double and attached, consisting of a café and store in the north unit, and a multi-plex dormitory in the south unit. The plan is irregular and different from the other buildings of Phase I (indeed, all the buildings of Phase I have a unique variation of a common design scheme). The original Green Hall plan was a reflected plan of Kennedy Hall, but the 2003 addition of the North Village Café and Store expanded Green Hall northward. The majority of the dormitory section is two stories, but a one-room deep third story rises above the
The main roofline, running west-to-east. The addition is one story. There is no basement or attic, but, according to architectural drawings, there is an access tunnel that runs under the building.

The second story roofs are hipped, and the third story roof is gabled. A shed roof covers the main entrance of the dormitory section. Roof shingles are a composite material, and the projecting eaves have exposed wood rafters. The exterior walls are a flush stretcher brick bond with flush concrete belt courses at the base of each story. The exterior wall design of the third story is flush horizontal plank. A single interior chimney rises above the main second story roofline from the southeast area of the dormitory section. All windows have a flat structural opening. Typical windows are single, vertically rectangular casements, except for the third story, which are top-hinge. Some first- and second-story windows have tall narrow side lights or light transoms, and some of the second-story windows are smaller in comparison to typical windows. Window replacements are double-hung with trim that protrudes beyond the sill. The majority of the windows on the first and second stories are flush with brick slip sills and no surround. On the gable faces of the third story, there is a double casement window with plain wood trim, no sill, and a plain or louver head surround. A skylight is flush with the roof of the southeast area of the dormitory section. All doors have a flat structural opening. The main dormitory entrance is a single leaf, single glass panel door with sidelights. The North Café and Store entrance is located on the east face (dormitories are located on the second story, above the store) and is double leaf, solid metal (each leaf of which has a small, vertically rectangular window) with a one-way glass light transom. Typical maintenance entrances are single leaf, solid metal doors with a flush concrete header and no trim.

In 2003, a one-story addition (originally called the “Depot Deli Addition”) was made to the north face of Green Hall (DOH Associates, PS, Architects and Planners 2003). This addition
expanded the North Café and Store to include a dining area that is one story and two rooms deep.
The plan of the addition is rectangular, oriented east-to-west. The addition has no basement or
attic. Structural steel beams, steel-reinforced concrete, and timber framing make up the wall
construction. The exterior wall material and design are a flush stretcher bond brick with a pre-
cast concrete string course. The eastern and western ends of the addition have a flat roof, and the
area between has a shed roof that hips at the northeast corner. The flat sections of the roof have a
flush pre-cast concrete coping that meets the belt course of the north face of the dormitory
section. The east face exit is a single leaf, solid door with a small, off-center, vertically
rectangular window, no trim, a half-length side light, and a head surround of flush pre-cast
concrete. The exit of the north face is a double leaf, solid door with a small, off-center, vertically
rectangular window, no trim, and a soldier course head surround of brick. Typical windows are
fixed, have one-way glass, and vertically rectangular with no trim, a brick slip sill, and a soldier
course head surround of brick. The north face has a horizontal ribbon of windows that are
separated by thick metal mullions.

Kennedy Hall

The unit massing of Kennedy Hall is single and detached, and is multi-plex. The plan is
irregular and different from the other buildings of Phase I (all buildings of Phase I are a unique
variation of a shared architectural theme). The majority of Kennedy Hall is two stories, but a
one-room deep third story rises above the main roofline, running north-to-south. There is no
basement or attic, but, according to architectural drawings, there may be a tunnel that runs under
the building. There are no 90° angles on the building.

The second-story roofs are hipped, and the third-story roof is gabled. Roof shingles are a
composite material, the projecting eaves have exposed wood rafters, and the eaves of the gable
faces of the third story are supported by plain wood corbels. A hipped roof overhangs the main entrance, supported by wood piers. The exterior walls are a flush stretcher brick bond with a flush concrete belt course that runs along the base of the second story; however, the belt course is discontiguous in some areas. The third story has an exterior wall design of flush horizontal planking. There is a single interior chimney that rises above the main second-story roofline at the southeast corner of the building. The belt course is interrupted at the location of the chimney. All windows have a flat structural opening. Typical [original] windows are single, vertically rectangular casements. Some windows have a single side light or a light transom, or are small in comparison to the other windows. Window replacements are double-hung. The original windows of the third story were top-hinge on the west and east faces, but have been replaced with double-hung windows. The gable faces of the third story each have a double casement window with a plain wood or louver head surround. The majority of the first- and second-story windows are flush with brick slip sills and no surround, but some second-story windows project with a plain wood frame. At some of the corners, there are tall, vertically rectangular, multi-story, fixed windows with three sashes and textured glass. On the west face, there is a first-story bay with wood side-paneling, a ribbon of fixed windows, and a hipped roof. At the southeast and northwest corners of the building, there is a skylight that is flush with the roof. All doors have a flat structural opening. The main entrance is a single leaf, single glass panel door with a tall, narrow side light. Typical maintenance entrances are single leaf, solid metal doors with a flush concrete header and no trim; some have a louver set into the door panel, and some have a louver head surround. The west and south entrances are each a single leaf, solid metal door with a small, vertically rectangular window inset and a large square light transom.

Units H-K
The unit massing of buildings “I” and “K” are each single and detached multi-plexes, while the complexes “J” and “H” are attached as a double, attached multi-plex. Buildings “I,” “J/H,” and “K” are connected by open second- and third-story walkways. The plan of each is irregular; “K” being the smallest (Figure 8.76). Each building is three stories, and has no basement or attic.

![Figure 8.76. Student Village North, Phase I, Units H-K, looking southwest. (Photograph taken by Lauren Walton 2014).](image)

The roofs are predominantly gabled, though a variation on this is the saltbox roof. First-story portions on the west face have shed roofs. Roof shingles are a composite material, and the projecting eaves have exposed wood rafters. The exterior walls on the first story and portions of the second story are flush stretcher brick bond with flush concrete belt courses. The exterior walls of the third story and the majority of the second are a flush horizontal wood plank design.
 Portions of the third story that project from the main wall are supported by concrete piers, but bays are unsupported. Typical doors are single leaf and solid with plain trim and either a solid transom or narrow sidelights. Typical windows are vertically rectangular and casement with plain trim. Window replacements are double-hung. When set in a brick façade, windows have a downward angled brick slip sill. When set in a wood plank façade, windows have a flat wood slip sill. The overall window arrangement provides a sense of verticality, whether windows are stacked vertically in a ribbon or are arranged side-by-side within a shared structural opening. Many third-story windows have light transoms that meet the angled roofline. There are uncovered, straight, reversed staircases of concrete with metal and precast concrete panel railing. Walkways that connect “I,” “J/H,” and “K” are concrete with metal and precast concrete panel railing, the supports for which are concrete piers.

Phase II

The unit massing of Phase II consists of seven detached multi-plexes, labeled “A” through “G” and one detached multi-purpose building (Figure 8.77). The plan of each unit is irregular. The plan of the ‘A’ complex is a reflection of the ‘E’ complex; and the ‘B’ complex is that of the ‘C’ complex. The multi-purpose building is one story, and each muni-plex is three stories. There are no attics or basements. The exterior walls of all units have wood shingle cladding. Wall construction is comprised of timber studs and steel-reinforced concrete (Fred Bassetti and Company 1969). The main roofs are gabled with composite shingles, and first- and second-story projecting sections have shed roofs. The projecting eaves have exposed wood rafters. Centered on the ridge of each roof is a group of metal vents. Typical windows are fixed and vertically rectangular with projecting wood trim angling downward. Smaller windows are narrow. Larger windows have either one or two horizontally sliding sidelights. Each unit faces a concrete
courtyard with one or two exterior staircases of concrete with wood railing, each with a wood shingle façade. The main roof extends to overhang each third story landing, which have no façades. Within the recessed panels of each stairwell there are apartment entrances, which are single leaf, solid doors with plain trim.

Figure 8.77. Student Village North, Phase II, looking north. (Photograph taken by Lauren Walton 2014).

Sue Lombard Hall and Dining Services

Sue Lombard Hall (Figure 8.78) was built in 1926 in the Spanish Colonial Revival Style, mimicking the style of the 1919 addition of Kamola Hall, which also faces Eighth Avenue. The unit massing of the building is triple and attached. The original structural system is wood frame and brick, and that of the 1965 addition is brick, steel, and lumber.

The plan is irregular, consisting of an L-shaped dormitory section on the east and a T-shaped dining section to the west. The dining section is composed of the Lombard Room (oriented north to south, its east face meeting the dormitory section) and the Sue Dining Room (oriented east to west, extending west from the Lombard Room). A northern corridor was added in 1965 to connect Sue Lombard to Tunstall Commons (Gayne L. Jones Associates Architects 1965).

The dormitory section is four stories. The Lombard Room, Sue Dining Room, and the
Figure 8.78. Sue Lombard Hall and Dining Services, looking northwest. (Photograph taken by Lauren Walton 2014).

corridor to Tunstall Commons are each one story, but vary in height. There is attic space in the
dormitory section in areas where there is no fourth story living space. A partial basement is
located under the Sue Dining Room. The foundation is poured concrete.

The roof is a complex cross-gable over the dormitory section. The roof of the corridor to
Tunstall Commons is flat. The roof shared by the Lombard Room and Sue Dining Room is a flat-
topped gable. Like Kamola Hall, the roof style of the dormitory section of Sue Lombard Hall is
Spanish Colonial Revival (the two main gable face parapets of the south face are rounded, while
the center gable face parapet of the south face and the gable face parapet of the east face are
angular). Where the roof is visible from University Way (i.e. south and east faces), the roof
material is clay tile; the rest of the roof is asphalt composition shingling. On the gable sides, the
eave consists of a wood frieze, dental molding, and projecting fascia, supported by corbels. The
gable face parapets are coped with either clay tile or header brick. The roof trim of the dormers is
plain. There are currently three chimneys, all located in the dormitory section. One of the
original chimneys, which was once located on the north face of Sue Dining Room, was removed at an unknown date.

The majority of exterior wall material is brick. The majority of the dormers have a plaster façade. The exterior wall design is a flush stretcher bond. Nearly each face is symmetrical about a vertical axis. For the purposes of this report, henceforth the east arm of the L-shaped dormitory section will be referred to as the “dormitory east wing;” and the south arm of the L-shape will be referred to as “dormitory south wing.”

The east face of the dormitory east wing is a gable side, though the roofline is interrupted off-center north by the face of a cross-gable. There are four buttresses. Fenestration on the east face is consistently a double-hung window (upper sash is muntin-divided into six panes) with plain trim, header brick slip sill, no side surrounds, and a head surround that is a vertical stretcher brick lintel with header brick trim. There are no doors. Pairs of windows share a head surround. In the peak of the gable face is a recessed diamond-shaped panel with header brick trim. A flush chimney rises above the roofline at the southeast corner of the building.

The north face is a gable side. Fenestration is identical to that of the east face, except that the first-story windows have four panes in the upper sash. Centered on the first story is a single leaf, two-panel (upper is glass) door with plain trim. The original lintel head surround of the door has been covered by a wooden gabled overhang, which is supported by knee braces to either side of the door. Originally, there were two single windows to either side of the door, but the west window nearest the door has since been bricked in. A louver is located just east of the fourth story window.

The west face is a gable side that faces the Sue Lombard Dormitory courtyard. Windows on the west face are identical to those of the north and east faces, except that the window shape is
square and the upper sash has eight panes. There are no doors. Three fourth-story windows project from the roof’s west aspect as gabled dormers; each has a plaster façade and a pair of double-hung windows (upper sash has six panes) with no trim, set in a recessed panel. In the peak of each dormer gable face is a triangular louver.

Typical first-story windows are double-hung (upper sash has four panes) with plain trim, header brick slip sill, flat radiating brick voussoir, and no side surrounds. Typical second-, third-, and fourth-story windows have a vertical stretcher brick lintel head surround with header brick trim. Typical door surrounds match those of the windows for each story.

The south wing of the dormitory extends west from the south end of the east wing. The south face of the south wing faces University Way and has two gable faces (east and west) that are arranged symmetrically about a central recessed panel. On the first story of the recessed panel is the main entrance, which consists of a single leaf, two-panel (upper panel is glass) door with vertical five-pane side light and three light transoms (three-pane transom over door and two-pain transom over each side light). To either side of the door is a brick pilaster, followed by a single window (upper sash has six panes). The porch is umbrage-like due to the corner buttresses of the east and west gables, and by the entry overhang. The overhang is shed with clay tiles. A cross-gable overhang with clay tiles transects the shed overhang, has a gingerbread gable face, and is supported by four brick piers. Above the entrance on the second story is a centered horizontally rectangular window with ten panes, plain trim, and no surround. To either side of the window are two wooden knee braces, supporting the third story porch, which is entirely wood with gingerbread railing. Centered on the third story is a double leaf, eight-pane glass door with plain wood trim and head panel with no surround. To either side of the door are two wooden knee braces, supporting the overhang of the gable broadside roof. A gable face dormer with brick
façade projects from the roof of the center recessed panel and contains three fourth-story windows that share a structural opening, head surround, and sill. Gable parapet appears to have undergone brick renovation.

Both the west and east gable faces have second-story gingerbread balconets. Each gable face peak has a flower-shaped window with a muntin design. The east gable of the south face mirrors the west gable, except that a dormer with a louver has been added to the west aspect of the roof behind the parapet. Also, there are three circular, louver-like anchor plates between the first and second stories.

The north face is gable side and faces the Sue Lombard Dormitory courtyard. The north face is symmetrical about a central chimney, which projects slightly from the face and rises above the roofline. The chimney is stone-coped at the top of the third story, narrows just before the roofline, and extends across the face of the fourth-story dormer. On the first story, to either side of the chimney, is a single leaf, two-panel (upper is glass) door with plain trim. The original lintel head surround was covered by a flat metal overhang, which is supported by knee braces to either side of the door. To either side of the chimney on both the second and third stories is a pair of windows sharing a structural opening, head surround, and sill. Above the roofline is a gabled dormer like those of the east wing. The north face of the south wing continues above the roofline of the Lombard Room and recesses. On the face of the recessed portion of the north face, a chimney projects slightly from the center and rises above the roofline. The roof of the recessed section is flat to the east of the chimney and gabled to the west.

The west face of the south wing is gable side and is symmetrical about a central vertical axis. On the first, second, and third stories each, there is a centered single window (upper sash has four panes), to either side of which is a pair of windows sharing a structural opening, sill, and
head surround, separated by a wood mullion. A buttress that is flush with the south face extends perpendicular to the west face at the northwest corner.

The Lombard Room is one story. The south half of the Lombard Room abuts the west end of the north face of the dormitory south wing. The roof of the Lombard Room is gabled, but flattens where it meets the north face of the dormitory south wing. The typical window of both the Lombard Room and Sue Dining Room are tall and vertically rectangular, and has two sashes (each with twelve panes), a header brick slip sill, and a flat structural opening with a semi-circular recessed head surround trimmed with header brick.

There was once a door at the south end of the south face of the Lombard Room, but it was bricked in at an unknown date. The west face of the south half originally had two buttresses and three windows identical to those of the rest of the Lombard Room and Sue Dining Room exterior, but they have since been covered by a vestibule (post 1960), which now acts as the main entrance to the dining area. The semi-circular head surrounds of some of the original windows are still visible above the roofline of the vestibule addition. The south face of the vestibule has a double leaf, two-panel (upper is glass) door with vertically rectangular side lights and three-panel light transom. The entrance is sheltered by a gable face overhang, which is lower than the main roof of the dining area, and is supported by knee braces. The west face of the north half has two buttresses.

North face of the north half originally had four windows, three of which were covered by the addition that connects Sue Lombard to Tunstall Commons. The head surrounds of the two easternmost windows are still visible above the flat roofline of the connecting addition.

The east face of is gable side and faces the Sue Lombard courtyard. There are three buttresses on the east face. Between the northernmost buttress of the east face and the addition,
the north window has been replaced with a single leaf, two-panel (upper is glass) door with plain trim and an opaque square wood transom with a head surround identical to that of the windows.

The Sue Dining Room is one story. South face is symmetrical about a central vertical axis. The original main entrance to the dining room is now a low-traffic, single leaf, six-panel door with a two-panel wood head surround and plain trim. A straight concrete stair and stoop lead to the door. To either side of the door is a six-pane fixed window with header brick sill, plain trim, and no surround. Beyond each window is a buttress. A gable overhand shelters the door, meeting the buttresses at either side. To either side of the central buttresses there are two single windows. Each window has two vertical sashes, each with twelve panes. Window sill is header brick. Head surround is a recessed semi-circular panel with header brick trim. A buttress is located beyond these two windows. Beyond this buttress, before the vestibule addition, there were two identical windows. The easternmost two windows are now mostly covered by the vestibule, but the westernmost two windows are still in use. At the southwest corner of Sue Dining Room is another buttress, which is flush with the west face of Sue Dining Room.

The west face is gable face and has two windows that are identical to those on the south face, except that they lack head surrounds. At its northwest and southwest corners are flush buttresses, whose brick appears to have been replaced during renovation. The southwest corner buttress is reinforced with a metal brace.

The north face is gable side and has five buttresses. There is a single leaf, six-panel door with plain trim and no surround. The buttress east of this extends outward from what used to be the stack of a chimney (that is apparently no longer in use). One of the original westernmost windows has been refitted with a single leaf, six-panel door with a large, square light transom and plain trim. A portion of the original window sill is still present at either side of the door.
A concrete subterranean side stair with concrete retaining walls and metal railing leads down to a basement entrance beneath the stoop of the westernmost entrance of the north face. The basement entrance is a solid double leaf door with no trim. A louver is located just east of the door.

A courtyard is located just north of the north face. In it, between Tunstall Commons and Sue Lombard, is a brass sundial and plaque reading, “Dedicated to Carter Babcock, 20 years of Service, June 1979 – June 1999.” Sundial and plaque are set upon white marble atop a brick pier atop a circular concrete base.

Several changes were made to the building over the years. In 1943, a kitchen canopy was installed. A door call system was installed in 1963. In 1965, the Commons-Lombard connecting hallway addition was built. The following year, an intercom system was installed. In 1967, electrical revisions were made. A minor interior remodel was completed in 1970. Dining hall improvements involving Tunstall Commons were made in 1989. Major interior renovations were made in 2006, during which the doors and windows were replaced and the landscaping was redone.

Surplus Property Warehouse

The build date of the Surplus Property Warehouse (Figure 8.79) is currently unknown, but it appears to have been built in the 1940s. The Grounds Warehouse, located just southeast of the Surplus Warehouse, was purchased by the school in 1953. It is possible that the Surplus Warehouse was also purchased at this time. The Grounds Warehouse was originally a cannery warehouse along the Chicago, Milwaukee, St. Paul, and Pacific Railroad; it is possible that the Surplus Property Warehouse also served as a warehouse (indeed, the building is oriented northwest-to-southeast to face what was once the railroad).
The massing of the Surplus Property Warehouse is single and detached. Plan is rectangular, oriented northwest-to-southeast. The building has one story. It appears that there is a basement, but no attic. The exterior wall design is horizontal wooden novelty siding (a.k.a. German siding) with end boards at the corners. Flush plywood panels with vertical wood battens surround the base of the building.

All windows and doors have a flat structural opening. On the southwest face, there are three horizontally rectangular windows, one of which is fixed, and two of which are side-sliding. On the southeast face, there is similar structural opening for a window that has been boarded up. On the northeast face, there are three windows, one of which is fixed like that of the southwest face, another of which is side-sliding like that of the southwest face, and another of which is small, vertically rectangular, and side-sliding. On the northwest face, there are two fixed, horizontally rectangular windows located on the upper portion of the wall near the roofline. All windows
have large, plain wood trim, and no sill. Also on the northwest face is the main entrance, which is a single leaf, single panel wooden door with a square glass window, no trim, and no surround. A switchback wooden ramp with wooden railing leads up to the door. Also on the northwest face, there is a bay entrance that has two solid vertical plank doors on rolling tracks with large, plain wood trim. Near this bay entrance is a smaller bay entrance that appears to have been boarded up. On the southwest face is a bay entrance that has one solid vertical plank door on rolling tracks with large, plain wood trim. A small straight metal staircase with metal railing leads up to the wall just northwest of the bay door. On the southeast face, it appears that there was a smaller bay entrance, but this has since been boarded up with the same novelty siding as the main exterior wall. Within the structural opening of the boarded up bay door, a single leaf, solid metal door with no trim has been installed. A large concrete loading dock is located just off of the southeast face. On the northeast face, there are two solid vertical plank doors on rolling tracks with large, plain wood trim.

The roof is gabled and overhangs all exterior walls. The roof material is unknown, but appears to be corrugated metal. The roof has a wooden plank fascia and the eaves have exposed wooden rafters. In 2000, a new water supply and ADA ramps were installed.

Tomlinson Stadium

Tomlinson Stadium (Figure 8.80) was constructed in 1959. The unit massing of Tomlinson Stadium and the accompanying concession stand and ticket booths, which were added in 1968, are each single, detached units. While the stadium itself lacks an architectural style, the concession stand and ticket booths are distinctly Late Modern. The plan of the stadium is rectangular, though a center block extends westward about one-room deep. The concession stand plan is square. Tomlinson Stadium is two-and-a-half stories with a third-story press box.
Architectural drawings indicate there was a small, square fourth-story room atop the press box, but this is no longer present (CWU Facilities Planning and Construction 2001). The concession stand is one story. The foundation for both the stadium and the stand is concrete. There is no basement or attic in either the concession stand or Tomlinson Stadium. The roof of the press box of Tomlinson Stadium is now flat and has a plain box cornice of metal (architectural drawings indicate that the roof was once a shed form [Burkhard 1968]). Aluminum railing lines the top of the stadium, except for top of the press box. The roof of the concession stand is flat and has a two-tier box cornice, the upper tier of which is plain metal and the lower tier of which is wooden clapboard. The soffit of the overhanging roof of the concession stand is planked wood.

The press box overhangs the central block of Tomlinson Stadium to the north and to the south, the undersides of which have exposed steel beams. The exterior wall material of Tomlinson Stadium is wood. The exterior wall design is horizontal clapboard with vertical wooden battens that create a serial panel effect. Horizontal wood planks trim the base of the structure. Wood string courses run horizontally across the top and bottom of the press box. The only windows on Tomlinson Stadium are those of a clerestory located just above the upper string course of the press box. Each window is horizontally rectangular and side-slides. Centered on the south face of the stadium is a single leaf, solid metal door with plain trim. Centered on the north face of the stadium is a double leaf, solid metal door with plain trim. Tiered aluminum bleachers make up the east face of the stadium. On the north and south sides of the stadium, there are flat roof overhangs with plain box cornices of metal that are each supported by precast concrete T-beams. In the case of the south side overhang, the roof is an extension of the concession stand. Small square plan ticket booths with flush metal paneling are located to both the north and the
south of the stadium. Each booth has a cross gable roof of precast concrete with metal trim. The windows of each booth are fixed, except for one on each west face, which has pivoting slats.

Figure 8.80. Tomlinson Stadium (at right) and concession stand (at left), looking west. (Photograph taken by Lauren Walton 2014).

The wall material and design of the concession stand is vertically board-formed concrete, described in the architectural drawings as “textured concrete wall panels” (Burkhard 1968). The only windows are in the form of a textured glass clerestory that wraps around the entire building just below the soffit. On the south face is a large, square roll-top door with no trim. On the north face is a large, horizontally rectangular, window with no trim. A roll-top metal security door blocks the structural opening of the window during non-business hours. On the east face, there are five single leaf, solid metal doors with plain trim.

In 1968, the original wooden bleachers were replaced with aluminum bleachers. Fire damage was repaired in 1996. In 2001, the original plywood paneling of the stadium was replaced by horizontal clapboard, and the windows were replaced.
Tunstall Commons

Tunstall Commons was constructed in 1950 in a Modern style. Unit massing of the building is single and attached on the south face to Sue Lombard Hall, but once was a single detached unit (Maloney 1950). The original plan was rectangular, but a later addition gave Tunstall Commons its current irregular plan. There is a partial basement and no attic. Foundation is poured concrete. Roof of main building is a low shed (downward angle is to the west), but a block that rises above the building on the west has a flat roof, as does a block that projects westward from the west face. Roof material is asphalt “comp” with brick parapet and stone coping on the original portion of the building. Roof material on the rising block and the projecting block is similar, except coping is metal. Eave around original portion of building is wood with metal trim. No chimneys noted. A fan room penthouse projects from the roof, but is not visible from the ground.

Exterior wall material of entire building is brick. Exterior wall design is flush stretcher bond brick. On the west face, a subterranean side stair of concrete with concrete retaining walls leads down to the basement from the northwest corner of the building. At the base of the stairs on the west face of the basement wall is a solid single leaf door, north of which is a louver. On the first story, from south to north, are two single double-hung windows with no trim that appear to have once shared a structural opening that has since been bricked up (this is a common trend for the other windows of Tunstall Commons). Both windows share one angular concrete slip sill. Following these windows is a row of four similar windows also sharing a sill. South of this, the building projects one-room deep. The roof of the projecting block is flush with the main roof, but a block just east of the projecting block rises above the main roof line. The west face of the tall block has an off-center south louver and an off-center solid, single leaf door with plain trim. On the north face of the tall block is a solid single leaf door with no trim. A concrete side stair with
metal railing leads up to a concrete stoop that is surrounded by a slatted chain-link fence. The roof overhangs the stoop. The west face of the stoop has a louver. West face of projection has a square double-hung window with angular concrete slip sill, south of which is a single leaf door with plain trim and one glass panel. South of this door, it appears a pre-existing door was bricked up. South face of projecting block is featureless. The addition that connects Tunstall Commons to Sue Lombard Hall covers a portion of the south face of Tunstall Commons.

On the north face, west to east, there are five pairs of windows with an identical surround, trim, and sill as the windows described above. Each pair of windows is separated by a metal mullion. Each window is triple sash (upper two are double hung and bottom is a horizontal top-hinge). All five pairs of windows share a continuous angular concrete slip sill. East of these windows is a brick wall, projecting perpendicular to the main face. East of the perpendicular brick wall is a stucco wall, leading at 30° to an entrance that is recessed in an umbrage. On the face of the angled stucco wall are two vertically rectangular, three-sash windows (lower sash is horizontal top-hinge; upper two sashes are fixed). Both windows are set in a recessed panel and a continuous metal slip sill. The entrance is a double leaf, four-panel glass door with double sash side lights and a four-pane light transom. East of the entrance, the building extends approximately five feet north, on the face of which is a row of three square two-sash windows (lower pane is bottom-hinge). Again, these windows appear to have once shared a structural opening, but now only share an angular concrete slip sill. East of these windows is a ribbon of ten three-sash windows (upper two sashes are bottom-hinge). Entire ribbon is framed on all sides by an angular concrete surround. East side of ribbon meets concrete pilaster at the northeast corner of the building, beyond which is the north face of the main entrance vestibule.

The main entrance is located at the northeast corner of the building, facing east (Figure 8.81).
Original architectural drawings indicate this door was not part of the original design. A glass curtain surrounds the main entrance vestibule on all sides, divided into columns of three-sash windows (two on the north and south faces each, and two to either side of the main entrance on the east face). The main entrance is a double leaf, four-panel door with a two-sash light transom. A flat concrete porch roof that is lower than the main roofline has metal trim and overhangs the main entrance, supported by two concrete columns. South of the entrance is a ribbon of windows identical to that of the north face, except that there are sixteen windows and the north end of the
ribbon meets the main entrance. South of the ribbon at the southeast corner of the building is an entrance, which is a single leaf, four-panel glass door with a three-sash, south side light and no transom. A flat concrete porch roof that is lower than the main roofline has metal trim and overhangs the entrance, supported by two metal poles.

The south face used to have fenestration that has since been covered by an addition that connects Tunstall Commons with Sue Lombard Hall. East of the connecting addition, the wall is featureless except for one off-center west door, which is single leaf and four-panel (glass) with plain trim. Flat concrete overhang extends south over the entrance, supported by a metal pole set in a brick pier with stone coping in the center and by a brick wall to the south. West of the overhang is the concrete east face of the addition that connects Tunstall Commons to Sue Lombard Hall. The south face of the connecting addition has four undecorated anchor bolts across the center of the wall. A narrow vertical panel projects slightly from the south face just west of this, upon which is a metal string course along the base of the parapet.

In 1964, renovations were made to the kitchen revisions. The following year, a one-story, single pile addition was made to the south face. In 1998, refrigeration was installed. Tunstall Hall was renovated in 2004.

Wahle Complex

The Wahle Apartment Complex (Figure 8.82) was completed in 1961 in a distinct Mid-Century Modern style. The complex consists of twenty-six separate units, each with a duplex unit massing. Each unit is one story. Duplexes are grouped by four, mirroring architectural details, and sharing a courtyard. Majority of units are oriented west-east, but four clusters of units are oriented northwest-southeast or northeast-southwest at a 45° angle, and two units are oriented north-south. Plan of each duplex is rectangular with no attic. No basement is noted in
original architectural drawings, but each duplex has what appears to be a hatch door for a subterranean shelter at the base of its courtyard-facing wall. Foundation is poured concrete, is visible, and has four round louvers arranged symmetrically (only on foundation wall that does not face courtyard). Roof is a gable. Style is modern. Roof material is sheet metal with a wooden skeletal eave. Wooden cantilever beams support the roof and its east and west face overhangs above the south and north walls and the gable peak. No chimneys noted.

Figure 8.82. Wahle Complex, looking northeast. (Photograph taken by Lauren Walton 2014).

Exterior wall material of entire building is wood, but was historically brick veneer with raised detail. Exterior wall design is flush horizontal wood siding with pairs of vertical wood battens arranged symmetrically about the center of the face. Unless otherwise noted, the courtyard-facing wall typically has a wall design that has two centered vertical battens. To either side of the central battens is a single fixed window with sliding lower light transom, plain trim.
and floor-to-ceiling batten side surround. Beyond this, near the east and west ends of the unit, is a pair of windows, each identical to the one just described, sharing one structural opening and side surround, separated by wood mullion. A hatch door is located at the base of the wall in front of the central battens, interrupting the sidewalk that wraps around the unit.

Exterior wall design of the opposite side of the unit (i.e. not courtyard-facing, but outward facing) is nearly identical to the courtyard-facing wall, except that, instead of two identical windows sharing a structural opening, the outermost windows of each pair are large and fixed with no sliding lower light transom.

East and west faces are gable side and identical. A fascia runs between the north and south face roof overhangs, above which were originally fixed windows, divided by muntins into four panes, but has since been replaced with plywood. A vertical board runs up the center of the face to meet the gable peak. To either side of the board is a vertically rectangular structural opening. The structural opening nearest the courtyard has the main—and only—door for the respective apartment; it is a solid single leaf door with no trim. The other structural opening is a floor-to-ceiling fixed window (generally obscured glass) with a wood batten side surround and lower trim, beneath which is a panel of plywood. Leading to the entrance is generally a concrete stoop or a ramp with metal railing.

All units are identical, except for the laundry facility, which is similar but carries several variations on the typical exterior wall design. It and one other unit are oriented north-south, rather than west-east, so it does not share a courtyard with other units. Its north face has a large louver in place of a door, and a solid two-leaf door in place of an obscured window. A solid one leaf door with plain trim and a concrete stoop is centered on the west face. To either side of the door is a pair of battens, beyond which is a pair of windows sharing a structural opening and
batten side surround, each with a sliding lower light transom. The south face has a solid single leaf door with a concrete ramp with metal railing. The east face appears to have once had a centered single window that has since been boarded up; north of this is a pair of battens, and south of this is a pair of windows sharing a structural opening, but whose lower transoms have been boarded up.

It appears that some changes were made to the duplexes over time, which were not recorded in the public section of the Facilities archives. The north and south faces were originally clad in brick veneer, but are now horizontal, wood plank siding like the east and west faces. The original east and west face windows above the fascias have been replaced with plywood. Also, original architectural plans (Jones, Lovegren, Helms and Jones Architects 1961) indicate that two sandboxes were a part of each courtyard, but these have since been replaced with lawn. Wood fences have been replaced with chain link fences. Architectural drawings also indicate that a carport covered the driveway at each duplex entrance, but an historic photograph (circa 1961) does not show any car ports.

Welcome Center

The build date of the Welcome Center is undetermined. It appears to have been constructed in the 1960s. Unit massing of the building is single and detached. The plan is polygonal such that the main entrance faces the corner of Pearl Street and University Way. There is a rectangular east wing. The building is one story. The east wing has attic space, which raises the roofline of the east wing slightly above that of the main building. The roof is flat and appears to be of a composite material. The top of the exterior wall is trimmed with an overhanging box parapet of wooden clapboard with wooden end board and trim. The exterior wall appears to have been stucco originally (visible on the south and east faces), but was given a squared rubble façade on
the northwest and north faces in 2010 when the building was converted into the Wildcat Welcome Center (Figure 8.83). On the south face, the west one-third of the wall extends slightly south from the main façade. The eastern two-thirds of the south face are divided into panels by stuccoed pilasters. It appears that there is no basement. The foundation appears to be concrete. There are no windows or doors on the east face. Typical windows on the north and northwest faces are fixed storefront with metal mullions, metal slip sills that are flush with the basal portion of the wall, and no trim. The main entrance is located on the northwest face and is a single leaf glass door with plain metal trim. The north entrance is a double leaf glass door with plain metal trim, sidelights, and a three-panel light transom. The south entrance is a single leaf, single panel door with plain trim. Typical windows of the south face are vertically rectangular with two-sashes (the bottom of which is top-hinge) with a metal frame set in a plain wooden trim. Above the south face windows are metal awnings.

Figure 8.83. Welcome Center, looking east. (Photograph taken by Lauren Walton 2014).
An electronic reader board was added just northwest of the building shortly after it was opened as the Wildcat Welcome Center. Around the base of the sign are boulders of columnar basalt. This property is leased by CWU from a private owner. Although the building officially opened in 2010 as the Wildcat Welcome Center, it was leased as early as 2007 for use by CWU as a temporary archaeology laboratory.

Wendell Hill Hall

Wendell Hill Hall (Figure 8.84) was constructed between 2007 and 2009, using a vernacular Post Modern style. Unit massing of Wendell Hill Hall is double and detached. The plan of each unit is L-shaped. The westernmost building (henceforth referred to as “Building ‘A’”) has a north wing that is oriented south-to-north. The north wing of Building ‘A’ connects at its south end to a southwest-to-northeast angled section (henceforth referred to as the “corner block”). The southwest end of the corner block of Building ‘A’ connects with the south wing, which is oriented east-to-west and extends westward. The easternmost building (henceforth referred to as “Building ‘B’”) has a north wing that is oriented south-to-north. The north wing connects at its

Figure 8.84. Wendell Hill Hall, looking west. (Photograph taken by Lauren Walton 2014).
south end with the south wing of Building ‘B,’ which is oriented west-to-east and extends eastward. The structural system is timber studs. The roof material is asphalt composition shingling with cementitious soffit board and metal trim. Where the roof greatly overhangs the wall, the soffit is plywood paneling, and timber struts support the canopy. The bent steel band course of the main exterior wall design continues across the top of the flat roofs as coping. The two buildings each have four stories and an attic. No basement is noted in the original architectural drawings; however, the drawings available at the time of this writing were mark-up drawings, not finalized/as-built drawings.

The exterior walls of both buildings have a series of half-room deep blocks that extend out from the main face. Each block has a shed roof that flushly connects with the main gable roof. The exterior wall material is stretcher bond brick veneer with recessed maroon stretcher brick courses across the entire first story, tongue and groove mineral fiber cement paneling on the second and third stories of the half-room deep blocks, large timber clapboard across the fourth story, and medium sized timber clapboard across the second through fourth stories of the main wall (the sections of wall between the blocks). Bent steel band courses are situated across the tops of the first and third stories. On the west face of the south wing of Building ‘A,’ and on the south face of the south wing and north face of the north wing of Building ‘B,’ the wall design of the raised blocks is brick on the first story, large clapboard across the second through fourth stories, and tongue and groove mineral fiber cement paneling on the face of a faux chimney that begins half-way up the third story and extends up beyond the peak of the main roofline. The trim of the gable roof partially extends across the face of the chimney at the main roofline, but does not connect. The block of the north face of the north wing of Building ‘A’ is nearly identical, except that it extends from another block that has medium-sized clapboard. The block at the
southwest corner of Building ‘B’ is a tower with a shed roof that rises above the main roofline by one to two stories). The exterior wall design is large clapboard on the second through fourth stories, and tongue and groove mineral fiber cement paneling on the fifth and sixth stories. The bent steel band course runs across the top of the fourth story, rather than the third story, on the tower. At the base of the tower is a one-story block, the southwest corner of which is stepped inward twice, and the west face of which is angled at 45° toward the west face of the north wing. The main wall east of the tower, and set back from the one-story block, is entirely tongue and groove mineral fiber cement paneling with a faux chimney rising above the main roofline. The corner block of Building ‘A’ has an exterior wall design that is similar to the main wall design, except that the entire fourth story is tongue and groove mineral fiber cement paneling, and there is a centered, raised panel with large clapboard on the second and third stories.

Windows are flush with the wall, and have a flat structural opening. The typical windows is double hung. Windows on the tongue and groove mineral fiber cement paneling façade, they have no trim, surround, or sill. Windows on the clapboard façade have plain trim, and no surround or sill. Windows on the brick façade have a slip sill, no trim, and typically are headed by a string course, except for the windows on the brick facades at the corners of each of the buildings, which are typically vertical three- or six-sash windows (bottom sash is top-hinge).

Single fixed windows are located on the first, second, and third stories of the blocks located on the north faces of the north wings of both buildings, on the east face of the south wing of Building ‘B,’ and on the west face of the south wing of Building ‘A.’

Typical entrances are single or double leaf, two-panel glass and metal doors with no trim or surround. Main entrances also have single or double pane light transoms. Maintenance entrances
are typically single leaf, solid metal doors with no trim or surround. Most public entrances have a corrugated deck metal canopy suspended above them.

Between Buildings ‘A’ and ‘B,’ there is a concrete plaza. Large basalt boulders are set in the concrete, a design common to the buildings constructed or remodeled by CWU in the first and second decades of the twenty-first century. A plaque is located near an entrance on the west face of the north wing of Building ‘B,’ which reads, “Central Washington University, Wendell Hill Hall. Ellensburg, Washington. Jerilyn S. McIntyre, University President – Approved for Construction. James L. Guadino, University President – Dedication. Board of Trustees: Approved for Construction: Leslie Jones; Sanford Kinzer; Sid Morrison, Vice Chair; Rebecca Neighbors; Patricia Notter; Keith Thompson; David Valdez; Judy Yu, Chair. Dedication: Leslie Jones; Sid Morrison, Chair; Patricia Notter; Kate Reardon; Annette Sandberg; Keith Thompson, Vice Chair; Brent Weisel. Studio Meng Strazzara and Niles Bolton Associates, Architects. Graham Construction and Management, Inc., Contractor. Dedicated 2009.”

A mechanical building associated with Wendell Hill Hall was constructed northwest of the two housing complexes at the same time. The massing of of the Mechanical Building/Boiler House is single and detached. The plan is rectangular. There are two stories, and no attic or basement. Exterior wall material is a patchwork of tongue and groove mineral fiber cement paneling, and horizontal clapboard. A flush string belt course runs around the entire building between the first and second stories. The roof is a shed shape with asphalt composition shingles, and slightly overhangs the walls. Roof trim is a plain box cornice. There are no windows. All doors have a flat structural opening and plain trim. On the north face, there is one single leaf, solid metal door that is sheltered by a flat metal overhang. Two louvers are located on the second
story of the north face. A nearly identical door is located on the south face. Also on the south face, there are two top-rolling metal doors with square louver heads.

Wilson Hall

Wilson Hall (Figure 8.85) was built in 1955 in a Modern style. Unit massing of the building is single and detached. Plan is rectangle. There are no wings; however, the central one-third of the north face projects a few feet from the main face of the building. There are two stories above a partial basement. Foundation and basement are poured concrete. One chimney noted towards north face.

Figure 8.85. Wilson Hall in 1970, looking southeast. (Photograph courtesy of Brooks Library Digital Collection 2015v).

Exterior wall material is concrete with some brick elements. Concrete is smooth. Bricks are long, thin, and accented by a horizontal line protruding from the center. Exterior wall design, though simple, exhibits a prevailing horizontality. The north face is divided into thirds. The easternmost third is flush concrete with a horizontal, slightly recessed (approximately one inch) panel on each story, into which the windows are set. Windows are double-hung with no trim or surround. An angular concrete sill runs continuously below all windows, stopping at the edges of the recessed panel (i.e. at the outer edges of the westernmost and easternmost windows). Second
story window arrangement, from east to west, is as follows: single window, two pairs of windows (each pair divided by a metal muntin), two single windows, then three pairs of windows. First story window arrangement is identical, except the first single window is absent. The westernmost third of the north face mirrors the easternmost third, except that the far west window of the first story has been replaced by a single leaf, single panel door with no trim or surround. The central third of the north face projects a few feet from the main wall. Second story window design is similar to that of the other two-thirds of the north face. There are three pairs of windows set within a recessed panel. First story window design, however, is a raised rather than recessed panel, and there are three groups of three windows. The east side of the central third of the north face is flush concrete on the second story and protruding brick on the first story. Within the brick is a concrete wood storage box with access to the interior. The northeastern corner of the concrete chimney is visible and extends through both stories past the roofline where the eastern one-third of the north face meets the central one-third. The first-story roof over the wood storage area extends around the entire central one-third of the north face and slightly beyond it on the west side. A rectangular concrete beam supports the west side of the first-story roof, sheltering an entrance on the west face of the central one-third. The door is single leaf, single panel with no trim and no surround. A square concrete patio extends north in front of the central one-third of the north face. A concrete and wooden bench extends north from the brick wood storage, lining the east edge of the patio. A bike rack shelter sits on the patio near the bench. Its roof has a metal sheathing that matches the roof of the main building.

Exterior wall design of the east face is flush concrete. There are no windows, doors, or design details. The southern half of the second story is recessed. The flat roof of southern half’s first story creates an umbrage for an entrance on the south face. Exterior wall design of the south
face is similar to that of the north face. The south face is divided into thirds on the first story by the central main entrance. The main entrance has a brick face and a concrete overhang with sides. The door has a flat structural opening, is double leaf and two-panel with two-panel side lights and a four-panel light transom. Door is ground level. To either side of the main door is a group of inset, vertically narrow fixed windows, which are divided by brick into four sections. To either side of the main entrance, the exterior wall design is flush concrete with horizontally recessed panels and a window design identical to the north face, except that both stories each have seven pairs of windows to either side of the main entrance. On the second story above the main entrance are three pairs of windows. At both the west and east ends of the south face are entrances set back into deep concrete umbrages. Each has a door with a flat structural opening, is single leaf and single panel, and has sidelights and a three-pane light transom. Straight steps lead to each umbrage. On the second story above the umbrages is one double-hung window with no trim or surround. Exterior wall design of the west face is identical to that of the east face.

Roof shape is flat. Roof material is concrete with metal sheathing. No parapet or roof trim present. A rectangular portion of the roof above the central lobby is raised slightly to allow space for a clerestory. The roof of the raised clerestory is a butterfly shape. All first-story roofs are also concrete with metal sheathing. The roof was replaced in 1989, and again in 2011.
CHAPTER IX
EVALUATION OF SIGNIFICANT HISTORIC BUILDINGS

Historicity

Once buildings have surpassed the age of fifty years, they become potentially eligible to the NRHP (some exceptional buildings younger than fifty years, however, can be eligible). Identifying the age of CWU properties was achieved by archival research at Facilities, examining available architectural drawings of buildings. When original architectural drawings (or copies thereof) did not exist for the building under investigation, archival and historical records were consulted. Many archival materials at the Dr. James E. Brooks Library Archives and Special Collections provided plan and build dates for particular buildings; however, some buildings had no such documentation. When no other documentation could be found, Mohler’s (1967) historical narrative of the Central Washington State College (now CWU) was consulted for approximate plan and build dates, and/or plat maps of the City of Ellensburg(h) and Ellensburg Polk Directories were examined for years that properties first appeared on record. In only a few instances was a build date unidentifiable. In such cases, however, a date range of construction was possible by means of considering the date of the building’s purchase by the school or its appearance on local maps, and then examining the architectural elements of the property for period-specific elements.

Criteria for Evaluation

According to the NPS (2002), significance and integrity of a property can be determined reliably “only when the resource is evaluated within its historic context” (p. 1). As such, each historic CWU property was evaluated using the NRHP criteria of eligibility within its respective historical and architectural contexts (as defined in Chapters Six and Seven). For some properties,
a plethora of information was available about the circumstances surrounding the construction, location, choice of function, architectural style, changing usage, association with certain people and events, etc., while for other properties there was very little information available. Therefore, it is important to consider the bias that properties with more available information were more likely than properties with little available information to be found significant by virtue of having more data to compare against the NRHP criteria.

Criterion A

“Properties can be eligible for the National Register if they are associated with events that have made a significant contribution to the broad patterns of our history” (NPS 2002). Within the context of CWU’s developmental history, Criterion A was applied to those properties associated with the economic, social, and political trends or events contributing to, or representative of, a greater pattern of events or trends important to the school, Ellensburg and other local communities, Washington State, and/or United States. In addition to demonstrating an association with important trends or events in history, a property also had to demonstrate that its association was, itself, important to the trends or events in history.

Criterion B

“Properties may be eligible for the National Register if they are associated with the lives of persons significant in our past.” (NPS 2002). Within the context of CWU’s developmental history, Criterion B was applied to those properties associated with people who made important contributions to the success and development of the school, and whose productive lives were associated with the property under consideration. Once it was determined that an important person was associated with a given property, then the nature of their association with the property was investigated to identify how the person was significant and how the property might
demonstrate this relationship, if at all. The contributions made by the important person associated with a particular property were also examined.

Criterion C

“Properties may be eligible for the National Register if they embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction.” (NPS 2002). Within the context of the history of the university, the Ellensburg community, Washington State, and the United States, Criterion C was applied to those CWU properties whose technical and aesthetic design demonstrated high artistic value, the work of a master architect, a distinct architectural type or period, the availability and use of certain materials, technologies, and methods of construction (and the evolution and/or variations thereof). When buildings were not found to be individually significant under the NRHP Criteria, but were found to contribute to the importance of nearby properties, then the property was considered to be contributing to an historic district.

According to the NPS (2002), properties eligible under Criterion C can be so by means of their changing appearance and/or function as reflective of the evolving cultural climate. When the exterior design of a CWU property was found to be altered from its original construction, the property was considered from the perspective of how the modifications impacted the property and whether those impacts contributed to the adaptive story of the property or subtracted from the integrity of the property. In the event that a property represented a change in the needs, stylistic preference, etc. of the university in the context of differing properties, then the property was considered for eligibility as a contributing member of an historic district.
When considering the eligibility of a CWU property based on its association with a master architect, potential eligibility was determined by the property’s ability to convey the architect’s conceptual vision, distinct or typical style, and production of high quality work.

Eligibility under Criterion C was also considered by how a property expressed or met high artistic values of form, engineering, and/or community planning in a way that was distinct from surrounding properties. The majority of NRHP eligibility for CWU properties was achieved through Criterion C.

Criterion D

“Properties may be eligible for the National Register if they have yielded, or may be likely to yield, information important in prehistory or history.” (NPS 2002). Within the context of CWU’s developmental history, Criterion D was applied to those properties that had potential for conveying information important to researching and understanding the historical trends, events, or other circumstances in, or from, which a property was borne. No CWU properties met Criterion D.

Criteria Considerations

When a property met at least one of the four criteria of significance, then it was cross-referenced with the Criteria Considerations listed in the NRHP Bulletin Fifteen (NPS 2002). The Criteria Considerations identify types of properties typically ineligible for the NRHP, specifically religious properties, buildings or structures moved from their original contexts/locations, buildings associated with important people for reasons other than the actions of their productive lives (i.e. birth and death place), cemeteries, reconstructed buildings, commemorative buildings, and non-historic buildings (i.e. buildings younger than fifty years). Buildings that fall under these categories are not necessarily excluded from NRHP eligibility,
and still can qualify for eligibility if they fall into one or more special categories of criteria consideration and/or contribute to a district of buildings that do meet eligibility criteria.

Of the historic buildings on the CWU campus, none that meet one or more of the significance criteria require special Criteria Consideration. For this reason, these criteria are not discussed further.

Integrity

The integrity of an historic, significant property on the CWU campus was determined by how well the physical features of the property related to the property’s significance based on the retention of seven factors (NPS 2002, 44-45). First, the location of the property when it gained its significance (generally, this was the original site of construction). Second, the combined effect of the original components of the design (e.g. overall style and ornamentation, use of material, texture, form, proportion, use of space, etc.). Third, the character of a property’s setting in relation to the original context of the property’s significance. Fourth, the physical arrangement of specific material types composing the property at the time that the property achieved significance. Fifth, craft (referred to as “workmanship” in Bulletin Fifteen [NPS 2002]), which physically exemplifies the artisan skill of a culture or group of people in the construction or alteration of the property. Sixth, the “feeling,” or historic and aesthetic character of the original property. Seventh, the retention of the link between the property and its associated event or person.

Integrity of these seven components is assessed by identifying what physical features would be necessary to represent the property’s significance, determining the presence and visibility of those features in the property, and, if need be, comparing the property to other similar properties for uniqueness or sameness within its type.
When assessing integrity of properties as components of a potential historic district area, it was important also to consider how the spatial relationships of the buildings with each other and other associated features (e.g. trees, walkways, streetscapes, etc.) had been retained or disrupted.

Statements of Significance for Potentially Eligible Properties

Barge Hall

A NRHP nomination form was completed in 1974 (Lentz) for Barge Hall, including a statement of significance. To avoid duplicating work, Barge Hall was not intensively surveyed as part of this thesis; however, it was recognized through research to be significant and, as of 2015, to have retained, and having restored, its integrity despite major interior remodeling and some alterations to the exterior. The original railing of the roof and a chimney on the western half of the building are no longer present. Also, between 1991 and 1993, a renovation reinstalled the uppermost portion of the tallest cupola, which had been removed in 1950 due to earthquake damage sustained in 1949. It appears that, during this renovation, a segment of the bricks of the original cupola was either removed or covered by the addition of the new cupola. However, the renovation is consistent with the design, craft, materials, and feeling of the original construction and, therefore, does not compromise the integrity of Barge Hall.

Kamola Hall

Kamola Hall is in excellent condition, and is structurally sound, weatherproof and without major damage. The building is located in its original position, having been constructed in parts over the span of several years. Alterations and additions have been made to the building historically and recently, but such alterations have not affected the integrity of the building.

Kamola Hall is significant to the City of Ellensburg and to CWU as an intact example of Spanish Colonial Revival architecture fashionable in the United States in the first quarter of the
20th century. Kamola Hall was the first dormitory to be built on the campus of the WSNS and has been in continual use as such since its construction. Kamola Hall is significant to the City of Ellensburg and to CWU as an example of urban planning, facing University Way as representative of the University. The building also played an important role during World War II, accommodating Army Air Force cadets. Charles I. Carpenter, who was instrumental in the development of the historic core of the campus, designed the original portion of Kamola Hall in 1911, as well as subsequent additions in 1913, 1915, and 1919. Karl G. Malmgren, a master architect recognized for his work in Washington State, partnered with Carpenter on the design for the 1919 addition and 1922 interior renovations of “South Kamola.” Later additions to the dormitory in the 1940s and 1950s were designed by architect John W. Maloney, who also contributed greatly to the development of the campus’ historic core.

Criterion A

When the Normal School’s first campus building (Barge Hall) was completed in 1894, housing for students was accommodated either by Ellensburg citizens, or by one of two leased properties (the Nash Building in downtown Ellensburg, and the Normal Club House near the campus; both no longer standing). The high cost of such accommodations apparently discouraged the enrollment of many prospective students (Mohler 1967, 55), so a dormitory on the campus was desired to attract more students. After a political battle to keep open the Normal School in Ellensburg (Mohler 1967, 54-56), the Washington State Legislature passed an act to collect a millage tax that would go into an Ellensburg Normal Fund. The Fund appropriated money for the purchase of land and the construction of a building to expand the Normal School campus (Mohler 1967, 57). The new building in 1911 was the Normal School’s first dormitory, and carried only the name “dormitory.” As the student body grew and funding became
available, an addition was constructed east of the original dormitory building, and, apparently, was joined to the original building in 1915 by a dining hall (Mohler 1967, 59), though the architectural drawings and historic photographs currently available do not reveal lend confirmation to this sequence of additions. The dining hall of the dormitory served the student body, including students living off of campus (Mohler 1967, 58). Because student enrollment doubled by 1916 (Mohler 1967, 148) and demand for more living and dining space increased, further planning was made to also double the size of the dormitory; however, designs for the addition were not drafted until 1918. Between 1916 and 1917, the dormitory was given the name “Kamola Hall,” and, in 1919, “South Kamola” was completed (and the 1911, 1913, and 1915 additions collectively became known as “North Kamola”). With the exception of a 2003 addition that expanded the connecting walkway between “North Kamola” and “South Kamola” to join the two buildings into one, the exterior of the building has remained largely unchanged since 1919, and the building has retained its original function.

In 1942, the school (by then, the Central Washington College of Education) was informed that it was being considered as a training facility for Army Air Force cadets, so President Dr. Robert E. McConnell encouraged the school’s fulfillment of this role by writing to officials in Washington, D.C., officially offering accommodations for the cadets through housing and various physical and educational training (Mohler 1967, 197). In January of 1943, Central Washington College of Education was selected as an army training school (Mohler 1967, 197). To meet housing needs, the school moved the women students out of Kamola Hall and into Munson Hall across the street, and the Army Air Corps Detachment officers and enlisted men were placed in Kamola Hall (Mohler 1967, 197-198) until June of 1944 (p.202).
Criterion C

The Work of Master Architects. Architect Charles I. Carpenter designed the Kamola Hall as the school’s first dormitory building on campus in 1911. Afterward, Carpenter moved to Spokane, Washington in 1912 to work as the superintendent of the buildings and grounds of the Spokane School District (Spokesman Review 1938). He continued his work as an architect, however, designing the 1913 and 1915 additions to Kamola Hall. In 1919, Carpenter joined the architectural practice of Karl G. Malmgren (The Western Architect 1921), and together they designed the 1919 addition (Malmgren n.d.) and the 1922 interior renovations for Kamola Hall (Carpenter 1922). While it is clear that certain aspects of the 1922 interior remodel design (e.g. a gymnasium and swimming pool for the interior of “South Kamola”) did not become a reality, it is unclear which aspects, if any, were used (Malmgren n.d.). After 1924, Carpenter worked independently (Spokesman Review 1938). In 1925, Carpenter designed the school’s library (now known as Smyser Hall). He then design the Sue Lombard Hall and Munson Hall, a women’s dormitory and a men’s dormitory, respectively, in 1926. Soon after, in 1928, Carpenter designed the first Student Association building on the Normal School’s campus (i.e. the original portion of what is known today as the Old Samuelson Union Building), which utilized Classical Revival elements similar to those on Smyser Hall. According to his obituary, Carpenter designed buildings for many schools until his death in 1938 (Spokesman Review 1938).

Karl Gunnar Malmgren, Carpenter’s partner in the design of the 1919 addition to, and 1922 renovation of, Kamola Hall, was “an architect of note” (The Western Architect 1921, 77) in the Pacific Northwest. Born in 1862 in Orebro, Sweden, Malmgren was educated in both Sweden and Berlin, Germany, and was provided practical training for seven years under P.L. Anderson, a Swedish architect (Yeomans 2014). Malmgren immigrated to Seattle, Washington in the United
States in 1888 and, a year later, moved to Spokane, Washington where he worked as a draftsman for the architectural firm Cutter and Poetz. (Yeomans 2014). In 1894, when Poetz retired, Malmgren assumed the position of Kirtland Cutter’s full partner under the new firm name Cutter and Malmgren until 1917 (Yeomans 2014). According to Houser (2013), historian Henry Matthews acknowledges Malmgren as having had “superior architectural education, interest in the decorative arts, and administrative skills . . .” that made Malmgren well-qualified to take over as Cutter’s partner. During this partnership, Malmgren is noted as having contributed to “a dizzying array of buildings throughout the Pacific Northwest . . . Ranging in an eclectic mix of styles, the firm received many high profile commissions from Spokane social and political elite” (Yeomans 2014). According to Houser (2013), the only design that Malmgren is verified to have designed during his partnership with Cutter was Malmgren’s house in 1909, so it is believed in the historian community that Malmgren’s role in the architectural firm was predominantly as the draftsman of working drawings and construction oversight for what Cutter designed and delineated. In addition to helping to establish the Spokane Society of Architects in 1899 (Houser 2013), Malmgren’s contribution to Pacific Northwest architecture includes his work on the Idaho Building at the St. Louis Exhibition in 1903, the Washington Water Power Substation and Spokane Club in 1909, the Crescent Store in 1910, the Monroe Street Bridge in 1911, the Davenport Hotel in 1912, and the Chronicle Building in 1916 (Houser 2013). Before his death in 1921, Malmgren headed his own practice in Spokane, partnering with architect C.I. Carpenter in 1919 to design the “South Kamola” addition to Kamola Hall on the WSNS campus, as well as interior renovations for said building in 1922 (Malmgren n.d.).

The contributions John W. Maloney made to Kamola Hall add further significance to the dormitory building as the work of a master. John W. Maloney had a substantial architectural
career as an individual practitioner between 1922 and 1963, and as a partner of the firm Maloney, Herrington, Freesz & Lund from 1963 until his retirement in 1970 (DAHP 2015). Maloney designed numerous “forward-looking buildings using innovative structural technologies and modern design elements” (DAHP 2015), including churches, hospitals, office buildings, and schools. Maloney’s work, although spanning the entire west coast, from Alaska to California, had a most profound influence on Washington State architecture (DAHP 2015). In Washington, Maloney designed the first skyscraper of Yakima, the A. E. Larson Building (1931); as well as a chapel for the St. Thomas Seminary in Kenmore (1958), which is now used by Bastyr University and is considered “one of the premiere film scoring stages in the United States due to its superb acoustics” (DAHP 2015). Many Washington State campuses are showcases of Maloney’s designs. According to DAHP (2015), Maloney designed buildings for, “Washington State University, Central Washington State University, Seattle University, Yakima Valley Community College and Gonzaga University . . . [and] . . . the entire campus . . . at the Perry Technical Institute in Yakima (1940) . . . [as well as] . . . a number of buildings for the Seattle Public School District including Meany Middle School (1955), Jefferson Park Junior High School (1956), Asa Mercer Junior High School (1957), an addition to Grover Cleveland High School (1958), and Rainier Beach Junior-Senior High School (1960)” and the Lemieux Library at Seattle University in 1966 (DAHP, 2015). On CWU’s campus, John W. Maloney is known to have designed: Shaw Hall (1929), McConnell Auditorium and Industrial Arts (1935), the gymnasium addition to the Samuelson Union Building (1937), Hebeler Hall (1938), the Old Heating Plant (1946-1947), Lind Hall (1947), the addition to Munson Hall (1946), International Center (1948), Tunstall Commons (1950), North Hall (1951), Computer Center (1954), an
addition to Kamola Hall (1954), interior renovation of Kamola Hall (1955), Wilson Hall (1955),
and Shaw Hall (1958).

Design. The design that Malmgren and Carpenter chose for the “South Kamola” addition incorporated elements of a Spanish Colonial Revival style, which had been popularized in the United States by the Panama-California Exposition of 1915 (Pennsylvania Historical and Museum Commission 2014). Features of the 1919 Kamola Addition that are identifiably Spanish Colonial Revival include the use of balconets, curvilinear gables, decorative wooden window grills, and low-pitched clay tile roofing. This style was duplicated in the designs of the subsequent two dormitories, Sue Lombard Hall and Munson Hall. The style is unique to the dormitory buildings of the historic core of CWU’s campus.

Urban Planning. The position of Kamola Hall, as it was completed in 1919, is indicative of the school’s urban planning considerations, which continue to serve the school’s image. When “North Kamola” was completed in 1915, it was constructed to face the Normal School’s existing campus (then comprised of a 1907 heating plant [no longer standing], 1894 administrative building [now Barge Hall], and 1908 manual training building [Edison Hall; no longer standing]). According to an undated (circa 1919) architectural drawing by Malmgren, the 1919 addition for Kamola Hall was designed to face 8th Avenue and to be centered to face the intersection of Sampson Street. Sampson Street once connected the downtown area of Ellensburg to the campus, so the positioning of “South Kamola” as the face of the school to the City of Ellensburg is historically significant. The portion of Sampson Street that once ran between 7th and 8th Avenues was eventually converted into an alley way, which now runs between CWU’s Copy Cat Shop and the Old Heating Plant. The year that “South Kamola” was completed (1919), the Southern Division of the Sunset Highway (now University Way) had been constructed,
connecting with Eight Avenue through Ellensburg and running just in front of the main entrance of Barge Hall. “South Kamola” was designed to face this road (Carpenter, [unknown date]) as part of the “face” of the Normal School to those who drove by. The road became part of US 10 and US 97 in 1923, serving as the main route of traffic through central Washington State until the construction of Interstates 90 and 82 in 1968 redirected the majority of traffic to the peripherals of Ellensburg. Between 1923 and 1968, campus buildings that were constructed near the road were made to face it and acted as part of the “face” of the institution. In this way, Kamola Hall remains part of an important legacy of the university’s historic self-image.

Shaw-Smyser Hall

Shaw-Smyser Hall is in excellent condition, and is structurally sound, weatherproof and without major damage. Minor damage is present on the first story of the west face of Shaw Memorial Hall’s south wing (perhaps due to settling or earthquake activity); however, cracks have been properly sealed and are weatherproof. The building is located in its original position, having been constructed in parts over the span of several decades. Alterations and additions have been made to the building historically and recently, but such alterations have contributed to the character of the building, and have not affected the integrity of the building.

Shaw-Smyser Hall is composed of Smyser Hall and Shaw Memorial Hall (originally the Library and the Classroom Building, respectively), and is located immediately west of Barge Hall. Shaw-Smyser Hall is significant to the City of Ellensburg and to CWU as an intact example of Neo-Classical Revival architecture fashionable for government and academic buildings in the first quarter of the 20th century. The portion of Shaw-Smyser Hall that was once the Smyser Library is significant to CWU as having acted as the first library separate from the first campus building (i.e. Barge Hall). Shaw-Smyser Hall as a whole represents the beginnings of one of the
school’s first campus master plans, which would have enforced a Beaux-Arts layout over the existing Picturesque positioning of the first campus building (and would have replaced Barge Hall with a new administrative building in a similar Neo-Classical Revival Style). Shaw-Smyser Hall is also significant to the City of Ellensburg and to CWU as an example of urban planning, having contributed to the image that CWU originally wished to display to the general public as representative of the university. Several architects designed portions of the building, including Charles I. Carpenter and John W. Maloney, who were instrumental in the first fifty years of CWU’s campus development, and the building represents the mastery of their work. The building is named for individuals distinguished in CWU history, Dr. Selden Smyser and Dr. Reginald Shaw.

Criterion B

The 1925 and 1929 portions of Shaw-Smyser Hall were named in honor of individuals significant to CWU history, Dr. Selden Smyser and Dr. Reginald Shaw, in 1963 (Mohler, 1967, 218). The Library portion was named for Dr. Selden Smyser, who was a science professor at the school between 1916 and 1942 (Bach and Blair 2008, 71), specializing in the social sciences (Mohler 1967, 307). Smyser was well-published, having written a book and several scholarly journal articles (Bach and Blair 2008, 71) on social science topics (Mohler 1967, 307), as well as magazine articles “on educational and scientific subjects . . . [for] . . . magazines such as World’s Work, Scientific Monthly, Science, School and Society, and the Humanist. He was the author of *Roosevelt and the Constitution*, one of a series of booklets published by the American Education Press; ‘Social Aspects of Intelligence,’ which appears in *Occasional Leaflets* of the Southern California Social Science Association; and a paper – ‘History of Man’s Learning to Think Logics: Subverbal, Verbal and Superverbal,’ which appeared in *General Semantics* . . .” (Mohler
Smyser was also a member of the American Association for the Advancement of Science (Bach and Blair 2008, 71). From 1930 to 1931, Smyser assumed the position of acting school president between the resignation of former President George Black and the instatement of former President Robert E. McConnell (Mohler 1967, 307). Smyser’s association with Shaw-Smyser Hall, therefore, is significant.

Dr. Reginald Shaw (1889 – 1952), who joined the college in 1935, was an assistant professor of geography (CWUA 1950) and was granted full professorship by 1943 (CWUA n.d. [d]). His work at CWU included “coaching, teaching, research, and writing” (CWUA n.d. [d]) until his death in 1952. During his career at CWU, Shaw also fostered the development of a geography club, the meetings for which were hosted at his home on a monthly basis (Mohler 1967, 188-189). Shaw was credited with being the first scientific geographer to survey the Columbia River from its source to its mouth “since David Thompson made a similar survey for the Northwest Fur Company in 1811” (CWUA n.d. [d]). His interest in the Columbia River, and his passion for teaching with visual materials and field trips, brought him to lead several tours of the Columbia River and the Columbia River Basin Irrigation Project up until 1949 (CWUA n.d. [d]). As a geography specialist, Shaw was invited to lecture at the Institute of Northwest Resources (at an unknown date), and he wrote several journal articles, including "Washington Fisheries and their Conservation" for the Northwest Conservationist, January-March issue of 1939 (CWUA n.d. [d]). Shaw served in World War I for two months in 1918 as an Infantry Officer Trainer (CWUA 1950). During World War II, he continued teaching at Central and assisted with student government operations (Mohler 1967, 182). Shaw was officially connected with Pacific Coast Geographers and the American Association of Geographers (CWUA 1950). Upon his death in 1952, many memorials were made in Shaw’s honor. The Whitbeck Club, which he established
and guided, changed its name to the Whitbeck-Shaw Club; the Central Washington Social Science Association established a Reginald Shaw Scholarship; a collection of books and maps in the Geography Department were dedicated to him, and several former students and associates of his created the Reginald M. Shaw Memorial Book Collection for the school’s library; the 1952 edition of the school’s yearbook, Hyakem, was dedicated to him; and the Classroom Building in which he taught was renamed Shaw Memorial Hall in 1963 (CWUA n.d. [d]). Shaw’s influence at the school and in the Ellensburg community was significant.

Criterion C

Design and Urban Planning. The architecture of the southern half of Shaw-Smyser Hall exemplifies distinct characteristics of the Neo-Classical Revival style common to campus buildings in the first few decades of the 20th century, which emulated the academical village of Thomas Jefferson’s University of Virginia (Gowans 1992, 224). At the turn of the 20th century, when architectural firms like McKim, Mead and White were revivifying Jefferson’s use of architectural Classicism, institutions of higher education were being built all over the United States (Lasala, Sherwood, and Wilson 2009, 70). Thus, many of the first campus buildings in the United States, including Smyser Library, were designed in the Neo-Classical Revival style, which contributed to a national immortalization of the style as intimately tied to institutions of higher education.

Smyser Library, completed in 1925, was the first building on campus to provide a space solely for library services. Prior to its construction, the first semblance of a library on the campus was a collection of books and periodicals housed in the first floor of Barge Hall (Mohler 1867, 143), comprised of nearly one-thousand volumes on pedagogical subjects (p.38). Plans were begun in 1927 to expand the Library northward and to connect to it a much larger building,
which had yet to be designed, that would house administrative offices and an auditorium (Mohler 1967, 145). In 1929, the Washington State Legislature appropriated money for the construction of a Classroom Building (Hinckle 1929), which would begin the actualization of the 1927 plan by expanding the Library northward. In anticipation of eventually making the combined Library/Classroom Building the west wing of a much larger, block-long building, the construction of the Classroom Building was left uncompleted on the east face of its north wing, and was reportedly “left unfinished, with the steel reinforcing rods projecting from two to six feet outward” between 1929 and 1958 (Mohler 1967, 146). Architectural drawings by John. W. Maloney in 1957 indicate that the east face of the Classroom Building was, indeed, unfinished almost thirty years after its initial construction.

The hiatus between the construction of Shaw-Smyser Hall and of McConnell Auditorium was no doubt a result of the national economic downturn of the 1930s. The WSNS, however, obtained a grant through the Public Works Administration for the construction of a combined auditorium and “Arts and Science building” (Mohler 1967, 207) in 1935. The building, which was separate from Shaw-Smyser Hall, was constructed just east of Barge Hall on the site where the east wing of the block-long building had been proposed in 1927. This other building is now known as McConnell Auditorium. The plan to connect McConnell Auditorium to Shaw-Smyser Hall with an administrative building north of Barge Hall, however, never came to fruition and was officially removed from the campus plan in 1957 (Mohler 1967, 146). That same year, plans were drawn to finish the east face of Shaw Hall’s north wing with a small addition of classroom space (Maloney 1957).

As the first three decades of the Classroom Building were spent “under construction” in anticipation of connecting to a future building, the physical character of Shaw-Smyser Hall is
partially defined by this history. Alterations and additions to the building since its original
construction have contributed to a stylistic milieu that was mimicked in the design of McConnell
Auditorium, including the Neo-Classical Revival style of the southern portion and the subtle,
modernized Art Deco-like style of the northern half. Later alterations to McConnell Auditorium
(1979) and to Shaw-Smyser Hall (1994) distinguished the exteriors of the buildings from each
other stylistically, but only in their northern sections; their southern portions, which face
University Way, retain continuity of style. In 1962, the south wing of the Classroom Building
was expanded eastward, adding a corridor to connect the interiors of the abutting Classroom and
Library Buildings (Doudna, Williams, and Phipps 1962). In 1994, another addition/alteration to
Shaw-Smyser Hall expanded the south wing of Shaw Memorial Hall westward, filling in the
courtyard and incorporating the 1957 arches into the west face of the south wing. The 1994
addition is a Post Modern interpretation of the Art Deco-like style expressed in the earlier
portions of Shaw Memorial Hall, using brick, stone coping, and angular, vertical string courses
similar to those of the earlier portions of Shaw Memorial Hall, but also incorporating stucco and
simplistic geometric designs that are not present in the earlier portions of the building, and
excluding the floral bas-relief of the earlier portions. This stylistic adaption without exact
continuity of pre-existing styles aligns with historic preservation ideology of the 1990s (Massey
and Maxwell 2013).

The Corinthian columns found on the south faces of Shaw-Smyser Hall and McConnell
Auditorium are the symbol of the university on CWU’s official seal, despite the fact that the
school’s first building, Barge Hall, still stands and towers high above both Shaw-Smyser and
McConnell. As such, Shaw-Smyser Hall is an important part of the school’s image. As a
component of the first campus master plans of CWU (Brooks Library Digital Collection 2014i,
2014h), Shaw-Smyser Hall was designed to face south toward University Way (for details about the significance of the CWU buildings that face University Way, refer to the fourth-order subheading “Urban Planning” under the statement of significance for Kamola Hall).

The Work of Master Architects. Charles I. Carpenter, who designed the Library portion of Shaw-Smyser Hall in 1925, also provided CWU with designs for much of the initial campus growth (for details about Charles I. Carpenter, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall). One of Carpenter’s contributions, the first Student Association Building (the original portion of what is now known as the Old Samuelson Union Building), utilized Neo-Classical Revival elements similar to those of Shaw-Smyser Hall.

John W. Maloney, who designed the Classroom Building portion of Shaw-Smyser Hall in 1929, also contributed greatly to the design of the developing CWU campus between 1929 and 1958 (for details about John W. Maloney, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall).

Sue Lombard and Munson Halls

Both Sue Lombard and Munson Halls are in excellent condition, and are structurally sound, weatherproof and without major damage. The buildings are located in their original positions. Alterations and additions have been made to the building historically and recently, but such alterations have not affected the integrity of the building.

The buildings are significant to the City of Ellensburg and to CWU as intact examples of Spanish Colonial Revival architecture fashionable in the first quarter of the 20th century, and rare to the City of Ellensburg. Both buildings are locally significant as examples of urban planning, having contributed to the image that CWU continues to display to the general public as
representative of the university. The buildings represent the exemplary work of the master architect, Charles I. Carpenter. The Tunstall Commons building built just north of Sue Lombard Hall (and now connected to Sue Lombard Hall), and the addition to Munson Hall, are the exemplary work of the master architect John W. Maloney.

Criterion A

After the completion of the 1919 addition to Kamola Hall, student enrollment continued to rise, but state funding was unavailable for the construction of, or addition to, a dormitory, so the school had to exercise creativity in order to affordably accommodate students (Mohler 1967, 143). First, with the cooperation of local residents, a temporary plan was implemented that leased out rooms to students at a low rate in nearby private Ellensburg residences. Next, a more permanent solution was sought. In 1925, a law passed that granted the construction of amortized buildings on state property, such as the Normal School campus. The school acted quickly to sell bonds locally, and were able to fund the construction of two new dormitories (Mohler 1967, 143-144), Sue Lombard Hall and Munson Hall.

Criterion C

Design. The Spanish Colonial Revival style chosen for Sue Lombard Hall and Munson Hall continued the most visible architectural style of the first dormitory on campus, Kamola Hall (completed 1919), forming a stylistically cohesive set of dormitory buildings facing one of the main roads through Ellensburg. The style, which had been popularized in the United States by the Panama-California Exposition of 1915 (Pennsylvania Historical and Museum Commission 2014), is identifiable in the three dormitories by the use of balconets, curvilinear gables, decorative wooden window grills, and low-pitched clay tile roofing. The style is unique on the
CWU to Kamola, Munson, and Sue Lombard Halls; no other buildings on the campus utilize the style.

Urban Planning. Like Kamola Hall, Munson and Sue Lombard Halls were built to face the road nearest them (for details about the significance of the CWU buildings that face University Way, refer to the fourth-order subheading “Urban Planning” under the statement of significance for Kamola Hall).

The Work of Master Architects. Architect Charles I. Carpenter designed Kamola, Sue Lombard, and Munson Halls (for details about Charles I. Carpenter, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall). The addition made to Munson Hall in 1946 was designed by John W. Maloney (for details about John W. Maloney, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall).

McConnell Auditorium and Dr. Milo Smith Theatre Tower

McConnell Hall, constructed in 1935, is located immediately east of Barge Hall. McConnell Auditorium is significant to the City of Ellensburg and to CWU as an intact example of Neo-Classical Revival architecture fashionable for government and academic buildings in the first quarter of the 20th century. The building is significant to CWU as having been the first auditorium on campus to be separate from CWU’s first (and all-encompassing) building, Barge Hall. McConnell Hall is also significant to CWU in that it represents one remnant of an early campus master plan. McConnell Auditorium is significant to the City of Ellensburg and to CWU as an example of urban planning, having contributed to the image that CWU wished, and continues to wish, to display to the general public as representative of the university. The building is the work of a master architect, John W. Maloney, who was instrumental in the early
years of CWU’s campus development. The building is named for individuals distinguished in CWU history, Dr. Robert E. McConnell and Dr. Milo Smith.

Criterion B

Dr. Robert E. McConnell, after whom the building is named, contributed greatly to the physical growth and professional development of the school during his presidency between 1931 and 1959. One of his stated goals was to increase the number of buildings on the campus. At the end of the Great Depression, McConnell applied for and received federal grant money from the Public Works Administration under the Emergency Relief Appropriation Act of 1935 (CWUA 1935) to finance the construction of a combined arts and science building and auditorium. This building, the first building of McConnell’s vision for campus expansion, was completed in 1935. In 1963, this first building that Dr. Robert E. McConnell helped to plan and design during his presidency, the Industrial Arts and Auditorium Building, was named in his honor (Mohler 1967, 221).

A portion of McConnell Hall is referred to as the “Dr. Milo Smith Tower.” Dr. Milo Lee Roi Smith, according to his Curriculum Vitae (CWUA n.d. [b]), received his Ph.D. in Theatre and Drama from the University of Oregon in 1969. After teaching Speech and Drama at a high school in Oregon, Smith was hired as an Assistant Professor at CWSC in 1956 (CWUA n.d. [b]; Foster 1996), and became an Associate Professor for the school in 1973 (CWUA n.d. [b]). During his career at the school, Smith initiated and taught a great number of courses; directed and produced fifty-five large productions almost annually between 1956 and 1981 (“It’s Greek to Me! And Deliciously So to Helen and Milo Smith” 1994), including Broadway musicals and operas (CWU 2012); published in several magazines and journals, including The Cue Sheet in 1965 and Player’s Magazine in 1969; chaired the Theatre Arts Department; and contributed to
numerous statewide and national junior drama programs, conferences, and festivals (“It’s Greek to Me! And Deliciously So to Helen and Milo Smith” 1994). Smith also initiated the first children’s theatre tour at the school (CWU 2012).

In addition to his service to the school, Smith served his country as Staff Sergeant in the U.S. Marine Corps between 1943 and 1946 during WWII, as First Lieutenant between 1950 and 1952 during the Korean Conflict, and he was a Reserve Officer between active duties and until his resignation in 1957. Smith was an active member of the Ellensburg Rotary Club for fifty years (CWU 2012; “It’s Greek to Me! And Deliciously So to Helen and Milo Smith” 1994); he was involved with many professional organizations, including Professional organizations: American Educational Theatre Association, Washington Association of Theatre Artists, Western Speech Association, American National Theatre and Academy, American Association of University Professors (“It’s Greek to Me! And Deliciously So to Helen and Milo Smith” 1994); and he was a scholastic honorary member of Phi Beta Sigma, a dramatics honorary member of Alpha Psi, and forensics honorary member of Pi Kappa Delta (“It’s Greek to Me! And Deliciously So to Helen and Milo Smith 1994).

According to CWU’s official website (CWU 2012), it was the “vision and leadership [of Dr. Milo Smith] as project manager and designer [that] resulted in the 1980 construction of the department's black box theatre.” In 1981, he introduced the dinner theater concept to the school in 1981 (CWU 1996). Smith remained active in CWU productions after his retirement in 1990 (CWU 1996). In 1996, the Theatre Arts Department of CWU honored Smith by setting a plaque in the lobby of “McConnell Hall Tower Theatre to commemorate Smith’s . . . longtime leadership and service to Central students and the community” (CWUA 1996). The tower theater section of McConnell Hall was officially named in Smith’s honor in 2003 (CWU 2012). Smith
passed away in 2012 (CWU 2012), but his association with McConnell Hall and with CWU continues to be significant.

Criterion C

Design and Urban Planning. For details about Neo-Classical Revival architecture, its significance to institutions of higher education, and its use in the 1927 CWU campus plan that was to include McConnell Hall, refer to the fourth-order subheading “Design and Urban Planning” under the statement of significance for Shaw-Smyser Hall. The stylistic milieu of Shaw-Smyser Hall that had developed as the building awaited the completion was mimicked in the 1935 design of McConnell Hall, including both the Neo-Classical Revival style of the southern half of the building, and the subtle, modernized Art Deco-like style of the northern half of the building. An addition to the northwest end of McConnell Hall in 1979 concealed some of the Art Deco design, but a substantial amount of the exterior architecture that is most visible from University Way and the walking mall just west of the building has retained its original feel, design, use of material, etc. At the time that the addition was made, it was accepted practice in historic preservation that additions to historic buildings be Modern and distinctly different from the original design (Massey and Maxwell 2013; Tyler 2009). Within that context, the contrasting addition does not affect the integrity of McConnell Hall.

For details about the significance of the CWU buildings that face University Way, including McConnell Hall, refer to the fourth-order subheading “Urban Planning” under the statement of significance for Kamola Hall.

The Work of a Master Architect. John W. Maloney designed the original portion of McConnell Hall in 1935 to mimic the Neo-Classical Revival and Modernized Art Deco
components of Shaw-Smyser. For details about John W. Maloney, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall.

Hebeler Hall

The condition of the property is excellent. The building is structurally sound, weatherproof and without damage. Minimal alterations have been made to the building, and it is located in its original position. Hebeler Hall is significant for the formal schooling, and the methods and theories of teaching and learning, that were provided there when it was a teacher training laboratory between 1939 and 1982. The existing building has an identifiable relationship to its history as an elementary school and teacher training laboratory. Amanda Hebeler, the woman for whom the building is named and with whom the building is strongly associated, is significant to the history of CWU, Washington State, and teacher training in the United States.

Criterion A

CWU, as it is known today, began as the WSNS in 1891 (Owen 2009, 18). Its first building, Barge Hall, was completed on the present day campus in 1894 (Mohler 1967, 34), and the school operated as an educational institution for training teachers. In addition to a heating plant and a women’s dormitory, the WSNS had a teacher training school (called Edison Training School, which is no longer standing) that served as a teacher training center. In 1937, the Ellensburg Normal School was granted the authority to issue four-year degrees (Bach and Blair 2008, 16) and was renamed Central Washington College of Education (Owen 2009, 19). That same year, funds from a Public Works Administration grant and the Washington State Legislature were appropriated to construct and furnish a new teacher training laboratory building (Mohler 1967, 208) on the College’s campus adjacent to Edison Hall, replacing Edison Hall in function (Smith
Completed in 1939, the new building was called the College Elementary School (C.E.S.) (Smith 1992, 36), and later became known as Hebeler Hall. The design of the C.E.S. was very different from that of its predecessor, Edison Hall, due to a change in the national trend of philosophy toward childhood education (for details about the philosophy, refer to page 61 of this thesis under Chapter VI, “Historical Context”).

Criterion B

According to Smith (1992), “[e]very member of the C.E.S. training department, as well as the Central Education faculty and staff, had some part in suggestions for the model structure” (p. 38) of the new training school. Sarah Spurgeon, an art professor of CWCE, and her class designed the stained glass for the Nursery and Kindergarten windows (Smith 1992, 50). Reino Randall, another CWCE art professor, designed the fireplace tiles of the Kindergarten classroom with Mother Goose characters (Smith 1992, 50). And the recessed corridor facing the main (north) entrance still showcases the “Affection” statue created by William Zorach in memory of C.E.S. Kindergarten and Primary Supervisor, Clara Meisner. The library on the second floor at the north end of the south wing has a bay window that faces west, and a fireplace that is adorned with tiles designed by Spurgeon and her students, depicting ancient printing processes and children’s book characters. The library was described as “one of the first and finest elementary school libraries in the United States of America” (Smith 1992, 54).

Miss Amanda Hebeler, after whom the C.E.S. was renamed, has a local, state, and national significance that is associated with the building. When CWU was the Ellensburg Normal School, Hebeler directed its first teacher training school, Edison Hall (a building that is no longer standing), from 1924 until 1939 (Smith 1992). She also supervised rural teaching sites in Selah School District (Selah, Washington) from 1924 until 1927 (Smith 1992, 31-32). When plans
were being drafted for a new training school (the C.E.S. that was later named after Hebeler),
Hebeler “often spoke directly with the architect [John Maloney] and gave her professional
guidance regarding the construction plans” (Smith 1992, 37). Hebeler was the Director of
Teacher Training at College Elementary School from 1939 until 1956 (Smith 1992, 69). In 1963,
the C.E.S. became known as the Hebeler Elementary School (Smith 1992, 71). And, in 1971, the
school was renamed the Hebeler Children’s School (Smith 1992, 73). When CWU discontinued
the program (against major protests) in 1982, the building became known as Hebeler Hall, which
is the name it retains today.

To the children, Hebeler gave “much personal contact . . . both singly and in groups” (Smith
1992, 54). Hebeler had catalyzed a number of large programs, including a spring clean-up
project, a significant city-wide program where “children, students, and staff together encouraged
others to begin to care for their town and work as a group for a common goal of ‘city
beautification’ in Ellensburg” (Smith 1992, 19). In this way, Hebeler not only created a positive
learning environment for children and students of child development and teaching, she also
engaged community members throughout Ellensburg. As a representative of the Washington
State Kindergarten Primary Curriculum Committee (established 1934 by the State Department of
Education), Hebeler and others studied the values of full day Kindergarten, and, for its standard
implementation across the state, requested funding from the State Planning Council (Smith 1992,
65). In the 1920s, she carried out a program through the Ellensburg Normal School Health and
Physical Education Departments that created a teachers’ guide that was nationally recognized
and used by teachers in public school systems nationwide (Smith 1992, 20). According to
Mohler (1967), Hebeler, along with Dr. McConnell and Miss Mary Simpson, founded the Delta
Omicron chapter of the Kappa Delta Pi national educational honor society at the college. The
chapter “sponsored book reviews for the student body and general public and lectures on current topics, published a newsletter twice a year, and [gave] recognition teas for sophomores who maintained high scholastic records . . .” (p.189). Hebeler prepared a pamphlet called “Reading Readiness” in 1938, published by the State of Washington for teachers that continue to be used (Smith 1992, 65). She also created the “College Elementary School Procedures Ready Reference Guide for Staff members and College Students” in 1939. Thus, the importance of Miss Hebeler to CWU, Washington State, and the nation is clear, and her association with Hebeler Hall is significant.

Criterion C

Design. The style chose for the building was Neo-Classical Revival, but with Modern influence (for details about Neo-Classical Revival architecture and its significance to institutions of higher education, refer to the fourth-order subheading “Design and Urban Planning” under the statement of significance for Shaw-Smyser Hall). Ten classroom suites were “designed in details to vary according to the age groups which would use it” (Smith 1992, 47). The rooms of the building would suit the needs for a Nursery, Kindergarten, and grades one through six. The school was “designed to offer a stimulating environment for cooperative living and learning. Administrative offices, a library, a 350 person auditorium, a museum, a dining room seating 100 children, a kitchen, a health suite and playrooms . . .” (Smith 1992, 48). The entirety of CWCE used the C.E.S. auditorium for public functions and faculty meetings (Mohler 1967, 208).

The dedication of the C.E.S. building coincided with the centennial celebration of “the founding of public teacher education in the United States of America” (Smith 1992, 44). C.E.S. President Robert E. McConnell apparently circulated the news of the C.E.S.’s construction nationally, for several letters of praise and requests for copies of the C.E.S. plans came to CWCE
President McConnell shortly thereafter from Southern Illinois State Normal University, Stanford University School of Education, and Houghton Mifflin Company (Smith 1992, 45-46).

The architecture met the educational needs of both the children attending the school and the teachers training at the school. College students observed children and studied child psychology through one-way glass panels of the classrooms. According to Smith (1992), “Central Washington University pioneered in the movement of nursery school teacher training” (p. 49), which was available through the C.E.S. Also, “Central was the only state institution of higher education which provided training and learning opportunities for nursery school educators,” (Smith 1992, 49) up to 1951.

The building as a space for children remains visible in the architecture. The building remains largely unchanged. The low bay windows on the south face of the north wing are still present and are still adorned with the stained glass medallions “typical of education and of children” (Smith 1992, 50). The steel lockers for the children in intermediate grades still line the hallways. The Nursery and the Kindergarten doors still open out to a lawn that used to be comprised of two large playgrounds. Located in the playground area was a small, shallow pool with a bird bath fountain at its center and a concrete walking path around it. “Pond life was planned and cared for by the children of the fifth grade as a science activity” (Smith 1992, 53). Small pebbles of the pond are still located in the concrete ring of the lawn of the courtyard. The fountain was dedicated to Helen B. Smith (date unknown), who had been a Kindergarten teacher at the C.E.S. The placard memorializing Miss Smith is still present just outside of the shallow concrete ring of what used to be the pond. The circular concrete path and the bird bath fountain have since been removed. The south end of the south wing was originally a playroom with a vaulted ceiling, and was used alternately as a gymnasium or as three partitioned playrooms. Although the exterior of
the playroom remains distinct from the rest of the building in height and width, a 1985 remodel added a suspended ceiling to its interior to reduce the amount of space (for energy conservation purposes). The interiors of the south windows were blacked out, but are still present.

The Work of a Master Architect. Finally, Hebeler Hall represents the exemplary work of a master, architect John W. Maloney (for details about John W. Maloney, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall).

Old Heating Plant

The condition of the Old Heating Plant, which was built 1946-1947, is excellent. The building and the smoke stack are structurally sound, weatherproof and without damage. Minimal alterations have been made to the building, and it is located in its original position. The smoke stack, which was built in 1917, is also located in its original position. The building and associated smoke stack have an identifiable relationship to their history as a heating plant for the campus, retaining integrity of location, design, setting, craft, materials, feeling, and association. The design of the smoke stack is significant to the history of such technology at the turn of the twentieth century as an example of a builder’s art which was popular in the United States, but is no longer widely sought after due to the widespread availability of cheaper building materials.

Criterion C

Design. In 1894, the WSNS in Ellensburg had the beginnings of a campus, and, as buildings were added, the utility needs of the school were met in varying ways. Initially relying on a boiler in the basement of the Administrative Building (now Barge Hall) for heat (Brooks Library Digital Archives 2014j), the school adopted a steam heating plant system in 1907, which was updated in 1917 with the construction of a new heating plant and smoke stack on the south side of Eighth Avenue (University Way). The smoke stack was constructed circa 1917 by M.W.
Kellogg Company using “Improved Corrugated Perforated Radial Bricks” (Internet Archive 2001). There is a white tile design on the uppermost neck of the smoke stack. The top of the stack steps slightly outward. On the north side of the stack is a cast iron hatch door with an arched structural opening. The door is embossed with the words: “The M.W. Kellogg Co. Chimney Builders. New York.” By 1944, the growing needs of the school demanded a new, larger heating plant, and the post-WWII availability of funds for this purpose finally became available. The 1917 heating plant was demolished, except for its smoke stack, which was retained for use with the newer heating plant. Since the construction of brick smoke stacks fell out of favor with the introduction of cheaper materials post WWII, the 1917 smoke stack is representative of a distinct period and style. The heating plant, completed in 1947, heated the entire campus with coal-fired boilers (and eventually with both coal- and natural gas-fired boilers) until 1975 when a new Heating and Cooling Plant was constructed in the northern part of campus.

The Work of a Master Architect. The 1944 design of the Old Heating Plant (completed in 1947) represents the exemplary work of a master architect, John W. Maloney (for details about John W. Maloney, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall).

Lind Hall

The condition of the property is excellent. The building is structurally sound, weatherproof and without damage. Minimal alterations have been made to the interior of the building, no alterations to the exterior (apart from reroofing), and the building is located in its original position. Lind Hall is significant to CWU as the first building on campus solely dedicated to the sciences. The architecture of Lind Hall exemplifies the distinct characteristics of the Neo-
Classical Revival style associated with the sciences at institutions of higher education. Lind Hall represents the exemplary work of a master, architect John W. Maloney. Features of the building demonstrate high artistic value. The existing building has an identifiable relationship to its history as a classroom and laboratory building dedicated to the natural sciences. Edmund L. Lind, the man for whom the building is named and with whom the building is associated, is historically significant.

Criterion A

Science classes were initially held in Barge Hall until demand for more science classroom and laboratory space pushed the sciences into the school’s first heating plant, located just east of Barge Hall, in 1914 (Brooks Library Digital Collection 2014s). The heating plant was remodeled and renamed the “Science Hall” in 1914, but continued to serve its original purpose as a heating plant for the campus (Brooks Library Digital Collection 2014t). Within two decades, the heating plant facilities were inadequate for housing the sciences (Mohler 1967, 206). In 1937, a new building was constructed to house the school’s auditorium and the Art and Science Departments (Mohler 1967, 207), now called McConnell Hall. But, shortly after its completion, the Science Department had outgrown the facilities of McConnell Hall, too. According to Mohler (1967, 208), the Washington State Legislature of 1941 appropriated money for the construction of a separate science facility. As the United States entered WWII, there was both a higher demand for education in the sciences and no funding available to meet this demand until after the War. As then-president Robert E. McConnell noted, "the construction of the Science Building [was] held up do [sic] to the pressure of defense projects" (CWUA 1941). The project was allowed to move forward in 1946, and construction was completed 1947 (CWUA 1948; Mohler 1967, 209). As such, Lind Hall is significant to CWU because it is the first building on campus to be dedicated
solely to the sciences, and has remained in continual use as a classroom and laboratory building for science-related departments since its construction. Lind Hall is also significant in that it contributes to the broad patterns of history related to education, science, federal involvement in funding education, and post-WWII culture.

Criterion B

Edmund Leroy Lind, the man for whom the building is named and with whom the building is associated, is significant to the history of the school, as well as to the community of Ellensburg, Washington State, and the nation. Lind was born in 1900, received his Ph.D. from the University of Chicago, was hired by WSNS in Ellensburg in 1936 as an Associate Professor of chemistry and the Chairman of the Division of Science and Mathematics in 1936 (CWUA 1948; CWUA 1981), and was elevated to full professorship status within one year (CWUA 1981). During WWII, Professor Lind was heavily involved in the planning and promotion of the construction of the science building that would eventually bear his name (Mohler 1967, 332-333). For inspiration, Lind and school President Robert McConnell visited three buildings in Washington and Oregon, including the chemistry building at the University of Washington, for ideas that could be incorporated into the design of the new science building (CWUA 1941). According to Mohler (1967), Lind was a reserve officer for the Chemical Warfare Service (CWS), the Chemical Corps, and served “active duty with the CWS during WWII, in which he directed a chemical inspection organization extending from Boston to San Francisco (p.332). Lind also served in the Korean Conflict, writing and editing “Army and Air Force manuals in this area [central Washington], and participat[ing] in one of the Nevada atomic bomb exercises” (Mohler, 1967, 332). Lind presented his research nationally, including “the *Journal of Chemical Physics, Journal of Colloid Science, Journal of the American Chemical Society,* and *Journal of*
Chromatography” (Lind and Young 1933; Mohler 1967, 332). At the school, Lind was chairman of the Division of Sciences and Mathematics from 1936 (CWUA 1936) until 1962, except during periods of active military service (CWUA 1981). Lind was “president of the WEA unit; was a charter member and president of the AAUP chapter; chairman of the Faculty Council; and one of a committee which drew up the Faculty Code of Personnel Policies and Procedures” (Mohler 1967, 332-333). A letter from CWSC from President McConnell to Dr. Lind implies that the ROTC Program, which the school continues to host, was awarded to the CWSC because of the work that McConnell and Lind independently did for the government (CWUA 1951). In 1952, while serving the military at the Chemical Corps School at Fort McClellan in Alabama, college President McConnell promoted Lind to President of the Association of Colleges for Teacher Training (CWUA 1952). On May 12, 1964, Lind officially resigned from his professorship position at the college (CWUA 1964 [May 12]). The next day, on May 13, 1964, the Science Building was named in honor of Dr. Lind by President James E. Brooks and the CWSC Board of Trustees (CWUA 1964 [May 13]). In Ellensburg, Lind was a member and president of the Rotary International Club and a board member for the Ellensburg Chamber of Commerce. The Dean of Instruction at the college, Mr. J. Wesley Crum, wrote a letter to Lind, expressing his disappointment at Lind’s resignation, and stating that Lind “[had] made a tremendous contribution to the development of CWSC and particularly to the development of the Division of Science,” adding that, “[i]t would take a long time to enumerate the many fine things that have come about because of [Lind’s] leadership . . . Few persons have done more to help Central develop the outstanding reputation that it has today. [Lind has] gained the confidence and respect of the people of the State of Washington, the alumni and the faculty at Central” (CWUA 1964 [April 13]).
Criterion C

Design. The architecture of Lind Hall exemplifies a local trend in building type. Although the architecture of Lind Hall is representative of its period in that it has distinctly Modern features, efforts were taken by the architect to continue the Neo-Classical Revival style used for the non-residential facilities of the campus (for details about Neo-Classical Revival architecture and its significance to institutions of higher education, refer to the fourth-order subheading “Design and Urban Planning” under the statement of significance for Shaw-Smyser Hall). Lind Hall is representative of this broad pattern of architectural history, specific to the campuses of higher education in the United States. The exterior wall design is brick with Indiana limestone window surrounds, cornices, two-story fluted columns at the main entrance, and two-story secondary entrance bas-relief head surrounds. The style was slightly Modernized for Lind Hall, using all flat structural openings (rather than the characteristic semi-circular structural openings of the Neo-Classical Revival of the 1920s) for the windows, and a flat, rather than a gabled, roof.

High Artistic Value. Features of Lind Hall demonstrate high artistic value. The interior design includes pink “terrazzo stairs and hall floors of unusual beauty, and a central foyer paneled in white oak with recessed display cases for feature exhibits” (CWUA 1948). A large, color, terrazzo map of Washington State is located on the floor at the center of the building, just north of the main entrance foyer. Hanging above the floor map is a Foucault pendulum that was modeled after that of St. Isaac’s Cathedral in Leningrad to demonstrate the revolution of the earth (CWUA 1948). The pendulum hangs thirty-six feet from the interior of the roof and passes through an opening in the floors of the second story and third-story penthouse (American Journal of Physics 1961). The third story penthouse leads to an astronomical observatory on the roof.
The uniqueness and artistic beauty of the building were boasted by then-President McConnell to be “unexcelled in any undergraduate college in the country” (CWUA 1948).

The building continues to have an identifiable relationship with its history as a classroom and laboratory building dedicated to the natural sciences (most notably through such features as the Foucault pendulum of the interior and the exterior bas-reliefs above the secondary entrances that depict themes of scientific study).

The Work of a Master Architect. Lind Hall represents the exemplary work of a master architect, John W. Maloney (for details about John W. Maloney, refer to the fourth-order subheading of the same name under the statement of significance for Kamola Hall).

Button Hall

The condition of the property is excellent. The building is structurally sound, weatherproof and without damage. Alterations have been made to the interior of the building, and some minor alterations have been made to the exterior (apart from reroofing and re-stuccoing, the windows have been replaced and a wheelchair access elevator has been added). The building is located in its original position. The architecture of Button Hall exemplifies the distinct characteristics of the Art Deco Moderne style that was popular in the United States between 1930 and 1950. Frank Button, the man for whom the building is named and with whom the building is associated, is locally significant.

Criterion B

Button Hall is named for the man who commissioned the construction of the original apartment complex in 1947, Mr. Frank Button. Frank Button owned and operated the apartment complex until the school purchased it from him in 1960. Button was a prominent local figure,
having owned and operation Button’s Jewelry in the Historic Downtown area on Fourth Avenue and Pine Street.

Criterion C

Button Hall is located within the boundaries of the First Railroad Addition Historic District and is, therefore, subject to the regulations set forth by the Ellensburg Certified Local Government in Chapter 15.280 ECC. The listed “Style Type” for the district is “various;” thus, Button Hall’s late Art Deco Moderne style, although inconsistent with the typical Ranch House design of the district, is acceptable. Within the context of the campus, the Art Deco Moderne style of Button Hall provides continuity with the west face of Shaw Hall, just east of Button Hall.

Stephens-Whitney

The condition of the property is excellent. The building is structurally sound, weatherproof and without damage. Very few alterations have been made to the interior or exterior of the building since its construction in 1959, with the exception of a small remodel of the north face in 1970 that closed one of the two breezeways, further restricting access to the inner courtyard area. The building is located in its original position. The architecture of the Stephens-Whitney dormitories exemplifies the distinct characteristics of the Mid-Century Modern style. The complex also represents the exemplary work of two master architects, Cowan and Paddock.

Criterion C

Design. The Mid-Century Modern style was popular in the United States between 1930 and 1950. Stephens-Whitney represents a more specific popular trend in architecture related to the use of experimental floor plan shapes of residential buildings between 1948 and 1962 (Massey and Maxwell 2013).
The Work of a Master Architect. The complex was designed by partners James D. Cowan and William Paddock. According to Houser (2015), Cowan was a successful architect who had worked under John W. Maloney until forming his own architectural firm in 1957, partnering with William Paddock. As partners, Cowan and Paddock influenced the architecture of Central Washington, particularly for banks and institutions of higher education in the Yakima and Kittitas Valleys, including such works as: “Adamson Building (1964); Bank of Yakima (1960; Yakima Valley Junior College (1962); and the National Bank of Washington (1968) . . . Big Bend Community College (1963) . . . the Central Valley Bank (1962) . . .; KEPR TV Studio (1964) . . .; and the Pateros Public Library (1966)” (Houser 2015). Cowan’s contribution to the architectural climate of Washington State also included presidential terms with the Central Washington Chapter, Washington State Chapter, and Washington Council of the AIA (Houser 2015).

Nicholson Pavilion

The condition of the property is excellent. The building is structurally sound, weatherproof and without damage. Some alterations have been made to the interior, such as the replacement of the original indoor pool with a dance studio, since construction in 1959. The exterior has changed very little, with the exception of the east entrance having been moved and a small addition being made to the west end of the pavilion. However, the overall character and feel of the building has retained its integrity. The building is located in its original position. The architecture exemplifies distinct characteristics of high-style Modern architecture in the 1950s-1960s. The building also represents the exemplary work of a master architect, Ralph H. Burkhard. The man after whom the building is named is locally significant and has a direct association with the building.
Criterion B

The building was named in honor of Leo Nicholson, a nationally recognized coach who worked at CWU from 1929 until 1964. The building was dedicated in 1960 while Nicholson was still a staff member of the school, which was the first time such a thing had occurred at the school. While with the school, Nicholson coached every major sport, except for baseball, during which time he produced nine Conference Championship Basketball teams, was inducted into the National Association of Intercollegiate Hall of Fame, and served as chairman of the Health and Physical Education Division, District Chairman, Director of Athletics, member of the Executive Board, President of the National Association of Intercollegiate Athletics, and President of the WINCO Conference, Evergreen Conference, State Coaches Association, and State Association of Health, Physical Education and Recreation (Mohler 1967). Nicholson was involved in the conceptual planning of the building that now bears his name, contributing ideas for the design based on his experience with physical education and the demands of accommodating facilities (Mohler 1967).

Criterion C

Design. According to Dr. Rosewell Merrick, past president of the NAIA, Nicholson Pavilion “is not a gesture of a popular fad of the moment, but a tangible recognition of the college’s responsibility to the totality known as man. This building will stand as a monumental design to the education of people”” (“CWCE PE Building Named Leo Nicholson Pavilion” 1960). While the design may not have been a “gesture,” it certainly was exemplary of some of the high-style Modern architecture of the 1950s-1960s, which employed dramatic engineering concepts to approach architectural forms that would move away from the box-like forms of the mainstream Modern movement (Massey and Maxwell 2013).
The Work of a Master Architect. The building was designed by Ralph H. Burkhard, and is exemplary of his work as an architectural master. Under the U.S. Engineers Office, Burkhard was the lead architect on the design of the Pentagon Building in Washington, D.C. Beginning in 1943, Burkhard was part of the Boeing C-97 Stratofreighter project in Seattle, Washington. Throughout his career, Burkhard was well-recognized and awarded for his designs, including an AIA award for his design of Nicholson Pavilion (Houser 2015). Much of his architectural designs contributed to the educational architecture of Washington State, including: “Highline Community College (1966); Kenmore Elementary School (1955); Melody Hill Elementary School (1958) . . .; Mountlake Terrace Highschool (1959); and Alfred Cleveland Hall (1963)” (Houser 2015). Burkhard’s designs were also notably unique in engineering design, building technique, and aesthetic design, and Nicholson Pavilion was no exception, using cables and prestressed concrete pylons to support the main roof and wall panels.

Auxiliary Services Storage and Power Technology Laboratory

The condition of the properties is good. Both the Auxiliary Services Storage and the Power Technology Laboratory are structurally sound and weatherproof. Very few alterations have been made to the Auxiliary Services Storage unit, though some alterations have been made to the east and north faces of the Power Technology Laboratory. Some of the siding on the lower portion of the east—and possibly the north—face was replaced, but the newer siding matches the original siding in both material and style. A bay door on the east face of the Power Technology Laboratory was replaced with an access door, causing a visual impact to the original building that weakens the integrity of the building’s original character, but not so greatly that it disqualifies the building from NRHP nomination. Both buildings appear to be located in their original positions. Though the style is utilitarian, the architecture embodies the builder’s art of a
particular period by a specific building manufacturer that operated during the impetus of a manufactured buildings movement.

Criterion C

Design. WWII fostered the popular embrace of new technologies, includes those related to construction materials and methods of construction. Following the War, pre-fabricated, corrugated metal structures with sliding hanging doors became popular for utilitarian uses (Massey and Maxwell 2013). The Auxiliary Services Storage and Power Technology Laboratory are nearly identical and were constructed beside each other, probably at the same time, at an unknown date between 1948 and 1959. Both buildings bear the trademark “Butler” in the peaks of their gable faces. As early as 1948, the Butler Manufacturing Company of Kansas City was assembling buildings made of timber studs and sheet metal almost exclusively in a rigid frame form. The paneling of the Auxiliary Services Storage and Power Technology Laboratory is of the BR1 model (deep drawn corrugated steel sheet), which was reportedly used until 1959 when a new style of wall paneling began to be used by the company (Butler Building Parts Online 2015). Though many such buildings continue to be used, very few of these buildings remain intact in their original state (Butler Building Parts Online 2015).

Bouillon Hall

The condition of the property is excellent. The building, completed in 1961, is structurally sound, weatherproof and without damage. Extensive alterations have been made to the interior, but the exterior has changed very little since its construction in 1961. The building is located in its original position. The architecture exemplifies distinct characteristics of Modern architecture. The building also represents the exemplary work of a master architect, Fred Bassetti.

Criterion C
Design. As an example of Mid-Century Modernism, Bouillon Hall maintained the basic box-like massing of Modern principles, but adopted textured and sculpted elements to escape the monotony of Modernism’s typically stark appearance (Dober 1996). Bouillon Hall has a pre-fabricated, folded plate roof and north wall. Honeycomb-like, latticed brick sun screens are cantilevered from the east and west faces of the building to shade the main windows of each story and to provide texture to the otherwise smooth exterior surfaces. These sun screens of Bouillon are what Gowans refers to as elements of a Subliminal Eclectic Modern substyle, specifically the substyle “Screen,” which is most readily identified “by open-work screens applied to façades and walls of buildings, especially over windows . . .” (1992, 299-313).

The Work of a Master Architect. Bouillon Hall was designed by master architect, Fred Bassetti. The designs of Bassetti have received great recognition and even national awards, including the Children’s Petting Zoo at Woodland Park, Lakeview Elementary School of Mercer Island, the Key Tower of Seattle (Connelly and Cohen 2013). The Ridgeway dormitories of Western Washington University were designed by Bassetti, and he provided several designs for CWU, including that of Bouillon Hall, which won a 1961 Honor Award from the Washington State AIA.

Hertz Hall

The condition of the property is good. The building, completed in 1963 is structurally sound, weatherproof and does not appear to have suffered any elemental damage, though “structural repairs” were made to the building in 1993 (The Tsang Partnership). The building is located in its original position. The architecture exemplifies distinct characteristics of Expressionist Modern architecture. The building also represents the exemplary work of a master architect, Fred Bassetti. The building is named for, and associated with, a locally significant person.
Criterion B

Hertz Hall was named in 1964 in honor of Dr. Wayne S. Hertz, the Choir Director and Chairman of the Music Division and Department at the Central Washington College of Education (and later the Central Washington State College) between 1938 and 1974. Hertz began teaching at the college when the Music Department was located in the Edison Manual Training Building, and he was instrumental in the design of the new music building that would come to bear his name. As Chairman of the Department, Hertz worked closely with the architects of the new building and with the Music staff to help design the building according to the needs of the Department (Mohler 1967). The building bore Dr. Hertz’s name for the eleven years that he worked in it.

Criterion C

Design. Hertz Hall is exemplary of the Screen sub-substyle of the Subliminal Eclectic Modern substyle of Mid-Century Modern architecture (for details about this style, refer to the fourth-order subheading of the same name under the statement of significance for Bouillon Hall). Like Nicholson Pavilion, Hertz Hall uses folded plate, rock-textured concrete panel walls as a main feature on its exterior architecture. At the time of Hertz Hall’s construction, awnings of slatted metal were (but are no longer) positioned above the main windows as sun screens.

The Bassettis

Meisner, Sparks, Beck, and Hitchcock Halls were all built in 1964-1966 as the first phase of the dormitory complex commonly referred to as “The Bassettis” (which came to include Sparks and Quigley Halls the following year in 1966). The condition of each property is excellent. Each building is structurally sound, weatherproof and without damage. Insignificant minor changes have been made to the buildings since their construction, such as fire safety improvements, re-
roofing, and some window replacements. The buildings are located in their original positions. The architecture exemplifies distinct characteristics of Late Modern architecture and are exemplary of the work master architect, Fred Bassetti.

Criterion C

Design. The Bassettis collectively represent an example of Late Modern architecture. The corners of the walls are not all 90° angles, demonstrating an attempt to move outside the formal designs typical of the early and Mid-Century Modern periods. The floor plans are J-shaped, representing the end of the era of experimental plan shapes on the campus. All the buildings of the Bassettis complex use smooth brick with occasional diagonal brickwork designs that are flush with the wall. The buildings possess artistic value in that each randomly displays bricks uniquely designed to have either an impressed or raised design.

The Work of a Master Architect. The Bassettis Complex was designed by master architect, Fred Bassetti (for details about Fred Bassetti, refer to the fourth-order subheading of the same name under the statement of significance for Bouillon Hall).
CHAPTER X

RESULTS, DISCUSSION, AND RECOMMENDATIONS

Results

Individual Property Eligibility

CWU owns and leases, collectively, 184 buildings in Ellensburg, Washington. As of 2015, thirty-seven of said properties were identified as historic. The number of historic properties will change as time progresses and more buildings reach an historic age. Of the historic properties identified in 2015, twenty were found to meet at least one criteria for potential eligibility to the NRHP and also possessed integrity. This, too, may change as buildings gain significance and lose or regain integrity (via remodel, restoration, etc.). The map below (Figure 10.1) shows the locations of the properties identified in this thesis as potentially NRHP eligible properties within the context of the main Ellensburg campus. Table 1 provides the names of the potentially eligible properties and how each was determined to be eligible.
Figure 10.1. Map of the CWU campus with buildings (in red) that are historic, significant, and have integrity. (Map created by Lauren Walton and Chris Goodner 2015).
Table 1. Properties of the CWU campus identified as potentially NRHP eligible, as of 2015.

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Year</th>
<th>Historic?</th>
<th>Criterion A</th>
<th>Criterion B</th>
<th>Criterion C</th>
<th>Criterion D</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge Hall</td>
<td>1893 - 1894</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Kamola Hall</td>
<td>1911; additions 1913, 1915, 1919, 1922, 2003</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Smyser Hall and Shaw Memorial Hall</td>
<td>1925 and 1929, respectively; additions 1957-59, 1962-1963, 1991-1994</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Munson Hall</td>
<td>1926; addition 1946-1947</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sue Lombard Hall</td>
<td>1926</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>McConnell Hall</td>
<td>1935</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heubler Hall</td>
<td>1938</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Old Heating Plant and Stack</td>
<td>1946 and 1917, respectively</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lind Hall</td>
<td>1947</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Button Hall</td>
<td>1947</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Stephens-Whitney</td>
<td>1958-1959</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nicholson Pavilion</td>
<td>1959</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Auxiliary Services Storage</td>
<td>Circa 1948-1964</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Power Technology Lab</td>
<td>Circa 1948-1964</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bouillon Hall</td>
<td>1960-1961</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hertz Hall</td>
<td>1963</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Meister Hall</td>
<td>1964</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sparks Hall</td>
<td>1964</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Beck Hall</td>
<td>1964</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hitchcock Hall</td>
<td>1964</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

379
District Eligibility

By virtue of being part of one college campus, significant historic properties that possess integrity share a relationship with each other that qualifies for historic district designation, if within a defined, contiguous area (NPS 2002, 6). Of the twenty properties found individually eligible for nomination to the NRHP, twelve are located in contiguous proximity to each other (Figure 10.2) and, therefore, have potential for designation together as an historic district. These

![Figure 10.2. Proposed South Campus Historic District. (Map created by Lauren Walton and Chris Goodner 2015).](image)
buildings include: Barge Hall, Kamola Hall, Shaw-Smyser Hall, Munson Hall, Sue Lombard Hall, McConnell Auditorium (and Dr. Milo Smith Theatre Tower), Hebeler Hall, the Old Heating Plant, Lind Hall, Button Hall, Bouillon Hall, and Hertz Hall.

The majority of these buildings represent the WSNS period of the school’s history when it served the primary mission of training teachers. Buildings that were constructed while the school was a Normal School include: Barge Hall, Kamola Hall, Shaw-Smyser Hall, Munson Hall, Sue Lombard Hall, and McConnell Auditorium. The transition in 1937 from Normal School to Central Washington College of Education was mostly a programmatic extension of the existing teacher-training mission. Thus, the construction of Hebeler Hell in 1938 as a teacher training facility was consistent with the educational ideologies alive on the campus during the College of Education period, though its design represented a transition into a new architectural period for the school (with early Modern elements). The other five buildings (Old Heating Plant, Lind, Button, Bouillon, and Hertz) more clearly represent the beginnings of great changes for the institution in regards to student enrollment, national and global awareness, new technologies and styles, and new educational directions that would minimize the school’s original mission of solely training teachers, and maximize expansion and the specialization of fields of study.

Among the twelve potentially NRHP eligible properties just described, Barge Hall is the oldest and most distinctive in style (no other building on campus uses the Richardsonian Romanesque style). It is currently listed on the NRHP for its national significance as a State Normal School; thus, it provides an anchor, by means of this national recognition, for the significance of the surrounding potential historic district area discussed here. The surrounding eleven potentially eligible properties augment the importance of this history to the local community, and to Washington State and U.S. history.
Because an historic district is intended to protect an area that “capture[s] the sense of place” (Tyler 2009, 170) for the important era it represents in a given community’s history, it is common to include within the boundaries of an historic district those buildings that are not necessarily eligible for NRHP nomination individually, but that contribute to the overall historic setting. On the CWU campus, within the historic area represented by the twelve buildings discussed here, there are several interspersed buildings that individually are ineligible for nomination to the NRHP but collectively contribute to the sense of place that the twelve potentially eligible properties represent. The Old Samuelson Union Building, which is located north and at the center of the potential historic district discussed here, is currently ineligible for NRHP nomination due to lack of structural integrity in its southern half. However, it contributes greatly to the historical atmosphere of the potential historic district area in that it is composed of buildings and additions that visually represent different periods of campus development and tie to other individual buildings that are also representative of those given developmental periods. The original gymnasium portion of the building, for instance, has Neo-Classical elements that relate to those of Shaw-Smyser, McConnell, Hebeler, and Lind, while the northern portion of the building has Late Mid-Century Modern elements that relate to those of Mary Grupe and Bouillon. Tunstall Hall, as another example, is attached to the north face of Sue Lombard Hall, but is ineligible for NRHP nomination because of remodeling that altered the original appearance and has not yet reached an age of historic significance. Tunstall was constructed in 1950 and has since served the campus community as a dining facility. Facing what was once Bouillon Library, Tunstall Hall contributes to the atmosphere of campus living in the early 20th century as part of an inclusive college environment with dormitories, dining services, library, instructional classrooms, administrative buildings, and student recreation. The Computer Center, between the
Old Samuelson Union Building and new Black Hall, has also had its physical appearance compromised and is therefore ineligible for NRHP nomination. However, it stylistically represents the architectural character developing on the campus during the same early Mid-Century Modern era as Tunstall, Lind, and the Old Heating Plant. Similarly, the Mary Grupe Conference Center, which was built in 1961 and has since lost the context of its original partner building (old Black Hall) and its surrounding water feature, is an intact example of Expressionist Modern architecture whose character contributes to the emerging transition on campus post-WWII period from traditional forms (as Lind Hall attempted to reconcile) toward Modern forms (as Bouillon Hall embraced).

Discussion and Recommendations

National Register of Historic Places Nomination

It is recommended that the properties identified in this thesis as potentially NRHP eligible be nominated for individual and/or district designation on the NRHP. The nomination (and designation) of an historic district, as described in this thesis, would foster greater ties between the University and the Ellensburg community by demonstrating the University’s shared community heritage preservation values. A designated historic district in the southern area of the campus nearest the core of the city would physically tie elements of CWU’s heritage to those of the greater Ellensburg community by creating continuity between the campus and the residential First Railroad Addition Historic District immediately west of campus, the Rodeo Fair Grounds Historic Landmark south and east of campus, and the Downtown Ellensburg Historic District south and west of campus.

To nourish the mindful stewardship and development of the CWU campus within the context of the City of Ellensburg, it is recommended that Facilities strengthen its partnerships with
community organizations to ensure that physical development of the campus continues to contribute to a community setting that is expressive of the historic legacy of Ellensburg, while fostering sustainable additions to the campus that will serve the current and future needs of the school as a model.

A Campus Heritage Management Plan

The National Register was developed for use as a planning tool (36 CFR 60.2). In this capacity, the inventory and evaluation of CWU properties for NRHP eligibility is offered to Facilities as a means of facilitating the planning process for the management and development of the CWU campus and facilities.

The next step will be to integrate this information into the cultural resource management planning portion of the CWU CMP, using Secretary of Interior’s Standards for Historic Rehabilitation (36 CFR 67). It is recommended that a Campus Heritage Management Plan be developed whereby the information gathered and generated by this thesis is used as a reference guide alongside a specific planning checklist during campus planning, designing, and construction, to provide for the responsible stewardship of the university’s heritage assets during said activities. In order to contribute a comprehensive treatment plan for the campus, it is recommended that the proposed Campus Heritage Management Plan combine the findings of this thesis with those of the Campus Tree Plan (Barker Landscape Architects and Paul West, Urban Forester 2006) and the Campus Buildings Conditions Report (Facilities 2014). Such a comprehensive plan would also benefit from the study and development of a Heritage Landscape Plan for the campus (similar to the Campus Tree Plan), focusing on circulation, landscaping, and streetscape heritage features.
Under the integrated Campus Heritage Management Plan, Facilities could develop a programmatic agreement with DAHP, whereby routine and regularly scheduled maintenance and repair projects could be made exempt from timely and costly GEO 05-05 review. Such exemptions allow for greater fluidity, given that certain factors are addressed in a CWU-DAHP programmatic agreement, such as following an agreed upon management process for historic properties (DAHP 2005).

As the Facilities CMP represents a vision for a specific period of time and is updated regularly, the planning process itself is ever-changing and ongoing. Similarly, the evaluation of CWU’s properties for potential NRHP eligibility will be an ongoing process. The passage of time will inevitably bring more CWU properties into an historic status, making them potentially eligible. As properties become historic, it will be necessary to evaluate them for significance and integrity in order to better plan for their treatment. Table 2 provides a list of buildings that exist and are owned or leased by CWU as of 2015, along with the dates of their construction and the dates that they will become historic and ready for evaluation. Some buildings have had additions and remodels. In the event that such actions had greatly altered the integrity of the property, the date of historic age would be reset to the date of the altering action.
Table 2. The age at which each CWU property should be evaluated for NRHP eligibility.

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Year of Construction: Addition/Remodel</th>
<th>Date of Historic Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barge Hall</td>
<td>1893 - 1894</td>
<td>1944</td>
</tr>
<tr>
<td>Kamola Hall</td>
<td>1911; 1913, 1915, 1919, 2003</td>
<td>1961</td>
</tr>
<tr>
<td>Munson Hall</td>
<td>1926; 1946-1947</td>
<td>1976; 1997</td>
</tr>
<tr>
<td>Sue Lombard Hall</td>
<td>1926</td>
<td>1976</td>
</tr>
<tr>
<td>McConnell Auditorium and Dr. Milo Smith Theatre</td>
<td>1935, 1979</td>
<td>1985; 1929</td>
</tr>
<tr>
<td>Jongeward Warehouse (Green Giant)</td>
<td>1937</td>
<td>1987</td>
</tr>
<tr>
<td>Hebelel Elementary School</td>
<td>1938</td>
<td>1988</td>
</tr>
<tr>
<td>Old Heating Plant and Smoke Stack</td>
<td>1944-1946 and 1917</td>
<td>1996</td>
</tr>
<tr>
<td>Lind Science Hall</td>
<td>1947</td>
<td>1997</td>
</tr>
<tr>
<td>President's Residence</td>
<td>1947; 1967-1968</td>
<td>2018</td>
</tr>
<tr>
<td>Button Hall</td>
<td>1947</td>
<td>1997</td>
</tr>
<tr>
<td>International Center ("Kennedy Hall")</td>
<td>1948</td>
<td>1998</td>
</tr>
<tr>
<td>Tunstall Commons</td>
<td>1950, 1965</td>
<td>2015</td>
</tr>
<tr>
<td>North Hall</td>
<td>1951</td>
<td>2001</td>
</tr>
<tr>
<td>Grounds Warehouse</td>
<td>Pre-1953</td>
<td>2003</td>
</tr>
<tr>
<td>Computer Center (College Book Store)</td>
<td>1954, 1979</td>
<td>2029</td>
</tr>
<tr>
<td>Wilson Hall</td>
<td>1954-1955</td>
<td>2005</td>
</tr>
<tr>
<td>Peterson Hall (Allan Apartments)</td>
<td>circa 1955</td>
<td>2005</td>
</tr>
<tr>
<td>Nicholson Pavilion</td>
<td>1959</td>
<td>2009</td>
</tr>
<tr>
<td>Tomlinson Stadium</td>
<td>1959; 1968</td>
<td>2018</td>
</tr>
<tr>
<td>Short-Getz Apartments</td>
<td>1958-1960</td>
<td>2010</td>
</tr>
<tr>
<td>Auxiliary Services Storage</td>
<td>circa 1948-1964</td>
<td>2014</td>
</tr>
<tr>
<td>Power Technology Lab</td>
<td>circa 1948-1964</td>
<td>2014</td>
</tr>
<tr>
<td>Copy Cat Shop</td>
<td>1960-1961</td>
<td>2011</td>
</tr>
<tr>
<td>Bouillion Hall</td>
<td>1960-1961</td>
<td>2011</td>
</tr>
<tr>
<td>Mary Grispe Conference Center</td>
<td>1959 - 1961</td>
<td>2011</td>
</tr>
<tr>
<td>Anderson-Moore Hall</td>
<td>1961</td>
<td>2011</td>
</tr>
<tr>
<td>Wahlen (Married Student Housing)</td>
<td>1961</td>
<td>2011</td>
</tr>
<tr>
<td>Campus Security</td>
<td>circa 1962</td>
<td>2012</td>
</tr>
<tr>
<td>Hertz Music Hall</td>
<td>1963</td>
<td>2013</td>
</tr>
<tr>
<td>Meisner Hall</td>
<td>1964</td>
<td>2014</td>
</tr>
<tr>
<td>Sparks</td>
<td>1964</td>
<td>2014</td>
</tr>
<tr>
<td>Beck</td>
<td>1964</td>
<td>2014</td>
</tr>
<tr>
<td>Hitchcock Hall</td>
<td>1964</td>
<td>2014</td>
</tr>
<tr>
<td>Davies</td>
<td>1965-1966</td>
<td>2016</td>
</tr>
<tr>
<td>Quigley</td>
<td>1965-1966</td>
<td>2016</td>
</tr>
<tr>
<td>Dean Science Building</td>
<td>1966; 2009</td>
<td>2059</td>
</tr>
<tr>
<td>Alford-Montgomery Hall</td>
<td>1967</td>
<td>2017</td>
</tr>
<tr>
<td>Carmody-Munro Hall</td>
<td>1967</td>
<td>2017</td>
</tr>
<tr>
<td>Green Hall</td>
<td>1967</td>
<td>2017</td>
</tr>
<tr>
<td>Kennedy Hall</td>
<td>1967</td>
<td>2017</td>
</tr>
<tr>
<td>Others of Student Village North, Phase I</td>
<td>1967</td>
<td>2017</td>
</tr>
<tr>
<td>Randall-Michaelsen Hall</td>
<td>1969</td>
<td>2019</td>
</tr>
<tr>
<td>Mitchell Hall</td>
<td>1967-1969</td>
<td>2019</td>
</tr>
<tr>
<td>Brooklane Apartments</td>
<td>1969</td>
<td>2019</td>
</tr>
<tr>
<td>Student Medical and Counseling Center</td>
<td>1969 - 1970</td>
<td>2020</td>
</tr>
<tr>
<td>Language and Literature Building</td>
<td>1970</td>
<td>2020</td>
</tr>
<tr>
<td>Hogue Technology Building</td>
<td>1970</td>
<td>2020</td>
</tr>
<tr>
<td>Student Village North, Phase II</td>
<td>1970</td>
<td>2020</td>
</tr>
<tr>
<td>Jongeward Plant Services and Facilities Administration Building</td>
<td>1970</td>
<td>2020</td>
</tr>
<tr>
<td>Grounds Shop</td>
<td>1972</td>
<td>2022</td>
</tr>
<tr>
<td>Psychology Building</td>
<td>1972</td>
<td>2022</td>
</tr>
<tr>
<td>Heating and Cooling Plant</td>
<td>1975</td>
<td>2025</td>
</tr>
<tr>
<td>Library Complex: Dr. James E. Brooks Library</td>
<td>1975-1976</td>
<td>2026</td>
</tr>
<tr>
<td>Library Complex: Farrell Hall</td>
<td>1973-1976</td>
<td>2026</td>
</tr>
<tr>
<td>Botany Greenhouse</td>
<td>1976</td>
<td>2026</td>
</tr>
<tr>
<td>Building Name</td>
<td>Year of Construction: Addition/Remodel</td>
<td>Date of Historic Age</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Jansen Warehouse</td>
<td>1980</td>
<td>2030</td>
</tr>
<tr>
<td>Dorothy Purser Hall</td>
<td>1987</td>
<td>2037</td>
</tr>
<tr>
<td>Aquatic Center</td>
<td>1989</td>
<td>2038</td>
</tr>
<tr>
<td>Chimpanzee and Human Communications (Psychology and Animal Research Facility)</td>
<td>1990 - 1991</td>
<td>2041</td>
</tr>
<tr>
<td>Bledsoe-Washington Archives Building</td>
<td>1993</td>
<td>2043</td>
</tr>
<tr>
<td>Facilities Administration Annex (Naneum Modular)</td>
<td>1997</td>
<td>2047</td>
</tr>
<tr>
<td>Science Building, Phase I</td>
<td>1997</td>
<td>2047</td>
</tr>
<tr>
<td>New Black Hall</td>
<td>1998</td>
<td>2048</td>
</tr>
<tr>
<td>Student Union and Recreation Center</td>
<td>2004 - 2006</td>
<td>2056</td>
</tr>
<tr>
<td>Jerrilyn McIntire Music Education Facility</td>
<td>2007</td>
<td>2057</td>
</tr>
<tr>
<td>Wendell Hill Hall and Mechanical Building</td>
<td>2008</td>
<td>2058</td>
</tr>
<tr>
<td>Aviation Training Center</td>
<td>2009</td>
<td>2059</td>
</tr>
<tr>
<td>New Barto Hall and Resident Life Office</td>
<td>2012</td>
<td>2062</td>
</tr>
<tr>
<td>Science Building, Phase II</td>
<td>2014 - 2015</td>
<td>2065</td>
</tr>
</tbody>
</table>
REFERENCES

“Academic Plan Includes New Requirements.” *Daily Record* (Ellensburg, Washington) 3 September 1982, 14-B.

http://ballotpedia.org/Washington_Bonds_for_State_Institutions,_Referendum_10_%281958
%29 (last accessed 2 May 2015).

University Facilities Collection.

Bassetti and Morse Architects. 1961. Additions and Alterations, Student Union and Old
Gymnasium Buildings. Plot Plan and Details, Mechanical. Ellensburg: Central Washington
University Facilities Archives.

BCRA. 2009. Dean Hall Renovation, Site Plan West. Ellensburg: Central Washington University
Facilities Archives.

Twelfth Biennial Report of the Superintendent of Public Instruction of the State of

Recorded circa 1990s, published 10 March, 2014.

HistoryLink.org Essay 5093.
http://www.historylink.org/index.cfm?DisplayPage=output.cfm&file_id=5093 (last accessed
22 April 2015)

Summary of Recent Research.” In SLMQ 25(1).
http://www.ala.org/aasl/sites/ala.org.aasl/files/content/aaslpubsandjournals/slr/edchoice/SLM
Q_EffectivenessofTechnologyinSchools_InfoPower.pdf (last accessed 9 May 2015).

“Bouillon Hall Remodeling Project Contract Awarded.” Ellensburg Daily Record 31 October
1977, 3.

392

Central Washington University Archives (CWUA). 21 September 1950. Letter from Central Washington College of Education President Robert E. McConnell to Mr. Frank Noffke, Director of Washington State Union of the State College of Washington, and flyer entitled “Student Union Building, A Living War Memorial Honoring Those Who Served Their County.” RG 006-08-03, Box 5, File 8.

“College looked Back and Ahead in Bicentennial.” *Daily Record* (Ellensburg, Washington), Record Special Issue, 10 September 1976, 8.

Doudna, Williams, and Phipps. 1967. *Reception Center and Addition and Alterations to the President’s Residence; Second Floor Plan, Site and Roof Plan, Schedules*. Ellensburg: Central Washington University Facilities Archives.

Doudna, Williams, and Phipps. 1962. *Conversion and Addition, Existing Library Building; First Floor Plan*. Ellensburg: Central Washington University Facilities Archives.

"It's Greek to me! And Deliciously So to Helen and Milo Smith.” *Daily Record* (Ellensburg, Washington) 9 March 1994, 3.

Nolo, Law for All. 2015. “Servicemen’s Readjustment Act (G.I. Bill).”

Pautzke, O. n.d. (ca. 1890s). Panoramic photograph of Ellensburgh. On file at the Kittitas County Historical Museum.

Secretary of the Interior’s Standards and Guidelines for Archaeology and Historic Preservation. 1983, as amended. 48 FR 44716.

Secretary of Interior’s Standards for Preservation, Rehabilitation, Restoration, and Reconstruction. 2009. 36 CFR 67.

“University Status Sought by CWSC.” Yakima Herald. 19 November 1975, 2.

Waiver of Non-Resident Tuition Fees Differential for Western Undergraduate Exchange Program Students. 1999. RCW 28B.15.544.

