
Central Washington University Central Washington University 

ScholarWorks@CWU ScholarWorks@CWU 

All Faculty Scholarship for the College of the 
Sciences College of the Sciences 

6-20-2016 

Using wastewater-based epidemiology to estimate drug Using wastewater-based epidemiology to estimate drug 

consumption—Statistical analyses and data presentation consumption—Statistical analyses and data presentation 

Caleb J. Banta-Green 

Alex J. Brewer 

Christoph Ort 

Dennis R. Helsel 

Jason R. Williams 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.cwu.edu/cotsfac 

 Part of the Chemistry Commons, and the Epidemiology Commons 

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cots
https://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F215&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Caleb J. Banta-Green, Alex J. Brewer, Christoph Ort, Dennis R. Helsel, Jason R. Williams, and Jennifer A. 
Field 



Using wastewater-based epidemiology to estimate drug
consumption—Statistical analyses and data presentation∗

Caleb J. Banta-Greena,∗, Alex J. Brewerb,c, Christoph Ortd, Dennis R. Helsele, Jason R. Williamsa,
Jennifer A. Fieldb

aAlcohol and Drug Abuse Institute, University of Washington, Seattle, Washington 98105
bDepartment of Environmental Toxicology, Oregon State University, Corvallis, Oregon 97331

cnow Department of Chemistry, Central Washington University, Ellensburg, Washington 98926
dEawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
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Abstract

Aim

Analysis of wastewater samples can be used to assess population drug use, but reporting and statistical
issues have limited the utility of the approach for epidemiology due to analytical results that are below the
limit of quantification or detection. Unobserved or non-quantifiable—censored—data are common and
likely to persist as the methodology is applied to more municipalities and a broader array of substances.
We demonstrate the use of censored data techniques and account for measurement errors to explore
distributions and annual estimates of the daily mean level of drugs excreted per capita.

Measurements

Daily 24-hour composite wastewater samples for 56 days in 2009 were obtained using a random sample
stratified by day of week and season for 19 municipalities in the Northwest region of the U.S.

Methods

Methamphetamine, benzoylecgonine (cocaine metabolite), 3,4-methylenedioxymethamphetamine (MDMA),
methadone, oxycodone and hydrocodone were identified and quantified in wastewater samples. Four sta-
tistical approaches (reporting censoring, maximum likelihood estimation, Kaplan-Meier estimates, or
complete data calculations) were used to estimate an annual average, including confidence bounds where
appropriate, dependent upon the amount of censoring in the data.

Findings

The proportion of days within a year with censored data varied greatly by drug across the 19 munici-
palities, with MDMA varying the most (4% to 94% of observations censored). The different statistical
approaches each needed to be used given the levels of censoring of measured drug concentrations. Figures
incorporating confidence bounds allow visualization of the data that facilitates appropriate comparisons
across municipalities.

Conclusions

Results from wastewater sampling that are below detection or quantification limits contain important
information and can be incorporated to create a more complete and valid estimate of drug excretion.

∗Corresponding author, calebbg@u.washington.edu
∗Abbreviations: LOD: limit of detection, LOQ: limit of quantification, KM: Kaplan-Meier estimate, MLE: Maximum

Likelihood Estimation, WWTP: wastewater treatment plant, ACS: American Community Survey, RSD: relative standard
deviation, MDMA: 3,4-methylenedioxymethamphetamine, CI: confidence interval
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1. Introduction

Analyzing wastewater for drugs of abuse and medications dates from the 1970s (Hignite & Azarnoff,
1977) and has increased rapidly since proposed as a source of drug use epidemiology information in
2001 (Daughton, 2001). The first publication of drug consumption estimates was in 2005 (Zuccato et
al., 2005). Drug use patterns are becoming more complex as new drugs emerge and drug use expands
outside of urban areas. For example, the European Union Early Warning System reported 101 new
psychoactive substances in 2014, up from 24 new drugs in 2009 (European Monitoring Centre for Drugs
and Drug Addiction, 2015). Expansion of drug use outside of urban areas is exemplified by the recent
finding in the United States that fatal drug overdoses have increased 394% in rural areas from 1999–2000
to 2008–2009 (Rossen et al., 2013). To be of value as an epidemiological measure and in turn for policy
planning, wastewater drug testing may need to expand to include more compounds in more locations.
As wastewater testing expands to cover relatively rare drugs and areas with relatively few users it is
possible that an increasing proportion of samples will include results below limit of quantification (LOQ)
or detection (LOD), results that are informative and should not be ignored.

While wastewater can be used for binary screening of the presence or absence of a specific urinary
biomarker of a substance (e.g., Hernandez et al., 2015; Kinyua et al., 2015), our focus here is on estab-
lishing amounts of given substances present. Results are often reported not just in terms of the level
of compounds detected, but used as an epidemiological measure of drug use including comparisons of
drug trends over time and between locations with implications for international drug policy (Metcalfe
et al., 2010; van Nuijs et al., 2009). However, without proper data analysis and reporting of analytical
results below LOD and LOQ, as well as estimating confidence bounds that incorporate all sources of
uncertainty, we believe reporting such comparisons of drug use are premature. Reporting and analysis
issues related to low drug concentrations may become more pronounced as the number of drugs and
types of municipalities investigated expand.

A data analysis approach sometimes used is to treat results below LOD as 0 and to replace values
below LOQ with a constant; this approach has been shown to lead to biased results (Helsel, 2012),
underestimating the mean and either under- or over-estimating the standard deviation. This approach
effectively adds a signal to the data that does not truly exist. Appropriate statistical approaches exist
for dealing with censored data (data recorded as an interval, or above or below a threshold), which are
common in survival analysis (also known as event history analysis). Survival analysis is used in medical
studies, for instance to study the impact of a medication on life expectancy when people have incomplete
follow-up data, literally an analysis of survival. The same statistical issues exist when data are not
available below a certain level (e.g., x <LOD), exist between two known points (e.g., LOD< x <LOQ),
or a dataset contains data with both types of censoring, as is common with environmental samples (Helsel,
2012; Hosmer & Lemeshow, 1999). Helsel provides guidance as to the statistical approach based on both
the proportion of the data that are censored and the number of observations and these approaches are
implemented in this analysis (2012, p. 92).

To further the development of wastewater testing as a tool for drug epidemiology and informed policy
making we implemented a multi-city study with a sampling plan designed to yield an annual estimate
of drug excretion. In examining the results of chemical analyses, a substantial proportion of results for
some municipalities and some drugs were below LOQ or LOD. Reviewing the existing literature reporting
wastewater data yielded no examples of statistical approaches being implemented to address this data
issue. However, other areas of environmental chemistry had been exploring these issues for several years
(Helsel, 2005). To demonstrate the need for and implementation of these censored data approaches for
wastewater-derived drug estimates we present the complete distributions for one year of six compounds
across 19 municipalities (results for two substances are detailed in the body of this article, four in the
Supplement). In addition, for analyses yielding an annual estimate, we calculate confidence bounds
including error components based upon analytical, flow, population and sampling uncertainties. This
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data analysis approach yields results that are appropriate for use in epidemiological studies to test for
differences in annual drug estimates. Our goal is to demonstrate the steps necessary to convert analytical
chemistry results, which may be partially censored, into usable estimates of population drug loads.

2. Methods

When collecting samples from WWTPs we requested that plant operators complete a questionnaire
describing the characteristics of the sewer system, 24-hour composite sampling method and the estimated
population served. Other data sources, assumptions, and methods are described below.

2.1. Sampling

2.1.1. Locations sampled

A year-long sampling campaign in 19 municipalities in the Northwest region of the United States (the
states of Washington and Oregon) was implemented in 2009. Diverse municipalities were chosen for
their variable population sizes, commuting patterns, urban or rural location, weather, expected drug use
patterns, and resident characteristics in order to maximize variability in the data. Participation by the
WWTP was voluntary and no compensation was provided. The participating municipalities were ulti-
mately a convenience sample of willing participants not a representative sample of the entire geographic
region. (The locations of the treatment systems, reported population size, and 2009 precipitation are
illustrated in Supplement Figure S.1.)

2.1.2. Days sampled to generate annual estimate

To generate a representative annual estimate a time-based, stratified random monitoring approach was
utilized that accounted for both seasonality and intra-week (day-to-day) variation. A total of 14 samples
each quarter were attempted. At the beginning of the year a schedule was compiled for WWTP staff
determining when samples were to be collected: two random Mondays were selected within a quarter,
two random Tuesdays etc. This procedure was repeated for each quarter resulting in a total of 56 possible
samples over the course of a year covering each day of the week eight times. Based on the drug load
variation seen in a few long-term time series for different substances and population sizes this specific
monitoring approach has subsequently been shown to result in an annual estimate with an uncertainty
not exceeding approximately 10% (Ort et al., 2014a; see also Supplement Figure S.7). Monitoring days
were the same for all 19 locations. Of the attempted 56 samples for each of the 19 locations, between 42
and 55 were actually collected, resulting in a total of 971 (91% of possible 1064).

2.1.3. Daily composite sampling

Each WWTP provided 24-hour composite samples. The approach to compositing varied by municipal
WWTP in the time intervals, averages, and minimum and maximum sampling frequencies, as well as
whether flow, time, or volume proportional sampling was utilized. The time of day at which sampling
began and ended varied across plants.

2.2. Data reporting and sources

Total wastewater volumes entering the plant were documented by WWTPs. Analytical methods,
including internal standards and stability of analytes in acidified samples, are detailed in Chiaia and
colleagues (2008). Briefly, wastewater samples were acidified (with HCl) and shipped for analysis. Sam-
ples were titrated to neutrality (with NaOH) and a titration factor (final volume ÷ initial volume)
was recorded. Large volume injection liquid chromatography/tandem mass spectrometry was used to
identify and quantify illicit drugs and metabolites. Compounds studied included methamphetamine, 3,4-
methylenedioxymethamphetamine (i.e. MDMA, Ecstasy), and benzoylecgonine, a major metabolite of
cocaine, substances we knew to be detectable and to show high variability across the region (Banta-Green
et al., 2009). In addition, the opioid medications methadone, hydrocodone and oxycodone were studied
as they are widely prescribed and used licitly and illicitly. Both methamphetamine and cocaine have
very low levels of pharmaceutical use in the U.S., for appetite suppression and anaesthesia respectively,
with the vast majority of consumption being illicit. MDMA is an illicit drug. The opioids are commonly
used for pain control and, in the case of methadone, addiction treatment. At the time of the study the
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illicit availability and use of these opioids was relatively high (Dart et al., 2015). The limits of detection
and quantification were established with respect to a signal to noise ratio of ≥ 3 and ≥ 10, respectively,
as described in Chiaia et al. (2008), and are detailed in Supplement Table S.1. For illustration purposes
methamphetamine and MDMA are the focus in this paper, with figures for the other substances provided
in Supplement Figures S.2 to S.5.

3. Calculation: Analysis in the presence of censoring and uncer-
tainty

Our goal here is to demonstrate the full use of the information available to provide useful comparative
data across place and time. We estimate the average index or per capita load of analytes of interest
for one year, based on 56 possible samples stratified through the year, for a given municipality-drug
combination, that is a specific substance for a given WWTP catchment area. Others have reported per
capita estimates of consumption of drugs and methods for such calculations have been described (e.g.,
Zuccato et al., 2005). However, we are reporting estimates of per capita excretion of drugs as fewer
assumptions are needed, e.g., purity of parent compounds, typical doses, routes of administration, and
metabolization rates of drugs in vivo (see, e.g., Bruno et al., 2014).

The estimated index load represents the average of the individual daily observations:

index load =

∑N
i=1 index loadi

N
(1)

Each individual observation i of the N observations for a municipality-drug incorporates several parts,
represented by the equation below (which leaves out scaling constants to produce a result in the desired
units):

index loadi = Ci × Ti × Fi ÷ Pi (2)

• Ci is the estimated concentration in the sample, possibly with censoring (indicated by unique codes
to indicate <LOD or <LOQ)

• Ti is a titration factor indicating how the sample was modified to facilitate chemical analysis,
assumed to be measured without error

• Fi is the estimated flow of liquid through the WWTP for that day

• Pi is the estimated population of users of the WWTP for that day

The sampling and testing procedure produced slightly less than 56 samples per location, as individual
samples were unavailable for various reasons (e.g., a test tube broke during shipping or a sample was
not submitted). We treat these as missing completely at random. Where the remaining observations are
complete, i.e. all quantified (≥LOQ), the average in equation 1 can be calculated directly.

With incomplete or censored information, we follow the guidelines of Helsel (2012) and use where
possible methods based on survival analysis, analyzing loads as though they represented times with
left-censoring (<LOD) and interval censoring (between LOD and LOQ). These methods require simply
transforming observed quantities and LOD and LOQ, as relevant, into intervals representing the lowest
and highest possible value for that observation to represent what we do know about that observation
(sample data setup is available in Supplement section S 9.3). Specifically, for moderate censoring (<50%
of the samples), we use the non-parametric Kaplan-Meier (KM) estimator to produce the mean, via the
Surv function of the R package survival.

For medium censoring (50% to 80% of the samples), we add assumptions about the underlying distri-
bution of the real data and use parametric Maximum Likelihood Estimation for censored data. Following
advice in the literature on analysis of censored environmental data (Helsel, 2012; Shumway, Azari, &
Kayhanian, 2002), we restrict our distributional choices to the log-normal (transforming via the natural
log and assuming a normal distribution for the transformed observations), the square root (creating
transformed values yi = 2(

√
xi−1) and assuming a normal distribution for the transformed yi), and nor-

mal (no transformation), and select the result that best fits the data (highest log-likelihood). We produce
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MLE estimates using the fitdistcens function of the R package fitdistrplus, and then re-transform
the result via a robust retransformation to avoid retransformation bias (Helsel, 2012; Kroll & Stedinger,
1996; Shumway, Azari, & Kayhanian, 2002). Retransformation bias is an issue with log transformations,
as “the means and variances of the transformed variables are related nonlinearly to the original means
and variances, and the process of transforming back gives estimators that often are quite severely bi-
ased” (Shumway et al., 2002, p. 3345), although we apply the method in cases where the square root
transformation was chosen as well. This method (described further in Supplement section S 9.4) involves
randomly placing the censored observations in the appropriate range of the probability distribution,
converting each individual observation from a probability to a number on the transformed distribution,
reversing the transformation individually for each of the censored observations and merging them with
the observed values on the original scale, and then calculating the mean and variance.

For drugs and municipalities with greater than 80% of samples censored, simply reporting the pro-
portion of samples with quantifiable results is appropriate. One may also report percentiles above the
proportion censored: For example, with 94% censoring (as is the case with MDMA in Hermiston in the
Results below), one should report the proportion below LOD and below LOQ and perhaps the 95th or
99th percentiles.

3.1. Population estimates

As noted above, equation 2 divides the estimated total amount of the analyte by an estimate of the
number of users of the WWTP for that day. For regulatory and planning purposes a WWTP needs to
have an estimate of the population served by the treatment plant. The questionnaire asked the basis for
the population estimate and common responses included the US Census Bureau, the number of sewer
connections adjusted by a multiplier, or official state estimates (themselves based on Census data). These
are estimates of a typical population over the course of a year, which may not correspond with the year
sampled, and may match the actual number of users with unknown accuracy. For example, Census-based
estimates are based on political boundaries, such as city boundaries, whereas WWTP catchment areas
rarely align perfectly with political boundaries and will often take advantage of topographical features to
maximize gravity-based flows. Survey responses exhibited various levels of precision (e.g., 10,000 versus
15,980).

Where possible, we account for differences between daytime population and baseline residential pop-
ulation by applying American Community Survey 2006–2010 estimates of daytime population (which
are calculated only for those who worked in the week prior to the ACS and only in regards to going
to and from work, thus ignoring travel for any other reason). Specifically, we apply the ACS estimate
of proportional population change to the reported population size to estimate the net daytime in- or
out-migration and add half of this amount to the reported population size, to represent work hours
being approximately half of waking (and thus waste-producing) hours during the day. We are assuming
that the proportional change from ACS is geographically representative and thus can be applied uni-
formly even when the WWTP may serve a population slightly smaller than the resident population of
the same-named town. This adjustment is not possible for WWTPs that do not correspond reasonably
to Census-recognized places, as with Tri-City (three Portland suburbs plus part of a fourth), Lakota (a
neighborhood within the city of Federal Way, WA), Redondo (a neighborhood partly in Federal Way
and partly in Des Moines, WA), Seattle (the WWTP of which serves several suburbs), and Renton (a
WWTP that serves several cities and unincorporated areas). In addition, where the survey responses
indicated the source of the population estimate was “connections”, as in Grants Pass, Olympia, and
Tri-City, we assumed this did indeed account for users of both residential and commercial toilets.

An additional complexity exists for population estimation for the Seattle and Renton WWTPs. Unlike
others in this sample of WWTPs, the catchment area of these systems varies depending upon loads and
rainfall. Specifically, during certain periods, a switch sends flow from certain pumping stations to the
Renton WWTP instead of the Seattle WWTP. Our daily population estimate for sampled days for
these two systems reflects the reported position of this switch on those days. For all other cities, Pi in
equation 2 is constant. (Supplement Table S.2 reports the source for and the final estimate of population
size. The populations for Seattle and Renton reflect the average across all sampled days.)
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3.2. Uncertainty analysis

Our final estimates are composed of four elements, three of which are directly measured with error
and one of which is an indirect estimate with inherent uncertainty. Each of the components of an
individual observation in equation 2 could conceivably be measured with error, although we follow
standard practice and assume titration is error-free. For the remaining components, future efforts may
improve measurement and estimation of the associated measurement error. In addition, in using a sample
of days to represent 365 days, there is error associated with creating an annual sample. Uncertainty
associated with a composite sample within a day representing the whole day is subsumed in estimates
of within-year sampling error. We thus have four sources of uncertainty, associated with sampling,
chemical analysis, flow measurement, and population estimation, which are commonly assumed to be
independent (e.g., Lai et al., 2015; Ort et al., 2014b, 2010a) as no physical or conceptual dependence has
been reported.

We follow prior work (e.g., Brewer et al., 2012; Lai et al., 2011) for this demonstration and combine
the error components by

UT =
√

U2
S + U2

C + U2
F + U2

P (3)

where each uncertainty component, and the total uncertainty, is expressed as a coefficient of variation
or relative standard deviation (RSD). The total uncertainty is necessary for estimating confidence inter-
vals and interpreting differences between municipalities. Multiplying UT by the estimated yearly mean
produces a standard deviation, which can be combined with the t-distribution value appropriate for the
number of samples and the desired confidence level to produce a confidence interval.

3.2.1. Sampling error

Researchers typically rely on WWTPs’ existing 24-hour composite sampling for the sub-samples ob-
tained for analysis due simply to the dramatic savings in resources compared with researchers directly
collecting their own samples. WWTPs with which we and others have worked use a wide range of sam-
pling approaches in terms of compositing approach, e.g., flow-, time- or volume-weighted, as well as the
frequency of sampling. Few plants with which we have worked use ideal sampling approaches and few are
willing to substantially change their sampling protocols for the extended sampling campaigns we have
conducted for various research projects. As described by Ort and colleagues (2010b), substantial error
can result based on how within-day sampling is carried out and the frequency with which it is conducted.

Our annual sampling frame was informed by the types of variability drug users experience in their
lives based on biopsychosocial and financial circumstances. Ort and colleagues (2014a) estimate an
expected uncertainty due to sampling (or monitoring) of approximately 10% with approximately 56
samples stratified by quarter of year and weekday versus weekend. (Sensitivity analyses using half and
twice this error for MDMA appear in Supplement section S 9.6; similar graphs for the full slate of analytes
are available upon request.)

3.2.2. Concentration error

The reported concentration of the substance in the sample is inherently measured with error, which
is partially represented by the detection and quantification limits themselves. Above these levels, there
remains uncertainty in the analytical method. For concentration we use the RSDs from the testing
procedures for each municipality-drug combination, which resulted from testing the same sample 2 to 4
times (Brewer et al., 2012; Chiaia et al., 2008).

3.2.3. Flow error

The daily flow of wastewater to a plant is incorporated in order to account for variability and dilution
due to system usage due to human and weather factors. While WWTPs measure flow and generally
have an estimate of the error associated with the flow, often manufacturers’ specifications, it is believed
these estimates are too small. We use an estimate of 5% from prior WWTP testing protocols (Brewer
et al., 2012). Investigating the true nature of the error associated with the flow estimate is worthwhile
and should be utilized whenever possible in real world applications.
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3.2.4. Population uncertainty

In addition to the daytime population growth described above, population estimates retain myriad
sources of further error. Sampling-based methods (i.e. the ACS) include error estimates in their results.
For the 4 WWTPs that reasonably correspond to Census-defined areas and which provided Census-based
estimates (Aberdeen, Bend, Klamath Falls, and Port Angeles), we used 5-year ACS error estimates for
the underlying population. These 4 WWTPs also had the daytime population correction applied, itself
with an estimated error, to produce a combined population error estimate (ranging from 2.9% to 10.4%).

For other possible survey responses, we have no way to estimate any error associated with the initial
population estimate. For example, estimating the accuracy of the multipliers WWTPs use for planning
purposes is beyond the scope of the current article. Corvallis, Hermiston, Portland, and Pasco reported
that their population estimates came from official state estimates, which do not provide error estimates.
We did not feel comfortable assuming 0 measurement error for resident population given their estimation
procedures. As a result, 15 of our WWTP systems have associated population error estimates of 20% as
in Ort and colleagues (2014b). ACS 2006–2010 population estimates for the 14 WWTPs that reasonably
correspond to Census areas have RSDs ranging from 0.68% to 20.08%, suggesting 20% is a reasonably
conservative estimate here.

4. Results

4.1. Censoring and distributions

Censoring ranged from 0 to 94.2% across the (19×6 = 114) municipality-drug combinations. Metham-
phetamine exhibited the least censoring, with only Pasco having a single unobservable observation.
MDMA exhibited the most censoring, with no WWTP having complete observations. Censoring of
MDMA observations ranged from 3.7% (Bend) to 94.2% (Hermiston), and every municipality had at
least one observation below LOD. These patterns of missingness are likely related to typical usage pat-
terns, where we might expect MDMA to be present at low quantities, if at all, on weekdays, but expect
methamphetamine use to be more uniform across days of the week (Andrés-Costa, Rubio-López, Morales
Suárez-Varela, & Pico, 2014; Banta-Green et al., 2005; Simon et al., 2002).

In order to present the distribution of observations in the presence of censoring, we utilize the hypo-
thetical data created by the robust retransformation process described above (and further in Supplement
section S 9.4), applied even if the amount of censoring indicates use of the KM estimate, in order to
create an approximation of what the distribution might have been in the absence of censoring. In Fig-
ure 1 we present standard boxplots of these observations, with WWTPs arranged in order from most
to least censoring (from left to right; alphabetically among those with the same amount of censoring),
for methamphetamine (top panel) and MDMA (bottom). The amount of censoring is further indicated
by the shading of the box, ranging from lightest gray to black, the latter indicating complete data.
Labels and background shading indicate which statistical method is utilized (Report censoring if > 80%
censoring, MLE if 50–80% censoring, KM if < 50% censoring, Complete data if no censoring ) to create
the estimated annual mean in the next section. (Precise levels of censoring are available in Supplement
Table S.2.) Where there is no background shading and all the boxes are black, the observed complete
data is used to create the boxplot (and the estimated mean). Where there is censoring, as for Pasco
methamphetamine (left side of top panel) and MDMA in all cities (bottom panel), the boxplots reflect
a mix of observed data and data created via the robust retransformation.

The re-created data is obviously at or below the lower end of the box. As the points are placed
somewhat arbitrarily on the low end of the distribution, the actual position of the lower whisker (e.g.,
Bend MDMA in Figure 1), or of the first quartile where there is 25% or more censoring (e.g., Portland
MDMA, with 32.6% censoring), should not be interpreted strongly in the presence of more than minimal
censoring. As per the guidelines above, we do not present boxplots for the three municipality-drug combi-
nations, MDMA in Aberdeen, Hermiston, and Ontario, in which there was over 80% censoring. Instead,
we report for these cases the percentage observed (left-most axis; the complement of the percentage
censored) and the 95th percentile, as Hermiston had just less than 95% censoring.
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The boxplots present the median of the (possibly re-created) data, as a white line across the box, and
one definition of outliers, marked as ×. Specifically, each whisker extends to the most extreme data point
no more than 1.5 times the interquartile range—the length of the box—and any point beyond the whisker
is an outlier. For municipality-drug combinations with more than 50% but less than 80% censoring, for
which the robust MLE is used to create the estimate below, this median is highly dependent on the
re-created data from the robust retransformation. Consistent with the amount of censoring for such
cases, the medians tend to be near 0 (and, given scaling, may be difficult to differentiate from 0 in the
figures, as for the first four box plots—Port Angeles through Olympia—in the bottom panel of Figure 1).
The figures are scaled so that the highest observation across the 19 cities defines the top of the range,
with the tick marks representing 10%, 50%, and 90% of this range. We see for Port Angeles MDMA,
for example, that the nearly 80% censoring is indicative of many days with very low, possibly 0, levels
of MDMA, but that Port Angeles also had one outlier measured at over half of the highest observation
among all WWTPs (for Tacoma).

4.2. Annual estimates with error bounds

While the boxplots represent the distributions of observations across the year, or hypothetical distri-
bution in the presence of censoring, in this section we focus on the final estimates of annual average daily
index load. In addition, we focus on the error bounds created by the above combination of the error
components, to give an estimate of the uncertainty around the mean. Figure 2 orders the WWTPs from
lowest to highest estimate, where the estimated mean is represented by a diamond shaded according to
the amount of censoring (as with the boxplots in the previous section). The 95% confidence interval (CI)
is represented by the T-shaped line extending above and below each diamond. Below each WWTP name
we present the number of samples used to create the estimate and the CI, including those observations
included in the estimate despite censoring. The dotted line represents the (unweighted) average of the
annual estimates of the 19 WWTPs.

For methamphetamine (Figure 2, top panel), the average index load ranges from 0.10 milligrams per
person per day in Renton to 1.12 mg in Aberdeen, an 11-fold difference. The 95% CIs allow us to say
that, within the bounds of our error estimation, Aberdeen has significantly more methamphetamine in
its wastewater than Renton, and significantly more than the average WWTP. Renton, Seattle, Lakota,
Olympia, Bend, Redondo, Corvallis, and Tri-City all have below average levels.

For MDMA, again, we present only information on censoring for the three highly censored WWTPs,
on the left in the bottom panel of Figure 2. The municipalities with the lowest seven estimates are all
significantly below average, while Tacoma and Port Angeles have above average annual mean MDMA
levels. Given the error combination approach used here (Equation 3) and that the other error components
are small and/or constant (≤ 20%), the large confidence intervals in Figure 2 are due primarily to
analytical error associated with chemical testing—for example, the analytical error for MDMA for Renton
had an RSD of 121%, while Grants Pass MDMA testing had an RSD of 37%.

5. Discussion

Municipal sewage-based testing for medications and drugs of abuse is moving into its adolescence, but
is not fully mature in part due to the lack of an adequate statistical treatment of the data resulting from
chemical analysis. The ability to document the presence of substances has been shown repeatedly around
the world (e.g., Banta-Green et al., 2009; Castiglioni et al., 2006; Zuccato et al., 2005). However, the
utility and interpretability of these data is diminished until summary measures, such as means, accurately
and completely reflect the collected data including data below limits of quantification and/or detection.
Current efforts to interpret results are further weakened by the inconsistent use of confidence bounds
around estimates and missing components for estimation of uncertainty, e.g., related to population size
or the limited number of observations. Without these comprehensive confidence bounds it is not possible
to indicate whether a measured level of a substance (or its metabolite) is higher than a prior estimate for
the same substance or different compared to another municipality. In other words, current presentations
of data have limited utility as epidemiological data and in turn are of limited value for research, practice
or policy purposes.
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Our goal in this paper was to illustrate a more complete approach to analyzing wastewater data. Rather
than presenting annual estimates as though all the underlying components were measured without error,
we have incorporated uncertainty estimation and have been transparent about sources of error and when
we had to make assumptions about the size of that error. Rather than substituting an arbitrary value,
we used statistical methods that use the information inherent in knowing a value is between 0 and the
LOD or between the LOD and LOQ to generate an unbiased estimate of the mean annual per capita
load.

We believe that an approach such as that presented here provides more accurate and valid results and
encourage its use, and refinement, in future analyses. Previously published data which did not incorporate
these statistical approaches may have average values that are incorrect and biased. The actual computed
estimate may, or may not, change significantly with our approach, but it will be less biased and more
valid. Further, previously published analyses that reported significant differences between places or
over time may have overstated differences due to incomplete, and incorrectly small, confidence intervals.
Assuming the necessary data elements are available, these data could be reanalyzed with the approaches
suggested here and yield data valuable in longitudinal comparisons.

We have also demonstrated the difficulty surrounding the seemingly simple designation of a denom-
inator for estimating per capita (or per 100,000) loads. Some have preferred the term “index load”
in lieu of “per capita load” to capture the uncertainty around estimation of the denominator (Chiaia
et al., 2008). We show how available survey data on daytime population growth due to commuting
could be applied to adjust a given population estimate. Future work should investigate improving upon
the underlying population estimation. A revised and more complex WWTP operator survey might, for
example, request that WWTP operators be more specific in their estimate of population size and the
source of that estimate. The researcher may need to facilitate a conversation between the WWTP staff
and city planners and engineers to understand system and population characteristics in more detail.
WWTP coverage areas could be approximately matched with census blocks or tracts to create better
estimates with better measurement error approximations, although daytime population change estimates
may be available only for larger towns and cities. Work is ongoing to try to better estimate the size of
the underlying population using a range of other measureable analytes (see, e.g., Brewer et al., 2012;
Castiglioni et al., 2013; Lai et al., 2015, 2011; Ort et al., 2014a). Finally, researchers could obtain data
from mobile phone companies during the average day and average night to understand daily migration
patterns.

As noted throughout, further refinement of measurement and error estimation of not only population
but all parameters will help mature the use of WWTP sampling for research and policy regarding illicit
and licit drug and medication use as well as other target analytes yet to be determined. For example,
our analytical errors were relatively small for commonly used drugs such as methamphetamine (where
analytical RSDs ranged from 0.4% to 23.9%, with an unweighted mean of 4.8%), but much larger for
relatively rare MDMA (range 1.2% to 121.1%, unweighted mean 19.4%). If the sample selected for
repeated testing was from a Sunday, more MDMA would be expected to be present (due to Saturday
consumption) and thus more consistently quantifiable than with a Tuesday sample. Similarly, the sam-
pling error estimate of 10% (Ort et al., 2014a) was derived from repeated samples of N = 56 taken from
over 1000 consecutive daily samples of benzoylecgonine (a metabolite of cocaine) in a small WWTP
serving approximately 7000 inhabitants. Measuring a substance with higher seasonal variation would
presumably increase the error estimate associated with 56 samples. Substituting a larger or smaller error
component estimate has relatively small effects on the resulting confidence intervals in comparison to
inter-municipality variation (sensitivity analyses using sampling error of 5% and 20% for MDMA appear
in Supplement section S 9.6; others available upon request). Furthermore, more advanced methods of
estimating error via Monte Carlo simulation are available, but the linear error propagation used here
(equation 3) is generally thought to be an acceptable approximation especially if individual error compo-
nents are not too large (Lai et al., 2015; Ort et al., 2014b). Finally, the results presented here are index
loads of excreted substances, not estimates of the number of users or the average ingestion of a given
parent substance. Presenting such results relies on further assumptions about factors such as excretion,
absorption, and dosage, and their relevant measurement errors.

A limitation of the current analysis, and one that may impact others relying upon WWTP operators to
provide samples, is that no location provided all 56 samples. Between 42 and 55 samples were provided
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by each location. Overall 91% of possible samples were submitted, potentially lessening statistical power.

6. Conclusion

The ability to utilize wastewater-derived data for practice and policy decision making is important as
drug use continues to have major public health consequences (Jenkins et al., 2011; Jones et al., 2015,
2013), and the methodology could be readily applied to other target analytes that are anthropogenic
markers of difficult to measure human behaviors. Existing methods for drug surveillance are crude
(National Institute on Drug Abuse, 2006). Drug abuse epidemiology currently relies on indicators that
are limited by: 1) poor geographic detail, 2) an emphasis on major metropolitan areas 3) significant time
lag in data availability, 4) detection and self-report biases, 5) measurement error, and 6) an over-reliance
on morbidity and mortality data.

The need for a complete statistical approach for wastewater samples was demonstrated by the highly
variable distributions of quantifiable results for different compounds and across locations. A comprehen-
sive approach to developing an estimate that includes information contained in results below quantifica-
tion and detection as well as error bounds is presented. The results can be used to test for differences
in drug levels across places. Although the resulting estimates are of index loads of excreted substances,
we believe examining such results across place and/or time is a highly useful addition to other drug
surveillance sources given the dearth of local quantifiable data. This general statistical approach can be
used in the future even as methods for determining the various error components improve.
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Reid, M., Slobodnik, J., Terzic, S., Thomaidis, N., Thomas, K. V., 2014b. Spatial differences and
temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction 109,
1338–1352. http://dx.doi.org/10.1111/add.12570

Simon, S.L., Richardson, K., Dacey, J., Glynn, S., Domier, C.P., Rawson, R.A., Ling, W., 2002. A
comparison of patterns of methamphetamine and cocaine use. J. Addict. Dis. 21, 35–44.

van Nuijs, A.L.N., Pecceu, B., Theunis, L., Dubois, N., Charlier, C., Jorens, P.G., Bervoets, L., Blust,
R., Neels, H., Covaci, A., 2009. Cocaine and metabolites in waste and surface water across Belgium.
Environ. Pollut. 157, 123–129.

Zuccato, E., Chiabrando, C., Castiglioni, S., Calamari, D., Bagnati, R., Schiarea, S., Fanelli, R., 2005.
Cocaine in surface waters: A new evidence-based tool to monitor community drug abuse. Environ.
Heal. 4, 14–17. http://dx.doi.org/10.1186/1476-069X-4-14

14

http://dx.doi.org/10.1021/es503474d
http://dx.doi.org/10.1016/j.watres.2011.05.042
http://dx.doi.org/10.1111/add.12405
http://dx.doi.org/10.1021/es100778d
http://dx.doi.org/10.1021/es100779n
http://dx.doi.org/10.1111/add.12570
http://dx.doi.org/10.1186/1476-069X-4-14


S 9. Supplement

S 9.1. Limits of detection and quantification

The chemical analysis procedure established the detection and quantification limits to create a min-
imum signal-to-noise ratio of 3 and 10, respectively. This resulted in the limits presented in Table S.1.
The amount of censoring for each municipality-drug combination is in Table S.2.

Meth MDMA Benzoylecgonine Methadone Hydrocodone Oxycodone

LOD 1.5 1.0 1.0 2.0 2.0 2.0
LOQ 10.0 2.5 10.0 2.5 2.5 2.5

Note: Meth = methamphetamine

Table S.1: Detection and quantification limits (ng/L)

S 9.2. Sampled WWTPs

The 19 treatment plants contributing data for this analysis represent a convenience sample of diverse
systems in the Northwest United States, specifically in the states of Washington and Oregon. The given
WWTP names are a mix of neighborhood names, city names, or collective names or otherwise convenient
labels that may or may not accurately reflect the catchment area served. We use the term “municipality”
in general to indicate the WWTP and the area served. While most municipalities are along the main
north-south transportation corridor (US Interstate 5), several locations represent smaller cities or towns
along the coast or inland in the drier regions east of the Cascade mountain range. The relative population
sizes covered by each WWTP and their representative level of precipitation for 2009 are presented in
Figure S.1. The final (average for Seattle and Renton; see Section 3.1) population estimates and the
source of those estimates, per the WWTP surveys, are in the second and third columns of Table S.2.

S 9.3. Sample data setup

Calculating a given sample’s index load requires four parameters: the measured concentration (column
1 in Table S.3), the titration correction factor to account for titrating the sample to facilitate measurement
(column 2), the day’s measured flow through the WWTP (column 3), and the day’s population estimate
(column 6, constant in this example; see Section 3.1 for discussion of how this value might vary). The
“Final Concentration” and “Final Load” columns (4 and 5) in the sample data setup are intermediate
calculations that represent the titration-corrected concentration and the product of this concentration
and the day’s volume.

For the third and fourth rows, the initial concentrations are censored. For estimating the mean index
load in the presence of censoring via a survival analysis method, the censoring must be represented as
intervals to indicate the range the values could take. The final two columns, here labeled “Left” and
“Right” (your software may prefer “Begin” and “End”, etc.), are what are inputted to the estimating
software. For measurable observations, the two sides of this interval are the calculated index load. For
values below the level of detection (<LOD, where the LOD in the example is 1.5), the left side of the
interval is 0 and the right side is the LOD×titration factor×flow÷population÷(10002), to reflect that
the initial concentration must be in the range of 0 to 1.5. For values below the level of quantification
(<LOQ, where LOQ here is 10.0), we only know the initial concentration is between the LOD and the
LOQ, and so the two sides of the interval reflect these values multiplied through: E.g., LOQ×titration
factor×flow÷population÷(10002).

S 9.4. Robust retransformation

After maximum likelihood estimation, implemented with 50–80% censoring, we apply a robust retrans-
formation to avoid retransformation bias as described by Helsel (2012), Kroll and Stedinger (1996), and
Shumway, Azari, and Kayhanian (2002). In order to create the distribution graphs in Figures 1, S.2, and
S.3, we also apply Steps 1–4 below for cases with less than 50% censoring. Given data as in the example
above (Table S.3), the primary goal is to have an unbiased estimate of the mean of the data, and the
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secondary goal to have a full hypothetical dataset to create boxplots. The robust retransformation is
implemented as follows:

Step 1 Take the estimated distribution of the transformed data and place the censored data in appro-
priate places on the lower part of the distribution. These plotting positions or percentiles are
essentially evenly spaced in the lower end of the distribution, on the transformed scale.

• Specifically, for each censored observation i among all c censored observations within the N
observations, the plotting position p is given by

p =
c

N
×

i− 3
8

c + 1
4

(4)

where the i for observations below LOD come before the i for observations above LOD but
below LOQ.

Step 2 Translate the percentiles into values on the transformed scale via the normal distribution quantile
function.

Step 3 Individually re-transform these predicted values on the transformed scale to the original scale.

Step 4 Combine these predicted values with the original observed values (i.e. the uncensored values)
into a new set of data.

Step 5 Calculate the mean of this hypothetical data.

S 9.5. Distributions and estimates for other analytes

Following the discussion of censoring, distribution, error components, and estimates for metham-
phetamine and MDMA in the main text, here we present the graphical results for the other analytes
considered: benzoylecgonine, methadone, hydrocodone, and oxycodone. In the boxplot graphs, the shad-
ing of the box represents the amount of censoring for each municipality-drug combination, with darker
boxes indicating more complete data. The WWTPs are ordered by the completeness of the data and
then alphabetically. The background shading and label (Report censoring, MLE, KM, Complete data)
indicate for groups of municipality-drugs what method was used to create the estimate in the corre-
sponding estimates graphs. In the latter, the shading of the estimate indicator (the diamond) represents
the amount of censoring, and the dotted line the unweighted average estimate across the 19 WWTPs.
WWTPs are ordered by the mean annual estimate.

S 9.6. Sensitivity of confidence intervals to changes in US

As described in the Discussion, our annual sampling error estimate of US = 10% came from a study of
sampling (or monitoring) uncertainty in a small European city (Ort et al., 2014a). That exercise involved
repeated samples of N = 56 taken from over 1000 consecutive daily samples of benzoylecgonine (cocaine
metabolite). With fewer than 56 samples in the current analysis, WWTP catchment area sizes of more
or less than 7000 users, and substances that may have more or less variation in use than cocaine, one may
question whether a different estimate of annual sampling error might change the results substantially.
In Figure S.6, we present the estimates and confidence intervals for a single substance, MDMA, in which
we have both doubled our sampling uncertainty RSD (top panel) and halved it (bottom panel). (Similar
graphs for the other analytes are available upon request.) Compared to the bottom panel of Figure 2,
we see that changing one of our four uncertainty parameters has small effects on the resulting CIs. With
a 5% uncertainty, Port Angeles MDMA becomes more clearly significantly higher than average, but we
remain uncertain that Renton MDMA could not be essentially 0. With less certainty about the ability
of our 43 to 55 samples to represent the whole year—US = 20%—Port Angeles MDMA levels are clearly
not significantly different than the average, and Tacoma’s CI is more likely to overlap with any other
WWTP CI, but all except the Renton index load remain significantly greater than 0. Compared with
both the size of the CIs and the differences in estimated means, these changes in CI due to different
annual sampling uncertainties are relatively small.
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S 9.7. Observation variability and population size

Figure S.7: Variability of daily drug loads [as coefficient of variation (CV)] vs. population size (P, in 1000s) in five different
catchments for different substances (duration of studies in days: 1©=1369, 2©=311, 3©=28, 4©=239, 5©=28/35). Reasons
for CVs exceeding 0.8 in theses studies are: i) observations below limit of quantification (heroin) and ii) pronounced intra-
week variability (MDMA). Such a regular weekend effect causes a high CV but does not imply that more samples would
be needed for the same acceptable uncertainty. Adapted from European Monitoring Centre for Drugs and Drug Addiction
(2016).
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