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Abstract: Neural networks have been applied successfully in many fields. However,
satisfactory results can only be found under large sample conditions. When it comes
to small training sets, the performance may not be so good, or the learning task can
even not be accomplished. This deficiency limits the applications of neural network
severely. The main reason why small datasets cannot provide enough information is
that there exist gaps between samples, even the domain of samples cannot be ensured.
Several computational intelligence techniques have been proposed to overcome the
limits of learning from small datasets.
We have the following goals: i. To discuss the meaning of "small" in the context of
inferring from small datasets. ii. To overview computational intelligence solutions
for this problem. iii. To illustrate the introduced concepts with a real-life application.

1 Introduction

Small dataset conditions exist in many applications, such as disease diagnosis, fault diagnosis or
deficiency detection in biology and biotechnology, mechanics, flexible manufacturing system scheduling,
drug design, and short-term load forecasting (an activity conducted on a daily basis by electrical utilities).
In this section, we describe a computational chemistry problem, review a class of neural networks to be
used, and summarize our previous work in this area.

1.1 A Real-World Problem: Assist Drug Discovery

Current treatments for HIV/AIDS consist of co-administering a protease inhibitor and two reverse
transcriptase inhibitors (usually referred to as combination therapy). This therapy is effective in reducing
viremia to very low levels; however, in 30-50% of patients it is ineffective due to resistance development
often caused by viral mutations. Due to resistance and poor bioavailability 1 profiles, as well as toxicity
associated with these therapies, there is an urgent need for more efficient design of drugs.

We focus on inhibitors to the HIV-1 protease enzyme, using the IC as the target value. A detailed
description of the problem, from a computational chemistry point of view, can be found in our papers
[1–3]. The IC value represents the concentration of a compound that is required to reduce enzyme
activity by 50%. A low IC value indicates good inhibitory activity. The available dataset consists of
196 compounds with experimentally determined IC values. Twenty of these molecules are used as an
external test set after the training is completed. The remaining 176 molecules are used for training and
cross-validation. Our practical goal is to predict the (unknown) IC values for 26 novel compounds
which are candidates for HIV-1 protease inhibitors. We use two IC prediction accuracy measures: the
RMSE (Root Mean Squared Error) and the Symmetric Mean Absolute Percentage Error (sMAPE).

1Bioavailability is the rate at which the drug reaches the systemic circulation.

Copyright c© 2006-2010 by CCC Publications
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The easiest way to represent a molecule is by a vector of features (molecular descriptors) which may
be both topological indices and physico-chemical properties. The resulting features may be numerous
and inter-correlated. Using the complete set of descriptors may lead to overfitting, if it is too large
compared to the size of the training set. We select 35 molecular descriptors based on their contribution
to molecular entity.

Although biological activity data has been obtained for many more chemical structures at various
pharmaceutical companies and academic laboratories, they are not available in the public domain. Actu-
ally, most classical studies for a specific enzyme system have been performed on small datasets, due to
limited experimentally determined biological activity values in the public domain. The dimensionality
(the number of physico-chemical features) characterizing these molecules is relatively high. Our dataset
shares these undesired characteristics: it is small, with relatively many features, and highly overlapping.

1.2 Prerequisites: FAMR for IC prediction

The FAMR is a Fuzzy ARTMAP (FAM) incremental learning system used for classification, proba-
bility estimation, and function approximation. We review the basic FAMR notation. Details can be found
in [4].

A FAM consists of a pair of fuzzy ART modules, ARTa and ARTb, connected by an inter-ART module
called Mapfield. The fuzzy ARTa module contains the input layer, Fa

 , and the competitive layer, Fa


[5]. A preprocessing layer, Fa
 , is also added before Fa

 . The ART modules create stable recognition
categories in response to arbitrary sequences of input patterns. The ARTa and ARTb vigilance parameters,
ρa and ρb, control the matching mechanism inside the modules.

During learning, the Mapfield weights are updated: the strength of the weight projecting from the
selected ARTa category to the correct ARTb category is increased, while the strengths of the weights to
other ARTb categories are decreased. A Mapfield vigilance parameter ρab calibrates the degree of predic-
tive mismatch necessary to trigger the search for a different ARTa category. If the weight projecting from
the active ARTa category through the Mapfield to the active ARTb category is smaller than ρab (vigilance
test), then the system responds to the unexpected outcome through the so-called match tracking. This
triggers an ARTa search for a new input category. After choosing an ARTa category whose prediction of
the correct ARTb category is strong enough, match tracking is disengaged, and the network is said to be
in a resonance state. In this case, Mapfield learns by updating the weights wab

jk of associations between
each j-th ARTa category and each k-th ARTb category.

The FAMR uses the following iterative updating scheme:

wab(new)
jk =





wab(old)
jk if j 6= J

wab(old)
JK + qt

Qnew
J

(
−wab(old)

JK

)

wab(old)
Jk

(
− qt

Qnew
J

)
if k 6= K

(1)

where qt is the relevance assigned to the tth input pattern (t = ,, . . . ) and Qnew
J = Qold

J + qt . The
relevance qt is a real positive finite number directly proportional to the importance of the experiment
considered at step t. This wab

jk approximation is a correct biased estimator of the posterior probability
P(k| j), the probability of selecting the k-th ARTb category after having selected the j-th ARTa.

FAM (and FAMR) networks map subsets of Rn to Rm and can be used for function approximation.
The FAM has been proven to be a universal function approximator [6]. We use the FAMR to predict
functions that are known only at a certain number of points. More specifically, we predict IC values.

1.3 Our previous work

The present paper is based on a sequence of results, each describing new computational intelligence
tools for biological activity (IC) prediction. In [7], we investigated the use of a fuzzy neural network
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(FNN) for (IC) prediction. In [1] and [2], we improved this model by adding a two-stage Genetic
Algorithm (GA) optimizer: the first for selecting the best subset of features and the the second for
optimizing the FNN parameters. We will refer to this GA-optimized FNN as FS-GA-FNN.

In [8] we also focused on the IC prediction task, using the FAMR model. During the learning phase,
each sample pair is assigned a relevance factor proportional to the importance of that pair. The prediction
method consists of two stages. First, GA-optimization incorporating cross-validation is used to modify
the training dataset. This modification consists of finding the best relevances for the data, according to
some fitness criterion. The fitness criterion measures the FAMR IC prediction accuracy for a given
training/validation dataset with given relevances. In stage two, the final FAMR is obtained by training
it using the dataset with optimized relevances. In other words, stage one improves the generalization
capability of the FAMR which will be obtained in stage two. We will refer to this model with GA-
optimized relevances as GA-FAMR.

We compared the GA-FAMR and the Ordered FAMR (a FAMR algorithm which optimizes the order
of training data presentation) in [9]. Both methods compensate for insufficient training data by additional
optimizations. A trade-off between computational overhead and generalization capability is obtained.

Recently, we performed rule extraction from the trained FAMR model [10]. We post-processed
the set of generated rules in order to improve generalization. We eliminated overfitting by heuristic
generalization of rules and by adding new rules. This method proved to be efficient for small training
sets.

The present paper results from several invited talks [9,11,12]. In Section 2, we discuss the capability
of neural network to infer from rare samples. Section 3 describes two methods for neural training on
small datasets. After presenting and discussing experimental results in Section 4, we conclude with our
final remarks (Section 5).

2 Neural Networks Trained on Small Datasets

We aim to discuss the difficulties of inferring a Neural Network (NN) from small, or non-representative,
training sets. We will look closer at the overfitting and generalization aspects of the network. But first,
we need to define formally what we understand by "small training set".

2.1 What is "small"?

In many multivariable classification or regression (e.g., estimation or forecasting) problems we have
a training set Tp = (xi, ti) of p pairs of input/output vector x ∈<n and scalar target t, and the unfortunate
circumstance that Tp is small. The VC (Vapnik-Chervonenkis) dimension is a measure of the capacity
of a classificator, defined as the cardinality of the largest set of points that the algorithm can shatter.
According to Vapnik:

"For estimating functions with VC dimension h, we consider the size p of data to be
small if the ratio p/h is small (say p/h < )" [13].

The main reason why small datasets cannot provide enough information is that there exist gaps
between samples, even the domain of samples cannot be ensured. For a small training set, even a simple
neural network can have a complexity (e.g., number of connections/parameters) that is comparable to,
or exceeds, the training size p. In such a case, we may expect to fit Tp very well. However, we can
also expect poor generalization to new data identically distributed as the data in Tp. In effect, the VC
dimension is too large relative to the size of the training set.

A completely different definition for “small” sets comes from algorithmic information theory. The
Kolmogorov complexity of an object such as a string is a measure of the computational resources needed
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to specify the object. More formally, the complexity of a string is the length of the string’s shortest de-
scription in some fixed universal description language. It can be shown that the Kolmogorov complexity
of any string cannot be too much larger than the length of the string itself. A string is considered to be
"random" if the length of the shortest problem that generates the string is the same as that of the string
itself. Strings whose Kolmogorov complexity is small relative to the string’s size are considered to have
small information content [14]. Kolmogorov’s complexity has been studied in the context of inductive
inference [15, 16]. It is an open problem how to relate the Kolmogorov complexity of a training set and
the generalization capability of the inferred NN.

We will use a simplified definition: A training set is small if p and n are comparable. In accordance
with this definition, the training set for our chemistry problem is small.

There is no universally optimal solution to the problem of inferring from small datasets. We only
can state some very general principles one can follow. For instance, one principle would be to extract
from the training data the maximum useful information available. If not done thoroughly, this may lead
to overfitting, and/or to a time-prohibitive training process. A principle for controlling the generalization
capability of a NN is to design a network with much fewer connections than the size of the training set.

To overcome the limits of learning from small datasets, several general techniques have been pro-
posed [17–26]: generate artificial training samples, feature selection, and parameter fine-tuning of the
inferred model.

A special learning method designed for small training sets is adaptive learning with domain range ex-
pansion. In this case, additional information is used to dynamically improve training. Such an approach
is, for instance, the Central Location Tracking method [25, 26]. This algorithm attempts to explore the
predictive information through the generation of trend value of each datum. The extra information ex-
tracted from the data trend stabilizes the learning task and improves the derived knowledge from the
occurrence of the latest data. The domain range is expanded to obtain the probable change of the small
training data behavior.

The choice of specific technique is domain dependent. In computational chemistry, only feature
selection and parameter fine-tuning have been used [27–29]. It is very difficult to generate artificial
samples because, most probably, they will not physically exist.

2.2 Overfitting vs. generalization

Inference is based on a strong assumption: using a representative training set of samples to infer a
model. In this case, we select a subset of the population, perform a statistical analysis on this sample,
and use these results as an approximation to the desired statistical characteristics of the population as a
whole. The more representative the sample, the larger our confidence that the statistical results obtained
by using this sample are indeed a good approximation to the desired population statistics. We gauge the
representativeness of a sample by how well its statistical characteristics reflect the statistical character-
istics of the entire population. Many standard techniques may be used to select a representative sample
set [30]. However, if we do not use expert knowledge, selecting the most representative training set
from a given dataset was proved to be computationally difficult (NP-hard) [31]. The problem is actually
more difficult, since in most applications the complete dataset is unknown or too large to be analyzed.
Therefore, we have to rely on a more or less representative training set.

Another problem may arise from the training process itself. Especially in cases where learning was
performed too long or where training the training samples are rare, the inferred model may adjust to very
specific random features of the training data, that have no causal relation to the target function. In this
process of overfitting, the performance on the training examples still increases while the performance on
unseen data becomes worse (the generalization performance is poor).

In NN learning, overfitting generally occurs when excessive number of neurons is generated; the
network overestimates the complexity of the problem and it cost more resources to train and implement.
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There are three major strategies to avoid overfitting:

1. Before learning. Before being used, training samples are pre-processed, or new training samples
are artificially created. A widely used before learning technique is to artificially extend the training
set by introducing new training samples with additive noise [32–34]. It helps to enhance the
generalization performance, speed up the training algorithm, and reduce the possibility of local
minima entrapment [33–36].

2. After learning. The network is trained (with possible overfitting) and processed afterwards. Such
techniques include pruning, weight sharing, weight decay, ensemble neural networks, and com-
plexity regularization [35, 37, 38]. Pruning is the process of eliminating nodes and connections
from the trained network. The reduced size network has to be sometimes retrained. NN pruning
algorithms have practically developed for all major NN architectures [39].

2.3 How to detect overfitting

Beside preventing overfitting, a major question is how to detect it. It is desirable to have a measure
that can quantify underfitting or overfitting of a network on a given learning problem. We do have again
two general strategies: before and after learning.

The most common after learning technique is to perform learning/validation iteratively and optimize
the learning/validation generalization error by adjusting the parameters and/or architecture of the net-
work. Several constructive/destructive algorithms were adopted to incrementally increase or decrease
the parameter to be optimized [40]. During the constructive/destructive process, cross-validation is com-
monly used to check the network quality and the design parameter is chosen using early stopping [41].
The training data is usually divided into two independent sets: a training set and a validation or test-
ing set. Only the training set participates in the NN learning, and the validation set is used to compute
a validation error, which approximates the generalization error. The inferred NN performance during
training and validation is measured, respectively, by training error Etrain and validation error Evalid pre-
sented. Once the validation performance stops improving as the target parameter continues to increase,
it is possible that the training has begun to fit the noise in the training data, and overfitting occurs. There-
fore, the stopping criterion is set so that, when Evalid starts to increase, or equivalently, when Etrain and
Evalid start to diverge, it is assumed that the optimal value of the target parameter has been reached [36].
Cross-validation + early stopping are the common techniques used in finding optimal network structure
up to date. An alternative to cross-validation is bootstrapping.

More flexible stopping criteria based on early stopping were proposed by Prechelt [41]. It helped the
users to choose stopping criterion in a systematic and automatic way, based on efficiency, effectiveness,
or robustness. Liu et al. have introduced an algorithm which, on a given NN is able to recognize
the occurrence of overfitting by examining the training error without using a validation set [36]. The
algorithm also shows where the recycling of the training samples can be safely stopped so that the
optimal structure of the NN is found. A signal-to-noise-ratio figure (SNRF) is defined to measure the
goodness-of-fit using the training error. Based on the SNRF measurement, an optimized approximation
algorithm is proposed to avoid overfitting in function approximation.

An open problem is how to detect before learning the generalization capability, without even knowing
the NN to be used. In this case, one should be able to determine the generalization capability of a given
training set before using it! For instance, we should determine if a training set is sufficiently smooth
and covers sufficiently well the input space in order to produce a reasonably good approximation of an
unknown function. Such a regression problem depends on the quality of available samples. Can we
determine if the training set is good enough for being used? Can we do this independent of the NN
model?
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3 Two Efficient Methods

We will illustrate the concepts introduced in Section 2 with two FAMR methods which work well
with small training sets. Since the methods have been previously described in [9], we will only review
them here.

3.1 The GA-FAMR

The relevances attached to the input data are considered as adaptive parameters to be optimized by a
GA.

The GA-FAMR operates on an initial population of relevance vectors. Each relevance vector has
a single relevance associated with a specific training datum in accordance with the FAMR. Because the
relevance of specific data is not known beforehand, this population must be optimized using the following
GA:

Step One. Initialize a population of Popsize chromosomes. Each chromosome is composed of N
genes, where N equals the size of the training dataset. Each gene is a real value in the range (0, 10),
defining the relevance of one of the training molecules.

Step Two. For each chromosome, train and validate the FAMR using cross-validation. Compute the
fitness value of each chromosome: Fit = /sMAPE.

Step Three. Establish the next generation.

1. Find Fitlow, which is the smallest fitness value in the population.

2. Subtract Fitlow from the fitness value of each chromosome.

3. Sum the fitness values of all chromosomes to calculate the total fitness, Fitall , of the population.

4. Divide each chromosome’s fitness value by Fitall .

5. Generate Popsize new chromosomes to replace the current population. Each new chromosome is
created by one of two methods: breeding or elitism.

(a) BREEDING:

i. For each child, two parents are selected according to the concept of the survival of the
fittest.

ii. Each parent is selected by first generating a random number,  < s < .
iii. Iterate through the chromosomes in the population. If Fit ≥ s, the chromosome is se-

lected. Else, subtract Fit from s, and continue to the next chromosome. The probabil-
ity that a chromosome will be selected for reproduction at any given time is given by:
(Fit −Fitlow)/(Fitall −Fitlow ∗Popsize).

iv. When two parents have been selected for each child, perform crossover to generate the
new chromosome. For each child, one of two crossover methods is chosen with equal
probability:
A. For each gene, copy the genetic material from one or the other parent; the parent

copied for each gene is selected randomly.
B. Average the genes of the two parents. Because the effect of switching specific bits

in a real value can be extremely unpredictable, it may be more effective to average
two real values.

v. Before the new child is introduced into the next generation, there is a 0.25 probability
that it will undergo mutation in one of its genes, by randomly generating a new real
value.
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(b) ELITISM: At all times, eight global best chromosomes are retained as a possible source of
members of the new generation. There is a 1/500 probability that a new chromosome is
generated by selecting one of these elite, rather than by crossover of two members of the
current population.

3.2 Ordered FAMR

For optimizing the FAM training data ordering, Dagher et al. [42, 43] and Tan et al. [44] have in-
troduced efficient procedures. Essentially, the training data is preprocessed to identify a fixed order of
pattern presentation. We refer to this procedure as the ordering algorithm. When the training input
patterns are presented to the FAMR according to this fixed order, we obtain a FAMR with improved
generalization capability.

Preprocessing consists of clustering input data. Each cluster center will be a molecule in the training
set. The ordering of the training data is determined by the order in which the cluster centers are obtained.
It is noteworthy that this clustering is different than the formation of ARTa categories, which is also a
clustering of the same input dataset.

The ordering algorithm is controlled by a pre-defined parameter, nclust , which is the number of input
data clusters, and consists of the following three stages:

1. Determine the first pattern to be presented. This pattern corresponds to the first cluster center of
the training data.

2. Determine the next nclust − patterns to be presented. These patterns correspond to the next nclust −

 cluster centers of the training data, and are identified through the Max-Min clustering algorithm
[45].

3. Determine the order of the remaining patterns. These patterns are chosen according to the mini-
mum Euclidean distance criterion from the nclust centers defined in Stages 1 and 2.

Stage 1. We start with an M-dimensional input pattern a = (a, · · · ,aM) and obtain 2M-dimensional
input pattern A = (a, · · · ,aM,−a, · · · ,−aM) by complement coding [5].

Input pattern a, which maximizes the sum in eq (2), is selected as the first pattern to be presented.
This pattern is also treated as the first cluster center of the training patterns.

M∑

i=

|aM+i −ai| (2)

Stage 2. The next nclust −  input patterns are identified for presentation during network training.
These patterns represent the next cluster centers of the training patterns. They are determined consec-
utively using the Max-Min clustering algorithm. In this stage, the Euclidean distances between the re-
maining input patterns and the existing cluster centers a, · · · ,ak (k≤ nclust) are computed. The minimum
Euclidean distance between each remaining input pattern a and the existing cluster centers is identified:
da

min = min dist(a,a j) (≤ j ≤ k). The input pattern which maximizes da
min is selected as the next cluster

center.
Stage 3. The presentation order of the remaining input patterns is determined by finding the mini-

mum Euclidean distances between these patterns and the nclust cluster centers. The whole procedure of
Stage 3 is repeated until the order of all input patterns for the network training phase has been identified.

The value of nclust not only influences the input data ordering, but also has a major impact on the
number of ARTa categories created. Thus, nclust controls the generalization capability of the network.

Successive optimization of relevances and ordering is not a good strategy. The two optimizations can
possibly cancel each other out, since they may influence each other. Therefore, we do not optimize both
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Table 1: Prediction performance analysis on the training set [9].
FS-GA-FNN Standard FAMR GA-FAMR Ordered FAMR

sMAPE 89.28 89.99 77.65 86.04
RMSE 1132.12 1401.94 1332.53 1366.04

Table 2: Prediction performance analysis on the test set [9].
FS-GA-FNN Standard FAMR GA-FAMR Ordered FAMR

sMAPE 111.91 99.01 105.17 84.51
RMSE 506.08 43.45 56.99 25.49

relevances and ordering for the same network. We will refer in the following to the Ordered FAMR - a
FAMR with equal (not optimized relevances) and optimized training data ordering.

4 Experimental Results

In our experiments, all networks were trained with the same set of 176 molecules, using twenty-
fold cross-validation. Thus, we improve the generalization performance on this small training set by
introducing some computational overhead. In all experiments we used on-line (incremental) learning:
the training set is processed only once.

When estimating the quality of a prediction model, the prediction accuracy obtained both for training
data and new data is important. One is interested not only in how accurately the model approximates
the learning data, but also how the model generalizes on new data. The test set, which is not used for
training, consists of twenty molecules. This set is from a different group of molecules than the one used
for training, making prediction more difficult.

We investigate the GA-FAMR and the Ordered FAMR. The results are compared to the standard
FAMR model (with no optimizations and equal relevances), and to the FS-GA-FNN.

The parameters of the network are determined experimentally, and are fixed for all FAMR models
considered. The ρa and ρb parameters control the number of generated FAMR categories. It is important
to limit the number of categories to prevent overfitting. Maintaining constant FAMR parameters for all
tested models simplifies comparison. For the standard FAMR, the number of ARTa categories is 13 and
the number of ARTb categories is 8. The experimentally optimized number of ARTa categories is close to
the number of scaffold subtypes, which is a significant match.

The statistical results for the test sets are in Tables 1 and 2. As expected, the optimized FAMR
models adjust better than the standard FAMR to the training data (Table 1). Of the three FAMR models,
the GA-FAMR adjusts best to the training data.

Does the GA-FAMR overfit? We may find the answer by analyzing the prediction performance for
test data. From Table 2 we conclude that the Ordered FAMR improves the standard FAMR over the test
set. The GA-FAMR appears to overfit the training data and has therefore a less performant generalization.

Overall, from Tables 1 and 2, we conclude that the Ordered-FAMR performs better than the other
models.

For low IC values, all three FAMR models exhibit a similar prediction pattern and they clearly
overpredict the target values of the test molecules, which is good in our particular application.

We have predicted the IC value of 26 novel potential inhibitors using all four models (see [3]).
The FS-GA-FNN and the FAMR are two radically different neural paradigms. The training datasets are
the same, but the number of descriptors is different: FAMR uses 35, while FS-GA-FNN uses a feature
selected subset of 22 descriptors. For some of the novel molecules, all methods predicted very low IC
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Table 3: GA-FAMR prediction performance analysis on the training and test sets for different number of
GA generations [9].

25 generations 50 generations 100 generations
Training sMAPE 87.78 86.48 84.66
Training RMSE 1389.54 1381.47 1360.18

Test sMAPE 95.56 101.42 106.20
Test RMSE 41.03 48.80 63.09

values. Since radically different methods indicate high inhibitory activity, these are the molecules we
consider as excellent candidates for organic synthesis and further drug discovery.

It is interesting to analyze the way the GA optimization performs for different numbers of genera-
tions (Fig. 3). With an increasing number of generations, the network adjusts better to the training set,
but it also reduces its generalization capability with respect to the test set. Thus, the number of genera-
tions controls overfitting. In our experiments (Tables 1 and 2), we have used 2000 generations and this
explains the relatively poor generalization obtained. We could use less generations and thus improve
generalization with the cost of adjusting less to the training data. To determine the optimal number of
generations and establish the best trade-off between generalization and overfitting, we may use an early
stopping technique, or Liu’s et al. algorithm [36].

The generalization capability of the Ordered FAMR is good, but depends on an appropriate selection
of the nclust parameter, which is a weakness of this algorithm. The GA-FAMR is also a good choice, but
early stopping should be used to avoid overfitting. The computational overhead of the two algorithms is
insignificant when compared to the value of the results. A computationally intensive solution is accept-
able because drug synthesis requires years of time and great expense. Therefore, obtaining an accurate
prediction is more important than execution time.

5 Conclusions

We have discussed and illustrated how to infer from small datasets. We do not have a nice mathe-
matical solution to the general problem of learning from small datasets. But why? Here is our answer: If
the VC dimension is too large relative to the size of the training set and we do not have any information
about the quality of our training data and how representative it is, then the problem is ill-posed. We only
can state the general rule of thumb: From the available samples, extract maximum information, without
overfitting. There is no free lunch and we have to balance overfitting and generalization.

Both presented techniques work well, but we may have a significant computational overhead, which
can make our solution non-scalable. The paradox is that, in our computational chemistry problem, we do
not need scalability, since we do not have enough data anyway! These methods may be used for similar
application, whenever we have to infer from small training sets. This does not mean that we prefer small
training sets, but that we have to adapt our methods to what is available.
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