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Abstract: Evolution operates on whole genomes through direct rearrangements of genes, 

such as inversions, transpositions, and inverted transpositions, as well as through 

operations, such as duplications, losses, and transfers, that also affect the gene content of 

the genomes. Because these events are rare relative to nucleotide substitutions, gene order 

data offer the possibility of resolving ancient branches in the tree of life; the combination 

of gene order data with sequence data also has the potential to provide more robust 

phylogenetic reconstructions, since each can elucidate evolution at different time scales.  

Distance-corrections greatly improve the accuracy of phylogeny reconstructions from 

DNA sequences, enabling distance-based methods to approach the accuracy of the more 

elaborate methods based on parsimony or likelihood at a fraction of the computational 

cost.  This paper focuses on developing distance correction methods for phylogeny 

reconstruction from whole genomes. The main question we investigate is how to estimate 

evolutionary histories from whole genomes with equal gene content, and we present a 

technique, EDE, that we have developed for this purpose. We study the use of EDE on 

whole genomes with identical gene content, and we explore the accuracy of phylogenies 

inferred using EDE with the neighbor joining and minimum evolution methods under a 

wide range of model conditions. Our study shows that tree reconstruction under these two 

methods is much more accurate when based on EDE distances than when based on other 

distances previously suggested for whole genomes.  

Keywords: distance-based methods, genome rearrangements, neighbor joining, FastME, 

Nadeau-Taylor model, breakpoint, inversion.  



Introduction  

Success in phylogeny reconstruction depends on the qualities of the underlying data and 

the accuracy of the methods of analysis. Gene order changes are attractive characters for 

phylogeny reconstruction because these events are rare, and thus they have the potential 

to provide information about ancient events in evolutionary history (Rokas and Holland 

2000). Gene order changes in mitochondrial (Boore and Brown 1998, Boore 1999) or 

chloroplast genomes (reviewed in Downie and Palmer 1992 and Raubeson and Jansen 

2005) have been utilized as phylogenetic characters. In most cases, a small number of 

changes, perhaps only one, have been characterized and the phylogenetic implications of 

the changes determined. For example, a single 32kb inversion in the chloroplast genome 

supported lycopsids as the basal lineage of vascular plants (Raubeson and Jansen 1992) 

and animal mitochondrial gene orders support the monophyly of Arthropoda (Boore et al. 

1995). However, as more genomic information becomes available, the need for 

computational methods to analyze gene order data will increase.  

There are a variety of methods for reconstructing phylogenies, such as 

distance-based methods, maximum parsimony and maximum likelihood. However, 

except for the distance-based approaches, all are computationally intensive. When 

analyzing gene order data phylogenetically these methods are even more computationally 

intensive than the corresponding problems in sequence-based phylogenetics. Indeed, the 

elementary problem of computing the minimum number of events needed to transform 

one gene order into another (a trivial problem for sequences) is solved only for 

inversions—the best solution of this problem (Bader, Moret and Yan 2001) was the cul-

mination of 10 years of research and several combinatorial breakthroughs. Several new 



methods have been developed for estimating phylogenies from gene order data; see 

Moret et al. (2005) and Moret and Warnow (2005) for detailed surveys. In this paper, we 

focus on distance-based methods for phylogeny reconstruction, largely because they are 

fast, and have running times that grow only in polynomial time relative to the number of 

taxa and genes involved.  

Distance-based phylogeny reconstruction involves two steps: a matrix of 

pair-wise distances is computed, and then a tree is constructed based on the distance 

matrix. The two most widely used distance-based tree reconstruction methods are 

neighbor joining (NJ) and minimum evolution (ME). For these methods to produce 

highly accurate estimates of the evolutionary tree, the distance matrices must be close to 

the matrix of true evolutionary distances; this means that the estimated pair-wise distance 

between any two given taxa should be as close as possible to the number of evolutionary 

events along the tree path that connects the two taxa. Since that distance cannot be 

computed directly, statistical techniques, based upon the assumed model of evolution, are 

used. For example, in a phylogenetic analysis of DNA sequences under the Jukes-Cantor 

model, the p-distance (i.e. the normalized Hamming distance) matrix is first computed, 

and then this distance is “corrected” through the use of the Jukes-Cantor distance 

correction; similar, but more complicated, calculations exist for more complex models of 

evolution. Such corrections are routine in the computation of pair-wise distances between 

DNA sequences; assuming that the model is well chosen, the corrections ensure statistical 

consistency of the distance method, and clearly improve the accuracy of trees estimated 

using distance-based methods (Sourdis and Krimbas 1987, Swofford et al. 1996).  

The first study that used a distance-based method to reconstruct phylogenies from gene 



orders was published by Blanchette, Kunisawa and Sankoff (1999). They conducted a 

phylogenetic analysis of six metazoan groups using NJ applied to a matrix of breakpoint 

distances (BP) defined on a set of mitochondrial genomes. The breakpoint distance 

(Blanchette, Bourque and Sankoff 1997) is the number of gene adjacencies that are 

present in one gene order but not in the other—a measure of the dissimilarity between 

two gene orders rather than a measure of the amount of evolution between the two 

genomes. An alternative measure is the inversion (INV) distance, which is the minimum 

number of inversions needed to transform one gene order into the other. However, as we 

will show, breakpoint and inversion distances are not very accurate, largely because they 

can seriously underestimate evolutionary distances, especially when there is a large num-

ber of evolutionary events. Therefore, the challenge is to develop a method for correcting 

the inversion distance to produce a more accurate estimate of the true evolutionary 

distance.  

In this paper, we investigate a statistically-based technique for estimating 

evolutionary distances between genomes called the “Empirically Derived Estimator” 

(EDE) (Moret et al 2001). This technique corrects the minimum inversion distance 

between two genomes, thus obtaining a more accurate estimate of the number of events 

in their evolutionary history. We study the performance of BP, INV, and EDE distances in 

simulations using both NJ and ME tree reconstruction methods under a variety of model 

settings. Our study establishes that phylogenies reconstructed using EDE distances are 

much more accurate than phylogenies reconstructed using either BP or INV distances, for 

both NJ and ME tree reconstruction methods.  We also find that a new ME 

implementation (FastME) outperforms NJ on these data.  As a result, we find that 



FastME(EDE) provides the most accurate reconstruction of gene order phylogenies 

within the conditions tested in our experiments. 

Methods  

We studied phylogeny reconstruction on whole genomes under the simplifying 

assumption that all genomes have exactly one copy of each gene and that they have 

exactly the same gene content. We focused on circular genomes, although our methods 

can also be applied to linear genomes. We represented each genome by an ordering of 

genes, and used the sign to indicate the strand on which the gene is located. For circular 

genomes, it does not matter which gene we begin with, nor which strand is positive or 

negative. Thus, the circular genome given by the linear ordering (1,2,3,4,5,6,7) is 

equivalent to the linear orderings (2,3,4,5,6,7,1) and (-2,-1,-7,-6,-5,-4,-3) as well as 

numerous other permutations. Each genome comprises one complex character in the 

phylogenetic analysis, which is represented by the signed gene order.  

Because we studied the case where gene content remains constant, we did not 

consider events such as duplications, insertions, or deletions, but restricted ourselves to 

inversions (also called “reversals”) and transpositions. Inversions operate by reversing a 

segment at a location within the genome; thus, the order and strandedness of the genes 

involved change. For example, if we apply an inversion on the segment 2,3 in 

(1,2,3,4,5,6,7), we obtain (1,-3,-2,4,5,6,7). In contrast, a transposition has the effect of 

moving a segment from between two genes to another location (between two other genes). 

This can occur without changing the order or strandedness of the genes within the 

segment (transposition) or with the reversal of order and strandedness of the moved 

segment (inverted transposition). For example, a change of (1,2,3,4,5,6,7) to 



(1,4,2,3,5,6,7) could be explained by a transposition of the segment 2,3 from between 1 

and 4 to between 4 and 5. An inverted transposition of the same segment to the same 

location would result in (1,4,-3,-2,5,6,7). The term “transposition” here is intended only 

to describe this resulting pattern of change; the change does not necessarily result from 

the movement of genomic segments by transposable elements. Inverted transpositions are 

considered distinct from transpositions for computational rather than biological reasons. 

Any transposition event could be explained alternatively by three inversions, whereas an 

inverted transposition can be explained by two inversions.  

We used simulation studies to evaluate the accuracy of EDE relative to other 

distances (INV and BP) for estimating evolutionary distances between genomes affected 

by inversions, transpositions, and inverted transpositions. The details of our methodology 

are described below; here we give a brief outline of the study design. We generated 

model trees under either a uniform distribution or under the birth-death model. We 

simulated the evolution of genomes down the different trees using the GNT model (the 

Generalized Nadeau Taylor, defined below), thus producing synthetic data (genomes) at 

the tips (leaves) of the trees. We then computed distances between these genomes, using 

the various estimators (BP, INV, EDE). Each distance matrix was analyzed using NJ and 

FastME (Desper and Gascuel 2002), producing trees for each matrix. Accuracy of the 

resulting trees was measured relative to the model tree using false negative and false 

positive rates. We explored performance on datasets containing either 40 or 160 genomes 

and either 37 or 120 genes (typical values for mitochondrial and chloroplast genomes, 

respectively), for a variety of settings of the relative probabilities of the three types of 

events (inversions, transpositions and inverted transpositions). Each of these aspects of 



the study is discussed in more detail below.  

 

Model trees  

As the basis of our experiments we produced model trees, where a model tree consists of 

a rooted tree topology and branch lengths, where the branch length indicates the expected 

number of evolutionary events (inversions, transpositions, and inverted transpositions) on 

the branch. The relative probabilities of these different events are given by other 

parameters in the GNT model, and are defined below.  

There are several ways to produce trees with branch lengths, and the choice of technique 

can influence the relative performance of phylogenetic reconstruction methods. We 

therefore studied two techniques for generating random trees: (1) Birth-death trees, with 

rate variation across lineages to deviate the trees away from ultrametricity (i.e., away 

from clocklike behavior), and (2) Uniform distribution on tree topologies, with branch 

lengths drawn from a distribution.  Note that birth-death trees are more balanced (in the 

sense of (Heard 1992), than trees drawn from a uniform distribution. 

  

Birth-death trees  

We generated birth-death model trees through the use of the r8s software (Sanderson 

2003), which produces a rooted binary tree along with branch lengths; these branch 

lengths are ultrametric (i.e., they obey a molecular clock). We now describe how we 

modified the model tree so that it did not fit the molecular clock. First, we selected a 

parameter c. Then, for each branch, we picked a random number s (called the “stretch”) 

where ln(s) was drawn uniformly from the interval [-c,c]; the length of the branch was 



then multiplied by s. Thus, each branch length is multiplied by a potentially different 

random number. This process yields a model tree which is not ultrametric; furthermore, 

by varying the parameter c we can vary the deviation from the molecular clock. For c=8.8 

and 26.1, the expected deviation E[s] from the molecular clock is 2 and 4, respectively. 

Finally, we then rescale all branch lengths (by multiplying all lengths by the same fixed 

value) in order to achieve a target evolutionary diameter D for the tree, where the 

“evolutionary diameter” is the maximum pair-wise path length between taxa in the 

resulting tree. The target diameters were drawn from 0.1n, 0.2n, 0.4n, 0.8n, 1.6n, 2.4n, 

and 3.2n, where n is the number of genes; these resulted in datasets that have maximum 

normalized pair-wise inversion distances ranging from approximately 0.1 up to almost 1, 

which is the maximum possible.  

 

Uniform tree topologies  

Under this approach, we selected tree topologies from the uniform distribution on binary, 

unrooted trees with leaves labeled by 1, 2, ... , m, for m = 40 or 160 (the two tree sizes we 

investigated). We assigned branch lengths to each tree using the following three steps: 1) 

We picked a target diameter D, drawn from 0.1n, 0.2n, 0.4n, 0.8n, 1.6n, 2.4n, and 3.2n, 

where n is the number of genes. 2) We assigned an initial length for each branch by 

drawing integers randomly between 1 and 15. 3) We then multiplied all branch lengths by 

the same constant in order to obtain the selected target diameter. The use of small target 

diameters defines model trees that produce simulated datasets with small maximum 

pair-wise inversion distances, while the use of large target diameters defines model trees 

that produce simulated datasets with maximum pair-wise inversion distances close to n, 



the maximum possible.  

 

The Generalized Nadeau-Taylor model  

We simulated genome evolution on the trees using the Generalized Nadeau-Taylor (GNT) 

model. Under this model, any inversion is equally likely to occur, regardless of where the 

two endpoints are; the same assumption of uniform probability applies to the set of all 

transpositions, and to the set of all inverted transpositions. Each model tree thus has 

parameters wI , wT , and wIT , where wI is the probability that a rearrangement event is an 

inversion, wT is the probability a rearrangement event is a transposition, and wIT is the 

probability that a rearrangement event is an inverted transposition. Because we assumed 

that all events are of these three types, wI + wT + wIT = 1, and so there are two free 

parameters. Given a model tree, we let X(e) be the random variable for the number of 

evolutionary events that takes place on the branch e. We assumed that X(e) is a Poisson 

random variable with mean λe; hence, λe is the length of the branch e, and indicates the 

expected number of events that will occur on branch e. We also assume that events on 

one branch are independent of the events on other branches. Thus, in the GNT model the 

number of parameters is proportional to the number of genomes (i.e., taxa): the length λe 

of each branch e and the triplet wI, wT , wIT. We let GNT(wI,wT ,wIT) denote the set of 

model trees with the triplet wI, wT, wIT.  

We considered three models:  

•  GNT(1,0,0) (inversion-only),  

•  GNT(0.5,0.25,0.25) (half inversions, half transpositions), and  

•  GNT(0,0.5,0.5) (transposition only).  



It would seem reasonable that EDE would perform well under the inversion-only 

model because it is a distance correction based upon an inversion-only simulation; 

similarly, it is reasonable to presume that INV should perform well under inversion-only 

scenarios, though perhaps not as well as EDE. However, it still remains to be seen 

whether EDE performs well for phylogeny estimation in scenarios other than 

inversion-only. The inclusion of these two other models (one with half inversions, and 

one with no inversions) was meant to explicitly test the robustness of EDE.  

 

Distances between genomes  

We compared three genomic distances: BP, INV and EDE. For each distance, we tested 

its accuracy in estimating true evolutionary distance and the accuracy of tree estimation 

based on the distance.  

 

Breakpoint distance  

The first measure proposed for the estimation of evolutionary rearrangement distance 

between genomes was the breakpoint distance (Blanchette et al. 1997). A breakpoint 

occurs between gene g and g’ in genome G’ with respect to genome G if g is not followed 

immediately by g’ in G. As an example, consider the comparison of circular genomes 

G=(1,2,-3,4,5,6,7) and G’=(1,2,3,-7,-6,-5,-4). There is a breakpoint between 3 and 5 in G’, 

since 3 is not followed by 5 in G, but there is no breakpoint between 5 and 4 in G’ since G 

can be equivalently written as (1,-7,-6,-5,-4,3,-2). The breakpoint distance between two 

genomes is the number of breakpoints in one genome with respect to the other, which is 

clearly symmetric. In this example, the breakpoint distance between G and G’ is 3.  



Inversion distance  

The inversion distance between genomes G and G’ is the minimum number of inversions 

needed to transform G into G’ (or vice versa, as it is symmetric). For example, if 

G=(1,2,3,4,5,6,7) and G’=(1,-4,-3,-2,5,-7,-6), then the inversion distance between G and 

G’ is 2, since we can transform G into G’ in two inversions, but not in one. The first 

polynomial-time algorithm for computing this distance was obtained by (Hannenhalli and 

Pevzner 1995), and later improved by Bader et al. (2001) (the latter obtained an optimal 

linear time algorithm).  

 

Our statistically-based distance estimator EDE  

We have developed a statistical technique, called “EDE”, for correcting inversion 

distances. EDE (Moret et al. 2001) is our “empirically derived estimator” because we 

developed this technique based upon data obtained in simulation. The basic structure of 

the EDE distance is described here (a more detailed derivation is given in the Appendix). 

Suppose we have a function f (x) that is the expected normalized inversion distance 

produced by nx random inversions, where n is the number of genes. Then, given two 

genomes, to estimate the actual number of inversions that took place between them we do 

the following: compute their inversion distance, and then use the values computed for the 

function f (x) to look up the number of inversions that would have produced that 

inversion distance (refer to the Appendix for more details). EDE was derived on the basis 

of a simulation study under an inversion-only evolutionary model, in which the number 

of genes ranged from 20 to 160 per genome. Thus, we can expect the estimated 

evolutionary distance to be accurate if the evolutionary process is inversion-only, and if 



the genomes have between 20 and 160 genes (typical values are 37 for mitochondrial, 

and 120 for chloroplasts). But what if the evolutionary process is not inversion-only, and 

may in fact consist only of transpositions? Will distances estimated by EDE still be 

highly accurate? And will phylogenies obtained from EDE distance matrices be highly 

accurate, or will it be better to use some other distance estimation technique, such as the 

breakpoint distance? The study we present in this paper explores these questions using 

simulations under a wide range of model conditions.  

 

Phylogeny reconstruction techniques  

In our study, we used two different tree reconstruction methods, neighbor joining (NJ) 

(Saitou and Nei 1987) and a fast implementation of the minimum evolution method, 

FastME (Desper and Gascuel 2002). Each of these two methods is applied to distance 

matrices obtained using the BP, INV, and EDE distance estimation techniques. We used 

PAUP* (Swofford 2001) to compute the NJ trees. We downloaded the source code of 

FastME from the authors’ website and compiled it using GCC on Debian Linux. Since 

running time was not the criterion by which we compared methods, we were not 

concerned with obtaining the most efficient implementations. However, both methods 

were very fast even on large datasets (160 genomes on 120 genes each).  

 

Performance criteria  

These trees were then compared to the true tree (the model tree minus the zero-event 

branches) for topological accuracy. A reconstructed tree can have two types of errors: 

false positives, which are non-zero length reconstructed branches that are not present in 



the true tree, and false negatives, which are non-zero length branches in the true tree that 

fail to appear in the reconstructed tree. When both the true tree and inferred tree are 

binary, then the number of false positives and the number of false negatives are equal; 

however, in our case, since the model tree may have branches without any changes, the 

true tree may not be fully resolved. Hence, we will report both types of errors.  

The false negative and false positive rates were obtained by dividing the number of false 

negatives and false positives, respectively, by m − 3 (the number of internal branches in a 

binary tree on m taxa). Our experiments examined performance under a range of 

evolutionary rates, and the performance under higher rates of evolution allowed us to 

evaluate whether or not tree reconstruction can be done accurately when every branch is 

expected to have changes on it.  

Experiments  

For each experimental setting we ran the simulation 50 times. We then computed the 

average diameter (maximum pair-wise inversion distance between any two genomes) of 

the 50 replicates, and the false negative and false positive rates of trees produced by the 

different distance-based methods. We report the topological accuracy of the trees we 

obtained, and we explore how that accuracy is impacted by the distance estimator used, 

but also by the different parameters of the model tree, specifically focusing on the 

number of genes, number of genomes, maximum pair-wise inversion distance, and 

relative probability of the different events (inversion, transposition, and inverted 

transposition).  

 



Results  

Accuracy of the true evolutionary distance estimators  

Compared to EDE, BP and INV are highly biased when the number of rearrangement 

events is large (Fig. 1). EDE maintains a more-or-less linear relationship with true 

evolutionary distance at even very large numbers of events, whereas BP and INV lose 

their ability to estimate the number of events reasonably well when this number 

approaches or exceeds the number of genes in the dataset. There is never a linear 

relationship between BP and the actual number of events. However, under an 

inversion-only scenario, both INV and EDE scale almost linearly when the actual number 

of inversions is below some threshold, with EDE having a higher threshold to which it 

scales linearly.  

Under transposition-only evolution, none of the estimators accurately measures 

true evolutionary distance (Fig. 1). However, EDE maintains a scalar linear relationship 

with the actual number of events, although it consistently overestimates the true 

evolutionary distance. This overestimation results from the fact that each inverted 

transposition would require two inversions to explain it and each transposition, three 

inversions. However, inaccuracy in distances may not lead to inaccuracy in the trees that 

are constructed using those distances, provided that the estimated distances are just scalar 

multiples of the true evolutionary distances.  

 

Performance of the estimators in tree reconstruction  

At lower amounts of evolution, all estimators perform similarly under all conditions. 

However, distinctions in performance become noticeable as the rate of evolution (and 



hence the evolutionary diameter) increases. In general, both NJ and FastME perform 

better on EDE than on INV, and better on INV than on BP. Within each method (NJ and 

FastME, see Fig. 2), EDE-based trees and INV-based trees have lower false negative 

rates than BP-based trees. NJ(EDE) and FastME(EDE) as well as  NJ(INV) and 

FastME(INV) have similar false negative rates until when the evolutionary rate is high, 

when EDE-based trees are more accurate than INV-based trees. The gap is larger when 

the trees are drawn from a uniform distribution (data not shown), where the error rate of 

NJ(BP) can be three times that of FastME(EDE) when the evolutionary rate is very high, 

presumably due to the better balance of birth-death trees. This pattern --NJ(EDE) > 

NJ(INV) > NJ(BP) and FastME(EDE) > FastME(INV) > FastME(BP), although data not 

always shown for BP,-- is maintained under all different experimental settings (Figs. 2-4): 

number of genes, number of genomes, GNT model and method of model tree generation 

(uniform or birth-death). The one exception occurs in the case of the FastME analysis of 

160 genomes under the birth-death model for 37 genes (not shown), where FastME(EDE) 

and FastME(INV) perform about equally well over the entire range of distances. The 

experiments showed that analyses based upon BP distances consistently produce trees in-

ferior to analyses based upon INV or EDE distances. We therefore focus our attention to 

comparisons involving either inversion or EDE distances, and do not discuss performance 

under breakpoint distances for the remainder of this paper. 

 

Performance under different GNT models  

The parameter values for the GNT model, whether all inversions (1,0,0), all 

transpositions (0,0.5,0.5), or a mixture (0.5, 0.25, 0.25), do not affect the relative ranking 



of distance estimator performance described in the previous section (Fig. 3). When 

transpositions are included, the results of the different methods are more similar and EDE 

no longer dominates the other methods quite as significantly (especially not at the higher 

rates of evolution). However, even here we maintain the relative performance EDE > INV. 

It is interesting to note that EDE operates as well under the mixed model as under the 

transposition-only model; this is surprising since EDE is based upon an inversion-only 

assumption, and the transposition-only model deviates the most from this assumption.  

 

Performance of the phylogeny reconstruction algorithms – NJ and FastME  

FastME is superior to NJ within each distance measure and setting (Figs. 23); that 

is, FastME(EDE) performs better than NJ(EDE) within each experiment and 

FastME(INV) performs better than NJ(INV). Overall, the best method is FastME(EDE).  

Interestingly, in many (although not all) cases, FastME(INV) outperforms 

NJ(EDE), suggesting that the choice of phylogeny reconstruction technique has a bigger 

impact than the distance estimation technique under some circumstances. However, 

NJ(EDE) outperforms FastME(INV) on small datasets with high evolutionary rates (data 

not shown). When model trees are based on the uniform distribution, all 40 genome cases 

show NJ(EDE) > FastME(INV); however, with birth-death model trees, NJ(EDE) 

improves on FastME(INV) for special cases: 120 genes, 40 genomes, under models that 

include transpositions (data not shown).  

 

Number of genes  

For every method, at every evolutionary diameter, phylogenies reconstructed on genomes 



containing 37 genes are less accurate than phylogenies reconstructed on genomes 

containing 120 genes (Fig. 4a). This difference in performance is consistent with the 

greater accuracy of the three distance estimators on genomes containing 120 genes 

compared to genomes containing 37 genes (data not shown). That is, distance estimation 

is more accurate when there are more genes, so phylogeny estimations on genomes with 

120 genes are more accurate than phylogeny estimations on genomes with 37 genes.  

 

Number of genomes  

For 120 genes (Fig. 4b), for all but the smallest evolutionary diameters, both NJ and 

FastME trees reconstructed on 160 taxa are more accurate than trees reconstructed on 40 

taxa, and this relationship holds under all the models we examined. This is probably due 

to the fact that for a fixed evolutionary diameter, the average branch length will be 

smaller on 160 taxa model trees than on 40 taxa model trees (data not shown); therefore, 

trees with large diameters will be more easily estimated if they have more taxa.  

 

Effect of the model tree  

The accuracy of phylogeny reconstruction drops when the model tree deviates from 

ultrametricity (Fig. 4c), although EDE-based analyses are less affected than INV-based 

analyses. The best results were obtained by FastME(EDE) under uniform model tree 

generation. All but NJ(INV) perform better on uniform distribution model trees than on 

birth-death trees; we conjecture that the reason is simply a better spread of the pair-wise 

distances within the predetermined range.  Furthermore, the different methods vary less 

in their accuracy on birth-death trees than on uniform trees. For all methods, the 



difference in performance between ultrametric trees (E[s] = 1) and those with a moderate 

deviation (E[s] = 2) from a molecular clock is large (Fig. 4c), although the difference 

between moderate (E[s] = 2) and large deviation (E[s] = 4) from a molecular clock is 

insignificant (data not shown). A possible explanation is that for a given fixed diameter, 

the more the model tree deviates from the molecular clock the larger the variance in 

branch lengths, which could make it harder to estimate. These experiments are also 

consistent with results in the study by Nakhleh et al. (2002) that examined the impact of 

deviation from a molecular clock on phylogeny estimation from DNA sequences.  

 

False positive rates  

The false positive rate indicates the percentage of the branches in the inferred tree that are 

not present in the true tree. When the true tree is not fully resolved (due to branches in the 

model tree in which no event occurs), if the estimation technique forces the inferred tree 

to be binary, the false positive rate will necessarily be at least as large as the missing 

branch rate. Therefore, in our studies, we explored the false positive rate, and compared it 

against the theoretical minimum, which is the missing branch rate (Fig. 5).  

For most of the range, all four methods (NJ and FastME on both INV and EDE 

distances) have an optimal or near-optimal false positive rate, as reflected in the almost 

exact match between their false positive rates and the missing branch rate. However, NJ’s 

false positive rate is slightly worse than FastME’s in our experiments.  

 

Conclusions/Discussion  

The simulation studies indicate that our new distance correction (EDE) produces more 



accurate estimations of evolutionary distances between gene orders than INV or BP, and 

that phylogenies estimated using EDE are more accurate than those estimated either INV 

or BP, whether one uses NJ or FastME. The improvement in accuracy is especially 

evident when the model has a high evolutionary rate, so that the dataset has a large 

maximum inversion distance. Our results mirror those reported previously for distance 

corrections for DNA sequence data (Saitou and Imanishi 1989, Rzhetsky and Sitnikova 

1996).  

As we have previously noted, the biggest improvement in using EDE comes when 

the dataset has a large diameter (maximum pair-wise inversion distance). This parameter 

can vary significantly across real datasets, varying with the type of genomes and the 

divergence within the set of taxa in the analysis. For example, in the Campanulaceae 

dataset analyzed in Cosner et al. (2000), the diameter is on the lower end, mainly because 

the close phylogenetic relationships the among the taxa. In another dataset with more 

than 40 animal mitochondrial genomes (Boore 1999), many of the pair-wise distances 

have reached or are very close to the maximum possible for that dataset.  

We have also shown that statistically-based estimations of evolutionary distances 

can be quite robust to some model violations, making phylogenetic reconstruction much 

more accurate, especially when the amount of evolutionary change is high. Perhaps the 

most significant indicator of the difficulty of phylogenetic reconstruction for a dataset is 

its evolutionary diameter: if the amount of change (diameter) is low, all methods will give 

a good estimate of the tree even if the distance estimation is based upon incorrect 

assumptions, but for the largest diameters (highest amounts of change), only 

FastME(EDE) is reliably accurate.  



We have already noted that reconstructions of trees we obtain can have a high 

false positive rate due to the high incidence of zero-event branches in the model tree (and 

hence low resolution in the true tree). Determining which branches in the reconstructed 

tree are valid, and which are not, is a general problem facing distance-based phylogenetic 

analysis. In DNA sequences, bootstrapping and other techniques can be used to assess the 

confidence in a given branch, and so potentially identify the false positive branches. In 

gene order phylogeny it is not possible to perform bootstrapping, since there is only one 

character. For distance-based methods, the interior branch length test in Rzhetsky and Nei 

(1992) may be used to test if the length of a branch is significantly different from zero, 

though more research is warranted on the power of the test for gene order data.  

Several factors can affect the accuracy of our method (and most phylogenetic 

methods in general) when studying genome rearrangements. One positive factor is the 

number of genes: our studies clearly show that trees based upon 120 genes are more 

accurate than trees based upon 37 genes. However, another interesting question is the 

impact of the number of taxa on the resultant analysis. In our opinion, this issue (which is 

related to the taxon sampling question) is still a subject for debate. For example, in some 

studies, estimated phylogenies are more accurate when taxonomic sampling is increased 

(Zwickl and Hillis 2002), but in others the accuracy can decrease (Nakhleh et al. 2002a). 

Theoretical investigations into this question have also suggested that the problem is more 

complex than it might seem (Kim 1998). Furthermore, the impact of taxon sampling 

interacts with the technique used to obtain a model tree, and so simulation studies can 

differ based upon factors that we do not yet understand. As intriguing as these questions 

are, they are unfortunately beyond the scope of the current paper; we leave them for 



future research.  

The development of improved methods for using gene order data for phylogeny 

reconstruction on the Generalized Nadeau-Taylor model is still a very active area of 

research. In addition to the approach we have taken in this paper, researchers have 

developed methods based upon minimizing tree length (Sankoff and Blanchette 1998, 

Cosner et al. 2000, Bourque and Pevzner 2002, Moret et al. 2002, Wang et al. 2002), as 

well as Bayesian methods (Larget et al. 2002, Larget et al. 2004). Furthermore, except for 

the distance-based methods we describe, these other approaches are limited to small 

datasets because of the computational difficulties involved in these analyses. Thus, our 

distance-based methods, which are very fast and can handle large numbers of genomes, 

will continue to be valuable for reconstructing phylogenies as the number of completely 

sequences genomes increases rapidly.  

However, the GNT model applies to only a single chromosome, and only allows events 

that maintain the number of genes. Thus, these analyses only apply to datasets based 

upon a single chromosome, in which all genomes have equal gene content. Several 

researchers are beginning to expand their methods for more complex models, which 

allow events that change the number of copies of each gene, and which move genes 

between genomes. Calculations of distances in these models are much more complicated; 

initial results along these lines have been obtained by El-Mabrouk, Moret, and others 

(Marron et al. 2004, Swenson et al. 2005, Tang and Moret 2003, El-Mabrouk 2001, 

El-Mabrouk 2002, El-Mabrouk and Sankoff 2000, Belda et al. 2005, Moret et al. 2005, 

Moret and Warnow 2005), as well as models that handle multiple chromosomes (Tesler 

2002). These more advanced models will be essential to expanding methodologies to the 



consideration of eukaryotic nuclear genome comparisons. In addition, some researchers 

are considering models in which the probability of the rearrangement events is not 

uniform within a class. For example, some newer models define the probability of the 

event so that it depends upon the lengths of the affected segments (see Pinter and Skiena 

2002 for one such model), or make assumptions that incorporate hotspots, or break the 

chromosome into distinct regions and require events to stay within these regions (Tesler 

and Pevzner 2003). Future research will explore the estimation of evolutionary distances 

under more sophisticated models of genome evolution.  
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Appendix  

EDE: The Empirically Derived Estimator  

EDE produces the best results under all model conditions, even when the evolutionary 

model is exclusively transpositions. For details about the mathematical derivation of this 

technique, see (Moret et al. 2001).  

EDE is based upon inverting a function for the expected minimum inversion distance 

produced by a sequence of random inversions. Theoretical approaches (i.e., actually 

trying to analytically solve the expected inversion distance produced by k random 

inversions) proved to be quite difficult, and so we studied this under simulation. Our 

initial studies showed little difference in the behavior under 120 genes (typical for 

chloroplasts) and 37 genes (typical of mitochondria), and in particular suggested that it 

should be possible to express the normalized expected inversion distance as a function of 

the normalized number of random inversions. Therefore, we attempted to define a simple 

function f(k/n) that approximates E[dINV(G0, Gk)/n] well, for k the number of random 

inversions, n the number of genes, G0 the initial genome, and Gk the result of applying k 

random inversions to G0.  

The function f should have the following properties:  

1. 0 ≤ f (x) ≤ x, since the inversion distance is always less than or equal to the actual 

number of inversions.  

2. limx→∞ f (x) ≈ 1, as our simulations show the normalized expected inversion 

distance is close to 1, when a large number of random inversions is applied.  

3. f ‘(0) = 1, since a single random inversion always produces a genome that is 

inversion distance 1 away.  



4. f −1(y) is defined for all y between 0 and 1.  

 

We used nf (x) to estimate E[dINV(Gnx, G0)], the expected inversion distance after nx 

inversions are applied. The nonlinear formula  

f (x) = (ax2 + bx)/(x2 + cx + b)    (1)  

satisfies constraints (2) and (4).  

We tried several different values for the constant a, and observed in our 

experiments that setting a = 1 produced the best results in subsequent phylogeny 

reconstructions using neighbor joining, for all values of n (the number of genes). The 

estimation of the constants b and c then amounts to a least squares nonlinear regression; 

using simulated data we obtained b =0.5956 and c =0.4577. However, with this setting 

for a, b, and c, the formula does not satisfy the first constraint. Hence, we modified the 

formula to ensure that constraint (1) holds, and obtained:  

f (x) = min{x, (ax2 + bx)/(x2 + cx + b)}   (2)  

The inverse of f is given by the formula:  

f −1(d) = max{d, (−(b − cd) + ((b − cd)2 + 4bd(1 − d))1/2 )/(2(1 − d))}  (3)  

 

Using the function f given above, we can thus define EDE, a method of moments 

estimator, as follows:  

• Step 1: Given genomes G and G’, compute the inversion distance d.  

• Step 2: Return n f −1(d/n), where n is the number of genes, as the estimate of the 

actual number of rearrangement events.  

 



Since the function f is directly invertible, this allows us to estimate distances efficiently.  

Theorem 1 (Moret et al. 2001) Let m be the number of genomes and let n be the number 

of genes. We can compute the pairwise EDE distance between every pair of genomes in 

O(nm2) time. If the inversion distance matrix is already computed, then we can compute 

the EDE distance matrix in O(m2) time.  
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Legends  

Fig. 1: The distribution of genomic distances on 120 gene genomes under the 

Generalized Nadeau-Taylor model. The x-axis is the measured distance, and the y-axis is 

the actual number of rearrangement events. For each vertical line, the middle point is the 

mean, and the top and bottom tips of the line represent one standard deviation away from 

the mean.  

Fig. 2: Simulation study of the false negative rates of NJ and FastME using the three 

genomic distances on birth-death trees with 160 genomes containing 120 genes in each 

genome. The model trees are birth-death trees generated derived from the r8s software 

and have a moderate deviation from the molecular clock (expected stretch 2). The x-axis 

is the normalized diameter (maximum inversion distance between all pairs of genomes) 

of the dataset, and the y-axis is the false negative rate of the inferred tree.  

Fig. 3: Simulation study of the false negative rate of distance-based tree reconstruction 

methods on birth-death trees with 120 genes in each genome. The model trees are 

birth-death trees derived from the r8s software and have a moderate deviation from the 

molecular clock (expected stretch 2). The x-axis is the normalized diameter (maximum 

inversion distance between all pairs of genomes) of the dataset, and the y-axis is the false 

negative rate of the inferred tree.  

Fig. 4: Simulation study exploring how the false negative rate of distance-based tree 

reconstruction methods is affected by (a) the number of genes in each genome, (b) the 

number of genomes, and (c) deviation from ultrametricity. The model trees have 160 

genomes, and are birth-death trees generated using the r8s software with a moderate 

deviation from the molecular clock (expected stretch 2). The evolutionary model is 



GNT(0.5, 0.25, 0.25) (i.e, the “mixed” model, with equal probability of inversions and 

non-inversions). The x-axis is the normalized diameter (maximum inversion distance 

between all pairs of genomes) of the dataset, and the y-axis is the false negative rate of 

the inferred tree.  

Fig. 5: Simulation study of the false positive rate of distance-based tree reconstruction 

methods with 120 genes in each genome. The model trees are birth-death trees generated 

using the r8s software with (a) no deviation (ultrametric), and (b) a moderate deviation 

from the molecular clock (expected stretch 2). The evolutionary model is GNT(0.5, 0.25, 

0.25) (i.e., the “mixed” model, with equal probability of inversions and non-inversions). 

The x-axis is the normalized diameter (maximum inversion distance between all pairs of 

genomes) of the dataset, and the y-axis is the false positive rate of the inferred tree. We 

also include the curve of “missing branch rates” for comparison. For this curve the y-axis 

is the percentage of internal branches in the model tree that are zero-event branches.  
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