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RESEARCH ARTICLE
10.1002/2014GC005588

The mantle transition zone beneath West Antarctica: Seismic
evidence for hydration and thermal upwellings
E. L. Emry1, A. A. Nyblade1, J. Juli�a2, S. Anandakrishnan1, R. C. Aster3, D. A. Wiens4, A. D. Huerta5,
and T. J. Wilson6

1Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA, 2Departmento de Geo-
f�ısica and Programa de P�os-Graduaç~ao em Geodinâmica e Geof�ısica, Universidade Federal do Rio Grande do Norte, Natal,
Brazil, 3Department of Geosciences, Colorado State University, Fort Collins, Colorado, USA, 4Earth and Planetary Sciences,
Washington University in St. Louis, St. Louis, Missouri, USA, 5Department of Geosciences, Central Washington University,
Ellensburg, Washington, USA, 6School of Earth Sciences, Ohio State University, Columbus, Ohio, USA

Abstract Although prior work suggests that a mantle plume is associated with Cenozoic rifting and volca-
nism in West Antarctica, the existence of a plume remains conjectural. Here we use P wave receiver functions
(PRFs) from the Antarctic POLENET array to estimate mantle transition zone thickness, which is sensitive to
temperature perturbations, throughout previously unstudied parts of West Antarctica. We obtain over 8000
high-quality PRFs using an iterative, time domain deconvolution method filtered with a Gaussian width of 0.5
and 1.0, corresponding to frequencies less than �0.24 and �0.48 Hz, respectively. Single-station and common
conversion point stacks, migrated to depth using the AK135 velocity model, indicate that mantle transition
zone thickness throughout most of West Antarctica does not differ significantly from the global average,
except in two locations; one small region exhibits a vertically thinned (210 6 15 km) transition zone beneath
the Ruppert Coast of Marie Byrd Land and another laterally broader region shows slight, vertical thinning
(225 6 25 km) beneath the Bentley Subglacial Trench. We also observe the 520 discontinuity and a prominent
negative peak above the mantle transition zone throughout much of West Antarctica. These results suggest
that the mantle transition zone may be hotter than average in two places, possibly due to upwelling from the
lower mantle, but not broadly across West Antarctica. Furthermore, we propose that the transition zone may
be hydrated due to >100 million years of subduction beneath the region during the early Mesozoic.

1. Introduction

The mantle transition zone is characterized by mineral phase transitions that occur from depths of �410 to
�660 km. For the olivine-normative component of the mantle, those include olivine (a-spinel) to wadsleyite
(b-spinel) at 410 km, wadsleyite (b-spinel) to ringwoodite (c-spinel) at 520 km, and ringwoodite (c-spinel) to
perovskite at 660 km [Bina and Hellfrich, 1994]; for the pyroxene-normative component, phase transitions
from majoritic garnet to perovskite are also expected near 660 km depth. Phase transitions in the olivine
component create relatively sharp jumps in seismic velocity (discontinuities) that produce P-to-S conver-
sions in P wave receiver functions (PRFs) that can be distinguished from noise, commonly after stacking
tens to hundreds of traces arising from diverse, distant earthquake sources [Langston, 1979; Shearer, 1991;
Dueker and Sheehan, 1997]. A phase transition in the pyroxene component is less likely to be identified, due
to the broad depth over which the transition occurs [e.g., Weidner and Wang, 2000]. Because the 410 and
660 km phase transitions possess opposite Clapeyron slopes (dP/dT), transition zone thickness should vary
with lateral changes in temperature. In regions where the transition zone is hot, as would be expected for a
mantle upwelling, the transition zone is expected to thin [Bina and Hellfrich, 1994]. Observations from
receiver functions and SS-precursors give a global average transition zone thickness of �240–260 km
[Shearer, 1991; Chevrot et al., 1999; Lawrence and Shearer, 2006].

The presence of other discontinuities or velocity structure within or in close proximity to the mantle
transition zone may reflect thermal and/or chemical anomalies, and steady improvement in seismic
coverage has driven more widespread and detailed studies of finer-scale structure. A region of low
velocity above the mantle transition zone has been detected beneath a number of locations, including
at the South Pole (SPA) and Dumont d’Urville (DRV) stations in Antarctica [Vinnik and Farra 2007, and
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references therein]. Revenaugh and Sipkin [1994] proposed that the negative peak is indicative of dense
partial melts above the 410 km phase transition and Bercovici and Karato [2003] hypothesized that par-
tial melting could be induced by upward migration of hydrous transition zone material. Similarly,
decreased seismic velocity below the 660 km discontinuity in mantle downwelling regions below west-
ern North America has been inferred as arising from hydrated ringwoodite transitioning to perovskite
with partial melt [Schmandt et al., 2014]. The 520 km discontinuity is also frequently observed, and it is
proposed that variability in its characteristics (presence or absence, depth, splitting, amplitude, and
breadth) reveals information about regional differences in the composition (fertile mantle or depleted
subducted slabs; water-rich or dry) and temperature of transition zone materials [e.g., Ita and Stixrude,
1992; Weidner and Wang, 2000; Deuss and Woodhouse, 2001; Saikia et al., 2008]. Furthermore, a deep
discontinuity around 720 km has been interpreted as evidence for hotter than average material at the
base of the transition zone, caused by the shifting of the phase transition in the garnet majorite com-
ponent of the mantle due to its positive Clapeyron slope [Simmons and Gurrola, 2000; Andrews and
Deuss, 2008; Yu et al., 2011]; complicated receiver function peaks corresponding to the base of the
transition zone have been detected globally at a number of locations, including beneath the Erebus
hot spot [Andrews and Deuss, 2008].

West Antarctica is comprised of several distinct provinces that began to rift apart during the Cretaceous as
the West Antarctic Rift System formed (Figure 1) [Dalziel and Elliot, 1982; Grunow et al., 1991; Dalziel, 1992].
The timing and development of rifting throughout the region is not well constrained due to lack of geologi-
cal and geophysical data; however, evidence from fission track dates from the Transantarctic Mountains,
which are thought to have formed due to rift-flank uplift, indicates multiple stages of uplift and denudation
[Stump and Fitzgerald, 1992]. In some continental rifts (e.g., East Africa), extensional development may be
aided or initiated by deep thermal mantle upwellings [e.g., Hansen and Nyblade, 2013; Mulibo and Nyblade,
2013]. Several petrological and geochemical studies suggest that the volcanics of West Antarctica, in

Figure 1. Topographic and bathymetric map of all of West Antarctica, including western Ross Ice Shelf and Ross Island, from BEDMAP2 [Fretwell
et al., 2013]. Names of major geographic regions are given; minor geographic features and locations are given acronyms as follows: BSB, Byrd Sub-
glacial Basin; BST, Bentley Subglacial Trench; ECR, Executive Committee Range; PIB, Pine Island Bay; RC, Ruppert Coast; RI, Ross Island; SC, Siple
Coast; TG, Thwaites Glacier; TM, Thiel Mountains; WAIS, West Antarctic Ice Sheet Divide Field Station; WM, Whitmore Mountains. Black line with
perpendicular hatches indicates the trace of the West Antarctic Rift System that is well known, and dashed black lines indicate possible eastward
or northward extension of the rift [Jordan et al., 2010].
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particular around Marie Byrd Land, are likely derived from a deep mantle source, although interpretations
vary [e.g., Panter et al., 1997, 2000; Kipf et al., 2014].

Seismic velocities within the upper mantle beneath West Antarctica are distinctly slower than the average
upper mantle (�0.5–1% Vp; �3–5% Vs); a number of continental-scale tomography studies identify one or
multiple low-velocity regions that appear to stretch downward through the upper mantle as would be
expected for a thermal upwelling rising from the lower mantle [e.g., Sieminski et al., 2003; Morelli and Danesi,
2004; Hansen et al., 2014]. However, regional tomographic modeling beneath the Erebus hot spot region of
West Antarctica indicates a low-velocity anomaly within the upper mantle that reaches to 300–400 km
depth, but does not extend into the transition zone [Watson et al., 2006]. A P wave receiver function study
of the same region found that the transition zone thickness is not significantly different from the global
average of �240–260 km, further indicating that the Erebus anomaly is confined to the upper mantle
[Reusch et al., 2008].

Recent regional seismic tomography images covering parts of West Antarctica, including Marie Byrd Land, the
Byrd Subglacial Basin, and the Ellsworth and Whitmore Mountains corroborate what is observed in
continental-scale tomography, imaging slow seismic velocities extending through the upper mantle and pos-
sibly also into the mantle transition zone [Heeszel, 2011; Lloyd et al., 2013; Hansen et al., 2014]. However,
because the surface wave tomographic model of Heeszel [2011] is limited to upper mantle depths
(�<250 km), and body wave tomography models tend to have large vertical smearing (�100–200 km) and
decreased resolution at mantle transition zone depths [Lloyd et al., 2013; Hansen et al., 2014], the extent to
which rifting and volcanism in these parts of West Antarctica has been affected by mantle thermal upwellings,
originating within or below the transition zone, remains unclear (see discussion in supporting information).

To determine whether the mantle transition zone beneath regions of West Antarctica, excluding the previ-
ously studied Erebus hot spot region, shows evidence for a deep thermal anomaly, we analyzed PRFs from
stations within the ongoing Antarctic POLENET (ANET) seismic deployment (Figure 2) that are located in the
vicinity of Marie Byrd Land, the Central Transantarctic Mountains, the Ellsworth-Whitmore Mountains, and
the Byrd Subglacial Basin.

Figure 2. Map of ANET seismic stations in West Antarctica used in this study (red triangles). The 2010–2012 ANET transect stations are
denoted only by number (full station code is ST01, ST02, etc), and the backbone stations (the rest of the ANET array) are marked with their
full station codes.
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2. Background

2.1. Antarctic Tectonics and Volcanism
From 230 to 125 Ma, West Antarctica is thought to have been comprised of four blocks—Thurston Island,
Marie Byrd Land, South New Zealand, and the Antarctic Peninsula—and was bordered along most of its
length by subduction zones. Progressively, subduction ceased along the margin [Dalziel, 1992]. Around 90
Ma, West Antarctica began to rift, separating the South New Zealand block from the rest of the landmass
[Dalziel and Elliot, 1982; Grunow et al., 1991; Dalziel, 1992]. The Transantarctic Mountains along the southern
flank of the rift were uplifted in multiple phases at �110, �80, and �60 Ma [Stump and Fitzgerald, 1992].
The low current rates of seismicity and deformation throughout West Antarctica suggest that rifting is pres-
ently very slow or inactive [Winberry and Anandakrishnan, 2003].

About 30 subaerial volcanoes occur throughout West Antarctica, and geophysical surveys of the subsurface
beneath the West Antarctic Ice Sheet have identified numerous subglacial volcanoes [Behrendt et al., 1991; Blan-
kenship et al., 1993; Behrendt, 2012; Lough et al., 2013]. Many of the volcanoes located in Marie Byrd Land are
geochemically similar to oceanic island basalts (OIB), but the region as a whole differs from the OIB paradigm
because of the abundance of felsic rocks as well [LeMasurier, 1990]. Although none of the basaltic volcanoes in
Marie Byrd Land demonstrate an age progression, several of the intermediate-felsic composition volcanic ranges
exhibit spatially variable linear age progressions that are not aligned to hot spot reference frame plate motions
but may be structurally controlled and/or influenced by small-scale convection [e.g., LeMasurier and Rex, 1989;
LeMasurier, 1990; van Wijk et al., 2010]. Deep low-frequency seismicity and ash layers within the West Antarctic
Ice Sheet further demonstrate the ongoing volcanic nature of the region [Behrendt, 2012; Lough et al., 2013]. In
addition to the prevalence of volcanic rocks throughout Marie Byrd Land, notably high heat fluxes have been
observed beneath portions of the West Antarctic Ice Sheet [Alley and Bentley, 1988; Clow et al., 2012].

The source for the varied compositions and distribution of West Antarctica volcanoes and adjacent sea-
mounts is still debated; several models have been proposed to explain their existence and observed pat-
terns, including a broad upper mantle hot spot [LeMasurier and Rex, 1989], a large thermal mantle plume
[e.g., LeMasurier and Landis, 1996], two distinct thermal mantle plumes—one beneath Erebus and one
beneath Marie Byrd Land [e.g., Storey et al., 1999], upwelling upper mantle triggered by catastrophic detach-
ment of a subducting plate [Finn et al., 2005], and reactivation of plume material accreted to the base of the
lithosphere during the Cretaceous [Kipf et al., 2014].

2.2. The Structure of the Mantle Beneath West Antarctica
Continent-wide surface wave tomography images using sparse long-running seismographic stations clearly
demonstrate that the upper mantle of West Antarctica is distinctly slower than East Antarctica and that broad
low velocities within the West Antarctic upper mantle persist to at least �200 km depth. However, for many of
these models, the lateral resolution ranges from�200 to 700 km [Ritzwoller et al., 2001; Danesi and Morelli, 2001;
Sieminski et al., 2003; Morelli and Danesi, 2004]. A global model using higher-mode surface wave tomography to
solve for hydration and temperature within the mantle transition zone suggests that the broad region of West
Antarctica is about 25–50�C warmer with�0.25 wt % more H2O than the mean global average [Meier et al.,
2009]. Prior to ANET, detailed regional studies were carried out near the Erebus hot spot beneath the western
edge of the Ross Ice Shelf. Results image an abrupt lateral boundary between the slower and warmer upper
mantle of West Antarctica and the faster and colder upper mantle of East Antarctica [Watson et al., 2006; Law-
rence et al., 2006]. Despite the differences in upper mantle velocities, results from a prior PRF study beneath this
region identified no thinning of the mantle transition zone, suggesting that the slow velocities beneath the Ere-
bus region are confined to the upper mantle [Reusch et al., 2008]. Recent tomographic results from Hansen et al.
[2014] also suggest that the transition zone beneath the Erebus hot spot is not thermally perturbed, but do indi-
cate that portions of the mantle transition zone beneath Marie Byrd Land could be hotter than average.

3. Methods

3.1. The Antarctic POLENET Deployment
Seismic data from the ANET deployment consist of an ongoing ‘‘backbone’’ network that began collecting
data in 2007, including a temporary seismic transect that collected data from 2010 to 2012 (Figure 2). The
transect crosses the West Antarctic rift from the coast of eastern Marie Byrd Land, near the Executive
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Committee Range over the Byrd Subglacial Basin and Bentley Subglacial Trough, and into the Whitmore
Mountains. The backbone ANET stations are equipped with cold-rated broadband seismic stations (Guralp
CMG-3T or Nanometrics Trillium-240 with Quanterra Q330 data loggers) and an associated constellation of
GPS receivers [Anthony et al., 2015] (polenet.org; passcal.nmt.edu; unavco.org). The transect stations were
equipped with broadband seismometers only.

3.2. Data Selection and Receiver Function Deconvolution
We calculated PRFs from ANET seismographs that were located east of the Ross Ice Shelf. The data selection
and preprocessing follows the approach detailed within Juli�a and Nyblade [2013] and is briefly summarized
here. Seismic sources at epicentral distances ranging from 30� to 90� from the recording stations were
selected and the corresponding waveforms were cut 10 s before and 100 s after the theoretical arrival of
the teleseismic P wave. The waveforms were demeaned, detrended, and tapered using a 5% cosine window
and high-pass filtered above 0.05 Hz to remove long-period instrumental noise. The filtered traces were
resampled at 20 samples per second, after low-pass filtering at 8 Hz to avoid aliasing. The horizontal
components were then rotated into the great circle path to obtain the radial and transverse
components, and the vertical component was deconvolved from the corresponding horizontal components
to obtain the radial and transverse receiver functions using the iterative, time domain deconvolution
method of Ligorr�ıa and Ammon [1999], with 500 iterations. During the deconvolution, we used Gaussian fil-
ter widths of 0.5 and 1.0, corresponding to frequencies of less than �0.24 and �0.5 Hz, respectively. The
specific filters were chosen to remove high-frequency noise while exploring the sharpness and reliability of
detected peaks.

We evaluated the quality of the deconvolution by convolving the vertical component back with the final
radial receiver function, automatically rejecting all receiver functions that did not recover at least 80% of
the original radial waveform. We further refined the data set by identifying events with unusually large
amplitudes on the transverse receiver functions and removing the corresponding radial receiver function,
as this could indicate difficulties during the rotation process. Additionally, we removed all radial receiver
functions with large amplitudes, above a threshold value (0.12–0.15), from the data set. We do this to
ensure that large amplitude noise levels on horizontal components—as documented at a few of the seismic
stations—do not impact the final stacks for each station [Anthony et al., 2015].

Finally, we visually inspected the radial receiver functions, comparing each with several others, to identify
and remove noticeable outliers. We identified outliers by large negative amplitudes, harmonic oscillations,
comparatively small direct arrival peaks, or subdued crustal Ps peaks [e.g., Benoit et al., 2013]. For the sta-
tions where only 1 year of data were collected, this stage of the quality check significantly increased confi-
dence in detected peaks. To limit subjectivity from this step, we did not identify traces with positive peaks
at times corresponding to where we expect the 410 and 660 discontinuities. The initial number of events
and the final number of quality receiver functions in each single-station stack are included in the supple-
mentary material (Table S1). On average, we obtained quality receiver functions from �15 to 25% of the
available events, although for a small number of stations only �5–10% of the available events were of suffi-
cient quality.

3.3. Migration and Stacking
We migrated and stacked radial receiver functions for each station using the common conversion point
stacking method [Owens et al., 2000]. Assuming a 1-D velocity model (AK135), we computed the theoretical
latitude and longitude (piercing points) of an incoming ray at 5 km depth intervals, extending from the sur-
face to 800 km [Kennett et al., 1995; Crotwell et al., 1999]. The piercing points were then grouped into bins
of a specified radius around predefined nodes and the PRF amplitudes corresponding to the theoretical Ps-
P travel-times associated with each pierce point were averaged. The receiver function amplitudes between
the depth-migrated points were then linearly interpolated.

Using the Owens et al. [2000] methodology, incoming rays that do not fall within a specified bin radius
around each station (or latitude/longitude node) were excluded from the stack. For single-station stacks
throughout West Antarctica, we set a single node at the station location and a bin radius of 5� along a great
circle arc, which provides sufficient distance to incorporate all high-quality PRFs for the station. For all
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stacks, confidence bounds are computed from the set of quality receiver functions by bootstrap resampling
[Efron and Tibshirani, 1991]. Examples of several single-station stacks are shown in Figure 3.

We next tested the effects of velocity model variability on the receiver function depth migration and
consequent transition zone thickness. Recent tomographic results show velocity decreases of �1–2% in
Vp [Lloyd et al., 2013; Hansen et al., 2014] and �3–5% in Vs [Heeszel, 2011] in the region beneath Mount
Sidley in Marie Byrd Land. We created several 1-D velocity models, varying upper mantle and transition
zone Vp/Vs ratios consistent with the above degree of variability, and then migrated and stacked the
receiver functions at the West Antarctic Ice Sheet (WAIS) Divide seismic station; for each test, we note
the resultant stacked discontinuity depths and transition zone thickness (Tables S2 and S3). We con-
clude that, at most, 5–10 km of variation in inferred transition zone thickness could be unaccounted for
by velocity variations consistent with recent tomography models. A more thorough description of
these tests and the resolutions of recent tomography results are found in supporting information
(Tables S2–S4 and Figures S1–S3).

3.3.1. Common-Conversion Point Stacking
Good ray coverage, as evidenced by pierce point (conversion point) plots due to the spatially dense transect
stations, allowed us to stack data from multiple stations sampling the transition zone at a given location
(Figure 4), thus increasing our resolution of mantle transition zone structure throughout much of West Ant-
arctica. We used the common conversion point stacking method of Owens et al. [2000], combining all of the
stations located throughout the region, and then stacking all of the receiver functions that fall within a
specified radius around each nodal point at each depth increment. Because the distance between longitudi-
nal degrees decreases as latitude decreases (from �33 km at 272.5� to �10 km at 285�), we vary the spac-
ing of our nodal points throughout the region (5� longitude between nodes at 275�N to 280�N; 10�

longitude between nodes at 280�N to 285�N) to eliminate geographic distortion. We allow in each stack

Figure 3. Select single-station receiver function (PRF) stacks are plotted for ANET stations in Marie Byrd Land and the West Antarctic Rift. For each station, PRFs are filtered with a 0.5 and 1.0
Gaussian width filter; number of PRFs in the stack is noted. The 95% confidence bounds are shown (gray) behind the full stack (black line). Positive peaks are marked with a dashed red line;
negative peaks are noted with dashed blue line. At stations where multiple prominent peaks are present (i.e., CLRK and MPAT stations), all peaks are marked with dashed red line.
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all incoming rays within 1.25� and 1.5� of the nodal point (equivalent to �135 and �165 km at the equator).
This provides overlap in the incoming energy contributing to the stacks at each station, similar to a running
average. On each nodal stack, the set of receiver functions are resampled (as discussed above), and a depth
error is estimated from the higher-frequency data, where the amplitudes of the peaks are above zero (Table
1; supporting information Table) [Abt et al., 2010]. Figure 5 demonstrates our corresponding error
determinations.

4. Results

We rejected (did not interpret) all stack peaks for which at least one of the following criteria apply: less than
50 receiver functions were available, the stack was noisy (many large amplitude peaks), or the lower confi-
dence bound (95% confidence level) was not above zero amplitude. The final interpreted peaks described
below, plotted in Figures 6–9, listed in Table 1, and provided in the supporting information, exceeded these
criteria. In Figures 6–9, we show that although high-quality receiver functions are located throughout West
Antarctica, there are some places in the studied region where not enough quality data existed to make a
robust interpretation of the stacks. Our overlapping bins are averaged using the nearest neighbor gridding
method (Figures 6–9); unlike other gridding methods, the nearest neighbor method creates weighted aver-
ages for only regions of bin overlap based on proximity to the center of the contributing bin. Nearest neigh-
bor averaging does not extrapolate into regions far outside of where our interpreted stacks exist, thereby
limiting the spatial extent of our interpretations only to the region immediately surrounding the prescribed
nodal location (www.soest.hawaii.edu/gmt/).

4.1. Topography of the 410 km Discontinuity
As Figure 6 demonstrates, nearly all of the studied area exhibits a depressed 410 discontinuity. Where the
transition zone is of average thickness, a depressed 410 discontinuity implies that the actual olivine-
wadsleyite (410) phase transition depth is not different than for the average Earth (as would be expected
for a thermally altered transition zone), but rather the apparent downward shift of the transition zone is an

Figure 4. Map of Ps conversion points at (a) 410 km and (b) 660 km depth beneath West Antarctica. The blue and orange circles designate the location of
incoming rays at 410 and 660 km depth, respectively, corresponding to each individual, high-quality receiver function. Only individual receiver functions
that were used to create single-station and common conversion point stacks are shown; no rejected conversion points are plotted. The black triangles
show the locations of the seismic stations (Figure 2).
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effect of upper mantle structure. Topographic variation of the 410 discontinuity is useful to indicate, geo-
graphically, where the largest upper mantle anomalies might exist. Throughout the region, the 410 disconti-
nuity is depressed by 20–60 km. We find the most pronounced depression of the 410 (without
corresponding thinning of mantle transition zone) beneath the Executive Committee Range in Marie Byrd

Land and in the vicinity of the Thwaites Glacier and
Pine Island Bay, where the 410 is depressed by 50–
60 km (Figure 6).

4.2. Mantle Transition Zone Thickness
Although the 410 discontinuity is depressed
throughout much of West Antarctica, transition
zone thickness is not significantly different from
the global average of 240–260 km (Figure 7).
Two regions show very slight thickening, one
beneath WAIS Divide/Thwaites Glacier and the
other beneath a portion of western Marie Byrd
Land; however, in both of these locations, the
transition zone is only �10–20 km thicker than
the global average, with somewhat large vertical
uncertainties (see supporting information). Thin-
ning of the transition zone is found below the
Ruppert Coast, where the transition zone thins to
210 6 15 km, and the Bentley Subglacial Trench,
where the transition zone is 225 6 25 km thick
(Figures 5 and 7, Table 1, and supporting infor-
mation). Vertical uncertainties given above and
discussed throughout the paper are upward-
rounded estimates based on the sum of e410u

and e660d from stacks with the best-resolved
peaks, i.e., generally higher-frequency stacks (Fig-
ure 5, Table 1, and supporting information).

Table 1. Selected Results of CCP Stackinga

Node Locationb
410 Discontinuity

Depth (km)c
660 Discontinuity

Depth (km)c
Transition Zone
Thickness (km)

Latitude (�N) Longitude (�E) gwd 5 0.5 gw 5 1.0 gw 5 0.5 gw 5 1.0 gw 5 0.5 gw 5 1.0

276.00 2150.00 440 6
14:2
21:7

430 6
7

4:4
645 6

14:3
83:8

640 6
6:2
6:6

205 210

280.95 2110.00 440 6
11:1
17:4

430 6
6:9

31:0
665 6

13:7
17:3

655 6
11:4
38:1

225 225

280.95 2120.00 445 6
12:1
9:2

445 6
6:5
6:9

670 6
16:5
14:8

670 6
18:9
18

225 225

280.95 2130.00 440 6
9:7

15:1
445 6

6:3
7:4

670 6
13:1
14:4

675 6
20

11:7
230 230

282.30 2100.00 440 6
18:3
14:3

430 6
12:6
22:2

660 6
13

22:5
650 6

11:1
53:4

220 220

282.30 2110.00 430 6
15:4
42:6

425 6
6:5

11:4
665 6

15:9
10:4

660 6
12:6
12

235 235

282.30 2120.00 440 6
17:2
14:5

435 6
7:1

11:6
665 6

10:8
11:5

665 6
11:8
11:1

225 230

aValues correspond to a bin radius of 1.5� , highlighted in bold in supporting information.
bLocation of nodes given in table corresponds to the anomalies beneath the Ruppert Coast (RC) in line 1 and the Bentley Subglacial

Trench/Whitmore Mountains region (BST/WM) in lines 2–7.
cDepth errors are calculated as distance (km) to the upper (top number) and lower (bottom number) uncertainty bounds (determined

by bootstrap resampling) at the amplitude of the full stack peak.
dThe Gaussian width of the filter.

Figure 5. Example PRF from the node located at 80.95�S, 120�W
for Gaussian width 1.0 and bin radius of 1.25� (Figure 7c) show-
ing how vertical errors are determined from bootstrap confi-
dence bounds. Vertical errors are determined as the distance
from the full stack peak amplitude to the upper and lower
bound depth, at the same amplitude as the full stack peak.
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Beneath the Ruppert Coast, indications for complicated transition zone structure are apparent at two sta-
tions, Mt. Clark (CLRK) and Mt. Paterson (MPAT). These seismographs have collected 31 years of data and
have experienced no major temporal recording gaps [Anthony et al., 2015]. Both are located on rock or in
the snow above shallow bedrock. As seen in Figure 3, both CLRK and MPAT single-station stacks have com-
plicated lower peaks, either broad (MPAT) or exhibiting multiple lower peaks (CLRK). We suggest that this is
a result of laterally varying transition zone thickness that is averaged together in the single-station stacks.
When common conversion point stacking is employed, the largest peak corresponding to the base of the
transition zone shifts upward and is the shallowest beneath the Ruppert Coast of the Ross Sea (near 76�S,
150�W) (Figure 7d). Several seismographs were located in the vicinity of the Bentley Subglacial Trench,
which was a target of the 2010–2012 transect. Most of this region (Figure 7c) has �100–400 individual qual-
ity receiver functions within each stacked depth, although the amount of data in each stack decreases
toward the east beneath the Thiel and Ellsworth Mountains (�50–100 RFs).

4.3. 520 Discontinuity
Throughout much of the study region, a low-amplitude positive peak at �480–550 km depth is resolved,
and we interpret these peaks as the 520 discontinuity (Figures 3, 5, 7c, and 8). As expected, these peaks
tend to be smaller in amplitude than the 410 and 660 discontinuities (Figure 8b). In many places, although
the full stack shows a peak above zero amplitude, the lower confidence bound is below zero amplitude; in
these instances, no peak is interpreted. Because the 520 is a weaker amplitude peak and because it was
detected nearly everywhere where numerous traces were collected, its absence may be due to transition
zone properties or could be a result of incomplete coverage. In several of the stacks near the Central

Figure 6. (a) Map showing the depth of the 410 discontinuity for a 1.5� bin radius and a Gaussian filter width of 0.5 for nodes with quality peaks that were deemed to be robust. The
map is created with the nearest neighbor averaging function in GMT to specify the bin radius and average transition zone thicknesses where stacks overlap laterally (http://www.soest.
hawaii.edu/gmt/). Black triangles show station locations, and small circles are the Ps conversion points for high-quality individual receiver functions that were used in the final stacks.
(b) Diagram demonstrating the significance of (apparent) depressed 410 discontinuity given no significant changes in transition zone thickness (TZT), as discussed in the main text
(sections 4.1 and 5.3).
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Figure 7. Maps of West Antarctica showing mantle transition zone thickness for nodes with quality 410 and 660 peaks. Black triangles show station locations and small
circles are the Ps conversion points for high-quality individual receiver functions that were used in the final stacks. (a) Transition zone thicknesses identified from stacks with
1.5� bin radius and a Gaussian filter width of 0.5. (b) Transition zone thicknesses identified from stacks with a 1.25� bin radius and a Gaussian filter width of 0.5. (c)
Selected stacks (multiple filters and bin radii) at nodes located near the Bentley Subglacial Trench (BST) and Whitmore Mountains (WM) regions. Histograms demonstrating
the number of individual PRFs contributing to the stack at each depth are shown on the right of each receiver function stack. (d) Same as in Figure 7c, but for the node
located at the Ruppert Coast of Marie Byrd Land. Values for the transition zone thicknesses at several of the nodes within boxes c and d are given in Table 1.
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Transantarctic Mountains, a very shallow peak at �480 km is observed (Figure 8), and in some stacks, a sec-
ond, deeper positive peak is also detected. Detailed results for location, depth, and amplitude of the 520
are given in supporting information.

4.4. Negative Peaks Above 410
Throughout much of West Antarctica, a prominent negative peak is detected above the transition
zone (Figures 3, 7, and 9). The negative peak is located at �350–400 km depth throughout the West
Antarctic region and generally corresponds to the variations of the 410 discontinuity, although it
appears to shallow significantly (�330 km depth) in the western portions of our study region beneath
western Marie Byrd Land and the Central Transantarctic Mountains (Figure 9). The strongest amplitude
(negative) peak was located beneath the Bentley Subglacial Trench, the Byrd Subglacial Basin, and the
Ellsworth Mountains. We interpret only the peaks for which the upper error bound is distinctly below
the zero amplitude line and the stacked negative amplitude is in the range of �0.02–0.05—which is
roughly equal to the magnitude of the 410 and 660 peak amplitudes and noticeably more pro-
nounced than the 520 discontinuity (Figures 8 and 9).

4.5. Sub-660 Discontinuity (720)
In several regions, multiple positive peaks are recorded either on the upper or the lower boundary of
the transition zone (Figures 3 and 7), as has been observed before for global transition zone receiver
function studies [Andrews and Deuss, 2008]. Although possible low-amplitude negative peaks below
the 660 discontinuity may exist on some of the stacks (Figures 3, 5, and 7), they are not prominent
features; and so unlike Schmandt et al. [2014], we do not see an obvious indication for transient par-
tial melt below the 660. In particular, observed complexity of the 660 discontinuity appears on the
CLRK single stack and for the stack beneath the Ruppert Coast (Figure 7d). Beneath the Bentley sub-
glacial trench and Whitmore Mountains, evidence for multiples and/or asymmetry exists on several of
the stacks (Figure 7c). However in these cases, the upper peak is also complex, with a broad upper

Figure 8. (a) Map showing the depth (km) of the 520 discontinuity for a 1.5� bin radius with a Gaussian filter width of 0.5 for nodes with quality peaks. (b) Map showing the amplitude of
the 520 discontinuity for a 1.5� bin radius with a Gaussian filter width of 0.5. Black triangles show station locations, and small circles are the Ps conversion points for high-quality individ-
ual receiver functions that were used in the final stacks.
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peak and some indications of multiples; therefore, we suspect that upper mantle heterogeneity may
be affecting the character of the stacks.

5. Discussion

5.1. Transition Zone Thickness
Based on these findings and an interpretation of mantle transition zone thinning produced by an
increase in temperature, we suggest that two distinct warm thermal anomalies may exist within the
transition zone beneath West Antarctica caused by lower mantle sources, one beneath the Ruppert
Coast in western Marie Byrd Land and one beneath the Bentley Subglacial Trench and Whitmore
Mountains section of the West Antarctic Rift System (Figures 7c and 7d). However, it does not appear
that a broad, region-wide, lower mantle upwelling exists beneath the whole West Antarctic Rift System
[e.g., LeMasurier and Landis, 1996].

Beneath Marie Byrd Land, recent seismic tomography suggests the presence of slow material extend-
ing into and possibly through the mantle transition zone [Hansen et al., 2014]. We do not find consist-
ent and statistically significant evidence for transition zone thinning directly beneath the Executive
Committee Range or eastern Marie Byrd Land; however, the regions of thinning beneath the Ruppert
Coast/Ross Sea (210 6 15 km) and the Bentley Subglacial Trench (225 6 25 km) appear to occur near
to or within portions of a low-velocity region at 500 km depth in recent tomography images from
Hansen et al. [2014] (see Figure S2). The anomaly within the transition zone beneath the Bentley Sub-
glacial Trench and southeastern end of the 2010–2012 ANET transect is broader, but exhibits less thin-
ning than the anomaly along the Ruppert Coast. The location of thinning beneath the Bentley
Subglacial Trench does not strongly correlate with the location of low velocity anomalies within the
upper mantle in recent tomography models [Lloyd et al., 2013; Hansen et al., 2014], but may correlate
with a deeper anomaly (�500 km) [Hansen et al., 2014].

Figure 9. (a) Map showing the depth (km) of negative peaks above the transition zone for a 1.5� bin radius and a Gaussian filter width of 0.5 for nodes with quality peaks. (b) Map show-
ing the amplitude (1/s) of negative peaks above the transition zone for a 1.5� bin radius with a Gaussian width of 0.5. Black triangles show station locations, and small circles are the Ps
conversion points for high-quality individual receiver functions that were used in the final stacks.
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To provide comparison to other hot spot regions, in the following sections, we assume the range of possible
transition zone thickness variations (dz) taken from our observations and confidence bounds and calculate the
transition zone temperature anomaly for our two West Antarctic regions with thinned transition zone using:

dz5Zavg1 dT 3
dz
dP

3
dP
dT

� �
660

2
dP
dT

� �
410

� �
; (1)

with dP
dT

� �
4105 3.1 MPa/�K, dP

dT

� �
6605 22.6 MPa/�K, dP

dz 5 35 MPa/km, and (Zavg) 5 250 or 242 km average man-
tle transition zone thickness [Hellfrich, 2000; Lawrence and Shearer, 2006; Akaogi et al., 2007]. The Clapeyron
slope for the anhydrous olivine-wadsleyite (410) transition is relatively well constrained [Hellfrich and Wood,
1996; Smyth and Frost, 2002]. However, the ringwoodite to perovskite (660) transition is not as well con-
strained; in the following paragraph, we consider a range of slopes for the 660 discontinuity and include
that uncertainty in our expanded transition zone temperature anomaly estimates [Akaogi and Ito, 1993;
Bina and Hellfrich, 1994; Irifune et al., 1998; Katsura et al., 2003; Fei et al., 2004; Litasov et al., 2005; Ye et al.,
2014].

Beneath the Ruppert Coast near the eastern side of the Ross Ice Shelf, we infer a range of temperature
anomalies of �100�K–340�K, although if we consider a range of values for the slope of the
ringwoodite-perovskite transition, the resulting range of temperature anomaly expands to �95�K–550�K
(see supporting information). This suggests, conservatively, that an anomaly of at least 100�K is present
and that this thermal anomaly is on par with several other regions where transition zone-transiting
mantle plumes have been proposed [Shen et al., 1996; Benoit et al., 2006; Cao et al., 2011; Benoit et al.,
2013; Mulibo and Nyblade, 2013]. For the possible thermal anomaly beneath the Bentley Subglacial
Trench, we estimate a �250 to 300�K anomaly; and with some variation in the values of the
ringwoodite-perovskite Clapeyron slope the anomaly expands to �280 to 500�K. Due to the larger con-
fidence bounds on the lower peak in these stacks and the differing values assumed for the global aver-
age thickness, the lower end of this range (negative) allows for the possibility that this is not a
significant thermal anomaly.

The water content of the mantle transition zone is thought to impact the depth and the sharpness of phase
transitions [Hellfrich, 2000]. The olivine-wadsleyite transition in an anhydrous Fo90 olivine should occur over
�10 km [Hellfrich and Wood, 1996; Smyth and Frost, 2002], but it has been found that the slope of the
olivine-wadsleyite (410) transition in hydrous conditions may broaden, making it less seismically detectable,
and occur at shallower depths, which would increase the thickness of the transition zone [Wood, 1995;
Smyth and Frost, 2002]. When hydrous ringwoodite (1–3 wt % H2O) is present in the bottom of the transition
zone, the ringwoodite-perovskite transition may occur at deeper depths [Higo et al., 2001], although there is
still some uncertainty regarding the water storage capacity of ringwoodite [Kohlstedt et al., 1996; Smyth
et al., 2003]. Recent analyses from ringwoodite within ultradeep diamonds suggest that, at least locally, 1 wt
% H2O is possible [Pearson et al., 2014], and observations consistent with a hydration influence on 660 and
near-660 structures have been reported for downwelling regions of western North America [Schmandt
et al., 2014].

5.2. Negative Receiver Function Peak Above 410
Several studies suggest that negative peaks located above the mantle transition zone are due to par-
tial melt caused by upward flux of hydrated transition zone material [e.g., Revenaugh and Sipkin, 1994;
Jasbinsek et al., 2010]; however, debate exists as to whether this peak is a global phenomenon or
occurs only in the vicinity of upwelling mantle [Bercovici and Karato, 2003; Vinnik and Farra, 2007].
While the amplitude of the negative peak above the transition zone is the greatest beneath the WAIS
Divide and Byrd Subglacial Basin, it is observed consistently throughout most of the study area
(Figure 9b).

Bercovici and Karato [2003] originally envisioned partial melts to form due to upward displacement of
transition zone material as a passive response to sinking slabs. This led to their proposal that this neg-
ative peak (or partial melt) would be identified nearly everywhere, except where hot mantle plumes
exist (additional heat would allow the material to retain its water). Alternatively, Vinnik and Farra [2007]
proposed that hydrous partial melt forms in the presence of mantle plumes, pointing to several hot
spot locations where these negative peaks have been found. In areas where we interpret thinning of
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the transition zone to be indicative of thermal upwellings, the negative anomaly is present, and in
areas where the transition zone is not thinned, the anomaly is also present. Therefore, the nearly ubiq-
uitous negative peak above the transition zone beneath the Byrd Subglacial Basin, Marie Byrd Land,
Bentley Subglacial Trench, and Whitmore Mountains, does not fully support either of the existing
hypotheses for where the negative peak does/does not occur [Bercovici and Karato, 2003; Vinnik and
Farra, 2007].

In prior studies from other locations, observed negative receiver function peaks were located at 100 km or
less above the transition zone [Revenaugh and Sipkin, 1994; Vinnik and Farra, 2007; Jasbinsek et al., 2010];
this feature should not be confused with the ‘‘X-discontinuity,’’ which is a reflector observed by SS and PP
precursors at depths of 250–300 km that indicates seismically faster material, possibly related to eclogite
within the crust of remnant subducted slabs [e.g., Revenaugh and Jordan, 1991; Deuss and Woodhouse,
2002; Bagley and Revenaugh, 2008; Schmerr et al., 2013]. Synthetic models based on receiver function results
from the Colorado Plateau and Rio Grande Rift suggest that the low-velocity anomaly is best fit by a sharp,
upper discontinuity and a �20 km thick layer of low velocity material (�4.5% velocity reduction) that is
underlain by a broad 410 discontinuity [Jasbinsek et al., 2010]. Throughout our study region, the low-
velocity peak above the 410 was generally found at 50–60 km above the 410, with the exception of western
Marie Byrd Land, where the 410 low velocity anomaly was found at �100 km above the transition zone
(330–350 km depth) (Figure 9a). Although this distance above the 410 is on par with some observations
from Eastern China [Revenaugh and Sipkin, 1994], the interpretation that this is a gravitationally stable partial
melt resting on top of the transition zone may be more difficult to reconcile [e.g., Bercovici and Karato,
2003]. The gravitational stability of a compressible melt above the 410 discontinuity is dependent upon the
size of the melt layer and layer perturbations, and the water content of the melt; given a significant pertur-
bation or a larger water content, melt layers may become unstable and rise into the upper mantle [Matsuk-
age et al., 2005; Sakamaki et al., 2006; Youngs and Bercovici, 2009]. It is not clear whether a gravitational
instability is a viable interpretation for the apparently shallow depths of the 410 low-velocity layer beneath
the western Marie Byrd Land region; however, we note that such an upwelling has been proposed to
explain observed low-velocity anomalies within the upper mantle beneath the Colorado Plateau [MacCarthy
et al., 2014].

Our interpretation of the presence and strength of negative peaks above the West Antarctica mantle transi-
tion zone enforces prior work that suggests the mantle transition zone may be partly hydrated [Meier et al.,
2009]. Furthermore, we note that the amplitude of this negative peak is the most prominent throughout
the Byrd Subglacial Basin, Bentley Subglacial Trench, and Whitmore and Ellsworth Mountains; we suggest
that the transition zone may be most hydrated in these regions.

5.3. Upper Mantle Slow Velocities
There is trade-off between estimated discontinuity depth and assumed Vp/Vs ratios in receiver function
analysis. In areas where no thinning of the transition zone is detected, the depressed 410 is not caused by
anomalous transition zone, but rather is caused by a Vp/Vs ratio within the upper mantle that is larger than
the assumed global average model (Figure 6). In West Antarctica, compressional and shear wave tomogra-
phy results indicate decreased upper mantle velocities [Ritzwoller et al., 2001; Danesi and Morelli, 2001; Sie-
minski et al., 2003; Morelli and Danesi, 2004; Heeszel, 2011; Lloyd et al., 2013; Hansen et al., 2014]. The
apparent depression of the 410 above a transition zone of average thickness in this study requires that the
Vp/Vs ratio in the upper mantle is greater than average, which simply requires a more pronounced decrease
in Vs relative to Vp.

Previous research has focused on discerning relative effects of temperature on seismic velocity in an
attempt to better understand how to interpret temperature from seismic velocity models; in the pro-
cess, it has been found that due to effects of anelasticity, Vs is more responsive to temperature per-
turbations than Vp [Karato, 1993; Goes et al., 2000; Cammarano et al., 2003]. It follows that a larger
than average Vp/Vs ratio is expected for warm regions of the upper mantle. Here observations of a
depressed 410 with no accompanying transition zone thinning are most likely an indication that the
upper mantle is thermally perturbed and thus seismically slower, and this agrees with results from
compressional and shear velocity tomography (see Figure S1). Alternatively, significant amounts of par-
tial melt present directly above the transition zone may also contribute to the apparent depression of

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005588

EMRY ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 53



the 410 discontinuity, as partial melt should produce an even greater slowing of S waves relative to P
waves.

With exception to the Central Transantarctic Mountains and the Ellsworth Mountains, the estimated
depth of the 410 phase transition appears to be depressed beneath nearly all of West Antarctica
(Figure 6). The 410 is most significantly depressed beneath the Eastern Marie Byrd Land, Executive
Committee Range and the region beneath Thwaites and Pine Island Bay, and this corresponds
closely with where upper mantle slow velocities are detected by recent seismic tomography results
(Figure S1) [Hansen et al., 2014]. Most of this same region (and further south toward the WAIS
Divide and the Whitmore mountains) also is associated with prominent negative peaks above the
410 discontinuity. If, as suggested, this negative peak is produced by a region of water-induced par-
tial melting above the mantle transition zone [i.e., Bercovici and Karato, 2003; Vinnik and Farra,
2007], then a reasonably thick layer of partial melt might also contribute toward the apparent,
depressed 410 discontinuity.

5.4. 520 Discontinuity
Peaks consistent with the 520 discontinuity were visible in many of our common conversion point stacks in
West Antarctica (Figure 8). Nodes where the greatest depression of the 410 exist tend to have weak or not-
detectable 520 discontinuities. However, in many of our CCP stacks, full stack amplitude was greater than
zero, but the peak was not statistically significant and was therefore not interpreted. Given the prominent
negative peaks above the transition zone and results from Meier et al. [2009], we expect that the mantle tran-
sition zone is hydrated to some extent throughout the region. However, debate exists as to whether transi-
tion zone hydration would sharpen or decrease detectability of the 520 discontinuity [Inoue et al., 1998; Yusa
et al., 2000; Weidner and Wang, 2000; Panero, 2010; Juli�a and Nyblade, 2013]. If we assume that partial melt
above the transition zone is an indication that the transition zone below it is hydrated throughout, then the
inconsistent detections of the 520 do not appear to be consistent with either interpretation for the effect of
water on the wadsleyite-ringwoodite transition. However, temperature in conjunction with water may also
affect the detectability of the 520 discontinuity—a sharp, easily detected 520 might be expected where the
mantle transition zone is colder and more hydrated than average while a hotter and dryer transition zone
may lessen our ability to detect the 520 [Inoue et al., 1998; Xu et al., 2008; Panero, 2010].

The 520 and the negative peak above the transition zone are the strongest near the WAIS Divide and
Thwaites Glacier (Figure 8), where we estimate that the transition zone may be slightly thickened relative to
the rest of the region. This would be consistent with the interpretation that a slightly colder and/or wetter
than average transition zone may result in a sharper 520 detection; however the vertical uncertainties of
mantle transition zone thickness in this region implies that no cool thermal anomaly may exist [Inoue et al.,
1998; Xu et al., 2008; Panero, 2010]. We note that the 520 discontinuity was not detected or was weakly
detected on some of the Executive Committee Range or Ruppert Coast stacks. Where it was detected
beneath the Executive Committee Range, the amplitude of the 520 peak was small, but the thickness of the
mantle transition zone in these regions was similar to the global average, and a prominent negative peak
was detected above the transition zone (Figures 7 and 9). Although the stack from the Ruppert Coast region
had a very slight peak where we would expect the 520 discontinuity, the amplitude was not resolvable
above the uncertainty (Figure 7d). In this region, we have evidence for mantle transition zone thinning, but
a low-velocity anomaly is detected above the transition zone (albeit at shallower depth) (Figures 7 and 9).
Therefore, it appears that the hot and dry mantle transition zone interpretation does not quite fit this
region, and we suspect that our ability to detect the 520 discontinuity may be partly a function of spatial
resolution [Inoue et al., 1998; Xu et al., 2008; Panero, 2010].

5.5. Sub-660 Discontinuity (720)
The lower peak corresponding to the 660 discontinuity was notably complex beneath both of the regions
where we interpret thermal mantle upwellings (multiple positive peaks, asymmetric, broad), and this may
reveal increased temperatures at the base of the transition zone (Figures 7c and 7d). The complexity associ-
ated with the 660 discontinuity that we observed in West Antarctica did not include obvious sub-660 nega-
tive peaks as have been identified beneath parts of North America [Schmandt et al., 2014]. Therefore, unlike
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North America, we do not suspect very recent downwelling of hydrated material into the lower mantle or
subsequent transient (gravitationally unstable) partial melts at the top of the lower mantle [Schmandt et al.,
2014].

It has been suggested that deeper positive peaks are indicative of a garnet majorite to perovskite transition
in a hotter than average mantle transition zone [Simmons and Gurrola, 2000; Andrews and Deuss, 2008; Yu
et al., 2011], and if this is the case for West Antarctica, then the complexity of the 660 and the multiple posi-
tive peaks might be a secondary indication of a deep mantle upwelling. In this case, the thicker transition
zone in the region surrounding the Ruppert Coast anomaly, for example, might possibly be interpreted as a
result of the ringwoodite and garnet majorite transitions merging (shifting the 660 downward) as transition
zone temperatures decrease and the olivine-normative and pyroxene-normative mineral phase transitions
return to their average depth and character away from the hot center of the upwelling (Figure 7). However,
as Schmandt et al. [2012] demonstrated, some of the complexity detected at the 660 discontinuity beneath
Yellowstone can be explained as an effect of using a 1-D velocity model for the migration; therefore, as
more data and more detailed regional tomographic models become available for this region, we expect
that some of the observed complexity on the 660 found in our receiver function stacks may simplify (see
discussion in supporting information).

5.6. Possible Lower Mantle Connectivity With Marie Byrd Land Volcanoes
As discussed, many of the Marie Byrd Land volcanoes bear some geochemical resemblance to ocean
island basalts [LeMasurier, 1990], and several studies have suggested that a lower mantle plume
source may explain this [e.g., LeMasurier and Landis, 1996; Panter et al., 1997, 2000; Storey et al.,
1999; Kipf et al., 2014]. The upper mantle beneath the region, and in particular, beneath eastern
Marie Byrd Land and the Thwaites Glacier, appears to be thermally perturbed as evidenced by
recent tomography studies and by our results showing a significantly depressed 410 (with no corre-
sponding change in transition zone thickness) beneath this region [Heeszel, 2011; Lloyd et al., 2013;
Hansen et al., 2014]. If the anomalies that we detect below the Ruppert Coast and the Bentley Sub-
glacial Trench are connected to the prominent Marie Byrd Land upper mantle anomaly, then the
geochemical characteristics of the volcanoes that suggest a lower mantle source may be related in
this way to the seismic structure of the mantle.

6. Summary and Conclusions

We find that the 410 discontinuity is depressed relative to the global average throughout the study region
in West Antarctica, and most strongly so beneath the Thwaites Glacier and Executive Committee Range
where recent tomographic results image significantly decreased upper mantle velocities. This suggests that
the apparent depression of the 410 results from velocity effects within the upper mantle and does not rep-
resent actual topography of the olivine-wadsleyite transition. The mantle transition zone thickness through-
out most of the region is comparable to the global average (and consistent with earlier studies beneath the
Erebus hot spot). However, thinner than average transition zone is found beneath the Bentley Subglacial
Trench and Whitmore Mountains, and beneath the Ruppert Coast on the eastern side of the Ross Ice Shelf.
The 520 discontinuity is detected beneath much of the study region and has the highest stack amplitudes
beneath the WAIS Divide and Thwaites Glacier. A negative peak consistent with a low velocity layer above
the 410 is detected above the transition zone throughout most of the region, and its amplitude is the
strongest beneath the Byrd Subglacial Basin and the WAIS Divide. Lastly, we observed complicated peaks
from the (sub-660) base of the transition zone in regions where transition zone thinning is present,
although some of the characteristics of these features may arise from unaccounted-for 3-D velocity effects.

We conclude that the evidence from P-receiver functions suggests two distinct thermal upwellings beneath
West Antarctica: one beneath the Ruppert Coast and another beneath the Bentley Subglacial Trench. These
regions may be connected to the pronounced upper mantle thermal anomalies beneath the Executive
Committee Range of Marie Byrd Land and Thwaites Glacier, which supports geochemical evidence for a
mantle plume influence on Marie Byrd Land volcanism. We further propose that the transition zone shows
indications of being partially hydrated. The source of this hydration may be a remnant of subduction off the
coast of West Antarctica prior to the Cretaceous.
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