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Abstract: Measurements of the vibrational response of a spherical
aluminum shell subject to changes in the interior pressure clearly
demonstrate that resonance frequencies shift higher as the pressure is
increased. The frequency shift appears to be smaller for longitudinal
modes than for bending wave modes. The magnitude of frequency shift
is comparable to analytical predictions made for thin cylindrical shells.
Changes in the amplitudes of resonance peaks are also observed. A
possible application of this result is a method for noninvasively moni-
toring pressure changes inside sealed containers, including intracranial
pressure in humans.
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1. Introduction

Recent interest in developing noninvasive techniques for measuring intracranial pres-
sure (ICP) has led to investigations of the vibrational response of skulls subject to in-
ternal pressure changes. A significant result of these limited studies, both experimental1

and computational,2 is that an increase in ICP produces an upward shift in certain
resonance frequencies of ovine and human skulls. Although the maximum ICP investi-
gated was less than 0.5 psi, this result is consistent with the predictions of early theo-
retical studies of thin cylindrical shells subject to much larger pressures.3–10 In addition
to ICP monitoring, this phenomenon has the potential to be exploited as a diagnostic
tool for the pressure inside any thin-walled container that should remain sealed, such
as an industrial tank containing hazardous waste.

It should be emphasized that we are concerned only with the effect on shell res-
onance frequencies due to static internal pressure, regardless of the specific fluid con-
tained in the shell, rather than acoustic pressures associated with spherical cavity modes.
The mechanism by which prestress within a shell causes the resonance frequencies to
shift is clearly nonlinear. In shell vibrations, there are two distinct sources of nonlinear-
ity: the interaction of shell curvature and finite thickness gives rise to nonlinear strain-
displacement relations5 (“geometric nonlinearity”), and the stress-strain relations may be
nonlinear (“physical nonlinearity”).11,12 Both effects can be simultaneously incorporated
into a three-dimensional nonlinear theory of elasticity, as described in Refs. 4 and 9. In
doing so, however, an intuitive understanding of the role of nonlinearity is obscured and
the results can be interpreted only in the context of the specific geometry for which the
equations of motion were derived. For example, the theoretical predictions of Refs. 5
and 9 and the experimental results of Refs. 3 and 6 show that flexural modes are more
strongly affected by internal pressure than longitudinal modes, the size of the frequency
shift for a given mode depends on the cylinder radius to length ratio.

Although cylinders are an appropriate model for many structural applications,
expanding the study to other shell shapes, and measuring response changes over a
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wide range of pressures, may improve our physical insight into the nonlinear mecha-
nism connecting prestress to shell response. To our knowledge, the resonance behavior
of spherical shells subject to prestress has not been investigated, either theoretically or
experimentally.

This letter describes a simple experiment that clearly demonstrates changes in
the vibrational response of a uniform spherical aluminum shell that is subject to a
wide range of internal pressures. The increase in resonance frequency, as well as
changes in peak amplitudes, with internal pressure is measured for both an air-filled
and a water-filled shell. Detailed observations are provided of the effect on resonance
behavior of the change in pressure. The measured frequency shifts are compared with
analytical predictions of cylindrical shells subject to internal pressure.

2. Experiment

The experimental apparatus for measuring the resonance frequencies of a spherical
shell is shown in Fig. 1. The test body was a uniform spherical shell of radius 3.0 in.
(7.62 cm) and thickness 1/8 in. (0.3175 cm) made of aluminum (ASTM B209), with a
threaded 3/8 in. hole. The shell was suspended with elastic string tied to a pair of
hooks inserted into the hole. When supporting the weight of the empty shell, the string
has a fundamental frequency that is three orders of magnitude smaller than the shell
frequencies of interest, indicating that coupling between shell vibrations and the sus-
pension system should be weak.

An acoustic driver with a horn (Peavey, model CH6-9) mounted underneath
the shell provided the excitation and two small accelerometers, one uniaxial (Dytran
model 3032A) and one triaxial (Dytran model 3053B), mounted on the shell provided
a means for measuring the vibration response. The acoustic excitation was chosen to
avoid the mass loading effects of a mechanical shaker; the location of the driver was
intended to excite shell modes that are axisymmetric with respect to the gravity vector.

The acoustic driver received a swept sinusoidal signal from a National Instru-
ments PXI-5402 function generator, amplified by a Labworks model PA-119 linear
amplifier. The accelerometer signals were conditioned by a National Instruments PXI-
4472B data acquisition system. A microphone mounted between the driver and shell
provided a way to monitor the amplitude of the driving signal. The function generator
output and the input signals were managed by a LabView virtual instrument.

To maintain pressure inside the shell, a valve was threaded into the 1/8 in.
hole in the shell. With water inside the shell, a valve that accommodates a hydraulic

Fig. 1. Photograph of apparatus to measure the resonance frequencies of a pressurized spherical shell. A pres-
sure valve is threaded into the shell at the top; connected to this is the elastic string suspension system.
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hand pump (Ralston, model HPGV with gauge) was used. With air in the shell, a
valve that accommodates plastic tubing connected to a bicycle pump was used.

The frequency response of the water-filled shell with attached valve was meas-
ured between 7.0–22.0 kHz with the water at atmospheric pressure. From this spectrum,
two distinct sets of peaks near 16.4 and 18 kHz were chosen for further investigation
with increased interior pressure. The frequency response of the air-filled shell (with valve)
was measured between 15 and 18 kHz, leading to the identification of a strong peak
near 16 kHz used in the changing pressure measurements.

For the two sets of peaks in the water-filled shell spectrum, the frequency
response was obtained using a step size of 1 Hz with internal pressures of 20 to 160
psig in increments of 20 psig. For context, these pressures are comparable to those
found in bicycle tires. The water pump gauge is calibrated in increments of 5 psi; the
uncertainty for the actual pressure inside the shell is about þ/� 2 psi. The response of
the air-filled shell also had a step size of 1 Hz, but mechanical issues with the pump
and hose system limited reliable measurements to pressures between 20 and 60 psi.
Both types of pumps also allowed for the pressure to be decreased in a controlled way.

With either pump remaining connected to the shell throughout the measure-
ment and the valve left open, only a gentle squeeze of the pump handle was required
between measurements, leaving the shell undisturbed. This was important to do, since
preliminary measurements showed that the shell response is very sensitive to changes
in the suspension system, contrary to our initial expectations. Lifting or pushing down
on the shell, as might occur when the valve was being opened or closed, could produce
significant changes in the amplitude of peaks in the response curve. We also observed
that the response curve of the water-filled shell could evolve over a period of hours,
which we attribute to the elastic string stretching out and becoming stiffer. The sensi-
tivity of the shell’s vibrations response to fluctuations in the suspension (or in the
shell’s weight) is illustrated by oscillations that appear in the spectrum if the shell is
slightly swinging during data collection.

To confirm that observed changes in the shell response were due only to pres-
sure changes, and not due to gradual changes in the suspension or other environmental
effects, the response was measured after each 20 psi increase in the pressure, then again
as the pressure was decreased.

3. Results

The response of the water-filled shell near 16.4 kHz at each of the several pressure val-
ues tested is shown in Fig. 2. The pressure values shown are gauge pressure, which is
the pressure above atmospheric pressure. Three developments are clearly seen in this
plot as the internal pressure is increased: every peak is shifted to higher resonance fre-
quencies; there is a consistent change in the amplitude of each peak; and some peaks
split or merge.

At the lowest pressure (20 psig), there are three distinct peaks, with a fourth
that is less distinct, within the 200 Hz range plotted. The first peak, at 16 368 Hz, is
relatively narrow and tall and is followed by a sharp antiresonance. The second peak,
at 16 399 Hz, has a noticeable shoulder; the third distinct peak is at 16 414 Hz. A
fourth peak may be discerned at 16 462 Hz. A sharp antiresonance occurs at 16 383 Hz.
Multiple peaks associated with a particular shell mode likely result from asymmetries
due to the presence of the valve and the suspension system.

As the interior pressure is increased, all four peaks shift to the right (higher
frequencies). The first peak, however, decreases in amplitude and eventually splits into
two peaks, while the second peak increases in amplitude and loses the shoulder. The
third peak diminishes in amplitude and eventually becomes absorbed into the second
peak; the fourth peak increases in amplitude. The peak frequencies vs. internal pressure
of the four resonances described in Fig. 2 are listed in Table 1.

Another set of peaks near 18 kHz exhibits similar behavior, as shown in Fig.
3. The amplitude of the peak near 18 340 Hz grows significantly with pressure, while
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the peak near 18 100 Hz is relatively unchanged. Also of interest is the development of
a sharp antiresonance near 18 300 Hz between 50 and 100 psig. The early portion of
the response curves in Figs. 2 and 3 exhibit the oscillations associated with a slightly
swinging apparatus.

The air-filled shell resonance near 16 kHz was measured with internal pres-
sures at 20, 40, and 60 psig. The response curve contains two significant peaks: over
the 40 psi range tested, the taller peak shifted from 16 030 to 16 040 Hz while remain-
ing nearly constant in amplitude; the much smaller peak grew eight-fold in amplitude
while remaining essentially unchanged in frequency.

4. Discussion

Measurements of both the air-filled and water-filled shell show that resonance frequen-
cies increase as the internal pressure is increased. Over the range of pressures tested
(20–160 psi), the relationship was approximately linear for several resonance peaks
between 16 and 18 kHz. This result is consistent with the predictions of Refs. 5 and 8

Fig. 2. (Color online) Frequency response near 16 kHz of an aluminum spherical shell filled with water at sev-
eral values of interior gauge pressure. Peaks shift to higher frequencies and change amplitude as pressure
increases. The legend indicates gauge pressure.

Table 1. Observed resonance frequencies in a spherical aluminum shell filled with water at different internal
pressures.

Pressure (psig) First peak Second peak Third peak Fourth peak

20 16 368 16 396 16 415 16 462
40 16 370 16 398 16 419 16 465
60 16 372 16 401 16 424 16 471
80 16 376 16 405 16 429 16 475
100 16 379 16 410 16 433 16 479
120 16 382 16 415 16 436 16 483
140 16 384 16 419 16 437 16 488
160 16 386 16 424 16 449 16 491
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for cylindrical shells subject to small pressures. The average slope of frequency shift vs
pressure (Dfpk/Dp) for these six peaks is shown in Table 2. The shift in the 16.37 kHz
peak is only half that of the 18.1 kHz peaks, which might be explained by differences
in the vibrational mode types. Results of a finite- element model of the aluminum shell
filled with water, as well as eigenfrequency calculations for a fluid-filled spherical shell
undergoing axisymmetric vibrations,13,14 suggest that the peaks near 18 kHz are possi-
bly degenerate versions of the n¼ 12 lowest branch mode (primarily bending waves),
while the peaks near 16.37 kHz may comprise the n¼ 2 mode from the next higher
branch (primarily longitudinal waves). Studies on cylindrical shells also report that in-
ternal pressure affects transverse modes more strongly than longitudinal modes.3,5,6,9

The magnitude of the observed frequency shifts in the spherical shell can be
indirectly compared with the analytical predictions of Refs. 5 and 7 which are applica-
ble to cylindrical shells. With x0 representing the angular frequency at zero internal
gauge pressure, the predicted frequency due to internal pressure p can be written

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ Dx2
q

, where

Dx2 ¼ n2p
qhR

(1)

for purely circumferential waves (axial wavenumber m¼ 0). Here, q, h, and R are the
density, thickness, and radius, respectively, of the spherical or cylindrical shell. In Ref.
5, n2 is replaced by (n2� 1)2/(n2þ 1); these expressions differ by more than 5% only for

Fig. 3. (Color online) Frequency response near 18 kHz of an aluminum spherical shell filled with water at sev-
eral values of interior gauge pressure, showing the evolution of four distinct resonance peaks. The legend indi-
cates gauge pressure.

Table 2. Measured resonance frequency shift vs change in internal pressure for several different resonance
peaks. Units are Hz/psi.

Peak (Hz) Water 16 370 Water 16 410 Water 18 100 Water 18 150 Water 18 350 Air 16 000

Dfpk/Dp 0.13 0.2 0.27 0.27 0.18 0.26
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n< 10. When applied to the spherical aluminum shell, Eq. (1) gives good agreement
with the observed frequency shifts if a suitable value of n is chosen. For example, the
measured peaks near 18.1 kHz (shown in Fig. 3), which are close to the predicted
n¼ 12 mode, are shifted by 24 Hz as the internal pressure is increased by 90 psi,
whereas Eq. (1) predicts a shift of 25 Hz if n¼ 6. Similarly, the shift seen in the
16.4 kHz peak (n¼ 11) is matched by Eq. (1) if n is set to 5. For the air-filled shell, the
observed shift from 16 025 to 16 035 Hz is obtained theoretically if n¼ 6, although
this resonance corresponds to the n¼ 9 mode for an empty shell.

The significance of these comparisons is that the spherical shell exhibits a fre-
quency shift that is approximately linear with the increase in internal pressure, consist-
ent with cylindrical shell theory despite the difference in geometry. Our results also
confirm the prediction expressed in Eq. (1) that the frequency shift due to internal pres-
sure changes is not directly related to the composition of the internal fluid. Larger fluid
densities will result in lower frequencies for a given flexural mode of vibration at zero
internal pressure, but the frequency shift that occurs when the pressure is increased is
independent of fluid properties.

It should be noted that in Refs. 3–6 an internal pressure change of 140 psi was
at the low end of pressures measured or used in the calculations, whereas the overall
range of ICP is on the order of 1 psi. The current study involves an intermediate range
of pressures. Curiously, the study on ovine skulls also reported a linear relationship
between ICP and changes in the impedance spectrum, but only up to a pressure of
15 mm Hg (0.29 psi); no changes were observed at higher pressures.1

In addition to frequency shifts, the amplitudes of resonance peaks also exhib-
ited a regular change with increased or decreased internal pressure. Much care had to
be taken not to disturb the shell and its suspension system during the course of the
experiment, since even a small displacement could affect both the frequency and ampli-
tude of resonance peaks.

It is important to note that the weight of the water inside the shell contributed
a nonuniform stress within the shell that was comparable to the internal pressure
changes. The magnitude of the stress at the shell’s equator due to the water’s weight is
45 psi, which is equivalent to the extra tensile stress produced by an internal pressure
of about 4 psi.

5. Conclusion

Experiments with a spherical aluminum shell filled with either air or water clearly dem-
onstrate that internal fluid pressure has a measurable effect on the vibration response
of the shell. On average, shell resonance frequencies, as measured by accelerometers,
shifted higher by about 2 Hz as the internal pressure was increased by 10 psi over a
range of 140 psi, although this rate varied by as much as a factor of 2 for different res-
onance peaks. Peak amplitudes were also observed to change, in a and reversible way,
with internal pressure.

The observed frequency shifts appear to be consistent with the early analysis
of thin cylindrical shells based on nonlinear geometrical theory. However, due to the
fundamental role played by the shell geometry in its nonlinear behavior, comparison
between spherical and cylindrical shells is not exact. This fact suggests that a general-
ized approach to predicting the effect of internal pressure on resonance frequencies for
any shell shape is not possible. Therefore, applying a finite-element model for each
shell geometry of interest may be the best approach for accurately predicting frequency
shifts.

Resonance frequency shifts may provide a mechanism for noninvasively moni-
toring ICP changes in patients at risk for intracranial hypertension. Among the several
challenges facing implementation of this approach are the sensitivity of the vibration
response to factors such as the weight distribution and interaction with the shell sup-
port, the variation of cranial morphologies among patients, and the ability to detect
very small frequency shifts. Finite element models that incorporate data from a
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patient’s CT or MRI scan may provide useful guidance in determining when changes
in ICP have reached a critical level.
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