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ABSTRACT 

PHYSIOLOGICAL VARIATION OF GARRY OAK (QUERCUS GARRYANA) 

SEEDLINGS TO DROUGHT STRESS 

by  

Matthew A Merz 

June 2015 

 

The purpose of this study was to determine physiological differences in drought 

response among Garry oak (Quercus garryana Douglas ex Hook. [Fagaceae]) seedlings 

that grow in distinct populations in Washington state, in order to aid in restoration efforts 

by informing growers of the potential differences between the acorn collection sites.  

Acorns from six Washington populations east of the Cascades, as well as one population 

from Whidbey Island, were collected and grown in containers under controlled 

conditions.  The plants were assessed with and without moderate and severe drought 

stress induced by withholding water.  The most extreme differences in photosynthetic 

characteristics for non-stressed seedlings from different populations were in stomatal 

conductance rates, which in some cases differed between populations by 2 fold or more.  

Differences in response to drought occurred across populations after 14 days of 

withholding water (Fig. 4).  Seedlings from the northernmost population of Garry oak on 

the east side of the Cascades (Swauk Creek) were most susceptible to lowered 

photosynthetic rates induced by drought stress, while an island population from the west 
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side of the cascades (Oak Harbor) showed the least drought-induced reduction of 

assimilation.  Differences among populations were also observed in the occurrence of 

drought induced embolisms, and in changes in leaf water potential, relative water content, 

and production of the osmolyte proline in response to drought. This study shows that 

seedlings from different populations of Garry oak have distinct physiological responses 

to drought that may lead to changes in survivorship for seedlings used in reforestation 

efforts for Garry oak savannas as they are exposed to drought stress in the field.   

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

AKNOWLEDGEMENTS 

 I would like to thank my advisor Mary Poulson for giving me the resources, 

advice, and time that made this project possible.  I also thank Raymon Donahue for help 

collecting acorns and providing valuable advice and insight about the collection sites, and 

Tom Cottrell for advice and support throughout this project.  I would also like to thank 

the Central Washington University School of Graduate Studies and Research for granting 

a summer fellowship which made it possible to conduct summer research, and the 

Washington Native Plant Society for partial funding of the supplies for this project.   

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 
 
Chapter                                                                                                           Page 
 
 I     GENERAL INTRODUCTION ............................................................. 1 
 
 Introduction ................................................................................... 1 

 Plant Responses to the Environment............................................. 2 

 Plant Water Relations ................................................................... 6 

 Garry Oak Savanna Ecosystems in Washington State .................. 8 

 Growth, Physiological and Distribution Characteristics ............... 9 

 Regeneration Patterns for Garry Oak Stands .............................. 12 

 
 II     JOURNAL ARTICLE ....................................................................... 16 
 
 Title page .................................................................................... 17 

 Abstract ....................................................................................... 18 

 Introduction ................................................................................. 20 

 Methods....................................................................................... 25 

 Results ......................................................................................... 30 

 Discussion ................................................................................... 50 

 References ................................................................................... 60 

 
      COMPREHENSIVE REFERENCES .................................................. 64 
 



vii 
 

LIST OF TABLES 
 
Table                                                                                                             Page 
 
 1       Photosynthetic Response to Light  ................................................... 31 
 
 2       Morphological and Biochemical Characteristics ............................. 34 
 
 3       Field Photosynthetic and Microclimate Measurements ................... 49 
 



viii 
 

LIST OF FIGURES 
 
Figure                                                                                                            Page 
 
 1       Response of Non-Stressed Seedlings to Light ................................. 32 
 
 2       Rapid Stomatal Response to Light  .................................................. 34 
 
 3       Soil Water Content for Drought Stress Treatments ......................... 38 
 
 4       Response of Garry Oak Seedlings to Drought. ................................ 40 
 
 5       Response of Seedlings to Soil Water Content .................................. 42 
 
 6       Water Potential and Relative Water Content Response ................... 44 
 
 7       Response of Stem Hydraulic Conductivity to Drought .................... 46 
 
 8       Response of Hydraulic Conductivity to Water Potential ................. 47 
 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER I 

GENERAL INTRODUCTION 

Introduction 

Growth and productivity in plants is facilitated by photosynthetic reactions that 

convert light energy into chemical energy.  When growth conditions, including 

temperature, light, water, and nutrient availability, are ideal, plants achieve their highest 

growth and reproductive potential through maximum efficiency of their photosynthetic 

reactions.  However, in the multitude of environments in which plants occur throughout 

the globe, few growth habitats exist in which ideal growth conditions occur for much of 

the time.  Terrestrial plants encounter a variety of environmental stresses which have long 

been known to limit plant productivity worldwide (Boyer 1982).  The most common 

forms of abiotic stress for plants in temperate climates include high or low temperature, 

solar radiation extremes, and lack of water availability (e.g. Larcher 1995).  Because of 

the importance of effects of environmental stress on plant productivity, much current 

plant research has addressed the mechanisms by which plants respond to one or more 

environmental stresses (Mittler 2006).  Changes in global climate have the potential to 

exacerbate environmental stresses for plants in regions where longer, warmer and more 

frequent droughts will occur in many regions of the world (Parry 2007) and such climatic 

modifications have been associated with regional tree mortality events in southwest 

United Sates (Breshears et al. 2009).  Increasing our understanding of how plants in both 

natural and agronomic environments respond to abiotic stress is of utmost importance in 

facilitating our response to climate change.   
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Plant Responses to the Environment 

Drought stress, is a condition in which plants have less available water than they 

need for maximum growth.  Plant responses to drought are complicated because plants 

must continually replace the water they lose.  Typically plant roots absorb water from the 

soil, where it is then transported through the roots and through the vasculature of the stem 

to the leaves.  Water is ultimately evaporated from leaves into the environment through 

regulated pores in the leaves called stomates through a physiological process called 

transpiration.  Transpiration serves several functions in plants including movement of 

nutrients obtained from the soil into regions of the plant where they are needed for 

growth.  Evaporation of water from leaves through transpiration is a cooling process and 

therefore the process of transpiration serves to regulate leaf temperatures and dissipate 

heat that they acquire through absorption of solar radiation throughout the day.  

Transpirational water loss through stomates is a necessary consequence for leaves that 

must open stomates to provide a pathway for carbon dioxide uptake for photosynthesis. 

Carbon dioxide is a gas that is present in the air at a relatively low concentration 

(0.04%) as compared to nitrogen (78%) and oxygen (21%) which are the main 

components of our atmosphere.  Plants require carbon dioxide for photosynthesis as they 

use light energy to convert the carbon dioxide into sugars that are required for basic plant 

metabolism.  Because above-ground regions of plants are effectively covered in a 

protective, hydrophobic layer called the cuticle, stomates are the only pathway for 

entrance of carbon dioxide into leaves for photosynthesis.  Opening stomates for carbon 

dioxide, however, presents the necessary cost of water loss through the same opening.  
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The amount of water loss is increased when evaporation rates are the highest, which 

occurs when the temperature is high, or the vapor pressure of the air surrounding the leaf 

is low.  When the water demands of a plant are in excess of the available water, there are 

several different mechanisms plants employ that although they may limit photosynthetic 

productivity, can be used in order to avoid damage or death as a result of droughted 

conditions.  One common mechanism for drought-avoidance is to physically limit the 

pore size through which water evaporates from the leaves by closing stomatal pores 

which reduces water loss at the cost of decreased photosynthetic rates, thereby lowering 

plant productivity under times of limited water availability (Mediavilla and Escudero 

2004).  The pores in the leaves of plants are flanked on each side by a pair of specialized 

cells called guard cells which can open or close the pore by increasing or decreasing their 

intercellular pressure.  Limiting the flux of water escaping the stomata also limits the flux 

of CO2 inward that can be used for photosynthesis.  This is known as a stomatal limitation 

to photosynthesis.  Many factors can affect stomatal closure including, but not limited to, 

vapor pressure deficit of the atmosphere, annual rainfall, and soil texture and structure 

(e.g. Larcher 1995).   

Photosynthesis can also be limited by non-stomatal mechanisms as a result of 

drought.  If the amount of available water is less than that needed for normal growth, but 

the leaves are still receiving high levels of solar energy from the sun, the plant can be 

damaged by the excess energy (Bjorkman 1981).  The wavelength range of the 

photosynthetically active portion of radiation that Earth receives from the sun is 400 to 

700 nm.  The intensity of light that is available for photosynthesis is often measured as 
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the number of photons that reach the Earth’s surface, per unit area, per unit time.  

Photons are elementary particles of light energy.  The amount of light that plants 

encounter in the natural light environment can vary greatly with time and location.  For 

example, the quantity of light that reaches the shady understory of a tree canopy can be as 

low as 0.05 - 25% of the amount that hits the canopy of the tree.   

Photosynthesis takes place in organelles called chloroplasts.  Photosystem I (PSI) 

and Photosystem II (PSII) are the two reaction centers within the chloroplasts.  Both of 

these reaction centers convert light energy to chemical energy that is subsequently used 

to reduce, or “fix” atmospheric CO2 through a complex metabolic pathway called the 

photosynthetic carbon reduction pathway, or the “C3” pathway.  When stomates are 

closed in order to prevent loss under drought conditions, there is a very limited amount of 

CO2 available for the photosynthetic carbon reduction cycle.  The problem is exacerbated 

at low or high temperatures that decrease rates of enzymatic reactions.  Under such 

conditions there is a reduced capacity for photosynthetic reaction centers to quench 

excitation energy from light absorption because without CO2 or enzymatic activity, there 

is essentially no outlet for absorbed light energy.  Under these conditions, the reaction 

center PSII is susceptible to light-induced protein degradation that lowers the 

photosynthetic capacity of plants and is called photoinhibition (e.g. Cornic 1994).   

Plants have the capacity to protect themselves from photoinhibition that might 

potentially occur under drought or other environmentally stressful conditions, such as low 

or high temperatures, through reactions that dissipate excess excitation energy as lower 

wavelength energy or, more frequently, as heat (e.g. Demmig-Adams and Adams 1992).  
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These energy dissipation pathways are a way of down regulating the photosystem, which 

decreases the efficiency of photosynthesis but prevents photoinhibitory damage to PSII.  

If light energy exceeds the capacity that plants have to protect themselves from 

photoinhibition, protein synthesis is required in order to rebuild damaged PSII.  To 

accomplish this costs the plant valuable stored energy.  Whether the reaction centers are 

being down regulated or destroyed, the overall photosynthetic capacity of the plant is 

reduced through these processes. 

Plants also respond to the environment through biochemical changes that 

determine maximum carbon assimilation rates, cellular respiration rates, and nutrient use 

efficiencies.  Plants also respond through anatomical changes such as changes in leaf 

thickness, surface area, the number of stomates per unit leaf area, and through changes in 

growth such as modification of the ratio of root to shoot biomass (e.g. Larcher 1995).  

Thicker leaves often contain a higher concentration of the important photosynthetic 

pigment, chlorophyll, and are therefore capable of higher rates of photosynthesis.  

Likewise some plants with thinner leaves contain less chlorophyll and have lower 

photosynthetic rates.  Differences in leaf thickness and chlorophyll concentration can 

often be correlated with the light environment of the plant, with the thicker leaves and 

higher photosynthetic capacity occurring in high light, and thinner leaves with lower 

photosynthetic capacity occurring in low light.  These differences can even be seen on the 

same plant, when comparing sun leaves from the brightly lit top of the canopy to shade 

leaves from the shaded understory (Boardman 1977). 
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Plant Water Relations 

In order to quantify the force by which plants pull water from the soil, researchers 

often employ references to the concept of plant water potential, or Ψw.  Water potential is 

the chemical free energy for water movement (or driving force of water) between 

systems.  A major component of the water potential that determines the driving force for 

water movement is the solute potential.  Much like the flow of water down a pressure or 

gravity gradient, free water will move away from an area of low solute concentration to 

areas of increasing solute concentration.  Some plants, respond to drought through 

adjustment of their cellular water potential by the production of osmolytes or solutes that 

decrease the cellular Ψw and increase the force by which water will move into a cell 

(Karamanos 2008).  One such osmolyte is the amino acid, proline.  Plants that produce 

proline in response to drought can make use of soil water that was previously unavailable 

to them (Ábrahám et al. 2010). 

Water movement in plants is facilitated by vascular tissue which is comprised of 

two basic cell types, xylem and phloem.  Xylem transports water up from the roots of the 

plant, through the stems, and into the leaves.  Phloem transports the sugars synthesized 

during photosynthesis away from the leaves.  In woody plants, such as trees, the bulk of 

the above-ground biomass is made up of xylem cells in the trunk of the tree that transport 

the large volume of water required for transpiration in a massive crown of leaves.  Stem 

hydraulic conductivity is the measure of the flux of water (conductance) through the 

xylem.  In ring porous angiosperm trees, water is transported primarily in the outer-most 

rings of xylem in continuous connected elements called vessels (e.g. Evert 2006).   
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A problem that can arise during the transport of water is cavitation, which is the 

formation of embolisms, or air bubbles that form a break in the continuous water column 

that normally occurs from the roots to the stem to the leaves through a tree.  Embolisms 

form when tension on the water column causes air that is dissolved in the xylem sap 

comes out of solution.  Many plants experience embolisms on a daily basis that occur due 

to temperature and pressure change (Tyree and Sperry 1989).  Minor embolisms can be 

repaired at night when transpiration rates are low or as the path of water is re-routed 

around them.  However if there is very limited water in the soil and the gradient in water 

potential between the soil and the leaves is particularly high, or if freezing of the xylem 

sap occurs, embolisms can form more readily and recovery can become much more 

difficult for the plant to deal with.  Indeed if cavitation is extensive the plant may be 

doomed and cannot recover without the production of new wood and a new water column 

in the next season (Tyree and Sperry 1989). 

Arid environments typically receive anywhere between zero and 30 cm of annual 

precipitation, and receive more light energy than the equator during the growing seasons 

(Renard et al. 1993).  Plants that live in arid or semi-arid environments are often affected 

by drought and are often at the physical limits of what they can tolerate (Tognetti et al. 

1998).  This means that an increase in drought in a semi-arid environment, even if it is 

relatively small, can tip the balance against the plants causing a decline in the population.  

One such decline occurred in a pinyon pine (Pinus edulis) population near Los Alamos, 

NM in 2000-2003 (Breshears et al. 2009).  In this example, the reduction of annual 

rainfall resulted in the loss of more than 90% of the established pinyon pines in a single 



8 
 

year.  One of the major concerns for areas such as these is the reduction in annual rainfall 

as a result of global climate change, and its impacts on the local plant life (Hanson and 

Weltzin 2000, Leung et al. 2004, Allen et al. 2010).  Understanding the ways that 

drought-tolerant plants deal with drought and the survivable extreme limits of drought 

stress for those plants are important in a changing environment. 

Garry Oak Savannah Ecosystems in Washington State 

In the Pacific Northwest oak woodlands and savanna inhabited by Garry oak 

(Quercus garryana) are semi-arid environments.  Garry oak, also known as known as 

Oregon white oak, is a broadleaf deciduous tree in the family Fagaceae and is the only 

oak species native to Washington State.  The difference between the Garry oak 

woodlands versus savannas mostly pertains to the patterns in which the trees grow.  

Savannas generally have a very broken mosaic pattern of canopy cover with patches of 

open canopy where full sunlight reaches the understory.  Woodlands are more densely 

populated with trees and the canopy intercepts most of the sunlight.  Garry oak is often 

interspersed with woodlands of Douglas-fir (Pseudotsuga menzisii), lodgepole pine 

(Pinus contorta), and ponderosa pine (Pinus ponderosa).  These woodlands and savannas 

are often organized at a large scale into a mosaic of communities across the landscape, 

with intermingling boundaries of combined communities (Dunwiddie et al. 2011).  The 

patchy distribution of trees in oak savannas allows high amounts of sunlight to reach the 

understory, which makes it possible for plant, and animal species to occur that would not 

be present in the woodland distribution.   
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Garry oak savannas in Washington State have been in decline for the last 150 

years or so, with drastic declines seen in the last 50 years.  It is estimated that only 5% of 

the historical Garry oak savannas exist today (Fuchs 2001).  Garry oak savannas are more 

diverse than Douglas fir woodlands and are an important ecosystem in the Pacific 

Northwest, providing habitat for thousands of species of plants, animals, and other 

associated organisms.  Some of these species are unique to the oak savannas and, as a 

result of the reduction in habitat, have become threatened in Washington State.  One such 

organism is the western gray squirrel (Sciurus griseus) which use the trees as nesting 

sites, and depends on the acorns as an important food source (Dunwiddie et al. 2011).  

For these reasons there has been increasing concern in not only protecting what remains, 

but restoring some of the historical populations.  This involves replanting seedlings of 

Garry oak in the reforestation locations.  However, little is known about how Garry oak 

seedlings will respond to drought after outplanting or whether there is a threshold of 

drought for these trees that limits their distribution. 

Growth, Physiological and Distribution Characteristics 

Garry oak is a drought tolerant, shade intolerant oak species.  Garry oaks can 

withstand drought extremes rivaled only by a few other oak species and they accomplish 

this in a number of ways.  Garry oaks grow very slowly which makes them poor 

competitors and sensitive to encroaching competitive trees such as Douglas fir (Gould et 

al. 2011).  A slow growth rate is particularly stressful to ring porous trees such as Garry 

oak, as they can only transport the bulk of their required water through a relatively small 

amount of xylem in the outer two rings of sapwood.  This is a challenge for the trees 
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because they have to balance their growth rate to use a minimum amount of water so that 

they do not run out of water in the summer months, but at the same time they must carry 

out enough growth in the season to generate adequate new functional xylem to transport 

water during next growth season (Gould et al. 2011).  Garry oak also exhibits different 

growth forms depending on the available water of their habitat, with smaller shrubby 

growth forms around five meters tall in dry areas, and large tall tree forms reaching 30 

meters in wetter areas (Devine et al. 2013).   

Another adaptation to drought achieved by Garry oak trees is the ability to 

maximize use of stored water.  They do this by charging their sapwood with water in 

spring which is their primary growing season, and in part, using that reserve water 

through the dry season.  They then recharge again in the fall when the rains return (Gould 

et al. 2011).  This is a tactic not uncommon among large woody trees, and it becomes 

more important with increasing tree size.  The larger the tree, the more reliant it is on 

stored xylem water (Phillips et al. 2003).  A characteristic of Garry oak that does not fit 

with most trees is the fact that as the trees grow, their leaf area to sapwood area ratio 

increases.  This means that there is more evaporative leaf surface area in a larger oak with 

less sapwood to move the water to the leaves.  Most trees decrease this ratio to 

compensate for the evaporative demand.  The reason that large Garry oak trees don’t lose 

their drought tolerance as they get older is partially that they have lower water flux and 

are more efficient with water than when they were smaller (Phillips et al. 2003).  Lower 

transpiration rates and higher water use efficiency, suggest that these larger trees have a 

decreased stomatal conductance compared to when they were young, supporting the idea 
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that photosynthesis is limited by stomata such that growth rates are slower, but less water 

is lost. 

Large early wood vessels in oaks are the most vulnerable to drought or freezing-

induced embolisms in their xylem (Sperry and Sullivan 1992).  Smaller diameter vessels 

can better recover from embolisms (Logullo and Salleo 1993).  White oaks such as Garry 

oak which are a sub-genera of oaks (Lepidobalanus) sensu Camus, generally have 

smaller vessels than red and evergreen oaks which belong to the sub-genera 

(Erythrobalanus) sensu Camus (Bonner and Vozzo 1987, Cavender-Bares and Holbrook 

2001).  This means that the smaller vessel size of white oaks as compared to other oaks is 

a sort of tradeoff, trading a lower flux of water through the stems to the leaves for less 

risk of permanent damage or death due to drought-induced embolisms.  Although 

hydraulic conductivity in response to drought has been determined for many oaks 

including some white oaks (e.g. Cavender-Bares and Holbrook 2001) stem hydraulic 

conductivity characteristics for Garry oak have not previously been investigated.  

Garry oak trees are very shade intolerant and rely on an open, broken canopy 

characteristic of savannas (Gould et al. 2008).  In general, oaks do most of their growing 

in the spring, and therefore need the maximum light levels available during this time 

(Dougherty et al. 1979).  When grown in shade, the thickness of the leaf as well as the 

chlorophyll content tend to decrease (Aranda et al. 2005).  The biomass and 

photosynthetic machinery produced by both sun and shade leaves comes at a cost of 

energy, and both conditions have potential downsides.  If more light is available, the 
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energy can be wasted, whereas if light is limited, the plant must be efficient with what 

light it has in order to maintain adequate photosynthesis.   

Of the many oaks species in the world, the more drought tolerant species tend to 

have better control and faster response time for their stomates, and often have less non-

stomatal limitations to carbon assimilation (Dickson and Tomlinson 1996).  Bur oak 

(Quercus macrocarpa) like Garry oak is a white oak and has been shown to have a two to 

seven-fold increase in leaf hydraulic conductance in response to light increase, compared 

to a 1.5 fold enhancement experienced by other oak species such as the red oak (Quercus 

rubra) (Voicu et al. 2008).  This further illustrates the importance of light to oaks as well 

as the efficiency with which drought tolerant species use water. 

Regeneration Patterns for Garry Oak Stands 

All oaks are monoecious, having separate male and female flowers both occurring 

on the same tree.  Oaks are wind pollinated, and are self-incompatible (Fuchs 2001).  

Because of this, all viable acorns produced by Garry oak occur from a cross pollination 

event between two different trees.  Garry oak is a recalcitrant oak species, which means 

that there is no embryo dormancy in the current year’s acorns.  Once dropped, the acorns 

maintain a high rate of cellular respiration, require a high amount of moisture retention to 

remain viable, and germinate almost immediately (Devine et al. 2010).  The acorns are 

often buried by small mammals, which greatly increase their chances of survival.  It is 

estimated that more than 65% of acorns buried by animals germinate and survive their 

first year (Fuchs et al. 2000).  Un-germinated acorns of Garry oak do not last more than 

one year in nature, but have been shown to stay viable for up to two or three years if kept 
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at low moisture content in cold dark storage at about 4°C (Devine et al. 2010).  Acorn 

production shows a trend with annual precipitation, with years of high production 

typically following late winter (February) precipitation followed by early summer (June) 

precipitation.  Interestingly the early summer precipitation also correlates with no acorn 

production in the following year (Peter and Harrington 2009).  Typically following a year 

of heavy acorn production, there is a year of little to no acorn production.  When 

collecting acorns for growing and reforestation efforts, it has been suggested that the 

collection site be as close to the target planting site as possible (Devine et al. 2013).  

Acorns may be disperse naturally by birds and other animals up to 300 meters away from 

the parent tree.  If acorns are to be collected and moved further than that, one general rule 

suggested is to collect from an area differing by no more than 2 cm annual precipitation 

or 1°C in mean temperature for the warmest part of the year (Devine et al. 2013). 

Garry oak savanna structure maintenance is dependent on recruitment of new 

trees into the stand.  Seedling establishment is an important factor in the stand 

development of many tree species, especially in areas that are disturbed, or that are 

environmentally stressful to the plants.  Garry oak seedlings are susceptible to 

environmental stress in the form of drought, high and low light intensity, herbivory, and, 

at least historically, disturbance by fire.  It is estimated that in dry rocky reforestation 

sites, drought kills an estimated 59-78% of new seedlings (Fuchs et al. 2000).  Mature 

trees are quite adapted to fire, but the seedlings are very vulnerable.  Regardless of this, 

the benefits of the removal of competitive species by fire far outweigh the loss of 

seedling recruitment (Adams and Rieske 2003).  Many oak species including Garry oak 
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employ phytochemical responses to herbivory in the form of changes in foliar 

carbohydrates, and tannin concentrations.  As a result Garry oak do not have many large 

herbivore species that regularly eat the leaves, and the insect species that do are not 

usually damaging enough to result in mortality (Devine et al. 2013).   

Most oak seedlings perform better in full sun than in shade, exhibiting higher 

photosynthetic rates and water use efficiencies when not shaded (Rebbeck et al. 2012, 

Aranda et al. 2007).  Garry oak seedlings are usually most abundant under the partially 

shaded canopy of other oak and non-oak trees, and are least abundant in the open patches 

of a savanna (Michalak 2011).  This would suggest that typically the seedlings of Garry 

oak are operating at a lower photosynthetic rate and may have a lower water use 

efficiency than if they were located in the full exposure of the open patches.  One study 

showed that in areas with more available water, competition was the main inhibitor of 

oak seedling establishment, and the fewer plants around the oak the higher the chance of 

survival.  In drier areas however the surrounding vegetation becomes more important 

because it acts as a boundary layer which resists mixing of air, increasing the relative 

humidity around the seedlings, reducing the vapor pressure deficit in the immediate area 

(Muhamed et al. 2013).  It has also been shown that many oak species can survive in a 

light intensity that is as little as 5% of full sun, however they require at least 20% and up 

to 80% depending on the species to maintain consistent stem growth (Brose 2011).   

Garry oak forms mycorrhizal relationships with symbiotic ectomycorrhizal fungi, 

particularly with those in the genus Tuber and Laccaria (Southworth et al. 2009).  These 

associations begin to form immediately after germination and are a benefit to the 
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seedlings in several ways.  Mycorrhizae aid plants in absorption of water and nutrients 

acting as extensions to the root systems, allowing the plant access to water and nutrients 

that would otherwise be unavailable.  There are also some conspecific interactions 

between trees associated with mycorrhizal fungi.  It has been shown that with some oak 

species, seedlings with mycorrhizal associations grow bigger and break bud earlier than 

seedlings without them (Dickie et al. 2007).  Container-grown oak seedlings used in 

replanting efforts often form mycorrhizal relationships in the container, but lack the same 

types and richness of mycorrhizal species of those that germinate in the field (Southworth 

et al. 2009).  The spores and mycelium of the associated fungal species often persist in 

the soil after the host species has been removed or pushed out by an invader.  For this 

reason restoration efforts are often more successful in areas where the target plant 

previously existed (Schaefer 2011). 

The purpose of this investigation is to determine the physiological differences, if 

any between populations of Garry oak in Washington State in order to assess differences 

in drought-relevant physiological characteristics, such as maximum photosynthetic rates, 

and stomatal conductance to water vapor for unstressed as well as drought-stressed 

seedlings.  Growers of seedlings to be used in restoration efforts often gather seeds from 

several different sites in order to have a variety of ecotypes.  Information from this study 

will aid in restoration efforts by providing information to growers about potential 

differences in drought tolerance for Garry oak acorns collected from different seed 

sources.  This research will also add to the pool of knowledge about drought stress 

physiology for seedlings from deciduous trees.  As drought becomes more of a concern 
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due to climate change in places that are already arid climates, this information will be 

useful in making management decisions about this important ecosystem in the Pacific 

Northwest.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

CHAPTER II 

JOURNAL ARTICLE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
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Running head:  Response of Garry oak seedlings to drought 

 

Abstract:  The purpose of this study was to determine physiological differences in 

drought response among Garry oak (Quercus garryana Douglas ex Hook. [Fagaceae]) 

seedlings that grow in distinct populations in Washington state, in order to aid in 

restoration efforts by informing growers of the potential differences between the acorn 

collection sites.  Acorns from six Washington populations east of the Cascades, as well as 

one population from Whidbey Island, were collected and grown in containers under 

controlled conditions.  The plants were assessed with and without moderate and severe 
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drought stress induced by withholding water.  The most extreme differences in 

photosynthetic characteristics for non-stressed seedlings from different populations were 

in stomatal conductance rates, which in some cases differed between populations by 2 

fold or more.  Differences in response to drought occurred across populations after 14 

days of withholding water (Fig 4).  Seedlings from the northernmost population of Garry 

oak on the east side of the Cascades (Swauk Creek) were most susceptible to lowered 

photosynthetic rates induced by drought stress, while an island population from the west 

side of the cascades (Oak Harbor) showed the least drought-induced reduction of 

assimilation.  Differences among populations were also observed in the occurrence of 

drought induced embolisms, and in changes in leaf water potential, relative water content, 

and production of the osmolyte proline in response to drought. This study shows that 

seedlings from different populations of Garry oak have distinct physiological responses 

to drought that may lead to changes in survivorship for seedlings used in reforestation 

efforts for Garry oak savannas as they are exposed to drought stress in the field. 

Keywords:  environmental stress, water stress, Oregon white oak, soil water content, oak 

restoration, cavitation  
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Introduction 

Garry oak (Quercus garryana Douglas ex Hook. [Fagaceae]) savannas have a 

typical savanna appearance, with loose clusters of trees intermingled with areas of open 

canopy (Dunwiddie et al. 2011).  There are more species associated with Garry oak 

savannas than there are with Douglas fir woodlands and there are some species that are 

unique to Garry oak habitat (Thysell and Carey 2001).  Among the numerous important 

species associated with Garry oak savannas are the golden paintbrush (Castilleja 

levisecta), Lewis’ Woodpecker (Melanerpes lewisii), and the western gray squirrel 

(Sciurus griseus).  The habitat for western gray squirrels is becoming seriously threatened 

in Washington State (Dunwiddie et al. 2011), and it is estimated that only 5% of the 

historical oak savannas remain today (Fuchs 2001).  For these reasons oak savannas are 

important from an ecological standpoint and there has been increasing interest in 

restoring and reestablishing historical distributions.  

Garry oak woodlands and savannas in Washington state exist on both the east and 

west side of the Cascade Mountain range.  The west populations are primarily in the 

Puget Sound Area (Thysell and Carey 2001).  Much of the western Garry oak 

communities have been lost and the land converted into agricultural or developed land 

(Dunwiddie et al. 2011).  Historically the oak savannas oscillated with the Douglas fir 

woodlands, with fire being the main mechanism for maintenance (McDadi and Hebda 

2008).  Garry oak stands can take hundreds of years to develop into mature savannas.  

Cores of established oaks indicate that the primary recruitment of current established oak 

communities occurred between 1850 and 1890, and there has been very little further 
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establishment since fire suppression began in the 1950’s (Gilligan and Muir 2011).  The 

structural development of the remaining oak stands is very different from what was 

experienced from 1700 to 1800, and perhaps further back than that (Sensenig 2013).   

Garry oak populations on the east side of the Cascade Range in Washington state 

are limited to a few scattered pockets from Swauk Creek (Kittitas Co.) south to the 

Columbia River and into Oregon.  These pockets are possibly all genetically similar 

enough to be considered the same distinct population, however no genetic work has been 

done on these specific groups of trees (Devine et al. 2013).  When using isozyme 

variation to compare Garry oak populations, there is a trend of less genetic relatedness 

between populations as you travel north along their range (Ritland et al. 2005).  In some 

cases populations just a few hundred kilometers from each other in Washington State are 

less related to each other than they are to populations in southern California (Ritland et al. 

2005).   

Oaks from co-occurring species in the same location and of the same species from 

different locations have been shown to respond differently to resource limitations.  Co-

occurring oak species in the Eastern US have different strategies for resource use such 

that one species, the chestnut oak (Quercus prinus) is more conservative with its use of 

water and nitrogen while another, the eastern black oak (Quercus velutina) maintains 

higher photosynthetic and nitrogen use values at the cost of extra water use (Renninger et 

al. 2014).  Populations of Mediterranean oaks from drier climates survive drought better 

than those of the same species from wetter climates, suggesting a difference in ecotype 

between the two climates (Andivia et al. 2012).  For other oaks, there are a high degree of 
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biochemical differences within species over an elevation gradient, including differences 

in the occurrence of dehydrin proteins that help plants tolerate drought stress (Vornam et 

al. 2011).  Garry oak savanna microclimates are highly variable and have different 

temperature extremes, annual precipitation, and elevations (Gilligan and Muir 2011).  

The scattered populations of Garry oak on the east side of the Cascade Range may be 

separated enough and experiencing different enough microclimates to have different 

adaptations to drought stress.  This is further illustrated in the recommendation that acorn 

collection for reforestation efforts should take place as near to the target planting site as 

possible (Devine et al. 2013). 

Garry oak savanna structure maintenance is in part dependent on recruitment of 

new trees into the stand.  Seedling establishment is an important and difficult event for 

many tree species.  It is especially difficult in areas that are disturbed, or that are 

environmentally stressful to the plants.  Drought kills an estimated 59-78% of new 

seedlings located in dry rocky sites in reforestation efforts in British Columbia (Fuchs et 

al. 2000).  Because of the interest in restoration of Garry oak savannas there has been 

some work done on how to optimize first year survival of the seedlings post planting.  It 

has been shown that after planting, the seedlings have much higher survival rates if they 

are irrigated for their first year (Devine et al. 2007) and that seedlings with more, shallow 

fibrous roots survive better after transplanting in the field (Gould and Harrington 2007).  

This is most likely because the fibrous root systems of the seedlings can more rapidly 

adapt to changes in the environment such as drought, and can more efficiently utilize 

shallow water sources.  It has also been shown that tree shelters placed around the 
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seedlings which reduces the amount of water lost to evaporation, improve their chances 

of surviving their first year (Kjelgren et al. 1994, Devine et al. 2007).  Tree shelters also 

cause the seedlings to grow tall quicker which puts them out of the reach of browsers at 

an earlier age (Devine et al. 2007, Wells 2010).  Browsers, however, do not pose 

significant threat to the seedlings of Garry oak as they are adapted to loss of the shoot 

apex and can readily re-sprout from below ground provided they have adequate root mass 

(Devine et al. 2013).  

Garry oak seedlings have four major hurdles to overcome in order to survive their 

first year:  1) The acorns must be buried and have the adequate moisture for quick 

germination (Fuchs et al. 2000).  This is usually accomplished in the environment with 

the aid of small mammals such as the western gray squirrel, or in nursery operations by 

germinating the acorns in containers.  2) The seedlings must avoid being damaged or 

destroyed by fire.  This is less of a problem for oaks since the beginning of active fire 

suppression throughout their range in the 1950s.  Fire is an important part of the 

maintenance of the structure of Garry oak savannas, and yet remains less common even 

with our current understanding of its importance (Gilligan and Muir 2011).  3) Garry oak 

risk being outcompeted by neighboring plants as well as being damaged by herbivory 

from insects and browsing animals.  This is unavoidable in some locations, especially 

those with encroaching competitive species.  It has been shown that thinning of 

encroaching Doug fir is beneficial to the survival of Garry oak (Devine and Harrington 

2013).  Due to the lack of predators of Garry oak, the aid of tree shelters, and manual 

thinning of competitors, some of these issues can be minimized.  4) Garry oak seedlings 
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have to survive periods of drought during their first season.  Drought can be avoided by 

providing irrigation to the seedlings for their first year (Devine et al. 2007); however, 

irrigating can be labor intensive and some locations are difficult to visit on a regular 

basis.  Drought is perhaps the most important hurdle that the seedlings have to cross in 

their first year, particularly on the east side of the Cascade Range where Garry oak often 

grows on south facing rocky slopes. 

The purpose of this investigation is to determine the whether physiological 

differences, especially in relation to drought-tolerance, exist between several populations 

of Garry oak from east of, and one population west of, the Cascade Range in Washington 

State.  Differences among physiological parameters for trees, such as maximum 

photosynthetic rates and stomatal conductance to water vapor were determined for non-

stressed as well as water-stressed seedlings.  Results of experiments using non-stressed 

trees will help to determine if some populations have inherently higher photosynthetic 

rates, and if there are differences in light and water use efficiencies.  Results of drought 

stress experiments will help us determine if there are some populations that can better 

handle the stress, as well as provide evidence for potential mechanisms that Garry oak 

employ to deal with limited water availability.  This study will provide information to 

growers about whether collection of acorns to be used in reforestation efforts from 

specific populations of trees will play a role in survivorship of reforested seedlings.  

Garry oak savannas are already water stressed at times, and as drought becomes more of 

a concern due to climate change, the stress could become enhanced.  Information from 
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this study will be useful in making management decisions about this important ecosystem 

in the Pacific Northwest.   

Methods 

Acorn Collection and Seedling Growth 

Acorns were collected from six locations east of the Cascade Mountain Range in 

Washington State: Swauk Creek (SW), Kittitas Co. (47°07’25” N, 120°44’04” W ); 

Naches (NC), Yakima Co. (46°44’40” N, 120°47’37” W); Ft. Simcoe (FS), Yakima Co. 

(46°20’33” N, 120°50’03” W); Goldendale (GD), Klickitat Co. (45°48’24” N, 

120°44’44” W); Ahtanum high elevation 1128 meters a.s.l. (AT) Yakima Co. (46°35’13” 

N, 120°56’98” W) and Ahtanum low elevation 518 meters a.s.l. (AL) Yakima Co. 

(46°33’56” N, 120°54’14” W).  One location west of the Cascade Mountains was also 

included, Oak Harbor (OH), Island Co. (48°18’05” N, 122°37’47” W).  Acorns were 

collected within 1 meter of a 100 meter transect.  A total of 36 seedlings from each 

population were germinated in 2.83 L tree pots (Stuewe and Sons, Oregon, USA) 

containing a 6:1:1:2 (v/v) mixture of a peat-based potting soil mix, sand, vermiculite, and 

perlite. The acorns were germinated in a heated glass greenhouse in mid-October with 

Sylvania lumalux LU1000, 1000 watt high pressure sodium (HPS) grow lights set on a 16 

h day 8 h night cycle.  After germination the seedlings were fertilized with Osmocote 

smart-release® pelletized 14:14:14 NPK fertilizer (The Scotts Co. LLC, Marysville OH), 

and were inoculated with MycorrhizaROOTS™ ectomycorrhizal mixture (ROOTS Inc., 

Independence MO).  The seedlings were then grown for 90 days to establish roots and 

develop leaves. 
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Once established, the seedlings were moved into a climate-controlled room set to 

20°C equipped with high pressure sodium (HPS) and metal halide (MH) lights providing 

photosynthetically active radiation (PAR) of 500 µmol photon m-2 s-1 set for a 16 h light 

8 h dark cycle.  The seedlings were watered to saturation weekly or as needed.  The 

seedlings were acclimated to the conditions of the growth room for two weeks prior to 

the beginning of experimental measurements. 

Photosynthetic Response to Light of Non-stressed Populations 

Response of photosynthetic CO2 assimilation (A), stomatal conductance to water 

vapor (gs), and photochemical efficiency of photosystem II (PSII) to light (ΦPSII) was 

measured for three or more randomly chosen seedlings from each population.  Light was 

provided using a 1000 watt MH  lamp and a series of neutral density filters to produce 

light levels of 0, 75, 100, 200, 400, 650, 1150, 1350, and 1500 µmol photon m-2 s-1 PAR.  

Carbon assimilation and stomatal conductance rates were measured using a Li-COR 6400 

Photosynthesis System (Li-Cor, Lincoln NE) using an ambient (reference) CO2 

concentration of 400 ppm, relative humidity of 30%, and chamber temperature of 23°C.  

Rapid stomatal responses to variable light were assessed under the same ambient 

conditions by alternating the light levels from 100 to 1000 and back to 100 µmol photon 

m-2 s-1 for a total of three light levels, while recording A and gs at 1 minute intervals for 

25 minutes at every light level. Light adapted photochemical efficiency of PSII (ΦPSII), 

and maximum photochemical efficiency of PSII (Fv/Fm) were determined according to 

Genty et al. (1989) using a pulse-modulated fluorometer (FMS1, Hansatech, King’s Lynn 

England).  
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Morphological and Biochemical Characteristics of Leaves 

Seedlings were harvested from each population in order to determine root:shoot 

ratios (R/S).  Shoots and roots were divided into component tissues for each seedling, 

dried at 70oC to constant mass, and mass measured to determine total aboveground 

biomass, and total belowground biomass.  R/S was determined from dry masses of 

individual seedlings.  Leaf stomatal density (stomates per mm2) was determined from 

clear nail-polish impressions of the abaxial epidermal surface of leaves.  Garry oak is 

hypostomatous so only the abaxial surfaces were used.  Total chlorophyll concentration 

(Chltotal), specific leaf area (SLA), and relative water content (RWC) were quantified 

using a 1 cm2 disk of leaf tissue.  Chlorophyll was extracted using 80% (v/v) acetone and 

quantified spectrophotometrically with a Shimadzu UV-2401 spectrophotometer using 

extinction coefficients described by Porra et al. (1989).  Specific leaf area was calculated 

as leaf area per unit leaf dry mass (cm2 g-1).   

Induction of Drought Stress and Seedling Response Measurements 

Four seedlings from each of the populations AT, AL, NC, SW, and OH were 

randomly selected for the treatment group and another four for the control.  All of the 

plants were well-watered prior to the beginning of the experiment. Volumetric soil water 

content (VWC) was measured for the soil in the pots on a daily basis throughout the 

drought regime using a soil moisture sensor (EC-5 Decagon Devices Inc., Pullman WA). 

Water was withheld from the treatment group and VWC was either maintained between 

5-10% VWC (moderate drought) or withheld entirely for the duration of the experiment 

(severe drought), up to 42 days.  The control group was watered weekly in order to 
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maintain a VWC of 20-25%.  Measurements including A, gs, ΦPSII, and Fv/Fm were taken 

every seven days for the duration of the experiment.  Measurements ceased when A for 

drought stressed plants dropped below 1 µmol CO2 m
-2s-1, which was used as an 

indication of cellular death within the leaf.  All of the plants were exposed to a saturating 

light intensity of 1000 µmol photon m-2 s-1 during photosynthetic measurements.  Leaf 

water potential (Ψl) was measured using a thermocouple psychrometer (Psypro) attached 

to a C-52 sample chamber (Wescor Inc., Logan UT) for leaves at the beginning of the 

experiment (day 0) and four weeks into the drought stress (day 28).  Relative water 

content (RWC) was determined for 1 cm2 leaf punches as (fresh weight - dry weight) / 

(turgid weight - dry weight) (100), where turgid weight is the weight of the leaf after 

equilibration in distilled water for 24 h.  Proline was quantified from 100 mg fresh weight 

of leaf using the ninhydrin assay as described by Ábrahám et al. (2010). Hydraulic 

conductivity of stems (Ks) was quantified by mass flow rate of a solution through a 2 to 4 

cm stem segment (kg s-1) divided by the pressure gradient along the segment (MPa m-1).  

Stems were cut under water to avoid formation of embolisms in addition to those that 

may have already been present and were then placed in a tubing apparatus filled with a 

filtered (0.2 µm) 20 mM KCl solution.  Hydraulic conductivity was then measured for the 

stem using a gravity-induced positive pressure gradient.  Maximum hydraulic 

conductivity for the same stem was then determined by subjecting the stem to repeated 

flushing with the solution at approximately 175 kPa pressure in order to refill any 

embolized vessels.  Per cent loss of stem hydraulic conductivity (Ks loss) is presented as 

(maximum conductivity - initial conductivity / maximum conductivity) (100).  A detailed 

description of the procedure used for determining Ks can be found in Sperry et al. (1988).   
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Field Measurements 

Data loggers (Hobo U23-001 Onset computer corporation, Bourne MA) were 

installed at the acorn collection locations AT, AL, NC, and SW.  Relative humidity 

(RH%) and temperature (°C) were recorded at 12am, 6am, 12pm, and 6pm, every day 

starting on July 13th 2014 and ending on October 5th 2014 at each of the four sites.  These 

measurements were used to calculate the actual vapor pressure (VPA) and the vapor 

pressure deficit (VPD) at each location during the warmest and driest days of summer.  

Measurements of A, gs, and transpiration (E) under ambient light, vapor pressure, and 

temperature conditions were made using the Li-COR field-portable gas exchange system 

for Garry oak seedlings located at each of the sites AT, AL, NC, and SW between the 

hours of 11am and 2pm on August 15th through 19th 2014.  Instantaneous water use 

efficiency (WUE) was calculated from the measurements as A/E.  Seedlings were located 

within a 100 meter radius of the location of the data logger used to record environmental 

measurements for that site. 

Data Analysis 

The parameters A, gs, ΦPSII, stomatal density, Chltotal, RWC, SLA, WUE, VPD, 

R/S, and proline concentration were analyzed by a two-way analysis of variance 

(ANOVA).  Within group comparisons of control and treatment groups of Ks loss, 

relative loss of A and gs, and Ψl were analyzed using a Student’s t-test.  All results were 

considered significant if P < 0.05.  
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Results 

Photosynthetic Response to Light for Non-stressed Seedlings 

The photosynthetic response to light from zero to 1150 µmol photon m-2 s-1 PAR.  

Photosynthesis from zero to 1500 µmol photons m-2 s-1 did not significantly differ among 

Garry oak seedlings from the six eastern Washington populations (AT, NC, AL, SW, FS, 

GD) and one western Washington population (OH) (Fig 1a, Table 1).  However, 

maximum photosynthetic rates for certain populations of Garry oak were different.  

Carbon assimilation rates were up to 50% higher for the population with the highest 

photosynthetic rate (FS) as compared to that with the lowest maximum photosynthetic 

rate (AT) for light intensities above 1000 µmol photon m-2 s-1 PAR.  Rates of gs were 

statistically different across all populations at light levels from 100 to 200 µmol photon 

m-2 s-1 and from 1150 to 1500 µmol photon m-2 s-1 (P < 0.0001) (Fig 1b, Table 1).  

Seedlings from NC maintained the highest gs at all light intensities and at saturating light, 

gs rates were two times higher for NC, as compared to seedlings from the SW population.  

Instantaneous WUE did not differ across populations from dark to 1500 µmol photon m-2 

s-1 PAR (data not shown).  Photochemical efficiency of photosystem II (ΦPSII) was up to 

50% lower for AT seedlings as compared to other populations (Fig. 1c) but differences 

among populations were only significant at 1150 to 1500 µmol photon m-2 s-1 at which 

point ΦPSII for FS and SW was more than 35% higher than AT (Table 1).   
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Population A(200) gs (200) ΦPSII(200) A(1150) gs (1150) ΦPSII(1150) 

AT 3.65 ± 0.38 0.100 ± 0.013 a 0.655 ± 0.015  10.25 ± 0.94 0.165 ± 0.023 0.350 ± 0.040 a 

NC 5.40 ± 0.24 0.20 ± 0.013   b 0.699 ± 0.018  13.03 ± 1.59 0.301 ± 0.063 0.509 ± 0.030 ab 

AL 4.49 ± 0.43 0.120 ± 0.011 ab 0.680 ± 0.015 12.73 ± 1.77 0.253 ± 0.031 0.438 ± 0.028 ab 

SW 5.76 ± 0.44 0.090 ± 0.019 a 0.724 ± 0.013 12.33 ± 1.57 0.136 ± 0.023 0.541 ± 0.061 b 

OH 4.14 ± 0.98 0.071 ± 0.012 a 0.726 ± 0.012 12.07 ± 0.74 0.182 ± 0.044 0.537 ± 0.024 ab 

FS 5.21 ± 0.42 0.187 ± 0.006 ab 0.715 ± 0.033  14.16 ± 1.62 0.277 ± 0.018 0.548 ± 0.047 b 

GD 4.31 ± 0.19 0.135 ± 0.013 ab 0.702 ± 0.010 10.58 ± 0.70 0.243 ± 0.010 0.457 ± 0.030 ab 

Table 1.  Photosynthetic response to light.  Steady state measureents measured at 1150 and 200 µmol photon m-2 s-1.  
Average A (µmol CO2 m

-2 s-1) ± SE and average gs (mmol H2O m-2 s-1) ± SE (n=3).  Average ΦPSII is in relative units ± SE 
(n=3).  Differences denoted by (a) and (b) are based on an ANOVA       (P < 0.05) followed by a Tukey’s HSD test. 



32 
 

 



33 
 

Stomata from all populations were highly responsive to rapid changes in light intensity.  

Upon exposure to a light intensity of 1000 µmol photon m-2 s-1, stomatal conductance and 

assimilation rates rapidly increased to nearly steady-state rates within two min (Fig. 2).  

Upon subsequent exposure to low light (100 µmol photon m-2 s-1), stomatal conductance 

and assimilation rates for the same leaf decreased by 3.7 and 4.5 times, respectively 

within four min.  Repeated exposure of seedlings to light or dark cycles, or exposure of 

leaves to varied air VPD produced a similar rapid stomatal response (data not shown).  
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Anatomical and Biochemical Properties for Leaves from Non-stressed Seedl

Stomatal density for leaves was highly variable within seedlings from all 

populations of Garry oak sampled and, frequently, differed by 10% from population to 

population.  OH had a stomatal density that was 30% higher compared to the other 
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populations that were measured (Table 2).  Specific Leaf Area (SLA) was also variable 

across populations and was significantly larger for SW compared to the populations AT, 

NC, and AL (P < 0.01).  Leaves from SW and OH seedlings had higher total chlorophyll 

concentration when calculated on an area basis but not when calculated on a leaf mass 

basis (Table 1) due to an increase in leaf thickness for leaves from these populations.  

Seedlings grown from acorns collected at OH and SW were generally but not 

significantly larger than those from other populations in higher shoot and root dry weight 

(data not shown), and there were no significant differences in R:S ratio for seedlings 

across populations (Table 2).  
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Population Stomatal Density SLA Chltotal Area-1 ChltotalMass-1 R/S 

AT 350 ± 15.0  a 7.83 ± 0.39 a 15.5 ± 3.0 a 1.44 ± 0.58 5.08 ± 1.49 

NC 360 ± 13.0  a 7.66 ± 0.61 a 17.6 ± 3.9 a 1.29 ± 0.67 4.74 ± 0.65 

AL 329 ± 10.4  a 7.97 ± 0.20 a 21.0 ± 2.0 ab 1.78 ± 0.19 3.23 ± 0.22 

SW 340 ± 19.4  a 9.76 ± 0.38 b 31.6 ± 2.3 b 2.96 ± 0.26 3.09 ± 0.09 

OH 437 ± 10.6  b 8.21 ± 0.27 ab 27.5 ± 3.3 b 2.35 ± 0.37 4.68 ± 0.72 

Table 2.  Morphological and biochemical characteristics.  Average stomatal density (stomates mm-2) ± SE 
(n=3).  Average specific leaf area (mm2 mg-1) ± SE (n=6).  Average chlorophyll concentration ± SE were 
determined from 1 cm2 leaf disks (n=3), and presented on an area basis (µmol cm-2), and on a mass basis (µmol 
mg-1).  Average root:shoot ratios ± SE were calculated from total dry weight of component tissues (n=3).  
Differences denoted by (a) and (b) are based on an ANOVA (P < 0.05) followed by a Tukey’s HSD test. 
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Induction of Drought Stress and Response of Garry Oak Seedling to Drought 

The soil water capacity for the seedlings in the control group remained at an 

average of 21.4% ± 0.53 VWC throughout the 42-day experiment (Fig. 3).  Soil water 

content for droughted pots fell to 75% of control soil water content by day seven in each 

experiment and to 50% of control soil water content by day 14.  The soil water content 

for the moderate drought stress remained at about 50% of control values until day 42 

where it dropped to 25% of the control.  By day 28, soil for the severe drought stress 

plants was at a water content that was less than 25% of control soil water content and by 

day 42, when assimilation rates for most plants were close to zero, water content for the 

soil in the severe drought treatment was less than 10% of the control soil water content 

(Fig. 3).   
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saturated rates of A and gs decreased by less than 10% of control rates for 

Garry oak seedlings exposed to the 42 day moderate drought stress experiment (dat

shown).  Instantaneous WUE also remained unchanged for seedlings exposed to 42 days 

of moderate drought stress.  For seedlings exposed to severe drought stress, light

rates for SW seedlings dropped to 65% of control at 2 weeks and 40% 

decreased by less than 10% of control rates for 

y moderate drought stress experiment (data not 

also remained unchanged for seedlings exposed to 42 days 

severe drought stress, light-

dropped to 65% of control at 2 weeks and 40% 
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of control rates at 3 weeks (Fig. 4a, Fig. 4b).  At the fourth week of exposure to severe 

drought, rates of A and gs were significantly lower than control rates for Garry oak 

seedlings from all populations that were exposed to drought stress.  Rates for SW 

continued to be the lowest as compared to other Garry oak populations, but there was no 

significant difference in the response of different populations of Garry oak to drought 

stress for weeks four to six of the drought stress treatment.  Although rates of A and gs 

varied for seedlings during this time, instantaneous WUE was not variable across 

populations or between control and droughted leaves for the course of the drought 

treatment (Fig. 4c).  By week five, all of the SW seedlings exposed to severe drought 

exposure had died.  Rates of A and gs were relatively higher for OH and NC as compared 

to rates for AT, and instantaneous WUE was markedly higher for OH seedlings at this 

time, but these differences were not significant.   
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Carbon assimilation decreased as VWC decreased for all populations of Garry 

oak seedlings exposed to severe drought stress.  From two to five per cent VWC, which 

was the point at which the soil dried enough that seedlings from all populations began to 

die.  Seedlings from the OH population, a population that grows on the west side of the 

Cascade mountain range, had rates of assimilation that were up to two times higher than 

rates of assimilation for the three populations from the east side of the cascade mountain 

range (Fig. 5).  Assimilation rates for SW were consistently lower than for other 

populations over the same range of VWC (Fig. 5).  No differences in Fv/Fm or ΦPSII 

between control and droughted seedlings or across populations of Garry oak in response 

to drought were observed (data not shown).  Likewise, exposure to drought did not 

change leaf anatomical or growth parameters for Garry oak seedlings such as SLA or R:S 

(data not shown).   



 

 

42 
 

 



43 
 

Few changes in growth or biochemical characteristics in Garry oak seedlings 

occurred in response to drought.  Leaf proline content increased slightly in response to 

drought for seedlings from all populations of Garry oak, with the exception of the OH 

population (data not shown).  The increase in proline concentration for the AT 

population, however, was more than 6 times for leaves of droughted plants as compared 

to control plants (0.83 ± 0.095 mg g-1 FW for control, 5.08 ± 0.90 for droughted).  This 

increase in proline content for AT leaves upon exposure to drought did not change the Ψl 

or RWC for AT leaves as compared to leaves from three other populations of Garry oak 

upon exposure to severe drought (Fig. 6).  Drought exposure lowered the average leaf Ψl 

by at least 0.8 MPa with an average change of 0.98 ± 0.15 MPa as compared to leaf Ψl 

for control seedlings for all populations.  However, this decrease was only significant for 

AT and SW populations (Fig. 6a).  Likewise RWC was generally lower by at least 10% 

for leaves of droughted, as compared to control plants but this difference was only 

significant for leaves from AT, and OH populations (Fig. 6b).  
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Relative loss of stem hydraulic conductivity for seedlings from NC and AT 

populations of Garry oak was up to four times higher after exposure to 42 days of severe 

drought as compared to loss of hydraulic conductivity for seedlings not exposed to 

drought (Fig. 7).  Other populations also exhibited a decrease in hydraulic conductivity in 

response to drought but these differences were not statistically significant.  Figure 8 

shows a comparison of the loss of hydraulic conductivity as a function of Ψl for four 

populations of Garry oak exposed to a severe drought treatment. While all populations 

incurred a loss of hydraulic conductivity in response to drought, plants from the SW 

population were able to withstand much lower Ψl with relatively less loss in hydraulic 

conductivity (47.5% ± 18.9%) as compared to seedlings from AT, OH and NC 

populations.  In contrast, NC had a relatively high loss of hydraulic conductivity (75% ± 

11.9%) at a Ψl and RWC (%) that was not significantly different from that for control 

plants.   
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Field Measurements 

Field measurements of A and gs indicated that NC had assimilation rates that were 

more than 50% lower than for AL, NC or SW measured in the field and that field-

measured stomatal conductance rates were more than 50% lower for NC and AT 

population as compared to rates measured in the laboratory.  SW had A and gs rates that 

were more than 75% higher than NC (P < 0.05, n ≥ 7).  The seedlings at AT had 

instantaneous WUE values measured in the field that were similar to that measured in the 

laboratory (3.59 ± 0.4, n=19) while field-measured instantaneous WUE for other 

populations were lower than those measured in the laboratory (Table 3).  Average 

temperature, vapor pressure of the air (VPA) and vapor pressure deficit (VPD) 

measurements for four eastside locations as recorded from July 13th to October 5th 2014 

are shown in Table 3.  Mid-day VPD was calculated for all four locations from the data 

logger measurements.  NC had the highest average temperature and VPD.  The VPD at 

NC was more than 25% higher than for AT or SW.  NC also had the highest mid-day 

VPD which was more than 45% higher than the other three populations (P < 0.001, 

n=84). 
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Population A gs WUE T°C VPA VPD VPDmid-day 

AT 5.13 ± 0.96 ab 0.051 ± 0.012 a 3.59 ± 0.4  a 17.6 ± 0.4 a 924.0 ± 15.2   a 1244.9 ± 52.1 a 2590.3 ± 77.7   a 

AL 5.92 ± 0.92 ab 0.113 ± 0.019 ab 1.07 ± 0.06 c 17.3 ± 0.5 a 1110.8 ± 19.2 a 1115.2 ± 64.4 a 2943.0 ± 81.9   b 

NC 1.60 ± 0.65 a 0.028 ± 0.009 a 1.41 ± 0.44 bc 22.7 ± 0.5 b 1026.9 ± 18.0 bc 2094.7 ± 83.8 b 4358.1 ± 104.3 c 

SW 6.84 ± 0.74 b 0.128 ± 0.020 b 2.20 ± 0.13 b 19.2 ± 0.4 c 1007.1 ± 14.9 c 1411.3 ± 57.1 a 2911.0 ± 78.2   b 

 

 

 

 

Table 3.  Field photosynthetic and microclimate measurements.  Average instantaneous water use efficiency WUE (± SE) was 
calculated from average A (µmol CO2 m

-2 s-1) ± SE 
 and E (mmol H2O m-2 s-1) ± SE measurements taken from Garry oak seedling 

growing at the acorn collection sites along with average gs (mmol H2O m-2 s-1) ± SE (n≥7)  Average temperature (°C) ± SE, average 
actual vapor pressure VPA (Pa) ± SE, and average vapor pressure deficit VPD (Pa) ± SE were calculated from four measurements 
taken per day by Onset Hobo data loggers between July and October 2014.  Differences denoted by (a) and (b) are based on an 
ANOVA P < 0.001 followed by a Tukey’s HSD test. 
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 Discussion 

Comparison of Non-Droughted Populations of Garry Oak 

There was a high amount of variation between rates of A, gs and instantaneous 

WUE for individual seedlings within populations of Garry oak measured in the laboratory 

and in the field.  This variation between seedlings made it difficult to discern significant 

differences in assimilation or stomatal conductance rates at saturation levels of light 

across different populations.  However, comparisons between populations indicate that 

some eastern populations of Garry oak potentially have higher maximum light-saturated 

rates of A and gs than others, furthermore photosynthetic rates of the eastern populations 

were similar to rates for the western population of Garry oak that was investigated.  

Similarly, Amax and gsmax differed for European oaks (Quercus petraea) from populations 

at higher versus lower elevations, but intrapopulation variability was much higher than 

interpopulation variability (Bresson et al. 2011).  Results of the present study indicate 

that considerable intrapopulation and interpopulation variability in photosynthetic 

parameters also exist for Garry oak.   

Significant differences in stomatal conductance rates observed at relatively low 

light (200 µmol photon m-2 s-1) may affect WUE, and ultimately survival for Garry oak 

seedlings in shaded understory conditions that commonly occur in Garry oak woodlands 

and savannas (Brose 2011).  Decreased WUE that results from higher rates of gs for 

populations such as NC and FS under shaded conditions may be a disadvantage for 

seedlings establishment in habitats that are water and light-limited.  Of all of the 

populations examined in this study, AT and SW are the most conservative in terms of 
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light and water use having lower Amax and gsmax rates than the other populations 

measured.  AT and SW are also capable of a high degree of down-regulation of the 

photochemical efficiency of PSII at high light, indicating that these populations are 

capable of avoiding photoinhibitory damage to PSII that might occur in conditions of 

high light and low water availability.  On the contrary, NC and FS have some of the 

highest light-saturated A and gs rates and exhibit the least amount of down-regulation of 

the efficiency of PSII at high light, giving them potentially higher growth rates in the 

field, possibly at the cost of being more susceptible to light-induced damage under 

drought conditions  

Bur oak (Quercus macrocarpa) has a strong rapid stomatal response to a change 

in light, much greater than other trees in the same ecosystem (Knapp 1992).  Despite the 

observation that plants with a lower Amax usually have a lower degree of stomatal 

response as compared to plants with higher Amax, bur oak leaves have responsive stomata 

regardless of Amax for the leaf (Hamerlynck and Knapp 1994).  Bur oak is related to Garry 

oak as they both belong to the subgenera Lepidobalanus (White oaks) sensu Camus 

(Bonner and Vozzo 1987) and all populations of Garry oak used in this study exhibited 

rapid response of A and gs to light (Fig 2).  Such rapid responses of stomates to light, 

effectively moderate the decreases in Ψl during high light events for bur oak, increasing 

drought tolerance for this species.  Rapid stomatal response to light as measured for 

seedlings from all of the populations investigated in this study are a useful water-saving 

adaptation for continual drought conditions Garry oak seedlings are exposed to in their 

normal geographic range.   



52 
 

Differences in leaf chlorophyll concentration among populations indicates the 

ability for Garry oak to acclimate to different light levels in the oak stands.  Total leaf 

chlorophyll content in Quercus robur varies in response to insect attack, drought, and 

pollution and can be used as an indicator of declining forest condition (Rossini et al. 

2006).  However, since the oak seedlings used for this study were all grown with the 

same light regime, the differences in leaf chlorophyll concentration indicate potential 

genetic differences in biochemical properties of leaves from different populations rather 

than a response to contrasting light environments.  In the present study, chlorophyll 

concentration for Garry oak differed across populations when presented on an area basis 

but not when presented on a weight basis, indicating that differences were possibly due to 

leaf morphology.  Populations with higher chlorophyll per area also had higher SLA.  

This trend is especially clear and statistically significant when comparing SW to AT, and 

NC.  Leaf anatomical properties, including stomatal density and leaf thickness tend to be 

more plastic for more drought tolerant species of oaks, such as Q. velutina, and less 

plastic for less drought-tolerant oaks such Q. rubra.  Furthermore species of oaks that are 

more drought tolerant tend to have a higher stomatal density but lower stomatal area 

(Ashton and Berlyn 1994).  Here we found a high amount of intrapopulation variability in 

stomatal density and a significant difference between OH and all other populations, with 

OH having on average 20% higher stomatal density. 

 Physiological Response of Garry Oak to Drought 

Measurable differences in gs and A among the response of populations of Garry 

oak exposed to a severe drought appeared after 14 days of exposure to drought (Fig.4).  
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This time frame coincided with a soil water content of about 10% which was half the soil 

VWC for control seedlings.  SW exhibited the fastest decrease in A which was due 

largely to a stomatal limitation of photosynthesis as no decrease in maximum 

photochemical efficiency of droughted plants was observed.  The seedlings from SW 

were the first to succumb to drought.  All of the SW seedlings perished after 31 days.  

Previous drought experiments for red oak (Quercus rubra) did not show a decline in 

stomatal conductance after 14 days of withholding water (Osonubi and Davies 1978) and 

although SW was the only population of Garry oak that responded to drought through 

reduction of A and gs after 14 days, three other populations began a decline in these 

photosynthetic parameters after 21 days and all populations measured had markedly 

lower photosynthetic rates after 28 days.  Regardless of the population, the threshold for 

survivability of water stress was between 30 to 40 days.  AT, NC, and OH maintained 

positive A rates for up to 42 days and a soil water content less than 2% (v/v).  This 

suggests that as a general rule, Garry oak seedlings can withstand 30 days of withholding 

water when in moderate sub-saturating light intensity, and is consistent with previous 

drought experiments in which container grown pubescent oaks (Quercus pubescens) 

survived 37 days of withheld water (Gallé et al. 2007).  The populations from the western 

side of Washington (OH) maintained the highest rates of A and instantaneous WUE of all 

populations throughout the drought exposure (Fig. 4), and also maintained markedly 

higher A in conditions of low volumetric water than the other three populations (Fig 5).  

The observation that a population from the more mesic side of Washington state (OH) 

maintained higher photosynthetic rates throughout the drought exposure, while the 

population from the most northern of the populations of Garry oak that occur on the 
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eastern side of Washington (SW) was the least tolerant of drought exposure, might be 

explained by factors such as differences in the types of soil and fresh water availability at 

the two locations.  SW is the northernmost population of Garry oak that occurs on the 

east side of the Cascade Mountain range.  We expected that plants from more arid 

environments would better survive drought stress.  Whidbey Island is located in the Puget 

Sound and while it is not an arid or semi-arid environment, still receives summer drought 

along with sandy soil conditions that may in fact provide a harsher moisture environment 

than exists for some of the eastern populations.  This may especially be the case in 

populations such as SW that are located relatively close to a freshwater creek.  In 

addition, Whidbey Island oaks are genetically more closely related to Garry oak stands in 

southern California than they are to nearby Pacific Northwest populations (Ritland et al. 

2005). 

Reversible down regulation of PSII was observed in Quercus pubescens growing 

in the field during the daytime of drought periods (Haldimann et al. 2008) and in 

response to heat shock up to 52oC (Dascaliuc et al. 2007).  Changes in photochemical 

efficiency for Garry oak without a loss of maximum photochemical efficiency (Fv/Fm) 

indicates that photosynthetic reaction centers of the seedlings were not damaged during 

the drought but rather seedlings were able to respond to high light and effectively protect 

themselves from light-induced damage during a drought.  Seedlings from all populations 

responded to drought through decreased stomatal conductance rates that facilitated 

instantaneous WUE values that were relatively unchanged throughout more than a month 

of severe drought.   
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All Garry oak seedlings showed a slight decrease in leaf water potential in 

response to drought (Fig. 6).  We expected the change of leaf water potential to correlate 

with proline accumulation in the leaves and to offset loss of RWC and potentially 

increase photosynthetic performance for seedlings.  The change in leaf water potential for 

AT was indeed paired with an increase in proline concentration, but this was not the case 

for SW which had a similar final water potential and decreased RWC that was not 

associated with proline accumulation.  Other compounds and solutes may have been 

responsible for changes in water potential observed in seedlings from other populations.  

In prolonged drought studies it has been shown that shoot starch concentration decreased 

while soluble sugar increased after severe drought (Villar-Salvador et al. 2004).  Another 

potentially important intracellular factor in protection against drought is the relative 

abundance of protective proteins such as dehydrins.  Dehydrin expression has been 

shown to change in response to drought in English oak (Quercus robur) (Šunderlíková et 

al. 2009).  In sessile oak (Q. petraea) there is a high degree of biochemical variation with 

elevation gradients including differences in occurance of dehydrins (Vornam et al. 2011).  

A greater understanding of the balance of solutes and proteins in the droughted seedlings 

of Garry oak is needed in order to make any conclusions about the mechanisms behind 

the water potential changes. 

The significant loss of hydraulic conductivity for Garry oak seedlings from the 

AT and NC populations, and the lack of a similar loss in the SW and OH population was 

contrary to our expectation based on lower survivorship of SW in response to drought.  

SW exhibited a relatively low loss of hydraulic conductivity at relatively large xylem 
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tensions based on Ψl measurements, in comparison to seedlings from other eastside 

populations (Fig.8).  Yet OH, a population from the more mesic west side of the 

Cascades were also relatively unaffected by drought in terms of loss of hydraulic 

conductivity.  A possible explanation for this anomaly may be interpopulation variation 

in the stem diameter of the seedlings.  Seedlings with smaller xylem conduit diameter can 

better withstand drought whereas recovery from drought-induced cavitation occurs at a 

lower positive root pressure for vessels with wide diameters than for smaller vessels 

(Logullo and Salleo 1993).  Neither Stem nor vessel diameter were measured 

quantitatively in this study, however, visible differences were observed between the 

populations, with OH and SW having relatively larger, and NC and AT relatively small 

diameters.  Adult Garry oak trees, with a higher ratio of leaf to sapwood area as 

compared to seedlings, leads to even further hydraulic limitations to water flux than for 

seedlings (Phillips et al. 2003) so drought-induced loss of hydraulic conductivity for adult 

trees may be of greater importance than for the seedlings of these trees growing in the 

field.   

Field Measurements 

Despite the fact that no significant differences were observed for light-saturated 

photosynthetic rates for seedlings across populations measured under laboratory 

conditions, field measurements showed significantly lower (NC) and higher (SW) rates of 

Amax and gsmax as compared to rates in the field measured for AL and AT populations.  AT 

had a field instantaneous WUE that was comparable to that seen in laboratory conditions, 

but was also more than 25% higher than any other location as measured in the field.  This 
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was due to a relatively high A along with relatively low gs.  This is an indication of plants 

that have developed and grown in prolonged drought and that have stomata that rapidly 

respond to differences in sunlight and water availability.  Drought adapted oaks generally 

have more sensitive stomatal response and root to shoot ratio shifts that maximize the 

efficiency of water use (Thomas and Gausling 2000, Xu and Baldocchi 2003).  Some 

oaks have been shown to exhibit patchy stomata during times of drought.  These plants 

operate independent patches of stomates across the leaf in order to maximize the use of 

CO2 while minimizing water loss (Epron and Dreyer 1993).  Significant differences in 

instantaneous WUE were not observed in the artificially droughted container grown 

plants measured under steady-state conditions.  The difference in photosynthetic response 

of populations growing in the field versus in a laboratory setting were most likely a result 

of the extreme VPD that field seedlings were exposed to.  The controlled VPD of the 

container grown seedlings was constantly held near 2000 Pa, while the VPD at the 

collection sites was in some cases more than double that value.  Soil water content and 

leaf water potential were not measured for the field grown seedlings but results indicate 

that non-steady state responses to light and water availably are dramatically important for 

Garry oak photosynthesis and growth in the field.  It is also well understood that below-

ground responses of Quercus species such as changes in root growth patterns are equally 

important to above ground responses such as decreased stomatal conductance rates when 

tress are exposed to drought (Manes et al. 2006).  Root morphology is an important 

determiner for survivorship of Garry oak seedlings used for reforestation efforts (Gould 

and Harrington 2007).  Further investigations on non-steady-state characteristics of 

photosynthesis and growth responses of seedlings growing in the field to changes in 
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environmental parameters are needed in order to reveal the strategy for drought-tolerance 

of these seedlings.  

Conclusions 

Concerning acorn collection for restoration efforts east of the cascades, several 

factors should be considered.  Of the east side microclimates measured, NC was the most 

severe in regard to high VPD.  This was the harshest environment measured in 

consideration of seedlings exposure to high temperatures and low water availability.  

While not located at the harshest microclimate, seedlings from AT had the highest WUE 

measurements in the field, which was comparable to what they maintained in the 

laboratory setting potentially making this an ideal site for seed collection.  AT also 

showed the potential for a strong leaf water potential response to drought, either from 

proline accumulation or through another mechanism.  AT showed a decreased ΦPSII with 

increasing light but no reduction of Fv/Fm which suggests that they are able to protect 

themselves from light-induced damage even under conditions of limited water 

availability.  Seedlings from SW were the most variable in assimilation measurements 

and the most susceptible to drought in the water stress experiment.  This suggests that 

SW might not be an ideal collection site for acorns.  The susceptibility to embolism 

induced loss of hydraulic conductivity makes AT and NC less ideal for dry site plantings, 

whereas if hydraulic conductivity maintenance in response to drought is the primary 

consideration then OH would be better suited.  However, loss of hydraulic conductivity 

in response to freezing damage has also been shown to be an important determiner for 

survivorship of holm oak (Quercus ilex) (Logullo and Salleo 1993) and several white oak 
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species from the southeastern US (Cavender-Bares and Holbrook 2001) and susceptibility 

to freezing stress may preclude the use of seeds from Western populations of Garry oak 

for reforestation efforts on the Eastern side of the state (Huebert 2009).  Our results 

suggest that there are physiological differences between the populations, but also a great 

deal of intrapopulation variation suggesting that individuals from any of the populations 

may potentially be ideal for reforestation efforts.  Continued research will further benefit 

reforestation efforts by providing insight into the physiological and biochemical 

variations in and among the populations of Garry oak east and west of the Cascades, as 

well as the thresholds for drought stress tolerance for Garry oak seedlings. 
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