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ABSTRACT 

Geospatial data analysis relies on Spatial Data Fusion and Mining (SDFM), which heavily depend on topology and 

geometry of spatial objects. Capturing and representing geometric characteristics such as orientation, shape, proximity, 

similarity, and their measurement are of the highest interest in SDFM.  Representation of uncertain and dynamically 

changing topological structure of spatial objects including social and communication networks, roads and waterways 

under the influence of noise, obstacles, temporary loss of communication, and other factors. is another challenge. Spatial 

distribution of the dynamic network is a complex and dynamic mixture of its topology and geometry. Historically, 

separation of topology and geometry in mathematics was motivated by the need to separate the invariant part of the 

spatial distribution (topology) from the less invariant part (geometry). The geometric characteristics such as orientation, 

shape, and proximity are not invariant. This separation between geometry and topology was done under the assumption 

that the topological structure is certain and does not change over time. New challenges to deal with the dynamic and 

uncertain topological structure require a reexamination of this fundamental assumption.  In the previous work we 

proposed a dynamic logic methodology for capturing, representing, and recording uncertain and dynamic topology and 

geometry jointly for spatial data fusion and mining. This work presents a further elaboration and formalization of this 

methodology as well as its application for modeling vector-to-vector and raster-to-vector conflation/registration 

problems and automated feature extraction from the imagery. 

 
Keywords: Uncertainty modeling, geospatial data, data fusion, geometry, topology, feature extraction, conflation, 

dynamic logic. 

1. INTRODUCTION 

Spatial distribution of the dynamic network is a complex and dynamic mixture of its topology and geometry [21]. The 

change of the geometric and topological structure of the network over time is challenge in many tasks including tracking 

objects that requires fusing and mining multi-source information.  In cyber-physical space, Data Fusion and Mining 

(DFM) heavily depend on topological and geometrical representation and uncertainty [5, 8,9] and appropriate similarity 

measures [20] of spatial objects such as communication networks, roads, waterways, social networks.  

In the map matching task [7] where trajectories are matched a road network, the uncertainty is twofold: (1) uncertainty 

of the trajectory and (2) uncertainty of the road network.    The last one is caused by poor geo-registration, outdated road 

layers, inaccurate vectorization, feature extraction, generalization processes that produce roads from imagery and other 

factors [5]. Modeling such uncertainties requires techniques that go beyond cylinders and beads [17] that generalize 

uncertainty cylinders around the trajectory.   

Figure 1 illustrated the issue of dynamically changing topology and geometry of famous in the graph theory Konigsberg’s 

bridges. During World War II two of the seven original bridges were destroyed.  Later two other bridges were replaced by 

a modern highway.  The three bridges remain, one was rebuilt in 1935, and thus only two bridges are really original. 

Also Figure 1 shows on the left the green oval with three modern bridges with only one original bridge at the same 

location on the left, and red ovals show other changes in bridges. 

 

                                                 
*
borisk@cwu.edu; phone/fax 509 963-1438 

 

 



Proc. SPIE 8396, Geospatial InfoFusion II, 83960N (May 1, 2012); doi:10.1117/12.920878 

 

 

 
2011 1735 

Figure 1, Konigsberg’s bridges: Which of three bridges matches the historic one? 

 

 This paper is organized as follows. Section 2 summarizes the main concepts of Dynamic Logic of Phenomena, where the 

concepts of uncertainty, generality, and simplicity for models, evaluation criteria are presented. Section 3 defines 

generalization of the dynamic logic for DMF of heterogeneous spatial data. Correlation with Intermediate Model Objects 

(CIMO) is presented in this section and is applied to the spatial data fusion problem of vector-to-raster conflation. It 

provides models to deal jointly with uncertain topology and geometry of spatial objects. Section 4 is devoted to the 

guided extraction of features from the imagery where GMTI serves as guidance. Section 5 summarizes the paper and 

discusses future research. 

2. DYNAMIC LOGIC OF PHENOMENA (DLP) 

The first concept of Dynamic Logic of Phenomena (DLP) is the concept of model (model of phenomenon or P-model).It 

is used in this paper as it is common in physics in contrast with how the term model is used in logic. “To model a 

phenomenon is to construct a formal theory that describes and explains it” [6]. Definitions that are more formal are given 

in [15, 2011, 2012]. The next DLP concept is a similarity (or correspondence) measure L(M,E) between the empirical 

data E and an a-priory model M that is assigned individually to each specific problem and data E:  L:  {(M,E)}   R, 

where R  is a set of real numbers. DLP used the concepts of uncertainty, generality, and simplicity as partial order 

relations.  

 

An uncertainty relation between P-models is denoted as   ≥Mu , relation Mi ≥Mu Mj is read: “Model Mi is equal in 

uncertainty or more uncertain than model Mj” or “Model Mj is no more certain than model Mj”. This relation is a partial 

order.  If Mi >Mu Mj then we simply say that Mj is more certain than Mi.  

A generality relation between P-models is denoted as ≥Mg and relation Mi ≥Mg Mj is read: “Model Mj is a specialization 

of the model Mi” or “Model Mi is a generalization of the model Mj”.   

A simplicity relation between P-model is denoted as   ≥Ms and relation Mi  ≥Ms Mj is read: “Model Mi is equal in 

simplicity of simpler than Model Mj”.  

Similarly, uncertainty, generality and simplicity relations are defined for similarity measures that are matched with P-

models in DLP. All these relations are partial orders.  For instance, an uncertainty relation between similarity measures 

Li  and Lj  is  denoted as  Li  ≥Lu Lj  and is read: “Measure Li is equal to in uncertainty or more uncertain than measure 

Lj”.   

Definition. Mapping F between a set of P-models {M} an a set of similarity measures {L},  F:  {M} → {L}. 

is called a match mapping if F preserves uncertainty, generality and simplicity relations between models and measures in 

the form of homomorphism from a relational system  {M}, ≥Mg,  ≥Mu    to a relational system   {L}, ≥Lg, ≥Lu  ,  i.e.,  

 Ma , Mb   ( Ma ≥ Mg Mb         F(Ma ) ≥Lg F(Mb) ), 

 Ma , Mb   ( Ma ≥Mu Mb          F(Ma ) ≥Lu F(Mb) ). 
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Two different models can be at the same level of uncertainty (M1 =u M2), one model can be more uncertain than another 

one (M1 >u M2), or these models can be incomparable for uncertainty.  Thus, we have a partial order of models. Figure 2 

illustrates the case when the chain of uncertainty of the models differs from the chain of generality of these models. In 

Figure 2 each model consists of 5 nodes with different level of uncertainties. Some links are not known. For instance, 

link c1 is uncertain in both models in the second row, but it is uncertain only on the left model in the third row.  Each 

column forms a chain of models. The chain in Figure 2(b) contains three models at thee levels: 

Level 0:  models M0 with all network nodes and connections are known. 

Level 1:  models M1 with one unknown connection, ci.  

Level 2:  models M2 with two unknown connections, cj, ck.  

If cj = ci  in M2 then the models M0, M1, and M2 form a chain from a more specific and certain model M0  at level 0 to a 

less specific and certain model M2 (level 2).  This is both a certainty and generality chain. Here M2 is more general than 

M1 and M0. Note that if both cj, and ck are not equal to ci then M0, M1, and M2 form a certainty chain only, but do not 

form a generality chain. In this case, M2 is not a generalization of M1 and M2 anymore.  

Definition. Mapping CM: {M}{M} is called a model learning (adaptation) operator,  CM(Mi,E)= Mi+1 , where E are 

data and  Mi  ≥Mu Mi+1,  Mi  ≥Mg Mi+1. 

Definition. Mapping CL: {L}{L} is called a similarity measure learning (adaptation) operator,  CL(Li,E)= Li+1 , where 

E are data and  Li  ≥Lu Li+1,  Li  ≥Lg Li+1. 

DLP process is illustrated in Figures 3 and 4. Figure 3 shows the mappings of models M and similarity measures L by F 

at different levels of models and similarity measures. It also shows transition of models by using CM and transition of 

similarity measures by using CL to more specific models and similarity measures.  At each level i DLP process searches 

for models Mimin, 

𝑀𝑖𝑚𝑖𝑛 = arg  𝑚𝑖𝑛{𝑀𝑖}
𝐿𝑖(𝑀𝑖 ,𝐸) 

and test if  Li(M1min,E) >T, i.e., is above the needed correspondence threshold to stop the process of generating more 

specific levels of DLP. In some cases a single initial model M0 can be given and used to generate the set of models {M1} 

to start DLP process.  

 

 
 

 

(a) Uncertainty and 

generality increase 

(b) Uncertainty  

increase  only (ci differs 

from cj and ck)  

 

      Figure 3. DLP process 

 

Figure 4. Main DLP step at the fixed level,  

L:  {(M,E)}   R 

Figure 2. Comparison of uncertainty and 

generality orders. 

          

 

Above we have considered separately the uncertainty of the models when the nodes are uncertain and when connections 

(links) are uncertain. Now we consider them together. In Figure 5, the upper row contains a fully certain 4-crossing 

Similarity 

Model Data 
CL CM 

{M} {L} 
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model, where all four links take place. The row directly below it shows all four less certain models where 3 out 4 

possible links to the crossing point are certain. The last row shows the most uncertain crossing model, where all links are 

uncertain and even the existence of the crossing point is uncertain. The complete 16-node lattice is parameterized as a 4-

dimensional binary cube, E
4
, as shown in Figure 5. Thus, we have the uncertainty sequence of models here:  

                                 M3 ≥Mu M2 ≥Mu M1 ≥Mu M0,                                                 

where M0 is a top row model and M3 is a bottom row model.  

 

              
        
Figure 5. Uncertainty lattice of crossing models that use both geometry and topology 

3. FUSION AND MINING OF HETEROGENEOUS DATA 

Consider a road conflation task [1-4, 10, 12-14,19,22]. We need to match and conflate roads (marked A) and roads 

extracted from the image (marked B). Roads A should be transformed and aligned with the image using the extracted 

roads B. The standard topological match of the road crossings does not work here due to node mismatch, gaps in 

connections and differences in road coverage, which is quite typical in geospatial data matching. The matching is 

important because it enriches the raster image with geospatial database information from the vector data. Figure 6 shows 

a Tiger road network, A and a road network extracted from the overhead image B (Figure 7).   

 

 

Figure 6. Matched uncertain road networks Figure 7. Raster image 
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Below we use the following notation: X-nodes are connections of 4 lines, T-nodes are connections of 3 lines, L-nodes 

are connections of 2 lines,  I-models are “connections” of a single line (I-model represents a gap or a node on single 

line), O-nodes are terminal nodes of the line that are not connected to other lines, and D-nodes are disconnected nodes.  

The network A contains two O-nodes (A1,A9), and seven T-nodes (A2- A8) and Roads B contain one D-node (B1), two 

L-nodes (B2,B5), and two T-nodes (B3,B4).      

 

Below the steps of the SIMO algorithm are shown for the conflation task.  

 

1. Identify all connections in roads A and B in the image.  These are nodes A1-A9 in data A and B1-B5 in data B. In 

DLP terms we form a class of all nodes from A, {M0A} and a class of all nodes from B, {M0B}. It constitutes a 

highest level of uncertainty of the matching model. In formal terms we have a set of triples  {{N0A}, {N0B}, fk}, 

where fk is a mapping that matches nodes between A to B. At this highest level of uncertainty any fk is considered to 

be possible.  We denote this set of triples as models {M0}.  The similarity measure L of these models with data 

D=(A,B) is trivial,  L values are equal for all models M0i,M0j with any fk, L0(M0i,D)= L(M0i,D).  

2. Identify node types and label nodes with its type. Table 1 shows types of the nodes. I-nodes, X-nodes, are absent in 

the example. In the DLP terms this means that we construct a more specific set of models {M1} where each node is 

labeled by its type. 

3. Identify nodes as match candidates using node types. Only T-nodes A2-A8 and B2, B4 are direct candidates. In DL 

terms this means that a similarity measure L1(M1i,D) =1 if nodes in A  are matched with nodes in B of the same 

type. Thus, we narrowed a set of matching models while still keeping a significant level of uncertainty, but lower 

than with {M0}. 

4. Measure similarity of orientation of nodes and distances between nodes of the same types. In DL terms this means 

that we start to generate the next more specific set of models {M2} and respective similarity measure L3 based on 

orientation and distance as described below. The distance between T-nodes is computed as a distance between their 

centers (actual intersection points). All T-nodes have the same topology, thus their topological similarity is the 

same. Nodes A3 and A4 are similar to each other and more similar in orientation to B3 than A5 to B3. The 

orientation similarity measure Lor  used in L3 is defined as a function of angles between edges,  

 

Lor(A3,B3) = (cos α + cos β + cosγ)/3. 

 

5. Match nodes using information from 1-4.  The correct matches found are: A2 B2; A2B3; A3B4 and A4 B5 

that is A2 is matched to two B nodes.  Such complex match requires first to assume a rich model that allows one-to-

many match (node 2 is linked with two nodes). 

6. Change and enhance “rough” match criteria LR0 and LRD to more certain criteria. Informally these criteria should 

maximize the number of nodes matched consistently with topology, LCT. In the rough match each node has multiple 

unresolved matches. The algorithm starts with matching nearest nodes and evaluates the number of nodes matched 

consistently NC relative to the total number NT of nodes, NC/NT. The last process is forming a more specific set of 

models {M4} and a more specific similarity measure L4.  

 

This produces matches A2 B2; A3B3; A4B4 and A5 B5. The match of nodes A5 and B5 is not consistent with 

topology (A5 is not a part of the closed contour in contrast with B5). The match of nodes A2 and B5 is not consistent 

with node-types (A2 and B5 are of different types, but both belong to close contours). Thus, NC/NT=2/4.  

 

Next match A2 B2 and A3B3 is not consistent with topology. There are two edges between A2 and A3 that form a 

close a contour, but only one edge between B2 and B3. The opposite inconsistency takes place for matches A3B3 and 

A4B4 with two edges between B3 and B4, but only one edge between A3 and A4. This inconsistency degrades NC/NT 

to 0.   An alternative match A2B3; A3B4, A4 B5 is topologically more consistent, NC/NT=3/4 where only B2 has 

no match.   

 

The closest node to match B2 is A2 that is already matched to B3. This match is topologically consistent with two closed 

contours (B2, B5, B4, B3, B2) and (A2, A4, A3,A2). Having A2 node matched with two B nodes we can estimate the 

match   A2 B2; A2B3; A3B4 and A4 B5 with NC/NT=3.5/4. This is the best SIMO match, which is consistent 

with the best manual solution.  See also [8] on this task.  
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4. GUIDED FEATURE EXTRACTION and GMIT 

Advanced GMTI algorithms use road network constraint information to correct the target tracking [18]. However road 

network can be incorrectly extracted by an automatic feature extraction (AFE) algorithm and/or geo-referenced 

providing multiple uncertainties for moving object representations [17]. Traditional methods of road extraction without 

guidance often find multiple erroneous roads [15] illustrated in Figure 8 [10]. Such “correction” can exaggerate errors of 

the GMTI sensor.  For instance, the overlay of a “corrected” GMTI track with aerial imagery can show a car “moving” 

on the roofs of the buildings. Figure 9 shows the case where a trail is not extracted from the imagery at all and cannot be 

used to correct GMTI data.  In such cases we first need to extract a trail.  

This paper reverses the GMTI approach and attempts to improve a trail extraction using GMTI as guidance.  In the 

traditional GMTI approach the road network guides the GMTI track correction.  The overall goal of this task is 

extracting the trail from imagery by using a guidance line obtained from the ground moving target identifier (GMTI) 

sensor. This situation is illustrated in Figure 10 with a red guidance line. 

 

 

 

 

 

 
Figure 8. Scratch AFE output (blue) performed on test scene  [10]. Figure 9. GMTI Guidance line without extracted trail 

 

The reversed approach proposed in this paper is based on the assumptions that the actual trail is in the vicinity of the 

GMTI track and the trail has a structure similar to the structure of the track.  Both these assumptions are uncertain. How 

large is the vicinity and what is the structure of the track? The next uncertainty is about measuring the structural and 

geometric similarity of the extracted trail and the GMTI track.  The first one represents the topological uncertainty and 

the second one - the geometric uncertainty.  Figure 9 shows an additional challenge to using GMTI as guidance.  A red 

triangular tracklet in Figure 9 can be off the trail. It can show movement of a group of people in a rest area off the trail.  

Such tracklets do not represent the trail structure while they still can indicate that the trail is in the vicinity, but further 

than other tracklets from the trail. The alternative methods that optimize a weighted sum of different similarity measures 

have fundamental difficulties. Such methods do not control what is actually achieved in the result of optimization 

beyond optimizing a value of the weighted sum. Such “black box” methods including a popular snake algorithm have 

difficulties filtering out “rest areas” from the trail. In large part, this is a result of incremental small changes in the 

guidance line accomplished by the snake algorithm without using a global structure of the guidance. In other words, this 

is a fundamental difference between local (differential) and global (integral) approaches.  This difference is also similar 

to the differences between top-down and bottom-up approaches.  Moreover the abilities to discover a difference in the   

structure of the GMTI and the extracted road or trail can be used as a tool for identifying suspicious activities, such as 

planting an IED.    
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To deal with both topological and geometric uncertainties we use the Algebraic Structural Algorithm (ASA) approach 

implemented in MapSnap [10, 12, 14] and the DLP approach [7, 11, 16] that was outlined above.  The proposed ASA-

DLP approach is also applicable to traditional tasks of correcting the GMTI by using road or trail as a guidance. ASA-

DLP approach has a mechanism to deal with the gradual change in similarity not only binary change (preserve, not 

preserve topological and geometric structures).  In particular, we can gradually preserve such components of multilevel 

geometric structures as angles and relations between these angles. The data in Figure 9 is courtesy of Mark Pritt 

(Lockheed Martin Co). Below we illustrate the ASA-DLP algorithm on these data.  

 

 
Figure 10.  Road extraction using ASA-DLP approach with GMTI guidance 

 

The first algorithm goal is extracting the trail with preserving the global topological and geometrical structures of the 

guidance line such as angles, orientation and connectivity in the search process of the trail location in the vicinity of the 

guidance. Consider a wide green line in Figure 10. This green line does not represent GMTI data, but it represents the 

upper level structure of it with the same general orientation, angles and connectivity. It consists of 3 linear parts that the 

algorithm is supposed to preserve in its first phase, while it may not preserve smaller structural elements of the red 

GMTI line.   The hypothesis is that the global structure of three lines and angles between them is more likely to be 

present on the trail than the small structural details of the guidance line. The attempt to preserve the smaller structural 

elements of the guidance is made in the consequent phases of the ASA-DLP algorithm.  

 

The second algorithm goal is to refine the extracted trail using substructures of the guidance line with more detailed 

information contained in the guidance. This dynamic refinement process continues several times. Our experiments had 

shown that no more than 8 iterations are needed to get an acceptable result in conflating vector roads and extracts from 

the imagery [12, 13]. It allows representing a trail sequentially with 2, 4, 8, 16, 32, 64, 128, and 258 linear segments. The 

process of producing the next set of segments is Binary Sequential Division (BSD) of previous segments [13].  

 

It the first phase the ASA-DLP algorithm identifies the global structure of the guidance line (red line in Figure 10) by 

producing the structure line of the upper level (green line in Figure 10).  Next this algorithm produces extracted shapes 

(blue lines in Figure 10) from imagery that are a set of rectangular shapes. The width of the rectangle should capture the 

width of the trail.  These shapes have the same orientation and angles as structure lines (green lines in Figure 10), but 

without requiring to preserve connectivity (topological structure). As a result, the produced blue lines can be 
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unconnected as Figure 10 shows. At the next step of this dynamic process (building more certain models) the 

connectivity requirement is added to preserve the topology of the green line and to avoid “orphan” lines.  

 

The steps of ASA-DLP are shown in Figure 11. In terms of DLP steps (1)-(5) constitute operations with a sets of models 

{M0} and similarity measures {L0}. Step (7) operates with more specific models {M1} and associated similarity 

measures {L1} and step (8) operates with further more specific models {Mi} and associated similarity measures {Li} for 

i=2,3…n.    
 

 
 

Figure 11. Steps of ASA-DLP algorithm 

 

The ASA-DLP algorithm in more detail is as follows:  

(1) Producing the structure line SL of the upper level  with guidance line G interpolated by two linear segments SL1 

and SL2 (green line  in Figure 10). For more detail see [13]. 

(2) Building rectangles R1 and R2 around each found linear segment SL1 and SL2.  

(3) Mowing rectangles R1 and R2  in the  vicinity of linear segment SL1 and SL2   and producing new rectangles f(R1) 

and f(R2), where f is shift and rotation transform of the rectangles R1 More generally  f can any affine transform. 

The time limitation for execution the algorithm is the major factor that limits the number of functions to be 

used.  

(4) Computing similarity measure L(f(Ri), I ) between  f(Ri) as a candidate to be a trail segment and overhead image  

I. The measure L takes into account the distribution of the pixel intensities within the rectangle f(Ri) and the 

area that surround this rectangle  as well as the differences between these distributions. Simple versions of L 

can be generated by computing:  

(i) the fraction of pixels in f(Ri) that have intensity above threshold T, Ni(T),  

(ii) the fraction of pixels in the area that surround f(Ri)  that have intensity above threshold T, Nis(T),  

(iii) computing ratios of Ni(T) and Nis(T)  that are similar conceptually to computing likelihood,  

 

L1(f(Ri)= Ni(T) / Nis(T),  L2(f(Ri)= Ni(T) / (Ni(T)+Nis(T)). 

 

L1(f(Ri) will be relatively large when the area of the rectangle f(Ri) is very distinct from the surrounding area, 

that is the surrounding area  contains much smaller number of pixels with intensities above threshold T.   

          

(1) Producing the 
structure line SL  with 

linear segment SL1 , SL2.  

(2) Building rectangles 
R1 and R2 around linear 

segment SL1 , SL2.  

(3) Producing new 
rectangles f(R1) and f(R2) 

in the  vicinity of 
segment SL1 , SL2    

(4) Computing similarity 
measure L(f(Ri), I ) 
between  f(Ri) as a 

candidate to be a trail 
segment and  image  I 

(5) Maximizing similarity 
measure L(f(Ri) to find 

the best transforn f 

(6) Imposing continuity 
constrain on (5) 

(7) Repeating  (1)-(6) for 
the halves of segment 

SL1 and SL2 to refine the 
extracted trail 

(8) Repeating (7) for the 
further subsegments of 
segment SL1 and SL2  up 

to 8 times. 
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L2(f(Ri) will be close to 1 when the area of the rectangle f(Ri) is very distinct from the surrounding area, that is 

the surrounding area  almost has not pixels with intensities above threshold T.   

 

(5) Maximizing a selected similarity measure L(f(Ri) with finding  transform f  that maximizes L,   

                    

                                             arg max f  L(f(Ri) 

This is a maximization without a continuity constrain that can lead to the effect shown in Figure 10 where 

found f(Ri) can be disjoints.  

(6) Imposing continuity constrain on (5) 

(7) Repeating steps (1)-(6) for the halves of linear segment SL1 and SL2 to refine the extracted trail segments. 

(8) Repeating step (7) for the further sub-segments of segment SL1 and SL2  up to 8 times. 

  

5. CONCLUSION AND FUTURE WORK 

This paper continued a series of works aimed at dealing with the topological and geometrical uncertainty challenges in 

Spatial Data Fusion in a unified way by generalizing DLP for heterogeneous spatial data in cyber-physical space. This 

generalization includes: (1) “coordinated in uncertainty” concepts of data, models, and similarity measures, (2) 

simplicity, generality, and uncertainty order relations on data models and similarity measures, and (3) the integrated 

uncertainty levels for topology and geometry of spatial objects. The proposed concepts have been developed for solving 

guided automated feature extraction from imagery and the vector-to-raster conflation problem with topologically and 

geometrically uncertain geo-spatial data.  Currently they are partially implemented in the experimental version of 

MapSnap The next version of MapSnap conflation software [14] will include this functionality.   The alternative 

methods that optimize a weighted sum of different similarity measures have fundamental difficulties. Such methods have 

little control over what is actually achieved in the result of optimization, beyond optimizing a value of the weighted sum. 

The DLP generalization intends to mimic the humans’ capabilities of switching evaluation criteria and similarity 

measures instantaneously in a dynamic environment. This is a new frontier for future research in this area. Multiple 

fields of GIS, computer science, logic, mathematical modeling, and cognitive science can benefit each other in 

discovering the adaptive learning mechanisms of changing the spatial data models, and the similarity measures.  

 

REFERENCES 

[1] Chen, C., Knoblock, C., Shahabi, C., Thakkar, C., and Chiang Y., “Automatically and Accurately Conflating 

Orthoimagery and Street Maps”, Proc. the 12th ACM International Symposium on Advances in Geographic 

Information Systems (ACM-GIS'04), 47-56 (2004). 

[2] Doucette P., Kovalerchuk, B., Kovalerchuk, M., and Brigantic R., “An evaluation methodology for vector data 

updating”, Proc. SPIE 7334, 73341F (2009). 

[3] Doucette, P., Kovalerchuk, B., Brigantic, R., Seedahmed, G., and Graff, B., “A Method for Vector-to-Image 

Registration”, Applied Imagery Pattern Recognition Workshop (AIPR), IEEE, doi 10.1109/AIPR.2009.5466322 

(2007). 

[4] Ghys,  K., Kuijpers B., and Vaisman A., “Map matching and uncertainty: an algorithm and real-world experiments”,  

Proc. 17th ACM SIGSPATIAL Intern. Conf. on Advances in GIS, 468-471 (2009). 

[5] Giannnotti, F. and Pedreschi, D., (eds) [Mobility, Data Mining, and Privacy: Geographic Knowledge Discovery], 

Springer, Berlin, (2008)  

[6] Hodes, W. "First-order model theory", Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/ 

modeltheory-fo/  (2005)  

[7] Kovalerchuk B., and Perlovsky L., Wheeler G., "Modeling of Phenomena and Dynamic Logic of Phenomena," 

Journal of Applied Non-classical Logics, 22(1): 51-82 (2012).  

[8] Kovalerchuk, B. and Perlovsky, L., “Integration of geometric and topological uncertainties for geospatial Data 

Fusion and Mining”, Applied Imagery Pattern Recognition (AIPR) Workshop, doi 10.1109/AIPR.2011.6176346 

(2011). 

[9] Kovalerchuk, B. and Perlovsky, L., “Uncertainty Modeling for Spatial Data Fusion and Mining”, Proc. 2011 IEEE 

Symposium Series on Computational Intelligence, Paris, doi 10.1109/CCMB.2011.5952126 (2011). 

http://gregorywheeler.org/papers/DLP-draft.pdf


Proc. SPIE 8396, Geospatial InfoFusion II, 83960N (May 1, 2012); doi:10.1117/12.920878 

 

 

[10] Kovalerchuk, B., Doucette P., Seedahmed, G., Tagestad, J. Kovalerchuk,S., Graff,  B., “MapSnap System to 

Perform Vector-to-Raster Fusion”,  Proc. SPIE 8053, 805306, doi 10.1117/12.8865 (2011) 

[11] Kovalerchuk, B., and Perlovsky L., “Dynamic Logic of Phenomena and Cognition”, in IEEE World Congress on 

Computational Intelligence, Hong Kong, IEEE, 3529-3536 (2008). 

[12] Kovalerchuk, B., Doucette, P., Brigantic, R., Seedahmed, G., Kovalerchuk, M., and Graff, B., “Automated Vector-

to-Raster Image Registration”, Proc. SPIE 6966, 69660W (2008). 

[13] Kovalerchuk, B. and Schwing, J., (Eds) [Visual and Spatial Analysis: Advances in Data Mining, Reasoning, and 

Problem Solving], Springer (2005).   

[14] MapSnap vector to raster conflation software (2011) http://www.bkfsystems.com/mapsnap 

[15] Doucette, P., Grodecki, J., Clelland, R., Hsu, A., Nolting, J., Malitz, S., Kavanagh,
 
C., Barton, S., and Tang, M., 

“Evaluating Automated Road Extraction in Different Operational Modes”. Proc. SPIE 7334, 73341A (2009). 

[16] Perlovsky L., [Neural Networks and Intellect: Using Model-Based Concepts], Oxford University Press (2000).   

[17] Pfoser, D. and  Jensen, C., “Capturing the uncertainty of moving-object representations”, in Advances in Spatial 

Databases, vol. 1651 LNCS, 111–132 (1999). 

[18] Pannetier, B., Dezert, J., Pollard, E., “Improvement of Multiple Ground Targets Tracking with GMTI Sensor and 

Fusion of Identification Attributes”, IEEE Aerospace Conference,  doi 10.1109/AERO.2008.4526437 (2008)  

[19] Ruiz, J.,  Ariza F., Ureña, M., and Blázquez E., “Digital Map Conflation: A Review of the Process and a Proposal 

for Classification”, Intern. J. of Geographical Information Science, vol. 25, Issue 9, 1439-1466 (2011). 

[20] Santini S., and Jain R., “Similarity Measures”, IEEE Trans. Pattern Analysis and Machine (Intelligence, vol. 21, 

871-883 (1999). 

[21] Tøssebro, E. and Nygård, M., “A Discrete Model for Topological Relationships between Uncertain Spatial Objects”,  

in Developments in Spatial Data Handling, 11th International Symposium on Spatial Data Handling, Ed. 

P. F. Fisher , Springer, 395-406 (2006).  

[22] Wu, X., Carceroni, R., Fang, H., Zelinka, S., and Kirmse, A., “Automatic Alignment of Large-scale Aerial Rasters 

to Road-maps”, ACMGIS’07, doi  10.1145/1341012.1341035  (2007). 

. 
 


	Modeling spatial uncertainties in geospatial data fusion and mining
	Recommended Citation

	tmp.1593192864.pdf.pHpIe

