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Sensor Resource Management: Intelligent Multi-
objective Modularized Optimization Methodology and 

Models 

Boris Kovalerchuk1, Leonid Perlovsky2 
1 Dept. Of Compter Science, Central Washington University, USA,   

2 LP Information Technology and Harvard University, USA 

Abstract. The importance of the optimal Sensor Resource Management 
(SRM) problem is growing. The number of Radar, EO/IR, Overhead Persistent Infra-
Red (OPIR), and other sensors with best capabilities, is limited in the stressing tasking 
environment relative to sensing needs. Sensor assets differ significantly in number, 
location, and capability over time.  To determine on which object a sensor should 
collect measurements during the next observation period k, the known algorithms 
favor the object with the expected measurements that would result in the largest gain 
in relative information. We propose a new tasking paradigm OPTIMA for sensors that 
goes beyond information gain. It includes Sensor Resource Analyzer, and the Sensor 
Tasking Algorithm (Tasker), which maintains timing constraints, resolution and geo-
metric differences between sensors relative to tasking requirements on track quality 
and the measurements  of object characterization quality, based on the computational 
intelligence approach of multi-objective optimization, which involves evolutionary 
methods. 

  
Keywords: Sensor Resource Management (SRM), Multi-objective optimization, 
adaptive models, integer linear programming, evolutional computing, dynamic logic, 
optimization under uncertainty. 

1 Introduction 

The configurations of sensor platforms can include dozens of global radars and EO/IR 
sensors (ship-based, sea-based, ground-based, space-based, and air-based) and thou-
sands of local sensors with different bands and capabilities. The challenge and oppor-
tunity of the Sensor Resource Management (SRM) is related to a large difference in  
resolutions, errors and uncertainties of the sensors. There are situations where none of 
the sensors individually can improve certainty/resolution of the object to the required 
level. However, it is possible with assigning a pair of sensors with optimal lines of 
sights to the object. For instance, the range resolution of radars could be about 1 cm, 
but angular resolution could be only 1 km, thus two orthogonal radars could increase 
resolution significantly.  

This leads to the tasks to optimize sensor resource use across assets in real time 
under the operational constraints of each sensor type, and to use for planning. Among 
the common SRM goals are: maximizing available sensor resources for search, opti-



mizing sensor resources for tracking, and, defending better high priority assets in a 
raid environment. 

The SRM goals often contradict each other. Consider typical goals: (i) decreasing 
the overall sensor resource utilization, (ii) increasing the probability that all threat 
objects in a raid are tracked, and (iii) decreasing potential overload of sensors at indi-
vidual platforms/units. The chances that all these goals will not contradict each other 
and all will be satisfied by a particular solution (assignment of sensors) are low. This 
consideration leads to the necessity of multi-objective optimization approach, which 
is pursued in this work using the computational intelligence approach.  

It is possible that the most resource utilization is a full 100% load of N sensors at 
unit A without any room for handling more areas of interests and objects, while only 
10% of N sensors at the unit B are used.  A more even use/allocation/tasking of sen-
sors at units A and B, that decreases potential overload of sensors, may require more 
sensors, say 60% at unit A and 60% at unit B used at time t.  In the first scenario 
(100:10) at some moment unit A may have not enough sensors to defend itself not 
only to track objects of interest, while in the second scenario (60:60) there is a plenty 
room for extra load, but more sensors are used.  This is another reason for mlti-
objective optimization,  

There is extensive literature on sensor resource management [Borndörer, 2012; 
Hall, Llinas, 1997; Hero, Cochran, 2012; Hero. Keucher, Blatt, 2008; Hero, Castanon, 
Cochran, Kastella, 2007; Castanon, 1997; Junji et al, 2011; Kreucher et al, 2007, 
2004-2005, Lambert, Sinno , 2011; Liggins , Hall, 2008; Patsikas, 2007; Perillo, 
Heinzelman, 2004; Smith, Nguyen, 2005-2006; Tian, Bar-Shalom, 2009; Weir, Sokol, 
2009].   

Information gain is one of most actively used approaches in SRM.  The relative in-
formation gain is a scalar measure between the prior and posterior probability densi-
ty functions p(xk|z1:k-1) and p(xk|z1:k ) based on the Renyi o-divergence [Hero, Keucher, 
Blatt, 2008] 

 
To determine on which object a sensor should collect measurements during the 

next observation period k the algorithm in [Lambert, Sinno, 2011] adopts the strategy 
from [Manyika, Durrant-Whyte, 1994; Hero, Keucher. Blatt, 2008] that favor the 
object whose expected measurements would result in the largest gain in relative in-
formation: 

  
where 

 is the expected local information. 



This formulation that selects the object with the largest gain in relative information 
has an important weakness of locality: it computes the increase of certainty of the 
measurement (at time k) of a given object A by applying itself to a single sensor S 
relative to certainty of measurement at time k-1 recorded in the system track 
[Kreucher et al, 2007].   

We may have a situation where none of the sensors individually will improve cer-
tainty/resolution of object to the required level as shown in Fig. 1 (a)-(b). However, 
reaching the required certainty is possible with assigning a pair of sensors (radars) 
with Lines of Sights (LOS) to the object that are close to be orthogonal as Fig. 1 (c) 
shows.  In Fig. 1 the blue ellipse shows the original uncertainty of the location of the 
object at time k-1. The ellipses of uncertainty of the radars R1 and R2 are narrow ellip-
ses that have a long intersections with the blue ellipse of the original uncertainty of 
the object location  as shown in Fig. 1(a) and (b). Fig. 1(c) shows that the area of un-
certainty due to overlap of uncertainty areas for R1 and R2 is much smaller with dra-
matic information gain. Note that individually both radars R1 and R2 equally and ch 
less improve relative information gain used in [Lambert, Sinno, 2011].  

 
 Fig. 1.Information gain with allocation of single radar vs. allocation of two radars to the object 

The proposed approach goes beyond the state of the art described in [Lambert, 
Sinno, 2011] including the powerful idea of learning the parameter a in Renyi o-
divergence. It also overcomes a potential conflict between assignments of the sensors 
to the objects in the independent assignment of “best” sensors for each object. In the 
independent sensor assignment a particular sensor can get conflicting “best” assign-
ments to two or more objects that are at different locations that the sensor cannot cov-
er at the same time. 

In the information gain SRM formulation [Lambert, Sinno, 2011], the state estima-
tion and SRM are tightly coupled. This leads to the complex models and computa-
tional challenges. In addition it is difficult to change one of the components in a tight-
ly coupled formulation. For instance, it is difficult to add more optimization criteria 
beyond information gain and to incorporate the effect of a new interaction between 
the sensors. In general the progress in tracking, discrimination, fusion, and SRM 
technologies is not synchronous. Therefore the tightly coupled formulation makes it 
difficult to integrate these technologies into a more advanced system.  Therefore we 
consider the state estimation itself as an external but connected task to SRM. The 
proposed new sensor tasking system OPTIMA includes a Sensor Resource Analyzer 
and the Sensor Tasking models and algorithms (Tasker). 
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The requirements for the SRM solution are: 

1. Minimize the number of sensors for a given coverage, and maximize the effective-
ness of each sensor given its performance and resource constraints.  

2. Provide dynamic tasking of sensors where multiple sensors cooperate in search, de-
tection, tracking, and identification. 

3. Maximize the probability of successfully covering all threat objects.  

The fusion center can provide requirements for SRM: desired resolution, angle, 
band, level of decrease of uncertain-ties in object characterization, and others. The 
challenge is that requirements (1)-(3) likely contradict each other which requires us-
ing a multi-objective optimization approach. The types of questions that the Sensor 
Resource Analyzer of the OPTIMA system intends to answer are:  

• Will particular configuration C of platforms provide a full coverage of some areas 
of interests A with required capabilities R for tracking and discrimination? 

• What is a minimal configuration C of platforms to provide a full coverage of some 
areas of interests A with required capabilities R for tracking and discrimination? 

• What part of areas of interest A will not be covered at required capabilities R for 
tracking and discrimination if configuration C of platforms will be used?  

 Sensor coverage can be degraded due to multiple reasons at any time. Natural en-
vironments, engagement conditions, high noise background can impact radars and 
EO/IR sensors.  As a result degradation can take multiple forms: inadequate signal to 
noise ratio, degraded specific range cells and azimuthal directions in the Field of 
View (FoV), too much energy on the focal plane of IR sensor, aspects of degradations 
compensated by the sensor itself.   

Reconstructing the scene degradation from this varying information is a challenge.   
As a result inadequate input information can corrupt tracking and discrimination of 
objects. Information collected from widely distributed sensors can be used to deter-
mine areas where and how sensor coverage is degraded to allocate alternate resources 
to compensate.  While individual sensors (EO/IR, Radar) can generally determine 
when a particular portion of the scene is degraded the challenge is in an effective use 
of this information for efficient sensor tasking. We consider tasking sensors in the 
degraded environment as a generalization of the sensor resource management (SRM) 
task for a degraded environment.   This means that input data messages to the 
SRM describe not only normal, but also degraded sensor capabilities and degraded 
environment.  

This paper is organized as follows. Section 2 presents the SRM optimization mod-
els. Section 3 presents translation of tracking and discrimination requirements to flags 
and solution of optimization models using Computational Intelligence techniques. 
The paper concludes with the description of the related and future work.  



2 Approach and Optimization Models  

2.1 OPTIMA system architecture with Computational Intelligence Solution 

This work proposes a new sensor tasking method for both long-time planning and 
for real-time SRM based on Intelligent Multi-objective Modularized Optimization 
Model.  

The SRM system OPTIMA and its context are illustrated in Fig. 2. The OPTIMA 
maintains timing constraints, resolution and geometric differences between the sen-
sors relative to the tasking requirements on track quality and the measurements of 
object characterization quality. The solution is based on the computational intelli-
gence approach that involves evolutionary methods, dynamic logic, and multi-
objective optimization.  

The system design allows a user to select the version of an objective function of 
the minimal configuration such as minimal number of platforms, minimal 
cost/value/capabilities of sensor platforms.  In the version of the model presented 
below, it is assumed that all motions of sensor platforms are known, as well as the 
capabilities (possible degraded) and status of the sensors onboard the platforms.  

The OPTIMA Model involves: 
 
• multiple sensors of different types and with varying resolution and capabili-

ties.  
• sensor locations with respect to the object complex,  
• timing constraints  
• requirements for track quality, and  
• requirements for measurements of object characterization (discrimination) 

quality  
 

 
Fig. 2. Context of Sensor Resource Management 

Tracking and discrimination may require different sensors and these requirements 
can change dynamically. Thus the model is updated with such new input, and the new 
output is produced as it is illustrated in Fig. 2.  
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The uniqueness of this approach is in use of intelligent multi-objective optimization 
of SRM Model with adaptable Integer Linear Programming (ILP) models, Cramer-
Rao Bounds (CRBs) and algorithms accounting for association part of tracking and 
fusion problem. These CRBs able to evaluate object characterization (classification 
features) and therefore object values. Another uniqueness of the approach is in using 
flags within SRM, which encompass all the information external to the main 
goals/task (such as information from tracking algorithms). These flags are readily 
computed from available information or information adaptively estimated in real time. 
These benefits surpass existing state of the art and permit more accurate overall sensor 
coordination.  

 
2.2 Modularized design 

This work follows the modularized design paradigm where tracking, discrimina-
tion, fusion, and SRM as separate, but communicating modules to allow the SRM 
algorithm to work when tracking, discrimination and fusion algorithms are 
changed/upgraded.  

To implement the modularized design, we build a set of integer linear program-
ming (ILP) models described below with both continuous and binary variables that 
extensively use the concept of the flags.  One of the flags is a binary flag, f(ai,sj,t,r). If 
sensor sj is capable of covering/observing area of interest ai at the time interval t with 
the required resolution r, then f(ai,sj,t,r)=1, else f(a,s,t,r)=0. Another flag is a stochas-
tic flag, which is a probability that sensor sj is capable of covering/observing area of 
interest ai at the time interval t with the required resolution r. Flags serve as a mecha-
nism to link tracking, discrimination, fusion modules, models and algorithms with 
SRM optimization models and algorithms.  

The advantage of this approach is that it allows separating: (i) rigorous formula-
tion of the SRM optimization models (objective functions and constraints), (ii) multi-
objective models that combine them, and (iii) feasible and fast computations for solv-
ing these models.   

The OPTIMA system model tasking sensors in the both normal and degraded envi-
ronment that is input data messages represent not only normal, but also degraded 
sensor capabilities and degraded environment description. For instance, instead of 
entering to the SRM systems the normal resolution r of the sensor S another value r-∆ 
is entered. Such generalization means that a set of additional input module/modules 
with appropriate algorithms need to be developed to generate degradations ∆. Such a 
module is shown in Fig.3 as a block with a red frame. Fig. 3 shows also the whole 
modularized architecture of the OPTIMA system.  

This architecture assumes two types of algorithms: (A1) optimal sensor assignment 
for reducing sensor resource utilization using estimated performance and (A2) adap-
tive algorithm for working with the first algorithm to support input of sensor metadata 
including sensor “health” data, tracking, track correlation data, and data fusion data.  
The first algorithm exploits sensor geometry including a possibility that two sensors 
observing the same object (at approximately orthogonal geometry) could produce 
more accurate results in a shorter time. 



The algorithm of the first type solves the problem of optimal sensor assignment. 
The algorithm of the second type provides the input data for the first one allowing 
using tracking and fusion algorithms that are at the level of the Cramer-Rao Bound 
(CRM) which sets up the best possible performance accounting for associations be-
tween sensors, objects, and tracks [Perlovsky 1997]. These algorithms exploit a novel 
technique [Deming, Perlovsky 2007; Perlovsky, Deming, 2013] developed for air-
ground radars. In the case of the degraded environment CRM is computed for the 
degraded sensor environment by using appropriate sensor models in CRB computa-
tion.  

 

 
Fig. 3. Modularized architecture of the SRM OPTIMA system with operation space characteri-
zation 

This architecture combines mathematical techniques (multi-objective optimization 
with analysis of the Pareto border, Integer Liner Programming, Adaptive methods) 
and physical considerations (sensor phenomenology and geometry of locations rela-
tive to objects). It allows addressing contradictory requirements that cannot be ad-
dressed by the classical optimization methods without setting up a tradeoff between 
them in advance. However in the dynamic environment the tradeoff must be dynamic 
as well. Thus the optimization algorithm must adapt to such dynamic environment in 
real time which is proposed in this paper via dynamic updates of input data, looping 
optimization cycles and flexible selection of objective functions.   
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The main mathematical advantage of this architecture in comparison with the 
state of the art is that it decouples tracking and track estimation algorithms/filters 
from the optimization and environment estimation.  The other advantages of a new 
architecture are that it allows:  

(1) a variety of external tracking and discrimination algorithms by compu-
ting “flags” representing external algorithms,  

(2) multiple optimization criteria by selecting/changing modules adapting for 
a particular scenario,  

(3) multiple tradeoffs between multiplicity of optimization criteria in multi-
objective setting providing a mathematically rigorous solutions.     

These advantages make this modular architecture more adaptable and uni-
versal than other architectures, which is important for practical applications.  

The important aspect of modularized design is that it computes flags (parameters of 
optimization models) outside of the optimization module and outside of tracking 
module as well.  This is a buffer idea that has been very successful in many other 
areas including computer architecture design with cache memory as a buffer between 
the primary memory and CPU. Another example is separation/decoupling data from 
computational modules by database management systems.  A user can change/fix the 
computational module without changing database (DB). Similar separation was made 
between a Knowledge Base (KB) and Computational modules (Reasoning Engines) in 
Artificial Intelligence.  

The modular architecture separates the operation space characterization from both 
types of computations: sensor tasking optimization and object tracking and discrimi-
nation. Another advantage of this separation is clearer mathematical formulation of 
the SRM as an optimization task and use of the powerful techniques developed in this 
mathematical area for decades.  

Many other popular SRM approaches are tightly integrated with Information Gain 
(IG) maximization that gives this single criterion dominance over the other criteria.  
Such monocentric approach has fundamental weaknesses. Maximization of the IG can 
contradict to minimization of the number of sensors and to the need to provide rela-
tively even load to different sensors.  

The new approach is free from tight integration while allowing using information 
gain approach too. Information gain criterion is very sensitive to the accuracy of esti-
mates of probability distributions such as covariance matrixes, accuracy of tracking 
data association/correlation and so on. The proposed approach is free from such unre-
alistic assumption too. 

2.3 Computational Intelligence Methodologies 

Biologically-inspired computational intelligence approaches are promising for 
SRM modeling. One of the biological inspirations is coming from similarity between 
ultimate goals of SRM and the foraging/hunting models in mathematical ecology that 
have natural analogy with “hunting” targets. Foraging had already thousands of years 
evolution time that it much longer than SRM evolution.  



Especially interesting here are tradeoffs between time and gain observed in natural 
foraging systems and respective models and objective functions that combines them. 
In one of the models [Verlinden, Wiley 1989; Van Gils, 2005] the predator attempts to 
maximize E/(h+s), where s is the search time involved. For a range of prey, the preda-
tors average intake rate is  

 
                    Eaverage/(haverage+saverage), 

 
where Eaverage is the average energy of all prey items in the diet, haverage is the average 
handling time and saverage is the average search time.  

In terms of SRM models the energy E is in line with a class of gain functions. The 
most interesting part of E is the tradeoff between handling time and search time. The 
weak part of many bio-inspired methods that they do not go further than shallow in-
spiration ending up with algorithms with little interpretation of tradeoffs borrowed 
from other fields like formula Eaverage/(haverage+saverage) above.  

 Beyond the weakness of justification of the optimization criteria the search of the 
optimal solution is also highly heuristic in bio-inspired algorithms. Therefore we fo-
cus on the mathematically rigorous solution as a benchmark for the heuristic solutions 
that may have some benefits of faster computations and simplicity.  

The key idea of the proposed approach is to combine computational intelligence 
techniques (multi-objective optimization based on the Pareto border, Integer Liner 
Programming under uncertainty, and Adaptive Learning methods) with physical con-
siderations (sensor phenomenology and geometry of locations relative to targets).  

The Computational Intelligence methodologies that are applicable to solve SRM 
OPTIMA models are evolutionary computing methods including adaptive multi-
objective optimization that exploit genetic algorithms, colony optimization, particle 
swarm optimization, interval, stochastic and fuzzy optimization, and adaptive dynam-
ic logic of phenomena.  

Contradictory goals of SRM represented by multiple objective functions cannot be 
reached by the classical optimization methods without setting up a tradeoff between 
them and/or constrains in advance. However in the dynamic environment the tradeoff 
must be dynamic as well. Thus the optimization algorithm must learn and adapt to 
such dynamic environment in real time. This is challenging task with the growing 
number of assets, closely spaced objects and real time constrains for the algorithm 
runtime.  

The main idea of the approach is borrowed from the nature -- modularized opti-
mization. Such bio-inspired approach mimics cooperative team hunting/foraging in 
nature with abilities of dynamic learning, adapting and self-tasking.  

The existing models in mathematical ecology [Pastor, 2008] such as Optimal For-
aging Theory(OFT) and its Digestive Rate Model (DRM) of foraging  that are now 
linked to the cumulative prospect theory (Tversky,  Kahneman, Nobel Prize 2002) of 
human decision making under uncertainty are  valuable sources of novel ideas to im-
prove SRM models under conflicting objective functions. In particular, OFT and 
DRM  deal with optimizing the tradeoff between foraging times.   

The OPTIMA architecture assumes two types of algorithms:  



• Algorithms (A1) that provide optimal sensor assignment (including deliberately 
reduced sensor utilization to be able to sensor more objects later) using estimated 
performance including degraded one and  

• Algorithms (A2) that support input of sensor data and metadata to A1 including 
sensor “health” data, tracking, track correlation data, and data fusion data.   

The first class of algorithms exploits sensor geometry including a possibility that 
two sensors observing the same object (at approximately orthogonal geometry) can 
produce more accurate results in a shorter time.       

The algorithm of the first type solves the problem of optimal sensor assignment. 
The algorithm of the second type provides the input data for the first one allowing 
using tracking and fusion algorithms that are at the level of the Cramer-Rao Bound 
(CRM) which sets up the best possible performance accounting for associations be-
tween sensors, objects, and tracks [Perlovsky 1997]. These algorithms exploit a novel 
computational intelligence technique [Deming, Perlovsky 2007; Perlovsky, Deming, 
2013] developed for air-ground radars, which have not been applied to the degraded 
scenarios.  

The proposed SRM methodology for sensor planning includes:  

• simulating different input data/scenarios (including different locations of assets and 
levels of degradation of sensors),  

• observing and analyzing values of all objective functions of interest for best Pareto 
solutions.  

Pareto solutions can be very different, e.g., with maximization of objective func-
tions F1 and F2 the Pareto border may include pairs of their values (0.9, 03) and (08, 
04). In summary the approach consists of:  (1) Intelligent SRM models and algo-
rithms, (2) Translation of tracking and discrimination requirements to flags for sen-
sors in SRM model, (3) SRM model and algorithm for paired sensors.  

2.4 Notation  

Below we introduce the notations:  
• T is a track. 
• G is a object.  
• UT is a track ambiguity descriptor (message) at time t in the form of a model UT 

(t) = 〈AT, ΩT〉, where AT is a set of ambiguity characteristics of the track T and 
ΩT is a set of relations on AT at time t.  

• UG(t) is a object ambiguity descriptor (message) of the object G at time t in the 
form of a model UG = 〈AG, ΩG〉, where AG is a set of ambiguity characteristics of 
the object G and ΩG is a set of relations on AG at time t.  

• The triple E(t)=〈UT(t), UG(t), C(t)〉 is called a sensing environment at time t, 
where C(t) is a sensor model (a set characteristics of the sensors C such as loca-
tions, orientations, FOV, resolution, and others).  

• M(E(t)) is a vector of measures of environment degradation E(t).  



• V(CK) is an environment operator (algorithm) that produces a new environment 
EK(t),  V(CK) = EK.   

• K(E(t) is a tasking operator for sensors (algorithm) at environment E(t), that is 
K assigns a new set characteristics to the sensors CK (sensor model).  In these 
mathematical terms we need to design a tasking operator K to decrease the envi-
ronment degradation that is M(E(t))>M(EK(t+1)).  Below the design of such op-
erator is provided via a set of single-objective Integer Linear Programming (ILP) 
models and multi-objective optimization models on the top of ILP models as out-
lined in Figure 1.    

• {a}j is a set of Areas of Interests  (AOI) that sensor sj can observe at time interval 
t. Each area of interest may contain a Object Complex (TC). For a 
search/scanning sensor only the area can be known,  for a tracking sensor a object 
complex can be known.  aij ∈{a}j is a marked area of interest in {a}j. Only one 
area is marked for each sensor. This marking can have different interpretations 
depending on version of sensor tasking. The examples of interpretations of 
marked areas are: (1) a marked area a1j is the main focus area of sensor sj that is 
assigned by the requirements and tasking objectives, (2) a marked area a2j is an 
area that has the best viewing geometry from sj, (3) a marked area a3j is an area 
that has the best resolution from sj at time interval t, (4) a marked area a4j is an ar-
ea that has the worst resolution from sj at time interval t.   

• r is a resolution of the sensor. Cramer-Rao Bound (CRB) is one of the ways to 
assign value to r, because CRB is the error of localization and tracking of a object 
with the given sensor. CRB gives the best possibly achievable resolution. Also 
CRB is useful for assigning resolution to discriminate RV and decoy. CRB can 
include coordinates and velocities, and in addition, classification features related 
to the classification/discrimination probability.   

• v is a  Field of View (FOV) of a sensor at a particular time.  
• f(ai,sj,t,r) is a binary flag, f(ai,sj,t,r)=1, if sensor sj is capable to cover/observe area 

of interest ai at the time interval t with required resolution r, else f(a,s,t,r)=0.   
• fs(ai,sj,t,r) is a stochastic flag, f(ai,sj,t,r) ∈[0,1]. It is a probability that sensor sj is 

capable to cover/observe area of interest ai at the time interval t with required 
resolution r.  

• p(sj,t,v) is a time to point sensor sj to get FOV v by time t. This requires changing 
its line of sight (LOS).            

• f*(ai,sj,t,r,v) is a binary flag, f*( ai,sj,t,r,v)=1, if f(ai,sj,t,r)=1 and ai is a marked 
area aij of sensor sj at the time interval t within FOV v, else f*(ai,sj,t,r,v)=0. In 
other words, If sensor sj observes several AOIs within FOV v then only the 
marked AOI will get flag f*(ai,sj,t,r,v)=1, other AOI ak within the same FOV v of 
sensor sj will get f*(ak,sj,t,r,v)=0.  This flag will be used in the optimization task 
formulation to minimize the number and cost of required sensors.   

• f*s(ai,sj,t,r,v) is a stochastic flag (probability), f*s( ai,sj,t,r,v) = fs(ai,s,t,r) if and ai 
is a marked area aij of sensor sj at the time interval t within FOV v, else 
f*(ai,sj,t,r,v)=0.  

• {s}i is a set of sensors that can observe AOI ai at time interval t.  
• sij ∈{s}i is a marked sensor in {s}. More than one sensor can be marked for each 

area. This sensor can have different interpretations depending on a version of 



sensor tasking interest. The examples of interpretations of marked sensors are: (1) 
sensors sj that are assigned to AOI ai by the requirements and tasking objectives, 
(2) sensors that have the best viewing geometry to AOI ai, (3) sensors that have 
the best resolution of AOI ai at time interval t, (4) sensors that have the worst res-
olution from sj at time interval t, (5) Aegis radars, and others.    

• {gl(sj)} is a set of binary flags, gk(sj)=1 indicates that sensor sj is of type/category 
gk, else gk(sj)=0. The tasking requirements may include specific types of sensors, 
e.g., g1(sj)=1 can indicate that sj is a staring sensor, g2(sj)=1 indicates that sj is a 
scanning sensor (or scanning mode of the sensor), and g3(sj)=1 indicates that sj is 
a sensor on a specific platform.    

• {hk(sj,sq)} is a set of binary flags, hk(sj,sq)=1 indicates that sensors sj and sq have a 
specific relationship, e.g., h1(sj,sq)=1 can indicate that the angle between their 
LOSs at time t is in the interval [750,1050] that is close to orthogonality.    

• xijt  is a binary variable,  xijt =1 indicates that sensor sj is tasked to observe area ai 
for the time interval t, else  xijt =0.  Finding values of xijt is the goal of optimal 
sensor tasking.   

• {cj} is a set of objective function coefficients.  The interpretation of these coeffi-
cients depends on the specification of the sensor tasking objectives. The exam-
ples of interpretation of {cj} are: (1) costs of the sensors {sj} and their platforms 
(2) pointing time, (4) errors of sensors (e.g., covariance matrixes of LOS), (5) ca-
pability characteristics of sensors such as resolution or sensitivity of the sensors 
(6) information gain that the sensors add relative to the current knowledge of the 
object complexes, and others.   

 
Coefficients of types (1)-(4) lead to minimization models (min of number of sen-

sors, min of cost, min of pointing time, min of errors).  Coefficients of types (5)-(6) 
lead to maximization models (max of capabilities, max of information gain). In es-
sence we have two opposite categories of objective functions: cost (1-4) and gain (5-
6) with wide interpretations of costs and gains.  It is not required to interpret them 
literally. The multi-objective approach will allow seeing the optimal value of each 
objective function in the context of the values of other objective functions before a 
tradeoff between objective functions is made. In contrast the popular weighting ap-
proach combines such objective functions to their weighted sum “in the dark” without 
such analysis 

The Pareto multi-objective SRM model that combines models with these objec-
tive functions allows the analysis of the optimal value of each objective function, in 
the context of the values of other objective functions, before a tradeoff between ob-
jective functions is made. In contrast, the popular weighting approach combines ob-
jective functions into their weighted sum “in the dark” without such an analysis. The 
detailed elaboration of multi-objective SRM model is a topic of a separate paper. 

2.5 ILP Models for time t 

Consider optimization objective functions for a fixed time: 
 



𝑒𝑥𝑡��𝑐𝑗 ∙ 𝑓∗�𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟, 𝑣� ∙ 𝑥𝑖𝑗𝑡

𝑚

𝑗=1

𝑛

𝑖=1

 

 
where ext (extremum) stands for max or min with the constraints presented below. 

 
 Coverage constraints (all areas of interest {ai} must be covered at least by one 
sensor):  

 

�𝑓(𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟) ∙ 𝑥𝑖𝑗𝑡

𝑚

𝑗=1

≥ 1,     𝑖 = 1,2, … ,𝑁 

   
  Constrains (all variables that assign sensors to areas at time t must be binary; sen-

sor either assigned or not to the AOI): 
 
             𝑥𝑖𝑗𝑡 ∈ {0,1},           𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … ,𝑀  
 
 Sensor types constraints (sensors of all required types g1,g2,...,gK must be used): 
 
     ∑ 𝑥𝑖𝑗𝑡𝑗: 𝑔𝑘�𝑠𝑗�=1 ≥ 1, 𝑖 = 1,2, … ,𝑁, 𝑘 = 1,2, … ,𝐾 
 
Sensor relationship constraints (sensors with all required relations h1,h2,...,hL must 

be used in required quantities Hil for each AOI ai),  
 
     ∑ 𝑥𝑖𝑗𝑡𝑗: ℎ𝑙�𝑠𝑗,𝑠𝑞�=1 ≥ 𝐻𝑖𝑙 , 𝑖 = 1,2, … ,𝑁, 𝑙 = 1,2, … , 𝐿 
 
If {cj} are costs of observing all areas ai with object complexes, then we use the 

first objective function and minimize the total cost of observation under constraints. 
This will provide the least expensive solution under constraints. If costs of all sensors 
are considered to be equal then in fact this objective function minimizes the total 
number of sensors. Similarly if {cj} are capabilities of the sensors, then we minimize 
total capabilities under constraints.  

If {cj} are information gains then we use the second objective function and maxim-
ize the total information gain. Flags 𝑓∗(𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟, 𝑣) in the objective function allow to 
optimize the use of sensors for the situations when some individual sensors observe 
several object complexes within a single FOV avoiding double counting such sensors.   

The coverage constraints require that at least one sensor will be tasked to ob-
serve/cover each area ai with the required resolution of observation. The sensor type 
constraints require that at least one sensor of each required type will be used. These 
sensor type constraints can be generalized by substituting 1 on the right side of the 
inequality with another required number of sensors of type gk.  

The relationship constraints allow the incorporation into the optimization model of 
multiple desired geometric relationships between the locations of sensors and objects, 
such as orthogonality relative to the object.  If there are no sufficient resources to 



track each objects with two sensors, then we can choose which objects require two 
sensors, and which will be tracked with one sensor.  The models also allow dedicating 
only a small amount of time of the second sensor for tracking the same object, which 
significantly increases the resolution in terms of Cramer-Rao Bounds (CRB) as a 
function of two parameters: time on object for a sensor from platform 1, and time on 
object for a sensor from platform 2. This optimization framework allows highly mod-
ular SRM where some set of modules is responsible for computing all flags and up-
dating them.  

2.6 ILP Model for larger time interval 

The optimization model described above assumes a short time interval where all 
flags do not change their values significantly. For the larger time intervals this as-
sumption is not true, the values of flags change dynamically within larger time inter-
vals. This leads to the model modification with additional summation for all time 
moments from t=1 to T: 

 
 Objective functions for a longer time interval: 
 

𝑒𝑥𝑡���𝑐𝑗 ∙ 𝑓∗�𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟, 𝑣� ∙ 𝑥𝑖𝑗𝑡

𝑚

𝑗=1

𝑛

𝑖=1

𝑇

𝑡=1

 

 
with the constraints presented below. If {cj} are costs of observing all areas ai with 
object complexes, then we use the first objective function and minimize the total cost 
of observation under constraints. This provides the least expensive solution under 
constraints. If costs of all sensors are considered to be equal then in fact this objective 
function minimizes the total number of sensors. Similarly if {cj} are capabilities of 
the sensors, then we minimize total capabilities under constraints.  
     If {cj} are information gains then we use the second objective function and max-
imize the total information gain. Flags 𝑓∗(𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟, 𝑣) in the objective function allow 
optimizing the use of sensors for the situations when some individual sensors observe 
several object complexes within a single FOV avoiding double counting such sensors.   

Coverage constraints (all areas of interest {ai} must be covered at least by one sen-
sor): 

  
   ∑ 𝑓(𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟) ∙ 𝑥𝑖𝑗𝑡𝑚

𝑗=1 ≥ 1,     𝑖 = 1,2, … ,𝑁, 𝑡 = 1.2. , , ,𝑇 
 
Binary constrains (all variables that assign sensors to areas at time t must be bina-

ry; sensor either assigned or not to the AOI): 
 
 𝑥𝑖𝑗𝑡 ∈ {0,1},    𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … ,𝑀,   𝑡 = 1.2. , , ,𝑇 

 
 Sensor types constraints (sensors of all required types g1, g2,...,gK must be used): 
 



� 𝑥𝑖𝑗𝑡
𝑗: 𝑔𝑘�𝑠𝑗�=1

≥ 1, 𝑖 = 1,2, … ,𝑁, 𝑘 = 1,2, … ,𝐾, 𝑡 = 1.2. , , ,𝑇 

 
Sensor relationship constraints (sensors with all required relations h1,h2,...,hL must 

be used in required quantities Hil for each AOI ai),  
 

� 𝑥𝑖𝑗𝑡
𝑗: ℎ𝑙�𝑠𝑗,𝑠𝑞�=1

≥ 𝐻𝑖𝑙 , 𝑖 = 1,2, … ,𝑁, 𝑙 = 1,2, … , 𝐿, 𝑡 = 1, … ,𝑇 

 
The coverage constraints require that at least one sensor will be tasked to ob-

serve/cover each area ai, with the required resolution of observation. The sensor type 
constraints require that at least one sensor of each required type will be used. These 
sensor type constraints can be generalized by substituting 1 on the right side of the 
inequality by another required number of sensors of type gk. 

The relationship constraints allow incorporating into the optimization model the 
multiple desired geometric relationships between locations of sensors and objects, 
such as orthogonality.  If there are no sufficient resources to track each of the objects 
with two radars, then the algorithm selects objects requiring two sensors, using at-
tained accuracy and object classifications.  The model also allows dedicating only a 
small amount of time of the second radar for tracking the same object, which will also 
significantly increase track resolution and object characterization. 
     This optimization framework allows the highly modular SRM using modules that 
compute flags.  

2.7 Stochastic ILP Model for larger time interval 

The optimization models described above assume that deterministic flags in the ob-
jective functions. Below we present stochastic versions of objective function that can 
explicitly capture uncertainty of the operation space situation. It requires changing 
deterministic flags f* to stochastic flags f*s in objective functions and constraints:  

 

𝑒𝑥𝑡���𝑐𝑗 ∙ 𝑓𝑠∗(𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟, 𝑣) ∙ 𝑥𝑖𝑗𝑡

𝑀

𝑗=1

𝑁

𝑖=1

𝑇

𝑡=1

 

 
with the constraints presented below. 

 
Coverage constraints (all areas of interest {ai} must be covered with confidence Fi 

or greater:  
 

�𝑓𝑠∗�𝑎𝑖 , 𝑠𝑗 , 𝑡, 𝑟, 𝑣� ∙ 𝑥𝑖𝑗𝑡

𝑚

𝑗=1

≥ 𝐹𝑖 ,     𝑖 = 1,2, … ,𝑁, 𝑡 = 1.2. , , ,𝑇 

  



Binary constrains (all variables that assign sensors to areas at time t must be bina-
ry; sensor either assigned or not to the AOI): 

 
                 𝑥𝑖𝑗𝑡 ∈ {0,1},           𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … ,𝑀,   𝑡 = 1.2. , , ,𝑇 
 
Sensor relationship constraints (sensors with all required relations h1,h2,...,hL must 

be used in required quantities Hil for each AOI ai),  
 

� 𝑥𝑖𝑗𝑡
𝑗: ℎ𝑙�𝑠𝑗,𝑠𝑞�=1

≥ 𝐻𝑖𝑙 ,   

𝑖 = 1,2, … ,𝑁,   𝑙 = 1,2, … , 𝐿 , 𝑡 = 1, … ,𝑇 
 
 Sensor relationship constraints (sensors with all required relations h1,h2,...,hL must 

be used): 
� 𝑥𝑖𝑗𝑡

𝑗: ℎ𝑙�𝑠𝑗,𝑠𝑞�=1

≥ 1,  

 
 𝑖 = 1,2, … ,𝑁, 𝑙 = 1,2, … , 𝐿, t=1,2,…,T 

2.8 Sensor message constructs and operation space reconstruction 

The algorithm for sensor message constructs is as follows: 
1. Select the sensor composition (e.g., two radars of one type, two radars of another 

type, and a constellation of 12 EO/IR sensors). 
2. Select a representative operation scenario with sensors listed in (1) above.  
Describe these sensors in terms of:  

a. UT (track ambiguity descriptor/ message) at time t in the form of a mod-
el UT (t) = 〈AT, ΩT〉, where AT is a set of ambiguity characteristics of the 
track T and ΩT is a set of relations on AT  at time t;  

b. UG(t) (object ambiguity descriptor/message) of the object G at time t in 
the form of a model UG = 〈AG, ΩG〉, where AG is a set of ambiguity 
characteristics of  object G and ΩG is a set of relations on AG at time t;  

c. E(t)=〈UT(t), UG(t), C(t)〉 triple (sensing environment at time t), where 
C(t) is a sensor model (a set characteristics of the sensors C such as lo-
cations, orientations, FOV, resolution, “health”, and others);  

d. M(E(t)) (vector of measures of environment degradation E(t)); 
e. V(CK) (environment operator/algorithm) that produces a new environ-

ment EK(t),  V(CK) = EK.   
3. Describe the items listed in step 2 in the form of messages with a specific for-

mat.       
 
The example of the messages going to the sensing environment at time t, 

E(t)=〈UT(t), UG(t), C(t)〉 is a binary or numeric flag fEnergy that is too much energy are 
on the focal plane. It is  accompanied by additional flags that indicate the conse-



quences of this degradation such as fSNR that indicates the decreased SNR, fdetection that 
indicates decreased detection sensitivity, frange that indicates that the range is uncer-
tain, fangle that indicates that the angle and pointing vector are is uncertain.  

In the notation section several flags have been introduced. These flags are used to 
define sensor messages and are parts of the messages.  

The binary flag f(ai,sj,t,r) indicates whether sensor sj is capable to cover/observe 
area ai at the time interval t with required resolution/capability r. This flag is comput-
ed directly for each value of its variables: the identified areas ai, sensor sj, and re-
quired resolution/capability r at time t. LOS and FOV with their errors for sensor sj at 
time t, location of the AOI ai are used to check if a required resolution/capability can 
be reached. If the AOI ai contains a detected moving object then the known dynamic 
properties of the trajectory of the object are used to identify the next location of the 
AIO ai and to compute flag f for time t+1.  These properties are derived from the ex-
ternal tracking, track correlation algorithms. Similarly each sensor resolution relative 
to objects are derived, other capabilities and their adequacy relative to required ones 
are computed.  

The flag f*(ai,sj,t,r,v) is directly computed by the algorithm from f(ai,sj,t,r), when 
an area a is marked for a sensor sj. The marking of the area is identified from tasking 
requirements and tasking doctrine.  Flags {gk(sj)} that indicate types of sensors are 
computed from the database of specifications of  sensors. Relations flags are comput-
ed based on the definitions of the relations. In some cases all flags are specified in 
advance. In other cases these flags are computed to achieve the required resolution of 
the sensor system. This includes Monte-Carlo Simulation and Cramer Rao Bounds 
(CRB). The CRBs are computed for each object and sensor, as well as for each object 
and a pair of good and degraded sensors as required. If required it is done by using 
tracking and fusion algorithms outlined below.    

These flags can tell a story: ‘we were unable to track and/or characterize the object 
without excess ambiguity’. This information is used to guide SRM to find a sensor 
which can view the object complex, from a less impacted viewing angle, or in a wave-
length that is less susceptible to the degrading agent in the SRM models.   

2.9 SRM Model with Orthogonalization  

Consider sensors S1, S2,…, Sn. Assume that for each sensor we know the sensor mod-
el M which includes its location, orientation, and capabilities (FOV, resolution, band, 
response time, and others). Thus we have models M(S1), M(S2),…,M(Sn).  

Assume that there is no single sensor that provides required resolution for the area 
of interest ai. In this situation we search for a pair of sensors (Sk, Sm) that will have the 
angle between their LOSs closer to 900 than any other pair of sensors when pointed to 
the center of ai (See Fig. 4).  In other words, we order all pairs of sensors according to 
the dot products of vectors of LOSs and search for the OPIR sensors with max of dot 
products, 

                      Arg max i=1,n, k=1:n (LOS(Si) · LOS(Sk)) 
 After all these pairs of sensors are found for all areas of interests the algorithm 
checks their consistency that is no sensor assigned to two or more areas. If such in-



consistency is found it is resolved by removing a conflicting sensor from the pair with 
the least value of dot product and assign the best sensor to this pair that is not used yet 
for any object. If the set of such sensors is empty then wait until the busy sensor will 
be released from the area ai, or use the round robin method. 

    

 
           Sensors with current LOSs                               Orthogonality test 

Fig. 4.   Orthogonality test for pairs of sensors 

 
If the center of the area ai is not known or this area is very large then the algorithm 

searches a pair of sensors (Sk, Sm) that has “better” angles between their possible 
LOSs relative to several subareas within area of ai than any other pair of sensors. The 
angles are “better” if they correspond to the largest sets of points, LSP(Sk, Sm) in the 
subarea where the angle between LOS(Sk) and LOS (Sm) is closer to 90o  than for any 
other pair of sensors (“orthogonality”  test).  

This base algorithm can be enhanced to deal with motion of platforms and areas of 
interests.   Specifically the subarea can be selected based on the tracking of the object 
in the area ai as shown in Fig. 4. Tracking by nearly orthogonal sensors such as radars 
and EO/IR brings significant accuracy improvement. 

2.10 Multi-objective SRM optimization  

To resolve the contradictory goals such as decreasing the overall sensor resource 
utilization, increasing the probability that all threat objects are tracked, and decreasing 
potential overload of sensors at individual platforms/units the multi-objective optimi-
zation approach is used.   

The multi-objective optimization model is built on a set of Single-Objective Tasks 
(SOT) as shown on Fig. 1.  Let F1,F2,…,Fn are objective functions of respective sin-
gle-objective SRM tasks. 

The optimal solution of SOT1 provides the value f1 of F1. We also can compute 
values fi1of F2,F3,…, Fn for this solution for SOT1. This produces a vector (f1, f21, 
f31,…fn1). Similarly values fi and associated values fij are produced for all other SOTi 
with objective functions Fi.  Each of these vectors constitutes a vector solution. The 
Pareto border is a set of all vector solutions that cannot be improved.  

Consider an example with two vector solutions {(0.6; 0.2), (0.2; 0.8)} for two ob-
jective functions, F1 and F2 that are maximized. Here the best solution relative to ob-
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jective function F1 is 0.6, but it is very weak (0.2) relative to F2. Similarly, the best 
solution for the F2 is 0.8, but it is very weak (0.2) for F1. A solution (0.5; 0.5) may 
exist and be a good tradeoff between these two solutions. These vectors are a part of 
the Pareto border.  

The advantage of the Pareto approach is that we analyze a much wider set of pos-
sible solutions than a set of “optimal” solutions provided by scalar cost functions such 
as based on information gain [Kreucher et al., 2007]. In essence, it is better to intro-
duce cost functions within the Pareto set than without it. The same Pareto approach 
we use for the discrimination task and for the combination of the tracking and dis-
crimination.  

An innovative approach based on the analysis of T-norms [Kovalerchuk, 2010] al-
lows coming to the optimal solution by combining several objective functions. To 
move from the Pareto boundary to a trade-off solution, multiple fusion (aggregation) 
operators have been proposed. The class of fusion operators used in fuzzy logic for 
membership functions is known as T-norms.  T-norms can distort the Pareto order 
property dissolving the important difference between the nodes [Kovalerchuk, 2010].  
For example, suppose that W= { (0.0; 0.5) , (0.2; 0.8) , (0.6; 0.2) } then the best points 
(Pareto points) are P = { (0.2; 0.8) , (0.6; 0.2) }.  First, we need to know that T-norms 
do not contradict the Pareto optimum. In fact, a T-norm such as popular in fuzzy logic 
min can add new ‘best” points that do not belong to the Pareto optimum.  

Consider   W= { (0.0;0.5) , (0.2;0.8) , (0.6;0.2), (1.0;0.8) ,  (0.9;0.8)}. Here Pareto 
optimum includes only (1.0; 0.8), but the T-norm as minimum gives also (0.9; 0.8) as 
a best point which is wrong. Now we see how the lack of interpretability is translated 
into a lower accuracy of the solution. 

Setting up a trade-off preference relation H between alternative vectors (nodes) in 
the Pareto set must be consistent with meaningful preference of assigning sensor to 
objects.  Unfortunately relation H rarely is known completely. Each T-norm serves as 
a compact approximation of H. However a T-norm can be far away from modeling H 
satisfactory.  It is desirable that T-norms preserve the strict order for all pairs (x,y) 
that is  

(x,y) < (v,u)  ⇒ T(x,y) <T(v,u). 
 
However this is true only for some pairs, e.g.,  
 

(0.3;0.5) < (0.4;0.7) ⇒ min(0.3; 0.5) < min(0.4; 0.7), 
 
but it is not true for  (0.3; 0.5) < (0.4; 0.7), where  min(0.3; 0.5) = min(0.3; 0.7). Thus, 
T-norms can distort the order property dissolving the important difference between 
the nodes.  

We measure this distortion by introducing a Pareto set distortion factor k2 and use 
least distorted T-norms. Factor k2 computes a ratio of two numbers m and h = r(r-
1)/2: where m is the number of unequal pairs of nodes of the lattice that have equal T-
norm values and (2) h= r(r-1)/2 is the total number of different pairs of nodes of lat-
tice L that has r nodes. Next we use the quantified Pareto set distortion factor k3 that 



is modified factor k2 to address the requirement (3) of sufficient power of scale given 
by T-norm [Kovalerchuk, 2010],  
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where r is the same as for k2 and mi is the number of nodes in the i-th  subinterval of 
the lattice L. The i-th component of the sum in k3 gives the number of “glued” pairs 
nodes of the lattice in the subinterval i. Fig. 5 shows lattice distortion factor k1 by 
different T-norms.   

.  
Fig. 5. Distortion factor k1 for considered T-norms 

 
For speeding up computations of the Pareto border, we use the theory of Monotone 

Boolean Functions [Kovalerchuk et al, 1996]. The main idea of cutting the computa-
tion time is finding attributes that are relatively independent and as such they can be 
processed relatively independently in parallel.  

2.11 Degraded sensors and environment  

Helping degraded IR sensor with a single IR sensor.  Fig. 6 shows a case when the 
first EOIR sensor is degraded and the second sensor can be used instead of the first 
one. The second EOIR sensor has a better viewing geometry. However, the first de-
graded EOIR sensor S1 cannot guide the second sensor S2 how to change its FOV, 
because the first sensor has no range information to the object complex. It has only 2-
D directional information of the line of sight (LOS).   

Consider a scenario where at time t sensor S1 observes an Area of interests (AOI) ai 
that contains an object complex. The 3-D center of the ai is already identified. For 
instance, it can be done jointly by this sensor S1 and another sensor S2 that was avail-
able at time t.  At the next time t+1 sensor S1 is downgraded to the level that another 
sensor S3 should substitute it to continue accurately tracking the object complex in aj. 
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The second sensor needs to scan the FOV of the first sensor to find the Area of Inter-
est (AOI) that contains objects.  

   
 
 
 
 
 

 
 

 
 
    
 

 
 

Fig. 6. Situation with a better viewing geometry for the second sensor and lack of guidance 
from the degraded first sensor on the location of the object complex 

Algorithm outline: 
Step 1: Search for a substitute sensor S3 that has the same or very similar capabili-

ties as s1 and similar geometry relative to the AOI aj. It is identified by the thresholds 
on differences in distances and FOVs,  

 
Capab((s1) ≈ Capab(s3),   Dist(s1,s3) < Tdistance ,   diffFOV(s1,s3) < TdiffFOV 
 

Step 2: If Step 1 did not find a sensor S3 that satisfy the requirements of Step 1 then 
the search is conducted under modified relaxed requirements. Sensor S3 should satisfy 
only specific capabilities requirements such as resolution. Let R1 be a resolution that 
sensor S1 provides for area aj. Another sensor can be a more powerful sensor located 
further from aj than S1, but it still can provide resolution R1,    

 
Resolution(S3,aj) ≥ Resolution(S1,aj) = R1.  

 
Additional requirements can be imposed on SNR and on differences in FOV:   
diffFOV(S1,S3) < TdiffFOV. The dynamic adjusting requirements can be modeled in 
accordance with the Dynamic logic process [Kovalerchuk, Perlovsky, Wheeler, 
2012].   

Helping degraded IR sensor by selecting two IR sensors. Consider a degraded 
sensor S1 and needs to be substituted by other sensors and there is no simple solution, 
that is there is no other sensor with very similar or better capabilities that can be 
quickly reoriented to the same area as S1.  The algorithm searches for a pair of sensors 
(Sk, Sm) that are able to substitute sensor S1. The idea of the search algorithm is to find 
(Sk, Sm) with Lines of Sight (LOS) closest to LOS of S1 within 90o limits.  

S1 S2 



 
∀ Si ≠ Sk , Si ≠ Sm   90o ≥ ||LOS(S1)-LOS(Si)|| ≥  ||LOS(S1)-LOS(Sk)||   & 

90o  ≥  ||LOS(S1)-LOS(Si)|| ≥  ||LOS(S1)-LOS(Sm)|| 
 
In other words we order all sensors according to the dot products of vectors of LOS 

and search for the sensors with max of dot products, 
 
                                           Arg max i=2,n (LOS(S1) · LOS(Si)) 
  
In addition a pair of sensors (Sk, Sm) should have “better” angles between their 

possible LOSs relative to LOS(S1) than any other pair of sensors. The angles are “bet-
ter” if they correspond to the largest sets of points, LSP(Sk, Sm), on the LOS(S1) 
where the angle between LOS(Sk) and LOS (Sm) is closer to 90o  than for any other 
pair of sensors (“orthogonality”  test).  

  
Sensors with current LOSs Orthogonality  test 

Fig. 7. Orthogonality test in degraded environment 

Now assume that sensor S1 is degraded partially, that is some its information is 
useful not only its LOS.  We have already assumed that LOS of S1 carries useful in-
formation, e.g., there are some object detections in its FOV with the given LOS. This 
means that it makes sense to continue to observe the environment in the area captured 
by FOV of S1.  Let the additional uncorrupted information from S1 be the Direction to 
the Cluster of Objects (DCT), that is we have vector DCT(S1) in addition to LOS(S1).  
Now we can search for the pair of sensors (Sk, Sm) that have largest sets of points, 
LSP(Sk, Sm) on DCT(S1), not only on the LOS(S1).  This increases the accuracy of the 
information that   (Sk, Sm) provides (see Fig.7).  

If we have an uncorrupted DCT(S1) only in the part of the FOV of S1, then a solu-
tion based on DCT is used in this part of the FOV and the solution based on the  
LOS(S1) is used in the corrupted part of FOV.  In the case of multiple directions to the 
Cluster of Objects for sensor S1 the optimal pairs of sensors are computed for each 
direction.   
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Helping degraded radar by selecting two IRs. Now consider a situation when S1 
is a degraded radar, or a radar that observes a too-dense scene and sensors S2,S3,…,Sn 
are  EOIR sensors that can be used to help or substitute S1, depending on the level of 
degradation or complexity of the scene.  Assume that radar gives 3-D location L of 
the object with acceptable accuracy to point an EOIR sensor.  The algorithm searches 
for the EOIR sensor with LOS that is most close to 900 to the radar LOS, and closest 
to the location L to provide a better object resolution, 

 
Arg min i=2,n (LOS(S1) · LOS(Si)),  Arg min i=2,n (L(T),L(Si)). 

 
For two IRs that we consider here the formulation is similar to Task 3.2 relative to 

orthogonality of IRs. 
Selecting two Radars to help degraded IR. Of the two radars, choose the one the 

LOS of which is closest to 900 to the LOS of IR. If location of the object is too uncer-
tain (from IR data), divide the IR-LOS into two pieces, one - best for the radar 1, and 
part two - best for the radar 2. 
       The worst case is when a degraded sensor S1 does not provide any useful infor-
mation. In this case LOS (S1) is degraded too. This task is equivalent to a general task 
of tasking n-1 sensors and has very little specifics relative to the general sensor man-
agement task to be exploited efficiently. This task is out of the scope of this paper.  

3 Computational Intelligence Solution for SRM Model 

3.1 Exact and heuristic algorithms  

The proposed above ILP SRM models require efficient algorithms to solve them. 
The classical Linear Programming models can be solved by the simplex method for 
relatively large N and M. For instance, 15 OPIR sensors (N=15) and 15 areas of inter-
ests (M=15) lead to 225 variables for each time interval t.   

The proposed ILP SRM tasks are NP-hard problems that cannot be solved exactly 
when the number of parameters is large. For smaller number of parameters multiple 
computational methods solve it exactly [Junger, et al., 2010].  Thus, depending of the 
size of the SRM model and time constraints to solve it (planning or real-time tasking) 
exact, approximate or heuristic methods are needed.  

Multiple generic heuristic can solve ILP SRM tasks: (1) Tabu search, (2) Hill 
climbing, (3) Simulated annealing, (4) Reactive search optimization, (5) Ant colony 
optimization, (6) Hopfield neural networks, (7) Genetic algorithms and others. The 
last three classes of methods are effective Computational Intelligence methods that 
have been successful in SRM [Burgess, Levins, 2003; Hanlon, Cohen, Kivelevitch, 
2015; Severson, Paley 2014; Shea, Kirk, Welchons, 2009] 

The development of specialized algorithm is also advantageous for the SRM to get 
a better performance by taking into account specifics of the IL SRM models. This 
includes using bio-inspired methodologies of Dynamic Logic [Kovalerchuk, 
Perlovsky, Wheeler, 2012; Kovalerchuk, Perlovsky, 2008-2009; Perlovsky,  Deming, 
Ilin,  2011]  



      The exact algorithms to solve SRM task include: (1) cutting plane methods (solv-
ing the LP relaxation and adding linear constraints that drive the solution towards 
being integer without excluding any integer feasible points), (2) variants of the branch 
and bound method (the branch and cut method combines both branch and bound and 
cutting plane methods).  The solutions of the LP relaxations give a worst-case esti-
mate of how far from optimality the returned solution is.  

The relaxation method to solve this SRM task consists of converting this discrete 
Linear Programming (LP) task to the LP task with continuous variables  by substitut-
ing the binary constrains to the constraints where xijt are non-negative numbers lim-
ited by 1 (discrete constraint relaxation),  

 
0 ≤ 𝑥𝑖𝑗𝑡 ≤ 1,               𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … ,𝑀    

  
     This classical LP task can be solved by the simplex method for large N and M. The 
next step is exploring the vicinities of vertices produced by the simplex method. This 
exploration includes finding feasible binary points in the vicinity, computing the val-
ue of the objective function on them and selecting the best ones. The size of the vicin-
ities and the number of simplex vertices to be explored can be adjusted to minimize 
the computations.  

A simple suboptimal version of this approach is to interpret non-integer component 
of the solution, xijt as a confidence measures that sensor sj should be assigned to the 
AOI ai at time t. If such a confidence measure xijt is, say, above 0.8 then we can use 
rounding of xijt to 1 to get an integer solution. While such use of rounding is common-
ly criticized that it does not lead to the optimal solution, but its deviation from the 
optimal non-integer solution can be estimated and a suboptimal reasonable solution 
can be produced for large datasets using classical LP techniques.    

3.2 Generalization of ILP SRM models to uncertain numbers  

The natural generalization is coming from the fact that some coefficients and flags are 
uncertain in ILP SRM models. This uncertainty can be modeled by defining coeffi-
cients/flags as uncertain numbers given as: (1) intervals, (2) probability distributions, 
or (3) fuzzy sets. Respectively it leads to different classes of models and algorithms of 
optimization under uncertainty: interval, stochastic, or fuzzy optimization models and 
algorithms {Kovalerchuk, 1994].   
     In the optimization under uncertainty the key issue is defining and justifying a way 
to sum up uncertain numbers (summands in the ILP formulation). The definition of 
the sum depends on assumptions and goals. Below we consider three categories them.   

Case 1: (classical interval math): All points in [a, b] interval are equally belong to 
this interval. We are interested only in the low and upper limits of the sum: 

            
                           [a, b]+ [c, d] = [a+c, b+d].  
 
Case 2: (discrete pdf math): All discrete points are distributed in [a, b] interval, 

that is for all x and y in [a,b] probabilities p(x) and p(y) are given and independent 



from the discrete pdf on [c, d]. We are interested in the distribution p(w) of sum 
points in the sum interval [a+c, b+d] including most likely sums:  
 
             p(w) = ∑ 𝑝[𝑎,𝑏](x)𝑝[𝑐,𝑑](y)𝑥+𝑦=𝑤    for all x+y=w           

 
Case 3: (fuzzy math): All points in [a, b] are given with fuzzy logic membership 

function m[a,b](x) in [a, b] interval and all points in [c, d] are given with fuzzy logic 
membership function m[c,d](x). We are interested in getting a membership function of 
sum points in [a+c, b+d] interval including a most possible sum. 

Zadeh [Berkeley Initiative on Soft Computing/BISC group, 04/07/2014] asserts 
that case 3 must be solved by applying his extension principle, described in his 1965 
paper, because fuzzy math is based on this principle:   

                      m[a,b]+[c,d](w) = min max (m[a,b](x), m[c,d](y)) 

for all x, y such that x+y=w, where x and y are from [a,b] and [c,d], respectively. The 
discussion at BISC [Zadeh, Kovalerchuk, Piegat, Tschantz and others, 2014] revealed 
disagreement on case 3 because the reference to the extension principle is not suffi-
cient to justify the minmax formula above. This formula has a status of the hypothesis 
in general and in ILP SRM models with uncertain numbers given my membership 
functions in particular. Our approach for the case 3 is an adaptation of the case 2 
[Kovalerchuk, BISC, April 2014].       

3.3 Computation of flags - parameters of ILP Problem 

Computing flags requires translating requirements for tracking in the form of 
track accuracy and uncertainty to the sensor capabilities in terms of flags. The similar 
translation is needed for the discrimination requirements. This translation allows a 
user flexibility to use both measurement information and tacit expert knowledge.  

The binary flag f(ai,sj,t,r) indicates whether sensor sj is capable to cover/observe 
area ai at the time interval t with required resolution/capability r. This flag is comput-
ed directly for each value of its variables: the identified areas ai, sensor sj, and re-
quired resolution/capability r at time t. LOS and FOV with their errors for sensor sj at 
time t, location of the AOI ai are used to check if a required resolution/capability can 
be reached. If the AOI ai contains a detected moving object then the known dynamic 
properties of the trajectory of the object are used to identify the next location of the 
AIO ai and to compute flag f for time t+1.  These properties are derived from the ex-
ternal tracking, track correlation algorithms as outlined in Figure 1. Similarly each 
sensor resolution relative to objects is derived along other required for the model 
characteristics.  

The flag f*(ai,sj,t,r,v) is directly computed from f(ai,sj,t,r), when an area a is 
marked for a sensor sj. The marking of the area is identified from tasking require-
ments and tasking doctrine. Flags {gk(sj)} that indicate types of sensors are computed 
from the database of specifications of  sensors. Relations flags are computed based on 
the definitions of the relations.  



Flags can be assumed known or computed to achieve the required resolution of the 
sensor system. This includes Monte-Carlo Simulation and CRBs. The CRBs is com-
puted for each object and sensor, as well as for each object and a pair of sensors as 
required. It can also be done by using tracking and fusion algorithms [Kovalerchuk, 
2007] and algorithms outlined below.    

3.4 Solutions with CRB and Dynamic Logic  

Lambert and Sinno [2011] discuss in details that significant part of errors in tracking 
and fusion might originate from incorrect associations between sensors and objects; 
and therefore their results using CRBs that do not account for associations are only 
approximate. The proposed OPTIMA system uses CRBs with algorithms for tracking 
and fusion accounting for the association part of these problems. These types of the 
CRBs were obtained in [Perlovsky 1997]. Similarly algorithms optimally accounting 
for the association part of tracking and fusion problems [Perlovsky, Deming, & Ilin 
2011; Perlovsky, Deming 2007, 2013] are used.  

It is well known that the best algorithms currently used for tracking and fusion in 
difficult conditions cannot attain the best theoretically possible performance as speci-
fied by the Cramer-Rao Bounds for given difficult conditions [Perlovsky 1997]. This 
deficiency is due to high computational complexity of current tracking and fusion 
algorithms [Perlovsky 1997]. This limits sensor resource utilization. This fundamental 
difficulty of algorithms currently in use has been overcome by a computational intel-
ligence dynamic logic approach [Perlovsky, Deming, & Ilin 2011; Perlovsky & Dem-
ing, 2013, Kovalerchuk, Perlovsky, 2013].  

Dynamic logic starts not from the actual LP model M, but modifies both the objec-
tive function and constraints of M to produce a model M1, and then solving M1 as a 
solution for M. The full dynamic logic methodology process has multiple stages that 
generate dynamically a sequence of models M1, M2, …, Mn, where only model Mn is 
a solution of M. Models M1,M2,…,Mn-1 provide only intermediate solutions.   

Some algorithms for the ILP problem exploit the general idea, which is a core of 
dynamic logic approach described above. The LP relaxation algorithm is in this cate-
gory, when some constraints are removed and the objective function is modified by 
adding a penalty summand. LP decomposition methods also modify LP models 
[Vanderbeck, Wolsey, 2010]. 

The cutting plane algorithm [Cornuejols, 2008] creates model M2 by adding linear 
constraints (called cuts) to the relaxed model M1 to drive the solution to be integer. 
The relaxed model M1 removes constraints that variables are integers. The cut re-
moves the current non-integer solution from a set of feasible solutions to the relaxa-
tion. This process of constructing new models Mi is repeated until an optimal integer 
solution is found in model Mn. However, these methods do not change the dimension-
ality of the search space and variables beyond converting discrete variables into con-
tinuous ones. The Dynamic Logic approach expands this by pointing out this un-
derused opportunity. This is a fundamentally biologically inspired approach within 
the Computational Intelligence paradigm.   



One of the drawbacks of the heuristic computational intelligence approaches is in 
the difficulties of estimating how far its solution is from the optimal one. Another 
drawback is in the uncertainty of the situation, when this algorithm does not find any 
solution. In this case we do not know whether the optimal solution does not exist or 
just was not found. This is a motivation for developing specialized computational 
intelligence algorithms for SRM integer linear programming models.     

The dynamic logic idea for solving the SRM ILP model is finding some prelimi-
nary candidate solutions then adding more constrains and getting more accurate solu-
tions. In this process we change an optimization criterion to find all feasible solutions 
that are under specified constraints and then solving the task again for the feasible 
solutions under new constraints.  

Within the dynamic logic methodology the original objective function F is not used 
at the beginning of the process as an objective function but as a source to construct a 
new objective function F1.  Similarly, the original constraints C are used to build new 
constraints C1. For instance, we can solve classical LP problem by removing a con-
straints that all variable are binary and then search for the binary solution using the 
classical solution as guidance.  

Similarly the objective function F can be modeled much “rougher” by substituting 
coefficients by their interval estimates, e.g., a=5 is substituted by the interval [4,6] in 
function F1. For instance, if F1 is computed in way where positive coefficients are 
taken with their min value from their interval while negative coefficients are comput-
ed with their max value, we will get a lower estimate for both F and F1. Similarly we 
can get upper estimates for these functions.  In extreme cases if interval of the coeffi-
cient is [0,10] then low limits means removing this coefficient from the constraint, 
which simplifies computations.   

4 Applications,  Related and Future Work  

An idea of distributed network coordination is discussed in [Smith Nguen, 2005, 
Tharmarasa at al., 2011] as a way to minimize communications and increase system 
robustness.  The argument is that in the traditional approach sensors accept tasking 
orders from networked tracking elements that may have only uncertain knowledge 
about sensor’s capability, limitations and other tasks such as self-defense. In particu-
lar, a real-time fuzzy control algorithm in [Smith, Nguyen, 2005, 2006] running on 
each UAV gives the UAV limited autonomy allowing it to change course immediate-
ly without consulting with any other entity. In a similar development a resource man-
ager based on fuzzy logic is optimized by evolutionary algorithms.  

In [Smith, Nguyen 2005-2006] a fuzzy logic resource allocation algorithm enables 
UAVs to automatically cooperate. The algorithm determines the trajectory and points 
each UAV for measurements.  This fuzzy logic model takes into account the UAVs' 
risk, risk tolerance, reliability, mission priority for sampling, fuel limitations, mission 
cost, and other uncertainties.  While the scope of this work differs from our task, ex-
panding our optimization design to accommodate such factors as mission cost and 



related uncertainties is one of the topics of the future work. It is also an important 
direction in further development of fuzzy optimization [Kovalerchuk, 1994].  

The discrete optimization formulation for large-scale sensor selection in decentral-
ized networks is proposed in [Tharmarasa, 2011]. It considers a situation without 
central fusion center. Each Fusion Center (FC) communicates only with the neighbor-
ing FCs. Our model can be expanded for this situation too.  

The methodology and OPTIMA class of SRM optimization models are quite uni-
versal. Therefore, the development and application of multi-sensor fusion systems 
based on these models opens significant opportunities for detection and classification 
in a wide range of areas from bio-surveillance, monitoring, fault diagnostics, medical 
diagnosis, to cargo inspection, inspection of infrastructure, and others.  

Optimization of the wireless sensors and phone communications is one of them to 
increase the efficiency of communications. Others include environment monitoring, 
and management of any business resources: mapping of fires, detecting and mapping 
pollutions, air-quality, water-quality by a network of distributed sensors. Recent acci-
dents with high speed trains motivate development SRM in this area [Junji et al, 
2011]. Maturing and integrating SRM models and algorithms will make solution of 
the above outlined problems more efficient.  
     The resource saving is turned to more accurate monitoring to save electricity, wa-
ter, paper, etc. Networked, temperature sensors can automatically map insulation 
leaks in buildings and reduce energy waste. Temperature sensors, just like radars have 
coverage areas, sensitivity diagrams, etc. The ease of installation leads for the sensors 
to discover each other and communicate their measurements. This requires intelligent 
and adaptive algorithms such as OPTIMA. The same applies to irrigation, humidity, 
insect, soil chemical composition, etc. sensors in agriculture. Large number of low-
cost, solar-powered, mesh-networked humidity and other sensors placed on a planta-
tion can be optimized to help farmers save water, increase crop yields and lower cost.  

5 Conclusion  

Optimal SRM opens the opportunity: (1) to maximize the available sensor resources 
for search, (2) to optimize sensor resources for tracking, and, (3) to defend better the 
high priority assets.  The models and algorithms proposed in this work allow the de-
creasing of the overall sensor resource usage, while increasing the probability that all 
threat objects in a raid are tracked, in addition, target characterization is optimized. 
Our unique approach is in multi-objective SRM optimization model and algorithms, 
as well as in the use of Cramer-Rao Bounds (CRBs), and the algorithms accounting 
for the association part of the tracking and fusion problem. These CRBs allow to 
evaluate target characterization (classification features), and therefore target values. 
Another uniqueness of our approach is in using flags within the SRM, which encom-
pass all of the information external to the main goals of the program (such as infor-
mation from tracking algorithms). These flags are readily computed from the availa-
ble information or information adaptively estimated in real time. These benefits sur-
pass existing state of the art and permit efficient sensor coordination.  
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