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Abstract— Fundamental challenges and goals of the cognitive 

algorithms are moving super-intelligent machines and super-
intelligent humans from dreams to reality. This paper is devoted 
to a technical way to reach some specific aspects of super-
intelligence that are beyond the current human cognitive 
abilities. Specifically the proposed technique is to overcome 
inabilities to analyze a large amount of abstract numeric high-
dimensional data and finding complex patterns in these data with 
a naked eye. Discovering patterns in multidimensional data using 
visual means is a long-standing problem in multiple fields and 
Data Science and Modeling in general. The major challenge is 
that we cannot see n-D data by a naked eye and need 
visualization tools to represent n-D data in 2-D losslessly. The 
number of available lossless methods is quite limited. The     
objective of this paper is expanding the class of such lossless 
methods, by proposing a new concept of Generalized Shifted 
Collocated Paired Coordinates. The paper shows the advantages 
of proposed lossless technique by proving mathematical 
properties and by demonstration on real data.   

Keywords—high-dimensional data; high-dimensional patterns; 
lossless representation; generalized coordinates, cognitive 
algorithms; human cognitive abilities; super-intelligence. 

I. INTRODUCTION 
The concept of human-machine super-intelligence is 

present in the literature for a long time [13].  It includes 
prospects of both super-intelligent machines and super-
intelligent humans that will far surpass the current human 
intelligence significantly lifting the human cognitive 
limitations.  

The expected ways to achieve it range from progress in: (1) 
Artificial Intelligence (AI) and Computational Intelligence 
(CI), (2) new human abilities to evolve or directly modify their 
biology [19], and (3) power of crowd interaction [16]. A 
significant portion of publications in this area is the futuristic 
predictions of when super-intelligence can be achieved, and 
what the potential danger of expected achievements is. This 
paper is devoted to the different aspect, namely, a technical 
way to reach some specific aspects of super-intelligence that 
are beyond the current human cognitive abilities. It is to 
overcome inabilities to analyze a large amount of abstract 
numeric high-dimensional data and finding complex patterns 
in these data with a naked eye. 

This paper is organized as follows. Section II presents the 
concept of lossless visualization of n-D data as cognitive 

enhancer for discovering n-D data patterns.  Section III 
provides definitions of line coordinates. Section IV provides 
algorithms and mathematical statements that demonstrate how 
n-D data representations in various general line coordinates 
simplify representation of n-D data in 2-D for better 
perceptual and cognitive abilities for visual pattern discovery. 
Section V shows advantages of Collocated Coordinates over 
Parallel Coordinates on real-world data. Section V relates 
super-intelligence issues to high-dimensional data. 

II. LOSSLESS VISUALIZATION OF N-D DATA AS 
COGNITIVE ENHANCER  FOR DISCOVERING PATTERNS 

      Human inability to discover patterns in n-D data using a 
naked eye is one of the major motivations for the emergence 
of visual analytics research area that is devoted to developing 
2-D visual representations (visualizations) of n-D data. While 
multiple such representations have been developed, many of 
them are lossy, i.e., do not represent n-D data completely and 
do not allow restoring n-D data completely from their 2-D 
representation. Respectively our abilities to discover n-D data 
patterns from such incomplete 2-D representations are limited 
and potentially erroneous. 

        In contrast lossless visualizations of n-D data have no 
such limitations and can serve as much better cognitive 
enhancers of the human   cognitive abilities to discover n-D 
data patterns. Below we review the state of the art in this area, 
and outline the challenges that this paper addresses.       
Discovering patterns in big multidimensional data using visual 
means is a long-standing problem in Information 
Visualization, Visual Analytics, Visual Data Mining, and Data 
Science in general [1-3,5-7, 9-12]. As we already outlined the 
major challenge is our cognitive limitations. We cannot see   
n-D data by a naked eye and need visualization tools to 
represent n-D data in 2-D losslessly.  

      The number of available tools to overcome this cognitive 
limitation is quite limited. Principal Component Analysis 
(PCA) is a lossy n-D data representation when we use the first 
two main principal components to show n-D data in 2-D. 
Multidimensional scaling is also a lossy representation due to 
approximation of n-D distances.  Simple tools such as heat 
maps, pie-and bar-graphs are applicable to relatively small 
datasets and dimensions. Parallel Coordinates (PC) and Radial 

The final version of this paper was published by IEEE: B. Kovalerchuk, Super-intelligence Challenges and Lossless Visual Representation of High-
Dimensional Data, 2016 International Joint Conference on Neural Networks (IJCNN), World Computational Intelligence Congress, Vancouver, Canada, 
1803-1810, IEEE 2016. 
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(star) Coordinates (RC) today are the most known lossless n-D 
data visualization methods for relatively large data while 
suffering from occlusion.  

      There is a need to extend the class of lossless n-D data 
visual representations. A new class of such representations 
called the General Line Coordinates (GLC) and several their 
specifications have been proposed in [2,6,7]. These 
visualizations include Paired Collocated Coordinates in 
orthogonal and radial forms. The benefits of these new visual 
representations and their advantages have been shown in 
[2,6,7] for analyzing data of Challenger disaster, World 
Hunger, Semantic shift in humorous texts and others.   

      This paper: (1) expands these new methods, (2) explores 
their mathematical properties, and (3) demonstrates 
advantages of these methods for real-world data. In 
exploration of mathematical properties, we analyze how the 
methods represent known n-D data structures in 2-D. The 
importance to explore the mathematical properties of new 
methods in addition to comparing them with known methods 
on real-world data is in the ability to derive general properties 
that are common to all data of a given structure.  

Example. Assume that we established that new data have 
the same mathematical structure that was explored before. 
Then we can use the derived matched structural properties. 
Consider n-D data with a mathematical structure where all n-
D points of class C1 are in the one hypercube and all n-D 
points of class C2 are in another hypercube and the distance 
between these hypercubes is greater or equal to k lengths of 
these hypercubes.  

Assume that it was established mathematically that for any 
n-D data with this structure a lossless visualization method V1, 
produces visualizations of  n-D vectors of classes C1 and C2 
that do not overlap in 2-D. Next assume that this property was 
tested on new n-D data and was confirmed. In this case we can 
apply visualization method V1 with confidence that it will 
produce desirable visualization without occlusion of two 
classes. Similarly if the structural property is negative to 
ability to visualize the pattern without occlusion then this will 
lead to the conclusion that the method should not be used for 
the given data.  

III. DEFINITIONS OF LINE COORDINATES  
        Table 1 summarizes different forms of General Line 
Coordinates, which will be discussed below. The GLC class 
contains the well-known parallel and radial (star) coordinates 
and the new ones listed in table 1,  which generalize them by 
locating coordinates in any place, direction, and in any 
topology (connected or disjoined). The examples of General 
Line Coordinates are shown in Figures 1-3. 

       In-Line Coordinates (ILC) shown in Fig. 2d are similar 
to parallel coordinates, except that the axes X1,X2,…Xn are 
horizontal, not vertical. Each pair is represented as a Bezier 
Curve. The height of the curve is the distance between the two 
adjacent values, e.g., for (5,4,0,6,4,10), the heights are 
1,4,6,2,6. 

        The algorithm for representing n-D points in 2-D using 
lossless collocated paired coordinates (CPC) (see Fig. 2a) is 
presented below. We use an example in 6-D with a state 
vector x=(x, y, x`, y`, x``, y``), here x and y are location of the 
object, x` and y` are velocities (derivatives), and x`` and y`` 
are accelerations (second derivatives) of this object.  

     The main steps of the algorithm are:  
• Normalization of all dimensions to some interval, e.g., 

[0,1];  
• Grouping attributes into consecutive pairs (x,y) (x`,y`) 

(x``,y``); 
• Plotting each pair in the same orthogonal normalized 

Cartesian coordinates X and Y, and  
• Plotting a directed graph (x,y) → (x`,y`) → (x``,y``) with 

directed paths from (x,y) to (x`,y`) and from (x`,y`) to 
(x``,y``).  
 

      Fig. 2a shows application of this algorithm to a 6-D vector 
(5,4,0,6,4,10) with the oriented graph drawn as two arrows: 
from  (5,4) to (0,6) and from (0,6) to (4,10).  
 

TABLE I.  LINE COORDINATES 

 

Type Characteristics  
General Line 
Coordinates 
(GLC) 

Drawing n coordinate axes in 2-D in a variety of  
ways: curved, parallel, unparalleled, collocated, 
disconnected, etc.  

Collocated 
Paired 
Coordinates 
(CPC) in 2-D 

For each n-D point x splitting it into pairs of its 
coordinates (x1,x2),…,(xn-1,xn); drawing each pair as 
2-D point in the same two axes on the plane and 
linking these 2-D points to form an oriented graph.  

Collocated 
Paired Coordi- 
nates in 3-D  

Splitting n coordinates into triples and representing 
each triple as 3-D point in the same three axes; and 
linking these points to form an oriented graph for 
each n-D point. 

Shifted Paired 
Coordinates 
(SPC) 

Drawing each next pair in the shifted coordinate 
system by adding (1,1) to the second pair, (2,2) to the 
third pair, (i-1, i-1) to the i-th pair, and so on. More 
generally shift can be a function of some parameters.  

Anchored  
Paired Coordi-
nates (APC) 

Drawing each next pair in the shifted coordinates, i.e., 
coordinates shifted to the location of the first pair of a 
given n-D point.    

Partially 
Collocated 
Coordinates 

Drawing some coordinate axes in 2D collocated and 
some coordinates not co-located. 

Partially Col-
located Radial 
Coordinates 

Drawing some radial coordinate axes in 2D 
collocated and some coordinates not collocated. 

In-line Coor-
dinates (ILC) 

Drawing all coordinate axes in 2D located one after 
another on s single straight line.  

Circular and 
n-gone 
coordinates 

Drawing all coordinate axes in 2D located on a circle 
or a n-gon one after another. 

 

     The Shifted Paired Coordinates (SPC) show each next 
pair in the shifted coordinate system. The first pair (5,4) is 
drawn in the  (X,Y) system. The next pair (0,6) is drawn not in 
the original system (X,Y), but in the shifted coordinate system 
denoted as (X+1,Y+1), where coordinate X is shifted up by 1, 
and coordinate Y is shifted to the right  by 1.  This means that 
the pair (0,6) in coordinates (X+1,Y+1) will be a pair 
(0,6)+(1.1)=(1,7) in the original coordinates (X,Y). For shift n 
and  coordinates (X+n,Y+n) it is (a,b)(X+n,Y+n) = (a+n,b+n)(X,Y).  
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The pair (4,6) is drawn in the (X+2, Y+2) coordinates. For 
point (5,4,0,6,4,10), the graph includes the arrows:  from (5,4) 
to (1,1)+(0,6)=(1,7) then from (1,7) to (2,2)+(4,10)=(6,12). 
See Fig. 2b.  

      The Anchored Paired Coordinates (APC) represent each 
next pair starting at the first pair that serves as an “anchor”. In 
the example above pairs (x`,y`) and (x``,y``) are represented as 
vectors that start at anchor point (x,y) with plotting vectors 
((x,y), (x+x`,x+y`)) and  ((x,y), (x+x``,x+y``)).  

      The graph of a 6-D point (1,1,1,1,1,1) in Partially 
Collocated Radial Coordinates is shown in Fig. 3 on the left 
as a blue triangle. The same 6-D point in the Cartesian 
Collocated Paired Coordinates on the right produced a much 
simpler graph as a single point. Fig. 3 illustrates the perceptual 
and cognitive differences between alternative 2-D 
representations of the same n-D data.  Here a 2-D point is 
much simpler perceptually and cognitively than a tringle for 
the same 6-D point. 

IV.       GRAPHS IN GENERAL LINE COORDINATES  
         General Line Coordinates are constructed by drawing n 
coordinate axes in 2-D in a variety of ways: curved, parallel,                                                                               
unparalleled, collocated, disconnected, etc. This definition 
must be accompanied by an algorithm for constructing a 2-D 
graph that will represent an n-D point.  Next, we present four 
algorithms  
 

 

  
(a) 4-D point in collocated 
paired coordinates  

(b) 4-D point in Shifted Paired Coordinates 
Point (6,12) is produced by adding (2,2) to 
(4,10). 

 

(c) the same 4-D point as above in Parallel Coordinates 

  
  (d) In-line Coordinates 
Fig. 2. Data point (5,4,0,6,4,10) in different coordinate systems  

              
(a) 6-D  point in Parallel Coordinates 

             
(b) 6-D  point in General Line Coordinates with straight lines 

              
(c) 6-D  point in General Line Coordinates with curves 

 
(d) Partially Collocated Orthogonal (Ortho) Coordinates  

 
(e) Partially Collocated Ortho non-Ortho Coordinates  

 
(d) Collocated non-Ortho  Coordinates  

Fig. 1 Examples of General Line Coordinates. (d),(e),(f) 4-D point (1,1,2,2) 
in  different coordinate systems  

X1 X2 X3 X4 X5 X6

X1 X2 X3 X4 X5 X6

X1 X2 X3

X4

X5 X6

X1

X2

X3

X4

(1,1) in (X1,X2)

(2,2) in (X3,X4)

X1

X2

X3

X4

(1,1) in (X1,X2)

(2,2) in (X3,X4)

X1

X2

X3

X4

(2,2) in (X3,X4)

(1,1) in (X1,X2)

 X1     X2      X3     X4    X5      X6 

x x 

Υ 
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Fig. 3. 6-D point (1,1,1,1,1,1)  in two X1-X6 coordinate systems (left – in 
Radial Collocated Coordinates, right- in Cartesian Collocated  Coordinates). 

Algorithm 1: Constructing a graph as a collection of 
oriented edges (arrows, vectors). Each edge is located on the 
respective coordinate Xi starting at the origin of this coordinate 
and ending at point xi on Xi. See Fig. 4a. We will call this 
algorithm a basic GLC graph constructing algorithm (GLC-B).  

Algorithm 2: Constructing a graph by connecting location 
of xi on Xi with the location of xi+1 on Xi+1,  starting from i=1, 
and ending at i=n. See Fig.4b. This is a generalization to GLC 
of the algorithm implemented in Parallel Coordinates (PC) [5]. 
Respectively we will call it as GLC-PC graph constructing 
algorithm. 

 
(a) 6 coordinates and 6 vectors that represent a 6-D data point 
(0.75,0.5,0.7,0.6,0.7, 0.3)  

 
(b) 6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3)  in GLC-PC 

 
(c) 6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-SC 

 
(d) 6-D data point (0.75,0.5,0.7,0.6,0.7, 0.3) in GLC-CC  

Fig.4.6-D data point (0.75,0.5,0.7,0.6,0.7,0.3)  in different coordinate systems.   

Algorithm 3: Constructing a graph by the algorithm as 
illustrated in Fig. 4c. It moves the start point of each vectors 
xi+1 to the end of vector xi. This algorithm is a generalization to 
GLC of the algorithm implemented in the Star Coordinates 
(SC) [15]. Respectively we will call it as GLC-SC graph 
constructing algorithm.  

Algorithm 4: Constructing a graph by the algorithm that is 
illustrated in Fig. 4d. It is a generalization to GLC of the 
algorithm implemented in the Collocated Coordinates (CC) [6] 
shown in Fig. 1d-f. Respectively, we will call is this algorithm 
the GLC-CC graph constructing algorithm.  

Fig. 4 shows that algorithm 4 requires 3 points and 2 lines, 
but algorithm 1 requires 12 points and 6 lines for lossless 
representation of an n-D point. Algorithm 2 requires 6 points 
and 5 lines, and Algorithm 3 requires 7 points and 6 lines.  In 
general, Algorithm 4 (GLC-CC) requires two times less points 
and lines than algorithms 1-3. This is a fundamental advantage 
of GLC-CC algorithm from human cognitive viewpoint, 
because it simplifies pattern discovery by a naked eye. Below 
we present algorithms 1 and 4 more formally as a set of steps 
for graph generation. 

Basic GLC graph construction algorithm (GLC-B) 

      Step 1: Build GLC (see Fig. 5a for an example with n=6). 

      Step 2: Select an n-D point, e.g., (7, 5, 6, 5, 6, 2).  

Step 3: For each i (i=1:n) locate value xi in the coordinate 
Xi  (see Fig. 4a for an example), and define n vectors xi of 
length xi from the origin of Xi that we denote as Oi.  

GLC-CC graph construction algorithm 

      Step 1:  Construct vectors {xi} by using basic GLC-B 
algorithm. 

      Step 2:  Compute the sum of vectors x1 and x2, x12=x1+x2 
and then compute the point P1=O1+ x12.  Next compute the sum 
of vectors x3 and x4, x34=x1+x2 and the point P2=P1+x34.  Repeat 
this process by computing P3=P2+x56 and for all next i. For 
even n the last point is Pn/2=Pn/2-1+xn-1,n  (See Fig. 4d), for odd n 
the last point is P(n+1)/2=P(n+1/2)-1+2xn.  

      Step 3: Build an oriented graph by connecting points {P}: 
P1=>P2=>…Pi-1=>Pi…=> … Pn. This graph can be closed by 
adding edge Pn=> P1 . 

     Statement.  The graph constructed by the GLC-CC 
algorithm has one-to-one mapping to n-D point X=(x1,x2,…xn) 
and has less than a half of the nodes and edges than GLC-PC 
and GLC-SC.   

     Proof. The point P1 allows us to restore x1 by projecting it 
to coordinate X1 as shown in Fig. 4d.  Formally it can be 
computed by representing the coordinate X1 as a vector X1, and 
using a dot product of it with vector (P1-O1), (P1-O1)•X1. This 
gives us a vector x1. Next, the property P1=O1+ x12= O1+ x1+x2 
allows us to compute x2= P1-O1 - x1.  In the same way by 
projecting point P2 to X3,  we get x3 and then using 
P2=P1+x34=P1+x3 +x4 we restore x4= P2-P1- x3. These steps are 
continued for all points Pi until all xi are restored. The property 
of less than a half of the nodes and edges in GLC-CC, relative 
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to GLC-PC and GLC-SC, follows directly from their 
definitions.  Fig. 4 illustrates this property.    

      So far we had shown a cognitive advantage of the GLC-CC 
representation, which is its twice smaller footprint in 2-D, 
relative to GLC-PC and GLC-SC. This leads to much smaller 
occlusion when multiple n-D data are represented in 2-D. 
Below we show its other advantage – the ability to represent 
losslessly any n-D point X=(x1, x2,…, xn) as a single 2–D point 
instead of a graph. The algorithm to produce this 
representation will be called the Single Point (SP) algorithm  

Steps of the Single Point algorithm. 

      Step 1:  Select an arbitrary 2-D point A = (a1,a2) on the 
plane. This point will be called the anchor 2-D point. Then 
select the n-D point (x1, x2,…, xn)  that will be called the base 
n-D point. Next select a set of positive constants c1,c2,…,cn 
that will be used a lengths of coordinates X1,X2,…,Xn.  

      Step 2:  Compute 2-D points O1 = (a1-x1,a2-x2) and            
E1 = (a1-x1+c1, a2-x2). Coordinate line X1 is defined as vector 
(O1, E1).    

      Step 3: Define points O2 = O1 and E2 = (a1-x1, a2-x2+c2). 
Coordinate line X2 is defined as a vector (O2, E2).      

      Step 4:  Repeat steps 2 and 3 for all other coordinates to 
build the coordinate system X1,X2,…,Xn. 

     This algorithm creates a Generalized Shifted Paired 
Coordinates (GSPC) system, where each next pair of 
coordinates is drawn in the shifted Cartesian coordinates. 
These coordinates are defined by parameters which are 
respective components of a base n-D point X and 2-D anchor 
point A.  See Fig. 5. 

 
Fig. 5. 6-D points (3,3,2,6,2,4) and (2,4,1,7,3,5) in X1-X6 coordinate system 
build using point (2,4,1,7,3,5) as an anchor. 

      Statement. In the coordinate system X1,X2,…,Xn 
constructed by the Single Point algorithm with the given base 
n-D point X=(x1, x2,,.., xn) and anchor 2-D point A, the n-D 
point X is mapped one-to-one to a single 2-D point A by GLC-
CC algorithm.  

       Proof.  Consider coordinate X1 and a point located on X1 
at the distance x1 from O1.  According to Step 2 of SP 
algorithm O1  =  (a1-x1,a2-x2). Thus it is the point (a1-x1+x1,a2-
x2)= (a1,a2-x2).  It is projection of pair (x1,x2) to X1 coordinate. 
Similarly consider coordinate X2 and a point located on X2 at 
the distance x2 from O1.   

 According to Step 2 of SP algorithm O2=(a1-x1,a2-x2). Thus 
it is the point (a1-x1,a2-x2+x2)=(a1-x1,a2). It is projection of pair 
(x1,x2) to X2 coordinate. Therefore, pair (x1,x2) is represented in 
X1,X2 coordinate system as (a1,a2).  In the same way the pair 
(x3,x4) is also mapped to the point (a1,a2). The repeat of this 
reasoning for all next pairs (xi,xi+1)  will match them to the 
same point (a1,a2) too. This concludes the proof. See Fig. 5 that 
illustrates this proof for a 6-D point (2,4,1,7,3,5).   

 Another advantage of the combination of GLC-CC and SP 
algorithms is that all n-D points of an n-D hypercube around a 
given base n-D point X=(x1,x2,…,xn)  are mapped to graphs 
that located within a square defined by the square algorithm 
defined below.  

 In other words informally, n-D locality is converted to 2-D 
locality and wise versa, or, an n-D point Y is close to the base 
n-D point X if and only if the graph of Y is close to 2-D anchor 
point A.  

Steps of Square algorithm  

     Step 1: Construct a hyper-cube H with center at the base 
point X=(x1,x2,…,xn) and distance d to its faces. Respectively 
2n nodes N of this hypercube are (x1+αd,x2+αd,…,xn+αd), 
where  α = 1 or α = -1 depending on the node, e.g.,   
(x1+d,x2+d,…,xn+d), (x1-d,x2-d,…,xn-d), (x1+d,x2-d,…,xn-d).  

     Step 2: Construct a square S around point (a1,a2) with 
corners: (a1+d,a2+d), (a1+d,a2-d), (a1-d,a2+d), (a1-d,a2-d).    

     Statement (locality statement). All graphs N that represent 
nodes of hypercube H are within square S.  

     Proof. Consider the n-D node (x1+d,x2+d,…,xn+d) of H 
where d is added to all coordinates of the n-D point X. This 
node is mapped to the 2-D point (a1+d,a2+d) which is a corner 
of the square S. Similarly the node (x1-d,x2-d,…,xn-d) of H 
where d is subtracted from  all coordinates  of X is mapped to 
the 2-D point  (a1-d,a2-d) which is another corner of the square 
S.  In the same way the n-D node of the hypercube that 
contains pairs (x1+d,x2-d), (x3+d,x4-d),…, (xi+d,xi+1-d),…, (xn-

1+d,xn-d)  i.e., with positive d for odd coordinates (X1,X3,…) 
and negative d for even  coordinates (X2, X4, ….) is mapped to 
the 2-D point (a1+d,a2-d). Similarly, a node with alternation of 
positive and negative d in all such pairs    (xi-d,xi+1+d) will be 
mapped to  (a1-d,a2+d).  Both these points are also corners of 
the square S. 

      If an n-D node of H includes two pairs such as (xi+d,xi+1+d)  
and (xj+d,xj+1-d) then it is mapped to the graph that contains 
two   2-D nodes (a1+d,a2+d) and (a1+d,a2-d) that are corners of 
the square S.  Similarly if an n-D node of H includes two other 
pairs  (xk-d,xk+1+d)  and (xm-d,xm+1-d)   it is mapped to the 
graph that contains two 2-D nodes (a1-d,a2+d) and (a1-d,a2-d) 
that are two other corners of the square S. At most a hypercube 
n-D node has all these four types of pairs that can be present 
several times in it, and respectively all of them will be mapped 
to four corners of the 2-D square S.  

These corners are 2-D nodes of the graph that represents this n-
D node of the hypercube. Respectively, all edges of this graph 
will be within square S.  Any other n-D point Y of the 
hypercube H has at least one coordinate that is less than this 
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745
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coordinate for some node Q of this hypercube. For example,   
let y1<q1 and yi=qi  for all other i then  all pairs (yi,yi+1), but the 
first pair (y1,y2) will be mapped to the corners of the square S. 
The first pair (y1,y2) will be mapped to the 2-D point, which is 
inside of the square S because y1<q1.  This concludes the proof. 
Figures 6 and 7 illustrate this statement and its proof.   

   
Fig. 6. Data in Parameterized Shifted Paired Coordinates.  Blue dots are 
corners of the square S that contains all graphs N of all n-D points of 
hypercube H for 6-D base point (2,4,1,7,3,5) with distance 1 from this base 
point. 
 

      

Fig. 7. Data in Parameterized Shifted Paired Coordinates. Blue dots are corners 
of the square S that contains all graphs N of all n-D points of hypercube H for 
6-D base point (2,4,1,7,-3,5) with distance 1 from this base point. 
 
      Both Collocated Paired Coordinates and Parameterized 
Shifted Paired Coordinates are lossless, and represent similar 
n-D point as similar 2-D graphs, i.e., 2-D nodes of similar n-
D points are located closely as Figures 8 and 9 illustrate. 
 
      Fig. 8 shows an example of 4-D data of two classes in 
Collocated Paired Coordinates in blue and green ellipses. Fig. 9  
shows data from Fig. 8 in the Parameterized Shifted Paired 
Coordinates with 4-D point (3, 13,13,2) from the green class as 
the base point for parameterized shift.  
 
Both Figs 8 and 9 show the separation of two classes, but in 
Fig. 9, the separation between these blue and green classes is 
much simpler than in Fig. 8. This is a demonstration of the 
promising advantages of parameterized shifted coordinates to 
simplify visual patterns of n-D data in 2-D in tasks such as 
clustering and supervised classification.  
 
This gives the direction for future studies to solve a major 
challenge. This challenge is finding conditions where this 

empirical observation can be converted into the provable 
property of simpler and less overlapped 2-D representation of 
non-intersecting hyper-ellipses, hyper-rectangles, and other 
shapes in n-D.      

 
Fig.8. 4-D data of two classes in Collocated Paired Coordinates shown in 
blue and green ellipses.  

 
Fig.9. 4-D data of two classes in Parameterized Shifted Paired Coordinates. 

 

V.          REAL DATA VISUALIZATION 
      Fig. 10 shows the results of the comparison of all four 
coordinates for Iris data [4] that contain 150 4-D iris records. 
In contract with Parallel Coordinates (Fig. 10d), the new 
Collocated Paired visualizations (Fig.10abc) practically have 
no overlap for these data.         
      The iris-setosa class is clearly separated from the other 
two classes in these new visualizations. Note that these 
visualizations need only one 2-D segment to represent a 4-D 
data record. In contrast the Parallel Coordinates require three 
segments per 4-D record. The larger number of segments leads 
to more overlaps among lines in parallel coordinates. Other 
successful experiments with real world data are presented in 
[6,7]. 
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(a) Collocated Paired Coordinates (b) Anchored Paired Coordinates.  
 
 
 
 
 
 

 

(c) Shifted Paired Coordinates (d) Parallel Coordinates 
Figure 10. Iris data (red Iris-setosa class) 

VI. SUPER-INTELLIGENCE FOR HIGH-DIMENSIONAL DATA 
The results presented above create an exciting opportunity 

for progress in super-intelligence studies. While significant 
progress in AI, CI and Machine Leaning  improved human 
abilities to discover patterns in n-D data the direct human 
cognitive abilities to do this with a naked eye are extremely 
limited to relatively small  2-D and 3-D datasets.        

Lifting this human cognitive limitation is in a drastic 
contrast with the opposite goal of reaching human-level 
machine intelligence for human abilities, which is the goal of 
other aspects of AI, CI, and Cognitive Science. This opposite 
goal is deciphering the brain’s existing cognitive abilities and 
mimicking human intelligence that use a naked eye very 
successfully to recognize and discover visual patterns, e.g., 
faces and facial expressions, in our physical 3-D world.    

Thus we need both the deciphering of the brain and the 
enhancing of it to be able to deal with abstract high-
dimensional data as it does with 2-D and 3-D data. Compare it 
to building a machine that will fly as a bird. It is difficult to 
decipher the mechanism of bird flying. The history of aviation 
had shown that direct attempts to mimic it failed many times.   

Next, the machine that intends only to mimic a flying bird 
will be limited. It will not fly to the Moon and Planets. For 
flying that far a machine with super-bird flying capabilities is 
needed. Similarly deciphering brain’s ability to work visually 
with 2-D data hardly will give us a way to build a super-
intelligence to deal with large abstract n-D data. This is a 
separate and very challenging task. Evolution has developed 
our brain in a particular form to adapt to a particular physical 
3-D environment that did not include   abstract high-
dimensional data (n-D data) to be analyzed until the very 
recent Big data era.  

This separate task requires ideas beyond what is on the 
surface when humans solve their typical cognitive tasks in 2-D 

and 3-D. In the same way exploring how a bird is flying 
hardly will help to build a rocket to fly to the Moon. For the 
flight to the Moon we need to discover more general flying 
principles. Similarly for dealing with Big n-D data we need to 
discover more general cognitive principles than we use for    
2-D and 3-D data.  

Is it always more difficult to discover more general 
principles than more specific ones?  The history of the science 
tells us that it is not always the case. The modern flight theory 
that includes the propulsion theory and aerodynamics explains 
not only bird flight, but also rocket and aircraft flights. 
However this more general theory does not tell us anything 
about the physiology of bird flight at the level of muscles and 
the bird brain control of the flight. Thus higher generality does 
not mean abilities to explain all aspects of the bird flight.  
However it can help to discover and understand a mechanism 
of other related activities. For instance, the propulsion theory 
allows the understanding of an octopus motion. In our case it 
is discovering cognitive principles to deal with n-D data.  

This brings us to the important point that for understanding 
some fundamental brain cognitive principles it is not 
necessary to study the brain itself first.  Respectively to build 
such more general theory we can work on the task that brain 
does not support well, which is dealing with n-D abstract data. 
The goal is to understand and enhance brain’s capability to 
deal with such n-D data. It includes experiments with the same 
n-D data where a human recognizes or not recognizes the 
pattern depending on 2-D lossless representation of these n-D 
data.  These experiments can tell about human abstract pattern 
recognition abilities providing data to build a cognitive model 
in a form of a discrimination function that separates 2-D 
lossless representations of n-D data.  

After a discrimination function is built, the next question 
is: “What is the mental process in the brain behind this ability 
or inability?” The common approach in such tasks is 
collecting and analyzing the functional MRI data when the 
task is solved by subjects. In [18] functional MRI was used to 
measure activity in a higher object processing area, the lateral 
occipital complex, and in primary visual cortex in response to 
visual elements that were either grouped into objects or 
randomly arranged. These authors observed significant 
activity increases in the lateral occipital complex and 
concurrent reductions of activity in primary visual cortex 
when elements formed coherent shapes. Based on this 
observation they suggested that activity in early visual areas is 
reduced as a result of grouping processes performed in higher 
areas. These findings were used as  an evidence for the brain 
predictive coding models of vision [17,20] that postulate that 
inferences of high-level areas are subtracted from incoming 
sensory information in lower areas through cortical feedback.  
Note that this study was conducted for 2-D and 3-D shapes 
such as shown in Fig. 11 without any relation to n-D data.  

The predictive coding models of vision represent one side 
of two fundamental alternatives: local and distributed 
representation models/hypotheses for the brain to be 
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biologically-adequate representations for observed high-level 
structures and cognitively-adequate models. There are several 
distributed representation cognitive models with bottom-up 
and top-down signals [14, 17] including the dynamic logic 
model that we advocate [8] because if its ability to overcome 
combinatorial complexity. On the other hand while current 
deep leaning large Neural Networks may not be biologically-
adequate their applied results are impressive. 

 
Fig. 11. Examples of different stimulus conditions [18] 

              VII.         CONCLUSION AND FUTURE STUDIES 
        This paper described the proposed new algorithms for 
lossless visual representation of high-dimensional data and 
their connections with human super-intelligence challenges. 
We interpret these algorithms as cognitive algorithms that 
enhance human cognitive abilities to deal with modern Big 
data high-dimensional challenges. The paper focused on 
Generalized Shifted Paired Coordinates as a subset of General 
Line Coordinates.  The advantages of these coordinates have 
been shown both mathematically and on the data. These 
advantages guide future studies to solve a major challenge. 
This challenge is finding conditions for a provable property of 
simpler and less overlapped lossless 2-D representation of the 
non-intersecting hyper-ellipses, hyper-rectangles, and other 
shapes in n-D.      

        The advantage of a wide class of General Line 
Coordinates is that it allows multiple different visualizations 
of the same data with the different perceptual and cognitive 
characteristics. This multiplicity increases the chances that 
humans will be able to reveal the hidden n-D patterns in these 
visualizations. It is not realistic to expect that a single 
visualization will do this for all possible data and all humans.     

     A full classification of general line coordinates for 
cognitively efficient n-D data visualization is a task for future 
research as well as deeper links with Machine Learning to be 
able to build visually the learning algorithms using visual 
means in GLC such as Decision Trees. This is an area of 
future studies for the design of more complete processes and 
for expanding to other data mining/machine learning methods.     

 Other future studies include gaze analysis: when humans 
analyze visual representations of abstract n-D data and 
discover n-D patterns. While eyes provide initial input of such 
visual information, visual perception, and cognition deeply 
involve the brain. Therefore the gaze analysis will help to look 
deeper into this complex process. Combining eye tracking 
methodology, mathematical models from different fields, and    
the behavioral information which emerges in the analysis of   
n-D data will be a source of new knowledge of the cognitive 
processes.  This will include future experiments that compare 

observers' performance in discovering n-D data patterns by 
analyzing 2-D graphs as a function of their fixations and 
simulations by computations of these fixations.  

      These future studies will also help to reveal the individual 
variability among the people in their perceptual and cognitive 
abilities for recognizing the abstract forms. These future 
studies will provide a new way to understand visual and 
cognitive perception, as well as improve the accuracy, increase 
efficiency, and decrease the cost of n-D data analysis. 
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