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Abstract: We analyze function approximation (regression) capability of Fuzzy
ARTMAP (FAM) architectures - well-known incremental learning neural networks.
We focus especially on the universal approximation property. In our experiments,
we compare the regression performance of FAM networks with other standard neu-
ral models. It is the first time that ARTMAP regression is overviewed, both from
theoretical and practical points of view.
Keywords: fuzzy ARTMAP, universal approximation, regression.

1 Introduction

The approximation of functions that are known only at a certain number of discrete points
is a classical application of neural networks. Almost all approximation schemes can be mapped
into some kind of network that can be dubbed as a “neural network” [1]. A neural network has
the universal approximation property if it can approximate with arbitrary accuracy an arbitrary
function of a certain set of functions (usually the set of continuous function) on a compact domain.
The drawback is that such an approximation may need an unbounded number of “building blocks”
(i.e., fuzzy sets or hidden neurons) to achieve the prescribed accuracy. Therefore it is reasonable
to make a trade-off between accuracy and the number of the building blocks, by determining the
functional relationship between them.

Historically, of fundamental importance was the discovery [2] that a classical mathematical
result of Kolmogorov (1957) was actually a statement that for any continuous mapping f :
[0, 1]n ⊂ ℜn −→ ℜm there must exist a three layered feedforward neural network of continuous
type neurons that implements f exactly. This existence result was the first step. Cybenko [3]
showed that any continuous function defined on a compact subset of ℜn can be approximated
to any desired degree of accuracy by a feedforward neural network with one hidden layer using
sigmoidal nonlinearities. Many other papers have investigated the approximation capability of
three layered networks in various ways. In addition to sigmoid functions, more general functions
can be used as activation functions of universal approximator feedforward networks [4].

Copyright c⃝ 2006-2012 by CCC Publications
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Girosi and Poggio proved that radial basis function (RBF) networks also have universal
approximation property [1]. Hartman and Kowalski [5] proved that a one hidden layer neural
network with Gaussian hidden nodes is a universal approximator for real-valued maps defined
on convex, compact sets of ℜn. Additional related papers are [6] and [7].

The Fuzzy ARTMAP (FAM) family of neural networks is one of the best known incremental
learning systems. There are many variations of Carpenter’s et al. [8] initial FAM model, including
Gaussian ARTMAP (GAM) [9], PROBART [10], FAMR [11], GART [12], [13], and AppART [14].
Compared to FAM classification, the function approximation (regression) capability of FAM was
less frequently addressed. It is our goal here to discuss FAM regression capability for different
FAM architectures.

The FAM maps subsets of ℜn to ℜm, accepting both binary and analogue inputs in the
form of pattern pairs. The initial FAM, PROBART, and the FAMR architectures have been
used for incremental regression estimation. Since the initial FAM was proved to be universal
approximator [15], it is reasonable to believe that members of the FAM family may also have
the universal approximation capability. However, since some of the FAM variations are quite
different than the initial FAM, each model should be considered individually.

The Bayesian theory allows for elaboration of general neural network training methods
[16].Recently, Vigdor and Lerner have combined the Bayesian theory and the FAM introduc-
ing the Bayesian ARTMAP (BA) [17]. Like the GAM and the GART networks, during training,
the BA uses Gaussian categories and FAM competitive learning. However, the BA prediction
phase is very different than the FAM competitive algorithm, being a Bayesian approach. Vigdor
and Lerner have compared the BA performance with respect to classification accuracy, learning
curves, number of categories, sensitivity to class overlapping and risk with those of the FAM.
Generally, the BA outperformed the FAM in classification tasks. Up to our contribution, the BA
regression capability was not discussed or tested.

Our paper is the first overview of both theoretical and practical aspects of FAM regression,
considering several major FAM architectures: the initial FAM of Carpenter et al., PROBART,
FAMR, BA, GAM, and AppART. We discuss universal approximation capabilities of these FAM
models. In our experiments, we compare the regression performance of FAM networks with stan-
dard neural networks: Multi Layer Perceptron (MLP), RBF, General Regression Neural Network
(GRNN), and FasBack. Section 2 reviews the main notations and paradigms of FAM. In Section
3, we discuss the universal approximation capability of the following FAM architectures: the orig-
inal FAM, PROBART, FAMR, BA, and AppART. We synthesize our comparative experiments
in Section 4. Section 5 contains the final remarks.

2 Fuzzy ARTMAP

A FAM consists of a pair of fuzzy ART modules, ARTa and ARTb, connected by an inter-ART
module called Mapfield, F ab. ARTa contains a preprocessing layer F a

0 , an input (or short-term
memory) layer F b

1 and a competitive layer F b
2 . The following notations apply: Ma is the number

of nodes in F a
1 , Na is the number of nodes in F a

2 , and wa is the weight vector between F a
1 and F a

2 .
We say that a node – also called a category – from F a

2 is uncommitted if it has not learned yet
an input pattern, and committed otherwise. Analogous layers and notations are used in ARTb.
Each node j from F a

2 is linked to each node from F b
2 via a weight vector wab

j from F ab, the jth
row of the matrix wab, 1 ≤ j ≤ Na. All weights are initialized to 1.

All input vectors are complement-coded by the F a
0 layer in order to avoid category prolifer-

ation [8], [18], [19]: the input vector a = (a1, . . . , an) ∈ [0, 1]n produces the normalized vector
A = (a1, . . . , an, 1− a1, . . . , 1− an). During pattern processing, the operator ∧ used is the fuzzy
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AND operator defined as (p ∧ q)i = min(pi, qi), where p = (p1, . . . , pn) and q = (q1, . . . , qn). | · |
denotes the L1 norm.

Before learning a normalized input vector A, the vigilance parameter factor ρa is reset to its
baseline value ρa and each input category is considered as not inhibited, competing for the current
input pattern. A fuzzy choice function is computed for every ARTa category: Tj(A) =

|A∧wa
j |

αa+|wa
j |

,
for 1 ≤ j ≤ Na. The non-inhibited node of index J having the maximum fuzzy choice function
value is further checked whether it passes the resonance condition, i.e. if the input is similar
enough to the winner’s prototype: |A ∧wa

J |/|A| ≥ ρa. If this condition is not fulfilled, then the
node having index J is inhibited and another non-inhibited node maximizing the fuzzy choice
function is considered as above. If no such node exists, a new node with index J is created to
represent the input vector. In parallel, a similar step is performed in the ARTb module; we obtain
output vector yb = (δiK)1≤i≤Nb

, where K is the index of the output winner node (1 ≤ K ≤ Nb)
and δij is Kronecker’s delta. If input node J is newly added, then we associate it with the
current output: wab

Jk = δkK and this association becomes permanent. Each time input node J is
activated, it predicts as output value the only index k for which wab

Jk = 1. If node J is not new,
then we check whether its predicted value is K. If the prediction is incorrect, a new activity
(called match tracking) is triggered in ARTa solely. Otherwise, learning occurs in both ARTa

and ARTb:

w
a(new)
J = βa

(
A ∧w

a(old)
J

)
+ (1− βa)w

a(old)
J (1)

where βa ∈ (0, 1] is the learning rate parameter. A similar learning step takes place in ARTb.
The match tracking raises the ρa threshold for the current input pattern: ρa = δ + |A ∧

wa
J |/|A|. If ρa > 1 then the current input pattern is rejected; otherwise, the search for an

appropriate input category is continued, as described above.
For each F a

2 category we have the following geometrical interpretation. Node wa
j is a hy-

perrectangle Rj inside the n-dimensional hypercube, having size n − |wj | [8]. Learning, as in
equation (1), is equivalent to expanding the hyperrectangle towards the current input pattern,
unless this pattern is not already in Rj . If βa = 1, then Rj expands to Rj ⊕ a, the minimal
hyperrectangle containing both Rj and input pattern a. A similar geometrical interpretation
applies to ARTb.

3 FAM Architectures used in Regression

3.1 The initial FAM for regression

The FAM regression capability was first tested by Carpenter et al. for univariate real func-
tions [8]. Input categories were considered to predict not real values, but real intervals. The
experiments targeted the study of predicted output intervals’ geometry and the number of re-
sulted categories for various values of ρb. For the test set, the authors counted the matchings
between predicted output categories and actual output values. A matching between f(a) and
the predicted output category (a rectangle) Rb

K was established if the size of Rb
K ⊕ f(a) did not

exceed (1− ρb). As expected, the number of matchings increased with ρb.
Verzi et al. [15] proved that a slightly modified FAM version can be used to universally

approximate any measurable function in Lp ([0, 1]). More specifically, given 1 ≤ p < ∞, for
every f ∈ Lp ([0, 1]), f ≥ 0, a series of FAM computable functions sn with the following property
were determined: functions sn approximate f in the limit and sn are dense in Lp ([0, 1]). One
can extend this result to the initial FAM.
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3.2 PROBART for function approximation

PROBART is a modification of FAM motivated by empirical findings on the operational
characteristics of FAM under certain conditions [10]. The authors replaced the Mapfield update
rule FAM by

wab
J =

{
yb +wab

J if the J-th F a
2 node is active and F b

2 is active
wab

J if the J-th F a
2 node is active and F b

2 is inactive
(2)

Thus, wab
jk indicates the number of associations between the j-th ARTa node and k-th ARTb

node. Initially, wab
jk = 0, i.e. no association has been made yet.

There is no match tracking phase. The predicted value for an input pattern activating the
Jth ARTa category is

µJl =
1

|wab
J |

Nb∑
k=1

ϵklw
ab
Jk, 1 ≤ l ≤ Mb (3)

where µJl is the expected value of the l-th component of the predicted output pattern associated
with the current input pattern, |wab

J | is the total number of associations of the J-th ARTa

category and each category from ARTb, and ϵkl represents the kth ARTb category. Specifically, for
PROBART the authors considered ϵkl as the lth component of the kth ARTb category exemplar.
Only the first m components of each output category wb

k are meaningful for computing the
prediction corresponding to the current input pattern.

Equation (3) can be written as µJl =
∑Nb

k=1 ϵklpJk, where pJk is the empirically estimated
association probability between the Jth ARTa category and the kth ARTb category: pJk =
wab
Jk/|wab

J |.

3.3 The FAMR Model for Function Approximation

The FAMR (Fuzzy ARTMAP with Relevance factor), a version of the FAM, has a novel
learning mechanism. We will review here the FAMR basic notations (details in [11]) and discuss
its function approximation capabilities.

The main difference between the FAMR and the initial FAM is the update method of the
wab
jk weights. The FAMR uses the following updating formula [11]:

w
ab(new)
jk =


w

ab(old)
jk if j ̸= J

w
ab(old)
JK + qt

Qnew
J

(
1− w

ab(old)
JK

)
w

ab(old)
Jk

(
1− qt

Qnew
J

)
if k ̸= K

(4)

where qt is the relevance assigned to the t-th input pattern (t = 1, 2, . . . ) and Qnew
J = Qold

J + qt.
The relevance qt is a real positive finite number directly proportional to the importance of the
experiment considered at step t. Initially, each Qj (1 ≤ j ≤ Na) has the same initial value q0.

To maintain the stochastic nature of each wab
j row in Mapfield, we modified the Mapfield

dynamics: when a new input category is created, a new row filled with 1/Nb is added to wab;
when a new ARTb category indexed by K is added, each existing input category is linked to it by

wab
jK = q0

NbQj
, and the rest of elements wab

jk are decreased by
wab

jK

Nb−1 , for 1 ≤ j ≤ Na, 1 ≤ k ≤ Nb,
k ̸= K. The update in eq. (4) preserves the stochastic property of each row. Finally, the
vigilance test is changed to: Nb w

ab
JK ≥ ρab.

According to [11], this wab
jk approximation is a correct biased estimator of posterior probability

P (k|j), the probability of selecting the k-th ARTb category after having selected the j-th ARTa.
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To estimate the corresponding output value for a given input pattern, FAMR uses the same
formula as in eq. (3), but in this case ϵk contains the coordinates of the kth ARTb category
centroid. During the FAMR training process, the l-th component of the centroid can be updated
by Kohonen’s learning rule: ϵ

b(new)
kl = ϵ

b(old)
kl + (bl − ϵ

b(old)
kl )/sizebJ .

This rule incorporates an idea from [20]. The value sizebJ is the number of output vectors
of the k-th ARTb category and bl is the l-th component of b, the output vector of the current
training pair (a,b).

3.4 The Bayesian ARTMAP Function Approximation Algorithm

In BA, in contrast to FAM, wa
j is not a weight vector (a prototype), but simply a category

label. Also, the ART categories are Gaussians, similar to the GAM. Each BA category j is
characterized by the n-dimensional vector µ̂a

j (mean), the n× n covariance matrix Σ̂a
j , and the

count number of training patterns clustered to category j, na
j . Analogous notations appear in

ARTb, where one provides m-dimensional vectors.
The associations between input and output categories are stored inside the Mapfield mod-

ule, as PROBART does, and one can approximate the conditional probability P (wb
k|wa

j ) as
P̂ (wb

k|wa
j ) = wab

jk/
∑Nb

l=1w
ab
jl .

The following description uses ARTa notations; analogous notations are used for ARTb.
All existent ARTa categories compete to represent the current input pattern. The posterior
probability of category j given input a is estimated according to Bayes’ theorem:

P̂ (wa
j |a) =

p̂(a|wa
j )P̂ (wa

j )

Na∑
i=1

p̂(a|wa
i )P̂ (wa

i )

(5)

where P̂ (wa
j ) is the estimated prior probability of the j-th ARTa category, P̂ (wa

j ) = na
j/
∑Na

i=1 n
a
i .

The conditional probability p(a|wa
j ) is estimated using all patterns already associated with

Gaussian category wa
j :

p̂(a|wa
j ) =

1

(2π)n/2
∣∣∣Σ̂a

j

∣∣∣1/2 · exp
{
−1

2
(a− µ̂a

j )
t(Σ̂a

j )
−1(a− µ̂a

j )

}
(6)

During the category choice step in ARTa, the winning category J is the one maximizing the
posterior probability P̂ (wa

j |a).

The following vigilance test is performed: Sa
J ≤ Sa

MAX , where Sa
J =

∣∣∣Σ̂a
J

∣∣∣ is the hyper-volume
of the winning category, and Sa

MAX is an upper bound threshold. During processing a training
pattern, Sa

MAX may decrease from its initial value Sa
MAX . In contrast, Sb

MAX remains unchanged.
Every newly recruited category inside an ARTa (ARTb) module is centered in the current pattern
and has the initial covariance matrix set to λ(Sb

MAX)1/m ·Im (and λ(Sb
MAX)1/n ·In, respectively),

where λ is a small positive constant. This is done when none of the categories fulfills the vigilance
test. Adding a new input (output) category triggers the addition of a new zero-filled line (column)
to the association matrix wab.

If the connection strength P̂ (wb
K |wa

J) between winning categories wa
J and wb

K is below a fixed
threshold Pmin, then Sa

MAX is slightly decreased under the current winner input category’s SJ ,
and the quest for another input category is continued. Otherwise, if the current winner input
category was not newly added during processing the current pattern, ARTa learns the current
pattern:
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µ̂a
J(new) =

na
J

na
J + 1

µ̂a
J(old) +

1

na
J + 1

a , (7)

Σ̂a
J(new) =

na
J

na
J + 1

Σ̂a
J(old) +

1

na
J + 1

(a− µ̂a
J(new))(a− µ̂a

J(new))
t ∗ In (8)

na
J = na

J + 1 (9)

Unless wb
K is a newly added category for the current training pattern, an analogous learning

process in ARTb takes place. Finally, the Mapfield association counter wab
JK is updated.

After learning, the BA can be used for prediction. We estimate the probabilistic association
of an output category wb

k with input test pattern a:

P̂ (wb
k|a) =

Na∑
j=1

P̂ (wb
k|wa

j )p̂(a|wa
j )P̂ (wa

j )

Nb∑
l=1

Na∑
j=1

P̂ (wb
l |wa

j )p̂(a|wa
j )P̂ (wa

j )

(10)

As in [21], we assume the conditional independence of activating categories wb
k and wa

j , given
input pattern a. For function approximation the following average formula is used:

f̂(a) =

Nb∑
k=1

P̂ (wb
k|a) · µ̂b

k (11)

Since, under certain mild conditions on the kernel function, RBF networks are universal
approximators [1], [5], [6], [7], and the FAM also has universal approximation capability [15], it
looks natural for the BA, which is essentially a FAM architecture with Gaussian categories, to
be universal approximator. However, this statement can not be directly deducted from the RBF
and FAM results. This is was a good reason for us to proof the following theoretical result [22]:

Theorem 1. BA is a universal approximator on a compact set X ⊂ ℜn.

3.5 AppART: Hybrid Stable Learning for Universal Function Approximation

AppART [14] is an ART-based neural network model that incrementally approximates continuous-
valued multidimensional functions through a higher-order Nadaraya–Watson regression.

An input pattern x is feedforwarded from input layer F1 to the F2 layer. The F2 layer
consists of N categories, modeling a local density of the input space using Gaussian receptive
fields with mean µj and standard deviation σj . A match criterion is used to detect whether the
current leaning pattern activates an existing F2 category or a new one should be added. The
match function is:

Gj = exp

(
−1

2

n∑
i=1

(
xi − µji

σji

)2
)
, 1 ≤ j ≤ N (12)

If all Gj values are below threshold ρF2, a new node is recruited to represent the current
input pattern. Otherwise, the input strength of each F2 node is computed as gj = I(Gj >
ρF2) · (ηjGj/

∏n
i=1 σji), where ηj is a measure of the prior activation probability of the jth

category, and I is the binary indicator function: I(P ) = 1 iff P is true. The activation values
vj of the F2 nodes are obtained by normalizing gj . One can use vj as an approximation of the
posterior probability P (j|x) of category j given input pattern x.
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The P and O layers together compute the prediction of the network. In the P layer, there are
m+ 1 nodes whose corresponding values are computed as: ak =

∑N
j=1 αkjvj (1 ≤ k ≤ m), b =∑N

j=1 βjvj where αkj and βj are weights connecting each F2 category to the each node in the
P layer. Each αkj is the sum of values of output feature k, learned when the jth F2 node was
active. βj counts how many patterns the jth F2 category has learned. Output layer O has m
output nodes, whose predictions are ok = I(b > 0) · ak/b.

Incorrect predictions are detected by comparing a threshold ρO with the degree of closeness
between the prediction of the network and the desired output. If an incorrect prediction is
produced, a match tracking mechanism (similar to the one in FAM) is triggered. This might
produce a new F2 node or find a more suitable node for the current input pattern.

The learning process takes place for µj , σj , ηj , αj and βj :

ηj(t+ 1) = ηj(t) + vj , µji(t+ 1) = (1− η−1
j vj)µji(t) + η−1

j vjxi

λji(t+ 1) = (1− η−1
j vj)λji(t) + η−1

j vjx
2
i , σji(t+ 1) =

√
λji(t+ 1)− µji(t+ 1)2

αkj(t+ 1) = αkj(t) + ϵ−1vjyk, βj(t+ 1) = βj(t) + ϵ−1vj

A common value γi = γcommon may be used for the standard deviation in case of all input
features.

An important theoretical result of AppART is [14]:

Theorem 2. AppART with ρF2 = 0, ρO = 0 and γi = γcommon, 1 ≤ i ≤ n behaves as GRNN.

Since the GRNN can be viewed as a normalized RBF expansion, one can transitively apply
to AppART two important properties of RBF networks: the universal approximation and the
best approximation properties [1].

4 Experimental Results

For the first test, we consider function [10] f : [0, 1] → [0, 1] defined by f(x) = (10 +∑7
t=1 sin(10tx))/20.
We use independent, randomly generated datasets for training, validation and testing, con-

sisting of 800, 200, and 1000 patterns, respectively. Each training pattern is a (x, f(x)) input-
output pair. The testing set was not used in the training phase, but only to assess generalization
performance.

The BA parameters Sa
MAX , Sb

MAX , and Pmin are optimized on the validation set by trial and
error, for Sa

MAX , Sb
MAX ∈ {10−3, 5·10−4, 10−4, 5·10−5, 10−5, 5·10−6} and Pmin ∈ {0, 0.1, . . . , 0.9}.

The BA with optimized parameters (i.e., generating the lowest RMSE on the validation set)
was trained on the training+validation dataset. The generalization performance of the trained
BA was assessed on the testing set in two ways (see Table 4):

1. The “BA(1)”, corresponds to a BA network with unbounded number of categories.

2. For “BA(2)”, we considered only BA models with similar number of input categories as for
PROBART.
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ARTa categories no. ARTb categories no. RMSE

FAM 312 53 0.0074
PROBART 110 53 0.0169
BA(1) 185.6 57.8 0.0076
BA(2) 111.0 35.8 0.0106

Table 1: FAM, PROBART, and BA performance for regression on data generated by function
f .

The RMSE for BA(1) and BA(2) were each averaged for five different runs, using each time
randomly generated training, validation, and test sets. The results for PROBART and FAM are
from [10]. FAM in our experiments is Carpenter’s initial FAM version.

The BA(1) results are very similar to the FAM results, but for a considerably smaller number
of input categories. On average, BA(2) produced one more input category than PROBART, while
improving the RMSE by 40.23%. It is quite difficult to directly compare the resulted BA(2) and
FAM, since BA(2) has 64.42% less input categories than the FAM.

Considering both the RMSE score and the number of input categories, we may conclude that,
for this experiment, the BA performs better than the FAM and PROBART.

In the second test, we use the fifth-order chirp function [14]: g(x) = 0.5+0.5 sin(40πx5). Marti
et al. have experimentally compared the function approximation performance of the following
neural models [14]: AppART, Multi Layer Perceptron (MLP), RBF, General Regression Neural
Network (GRNN), FAM, GAM, PROBART, and FasBack [23]. The reported score was the mean
squared error (MSE). The authors run the training algorithms for several epochs. The data set
consisted of 10000 points x ∈ [0, 1], of which 70% were used for training and the rest for testing.
The cited paper does not fully describe the parameter values used for each of the networks.

In our experiment, we partition a dataset of 10000 patterns into a 4000 patterns training
set, a 3000 validation set, and a 3000 patterns testing set. We perform a trial and error search
for Sa

MAX , Sb
MAX ∈ {10−4, 10−3, 10−2, 10−1}, Pmin ∈ {0, 0.1, . . . , 0.9}. The values producing the

best MSE on the validation set are used to train the BA on the train+validation dataset, and
the testing set MSE was reported. The above procedure are repeated five times, for randomly
generated datasets. We only use single epoch training.

Table 2 contains the results for MLP, RBF, GRNN, FAM, GAM, PROBART, FasBack,
AppART and BA. For the first eight neural networks the results are from [14]. BA produces a
very good MSE score for this regression task, most likely due to the optimized parameter values
obtained by trial and error.

Comparing the MSE BA score, obtained by single epoch training, and those reported in [14],
where multi-epoch training was used, we can state that the BA clearly performs better.

5 Conclusions

Theoretical universal approximation results were obtained for several FAM architectures:

• Explicit results were obtained for a slight variation of the initial FAM and for the BA.

• Implicit results, derived by association with other networks: FAMR, PROBART, and
AppART.
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Model MSE Training epochs
MLP 0.4362 30000+
RBF 0.2701 10000
GRNN 0.1540 150
FAM 0.1802 140
GAM 0.1521 45
PROBART 0.1435 50
FasBack 0.0915 10000
AppART 0.0803 30
BA 0.0086 1

Table 2: BA vs. other neural networks generalization performance for data generated by function
g.

The result showing FAM networks to be universal approximators is an important fact in
establishing the utility of FAM architectures. A learning algorithm which is known to be a
universal approximator can he applied to a large class of interesting problems with the confidence
that a solution is at least theoretically available. Experimentally, FAM architectures performed
well compared to other neural function approximators.

The FAM model, as well as other universal approximators, suffer from the curse of dimen-
sionality, as defined by Bellman [24]: an exponentially large number of ART categories may be
required to reach a final solution. Therefore, the universal approximation capability of a network
is an generally an existential result, not a constructive procedure to obtain a guaranteed compact
network approximation of an arbitrary function. An important problem we have not addressed
here is that of determining the network parameters so that a prescribed degree of approximation
is achieved (see [25]).

The FAM and its offsprings are incremental learning models. Therefore, they may be used for
fast approximation of massive streaming input data. This may be a serious plus when compared
to other neural predictors.

How could a neural posterior probability estimator, like the BA, be used in risk assessment
and decision theory? One possibility would be to combine the inferred posterior probabilities
with a loss function, as suggested for a more general framework in [26]. This way, we could
obtain an incremental learning risk assessment tool capable of processing fast large amounts of
data.
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