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The microbial community diversity and composition of meromictic Soap Lake were studied using culture-
dependent and culture-independent approaches. The water column and sediments were sampled monthly for a year.
Denaturing gradient gel electrophoresis of bacterial and archaeal 16S rRNA genes showed an increase in diversity
with depth for both groups. Late-summer samples harbored the highest prokaryotic diversity, and the bacteria
exhibited less seasonal variability than the archaea. Most-probable-number assays targeting anaerobic microbial
guilds were performed to compare summer and fall samples. In both seasons, the anoxic samples appeared to be
dominated by lactate-oxidizing sulfate-reducing prokaryotes. High numbers of lactate- and acetate-oxidizing iron-
reducing bacteria, as well as fermentative microorganisms, were also found, whereas the numbers of methanogens
were low or methanogens were undetectable. The bacterial community composition of summer and fall samples was
also assessed by constructing 16S rRNA gene clone libraries. A total of 508 sequences represented an estimated
>1,100 unique operational taxonomic units, most of which were from the monimolimnion, and the summer samples
were more diverse than the fall samples (Chao1 � 530 and Chao1 � 295, respectively). For both seasons, the
mixolimnion sequences were dominated by Gammaproteobacteria, and the chemocline and monimolimnion libraries
were dominated by members of the low-G�C-content group, followed by the Cytophaga-Flexibacter-Bacteroides (CFB)
group; the mixolimnion sediments contained sequences related to uncultured members of the Chloroflexi and the
CFB group. Community overlap and phylogenetic analyses, however, not only demonstrated that there was a high
degree of spatial turnover but also suggested that there was a degree of temporal variability due to differences in the
members and structures of the communities.

Soda lakes are highly alkaline and saline aquatic environ-
ments. These lakes are some of the most productive ecosys-
tems in the world, and the daily primary production often
exceeds that in many eutrophic lakes, presumably due to a
virtually unlimited supply of CO2 and high daily light irradi-
ance (29, 45). Because of the difference between the density of
saline lake waters and the density of the external dilute input
water, the widespread occurrence of soda lakes in endorheic
basins, the absence of episodic mixing mechanisms, and the
basins’ morphometric features, these lakes have a propensity
to become meromictic in response to both regional and local
hydrologic events (19, 46).

One of the main sources of variation among inland lakes is
the duration of meromixis (20). For instance, long-term mero-
mixis at a high pH is often accompanied by an accumulation of
toxic inorganic compounds—mainly sulfide and ammonia—in
the anoxic monimolimnion (24, 60). Prolonged chemical strat-
ification affects the flux of reduced metabolites into the upper
layer from bottom water and lake bottom sediments (11). In
the anoxic waters, high concentrations of sulfide may affect
microbial processes directly (for instance, denitrification) (26).

At high pH (i.e., pH � 8.5) one-half of the ammonia present
is nondissociated and, therefore, in a toxic form, possibly in-
hibiting ecologically relevant activities like methane oxidation
(29).

Historical interest in soda lake microbiology focused primar-
ily on the isolation and characterization of individual microor-
ganisms with potential industrial applications (16, 22, 28), al-
though anaerobic strains with hypothesized ecological roles
have also been described (48, 75, 76). Recent surveys of soda
environments have indicated that there is elevated microbial
phylogenetic diversity and have included surveys of the Wadi
An Natrun lake system in Egypt (47), soda lakes in the Ken-
yan-Tanzanian Rift Valley (58), soda lakes in Inner Mongolia
in China (42), saline, meromictic Lake Kaiike in Japan (33),
saline Qinghai Lake in China (15), and athalassohaline Lake
Chaka in China (27). In general, the studies examining the
impact of meromixis on bodies of water have focused on saline-
neutral gradients rather than saline-alkaline gradients, al-
though the microbial ecology of Mono Lake, a transiently
meromictic soda lake, has been extensively studied (24, 65).

This study focused on the abundance and distribution of
prokaryotic assemblages in Soap Lake, a meromictic, alkaline
(pH �9.8), and saline (�15 to 140 g liter�1) lake situated in a
semiarid area of eastern Washington State. This lake has two
distinctive characteristics: (i) an estimated meromixis of at
least 2,000 years (51) and (ii) extremely high sulfide concen-
trations (�140 mM) in the monimolimnion. Owing to the
lake’s seasonal cycles (mainly blooms of Chlorella sp.-domi-
nated algae [71]) and extended meromixis, we hypothesized
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that microbial assemblages would be both temporally and spa-
tially segregated. In addition, we hypothesized that the lake’s
potential metabolic resources (for example, products of fer-
mentation, sulfate, and H2/CO2) would be reflected in the
occurrence of specific anaerobic microbial guilds. The first
hypothesis was addressed by conducting denaturing gradient
gel electrophoresis (DGGE) of bacterial and archaeal 16S
rRNA genes and by constructing clone libraries of bacterial
16S rRNA genes present in the water and sediments. The
second hypothesis was addressed using most-probable-number
(MPN) assays of fermentative, sulfate-reducing, iron-reducing,
and methanogenic populations.

Statistical and phylogenetic analyses of the clone libraries
showed that there was a high degree of spatial turnover and, to
a lesser extent, temporal turnover of prokaryotic communities,
suggesting that these communities are tightly coupled with
recurring environmental conditions related to long-term mero-
mixis and to seasonal events.

MATERIALS AND METHODS

Site description and sampling. Soap Lake (47°23�N, 119°30�W) is a closed-
basin, meromictic lake in the lower Grand Coulee in eastern Washington State.
It is the most saline and alkaline of a series of lakes occupying an old bed of the
Columbia River. The main morphometric features were summarized by
Edmondson and Anderson (17). Physical and chemical limnological attributes of the
lake have been reported elsewhere (2, 70, 71), and some attributes were also
determined during this study (Table 1).

The water and sediment samples used in this study were collected monthly
between September 2002 and December 2003 from the central basin of Soap
Lake. Water samples were collected from the oxic mixolimnion (0, 5, 10, 15, and
18 m), the chemocline (19, 20, 20.5, and 21 m), and the anoxic monimolimnion
(21.5, 22, 23, 24, and 25 m) with a 2-liter Van Dorn bottle. Sediment samples
were collected from the mixolimnion and the monimolimnion using a dredge.
Sediment and water samples were placed in 500-ml sterile opaque polypropylene
bottles and kept on ice until they were stored at 4°C for culture work or were
frozen for DNA extraction. When required, anaerobic conditions were preserved
by completely filling the bottles with water or sediment.

Limnological properties. Dissolved oxygen, temperature, pH, and total dis-
solved solids were measured in situ by using a Hydrolab Datasonde 4 (Hydrolab
Corp., Austin, TX). The ammonia content was determined by the indophenol
blue method (68) using internal standards for each set of determinations. The
sulfide content was determined spectrophotometrically by the methylene blue
colorimetric method (7). Total nitrogen and concentrations of nitrate plus nitrite
and orthophosphate, as well as total organic carbon and dissolved organic carbon
(DOC) concentrations, were determined using standard methods (1).

MPN assays for anaerobic microbial populations. Anaerobic microbial guilds
were enumerated using a basal medium (SLBM) previously described by Dimi-
triu et al. (14), which was modified by adding yeast extract (1.0 g liter�1) and
separately sterilizing the NaHCO3 and Na2CO3 solutions (final concentration,
1% [wt/vol]). Reducing conditions were achieved by boiling the medium and
adding 1 ml of a sterile solution of cysteine hydrochloride and Na2S � 9H2O (5 g
liter�1 each) under an N2/H2 (90:10, vol/vol) atmosphere; methylene blue (0.004
g) was used as the redox indicator. NaCl was added at the following concentra-
tions: 0.26 M (mixolimnion samples), 1.2 to 1.7 M (chemocline samples), and
2.41 M (monimolimnion samples). The NaCl concentrations selected reflect both
historical values and values obtained in this study; for the chemocline samples,
preliminary incubation experiments did not reveal appreciable differences in
growth rates within the chosen salt range (data not shown). SLBM supplemented
with 5 mM betaine or 10 mM glycerol was used to determine the number of
fermentative bacteria. Sulfate-reducing prokaryotes (SRP) were enumerated by
using 38 mM lactate or butyrate, 76 mM formate, or 10 mM glycerol as the
electron donor and 3.3 mM FeSO4 as the electron acceptor; a black precipitate
was used as an indicator of SRP growth. For iron-reducing bacteria (IRB), the
medium was supplemented with 38 mM lactate and 100 mM amorphous Fe(III)
oxyhydroxide (41). Separate sets of dilution tubes were inoculated with 20 mM
Na2MoO4, an inhibitor of sulfate reduction (50). The appearance of a black
precipitate was considered a signal that iron reduction was occurring. Methano-
gens were cultivated using either an H2/CO2 (80:20, vol/vol) headspace or 10 mM
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trimethylamine (TMA), while CH4 evolution was measured with an HP 3400 gas
chromatograph (Hewlett-Packard). Twenty-milliliter serum bottles or Balch
tubes with butyl rubber stoppers were used for three-vial dilution series, and all
cultures were incubated anaerobically (4) for �30 days at room temperature in
the dark.

DGGE analysis of prokaryotic communities. DNA was extracted from water
and sediment samples with a MoBio UltraClean DNA extraction kit (MoBio
Inc., Solano Beach, CA) by following the manufacturer’s recommended protocol.
Because of the high salt and high sulfide contents, extraction of the monimolim-
nion samples was preceded by a dialysis step. Briefly, 5-ml samples were injected
into dialysis cassettes and dialyzed against sterile, deionized water for 18 h; 1-ml
portions of the resulting eluates were used as the material from which DNA was
retrieved. Archaeal and bacterial small-subunit (16S) rRNA genes from ex-
tracted DNA were amplified using GC-clamped primers and PCR conditions
described previously (7). Bacterial DNA was separated using an 8% polyacryl-
amide gel and a 50 to 80% urea-formamide denaturing gradient (100% dena-
turant was 7 M urea and 40% deionized formamide); archaeal DNA was sepa-
rated using an 8% polyacrylamide gel with a 35 to 80% denaturing gradient. Both
bacterial and archaeal gels were run in 1� Tris-acetate-EDTA buffer at 80 V for
15 h and a constant temperature of 60°C, using a Bio-Rad DCode electrophore-
sis system (Bio-Rad, Cambridge, MA). Gels were stained with ethidium bromide
and visualized with a Bio-Rad FX molecular imager. The number of bands and
the intensity of the bands, which indicated the approximate richness and phylo-
type abundance (18), respectively, were estimated for computation of Shannon’s
diversity indices.

Clone library construction. To obtain a finer-resolution picture of the micro-
bial community composition, DNA was retrieved from fall (sampling date, 24
October 2002) and summer (sampling date, 26 July 2003) samples. We focused

on these sampling dates to assess whether two samples with contrasting diversity
levels, as indicated by DGGE, also exhibited shifts in community composition
(Fig. 1).

Small-subunit (16S) rRNA genes in samples were amplified by using the
bacterium-specific forward primer 27F (5�-AGAGTTTGATCMTGGCTCAG-
3�; positions 27 to 46) and universal reverse primer 907R (5�-CCGTCAATTC
MTTTRAGTTT-3�; positions 907 to 926) (35). All 16S rRNA gene nucleotide
positions reported here are based on the Escherichia coli numbering reported by
Brosius et al. (6). Primers were synthesized at MWG Biotech. The PCR mixtures
(total volume, 20 �l) contained PCR buffer (10 mM Tris-HCl, 50 mM KCl, 0.1%
Triton X-100), 2.5 mM MgCl2, 200 �M dATP, 200 �M dCTP, 200 �M dGTP,
200 �M dTTP, 10 pmol of each primer, 1 U of Taq DNA polymerase, and 1 �l
of template (extracted) DNA. The PCR conditions were as follows: initial de-
naturation at 95°C for 5 min, followed by 30 cycles of denaturation for 45 s at
94°C, annealing for 45 s at 50°C, and extension for 1 min at 72°C and then a final
extension at 72°C for 10 min. The PCR products were ligated into the pGEM-T
Easy vector (Promega Corp., Madison, WI) and transformed into competent E.
coli JM109 cells by following the manufacturer’s protocol. The transformed cells
were plated on selective Luria-Bertani medium plates containing 100 �g of
ampicillin ml�1, 80 �g of 5-bromo-4-chloro-3-indolyl-	-D-galactopyranoside (X-
Gal) ml�1, and 0.5 mM isopropyl-	-D-thiogalactopyranoside (IPTG) as recom-
mended by the manufacturer and were incubated overnight at 37°C. Clones (i.e.,
white colonies) were randomly screened for inserts that were the correct length
by PCR amplification with primers SP6 and T7. Amplification preparations
containing products that were the expected length were purified with a QIAquick
PCR purification kit (Qiagen, Valencia, CA), and clean amplification products
were sequenced at the MWG Biotech sequencing facility using primer 27F, which
yielded readable sequences that were �800 bp long.
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FIG. 1. Bacterial (A) and archaeal (B) diversity obtained from DGGE profiles. The Shannon-Weaver indices (H) are values averaged across
layers. The arrows indicate sampling dates for which clone libraries were constructed. The error bars in panel A indicate one standard deviation
(n 
 5) for illustrative purposes; archaeal diversity fluctuations exhibited similar trends (data not shown). mixo, mixolimnion; chemo, chemocline;
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Phylogenetic analysis. Small-subunit rRNA gene sequences were assigned to
major subdivision- or division-level groups, and reference sequences for phylo-
genetic tree construction were chosen based on the 10 highest database sequence
similarities obtained after BLAST searches. Sequences were tested for chimeras
by using web-based Bellerophon (23). Nonchimeric sequences were aligned with
Clustal X v.1.83 (69), and manual adjustment was performed with the alignment-
visualizing tool of MEGA v.3.1 (34).

Phylogenetic structures were inferred with MEGA v.3.1 by using two optimal-
ity criteria. A distance matrix was constructed assuming Kimura’s two-parameter
model (32), and nucleotide positions containing gaps or missing data were
deleted in a pairwise fashion. A neighbor-joining tree was inferred with pairwise
deletion of gaps and with 1,000 bootstrap pseudoreplicates. A parsimony phy-
logeny was constructed by using the mini-mini heuristic search method, and sites
containing gaps or missing data were completely deleted. The analysis was
bootstrap pseudoreplicated 100 times.

Estimation of bacterial diversity. Aligned sequences were used to construct
Jukes-Cantor-corrected distance matrices, which were analyzed with DOTUR
(62) to determine operational taxonomic units (OTUs) at several divergence
cutoff values using the furthest-neighbor clustering algorithm. DOTUR was also
used to generate lineage-per-time plots, to estimate richness (Chao1 and ACE
[8, 9]), and to compute Shannon diversity indices for individual libraries and for
combined data sets (i.e., sequences sorted into season and layer within the lake).
Estimates were calculated using two genetic distance levels (D), 0.03 and 0.2,
which, although arbitrary, are useful for delineating species-level and phylum-
level OTUs, respectively (62). Collector’s curves were plotted using the number
of clones sampled against the Chao1 estimator of species richness.

Statistical analysis. To compare the phylogenetic structures among libraries,
a parsimony test (44) as implemented in TreeClimber (63) was performed using
the following input files: (i) a parsimony tree containing all sequences and (ii) a
list of the tree sequences coded according to community (sample) type (i.e.,
depth, sediment, and season). TreeClimber computes the number of changes
(the parsimony score) for samples required to explain the observed tree, which
are then compared to the distribution of changes on 1,000 random trees in order
to generate a P value for the probability of the observed parsimony score.
Therefore, the parsimony test determines whether phylogeny significantly cova-
ries with the sample type.

Observed differences in community composition between pairs of libraries
were statistically compared using �-LIBSHUFF (61). �-LIBSHUFF uses distance
matrices (in this case, Jukes-Cantor matrices) to estimate the coverage values for
the clone libraries being compared over a range of taxonomic levels, enabling
detection of significantly different microbial communities defined by nonover-
lapping coverage. Randomizations (10,000) were run to determine the signifi-
cance (� 
 0.05) of overlapping coverage after correction for multiple pairwise
comparisons using the Bonferroni method. To obtain an indication of the degree
of community overlap, we estimated the number of OTUs shared by two libraries
(SA,B Chao), the fraction of sequences in shared OTUs (Uest and Vest), Ĵabd, an
abundance-based Jaccard estimator (10, 64), and , a nonparametric maximum
likelihood estimator of community structure similarity (73); all indices were

computed with SONS (64). The pairwise  values for the libraries were converted
to distances and used to construct a dendrogram by the unweighted-pair group
method with arithmetic means.

Nucleotide sequence accession numbers. Partial 16S rRNA gene sequences
have been deposited in the GenBank database under accession numbers
EU644758 to EU645265.

RESULTS

Limnological properties. Table 1 shows the main physico-
chemical attributes of Soap Lake water and sediment samples.
Both NH3 and H2S were undetectable in the mixolimnion but
were detectable in the chemocline (�18.5 to 21 m), and they
were present at high concentrations in the monimolimnion.
The levels of DOC and SO4

2� were also higher below the
chemocline. Dissolved oxygen showed the opposite pattern;
the oxygen concentration decreased sharply until there was
complete anoxia in the monimolimnion. With the exception of
PO4

3�, for which there was a season-independent �12-fold
increase in the concentration in the monimolimnion, total ni-
trogen, phosphorous, and mineral nitrogen levels showed little
spatial or temporal variability. The average yearly pH values
were 9.8 (standard error of the mean, 0.4) for the mixolimnion
and 9.9 � 0.3 for the monimolimnion; the mean temperatures
were 16.3 � 9.3 and 7.3 � 1.1°C for the mixolimnion and
monimolimnion, respectively; and the concentrations of total
dissolved solids were 13.2 � 3.2 g liter�1 for the mixolimnion
and 140 � 3.2 g liter�1 for the monimolimnion (data not
shown).

MPN analysis. Soap Lake samples supported growth of all
anaerobic guilds analyzed, including SRP, IRB, methanogens,
and fermentative microorganisms (Table 2).

(i) SRP. Based on data obtained by the MPN technique,
lactate was the electron donor that supported the highest num-
ber of SRP. In both seasons there were mixed patterns of
sulfate-reducing growth when lactate was used as the carbon
source. In the chemocline there was little (July) or no (Octo-
ber) SRP growth, while in October the monimolimnion sup-
ported the highest SRP MPN levels. Formate and butyrate also
supported sulfate reduction, but acetate did not (data not

TABLE 2. MPN counts for anaerobic guilds from Soap Lake samples obtained in July and October

Sample

MPN counts (105 cells ml�1 or 105 cells g�1)

SRP Fermentative
bacteria IRB Methanogens

Lactate Formate Butyrate Glycerol Glycerol Betaine Lactate Lactate �
molybdate Acetate TMA H2 � CO2

July
Mixolimnion 0 0 0 0 0 0 0 0 0 0 0
Chemocline 0.012 0.24 0.046 0.024 2.4 0 0 0.046 0 0 0
Monimolimnion 11 0.24 0.046 0.11 4.6 0.46 460 0.24 0.28 0.024 0.0093
Mixolimnion sediment 2.4 0.46 0.46 0.11 11 2.4 24 4.6 0.46 0.024 0.0093
Monimolimnion sediment 11 0.24 0.24 0.11 2.4 1.1 46 15 0.046 0.024 0.0023

October
Mixolimnion 0 0 0 0 0 0 0 0 0 0 0
Chemocline 0 0.24 0.046 0.024 0 0.24 0 0.046 0 0 0
Monimolimnion 24 0.093 0.11 0.24 11 4.6 15 240 1.1 0.024 0.0093
Mixolimnion sediment 2.4 0.46 0.046 2.4 24 11 46 24 0.024 0.024 0.0093
Monimolimnion sediment 0.24 0.24 1.1 1.1 4.6 0.24 150 1100 46 0.024 0.0023
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shown). In July the butyrate-formate MPN counts were dis-
tinctively lower than the lactate counts. October was unique in
that the butyrate-amended mixolimnion sediment values were
about 1 order of magnitude lower (4.6 � 103 MPN ml�1) than
the values obtained with the other electron donors (2.4 � 105

MPN ml�1). Glycerol also supported sulfate reduction, and the
MPN counts were in the same ranges that were observed for
butyrate and formate.

(ii) IRB. To address the possibility that dissimilatory iron
reduction is a potential terminal electron-accepting process
that contributes to the overall carbon mineralization, an amor-
phous Fe(III) gel (100 mM) was added to the MPN assay
medium, and the preparation was checked for the develop-
ment of a black precipitate indicating that there was conver-
sion of Fe(III) into Fe(II). After �14 days of incubation, we
observed that all anoxic samples contained numbers of IRB
that were often the same order of magnitude as the numbers of
SRP. As shown in Table 2, with lactate as the electron donor,
the July and October samples had similar IRB and SRP levels.
With the exception of the July monimolimnion sample, there
were no differences between molybdate-containing (20 mM)
and molybdate-free incubations, implying that SRP were not
involved in iron reduction.

(iii) Methanogens. Consistent with the high-sulfate nature of
Soap Lake, low numbers (i.e., �103 cells ml�1) of methano-
gens were observed in both seasons; TMA-amended cultures
contained higher numbers of cells than H2/CO2-amended cul-
tures (2.4 � 103 and 930 cells ml�1, respectively).

(iv) Fermentative bacteria. In general, the numbers of fer-
mentative bacteria paralleled the numbers of SRP. No differ-
ences were detected between betaine (a putative osmolyte in
high-salt dwellers) and glycerol incubations. In addition, fer-
mentative microorganisms were also present in the chemo-
cline, albeit at numbers lower than those in deeper, oxygen-
free samples.

Bacterial and archaeal DGGE profiles. The DGGE banding
patterns revealed a prokaryotic community with diversity levels
dependent on both the sampling date and the layer (Fig. 1).
The bacterial community exhibited marked mixolimnetic di-
versity fluctuations during the sampling period (note the error
bars in Fig. 1), while relative seasonal stability for chemocline,
monimolimnion, and monimolimnion sediment samples was
observed. The archaeal diversity, in contrast, exhibited strong
seasonal fluctuations. The bacterial diversity (Fig. 1A) ap-
peared to peak in late summer samples, and the diversity of the
archaeal community (Fig. 1B) peaked �1 month later (this was
particularly true of samples retrieved from suboxic [chemo-
cline] and anoxic [monimolimnion water column and sedi-
ment] locations). Prokaryotic diversity showed a moderate in-
crease with depth on most sampling dates (Shannon indices
versus depth, 0.48 � R2 � 0.84; P � 0.009); these variables
were strongly correlated in early spring samples (R2 
 0.92 and
R2 
 0.95 for bacteria and archaea, respectively; P 
 0.006).
This was the only sampling date when a robust correlation
(R2 
 0.89; P 
 0.008) between bacterial and archaeal diversity
was observed; the opposite relationship (i.e., slightly negative,
nonsignificant coefficients) tended to be the case. When depths
were averaged by stratum and compared across the entire
sampling period, no significant bacterial diversity-archaeal di-
versity correlations were observed; notably, however, the aver-

age archaeal diversity for the chemocline and the monimolim-
nion was negatively correlated with the bacterial diversity for
the same layers (R2 
 �0.691 and R2 
 �0.687, respectively;
P � 0.01).

Bacterial clone library analysis: general diversity patterns
and extrapolated richness. We generated 11 rRNA gene clone
libraries for two representative months (July and October) and
from each chemical layer, including the mixolimnion (depth,
5 m), the chemocline (depth, 20 m), the monimolimnion
(depth, 23 m), the mixolimnion sediment, and the monimolim-
nion sediment, and a library from the 15-m sample for the
October set. A total of 562 sequences were obtained. We
conducted a thorough phylogenetic analysis with the complete
sequence data set (see below); a �-LIBSHUFF analysis, how-
ever, revealed that the data for the 5- and 15-m samples from
October were statistically nonsignificant (P � 0.05 for both
reciprocal comparisons) when the OTUs were defined at D
values of 0.03 and 0.2; therefore, in all additional analyses we
focused on the 10 samples for which direct layer-to-layer com-
parisons could be made.

The 10 combined bacterial 16S rRNA gene libraries (n 

508) consisted of 482 unique sequences and 293 OTUs clus-
tered by using a 3% cutoff criterion. Richness estimation re-
sulted in a Chao1 of 635 OTUs (D 
 0.03) for all sequences;
the total Shannon diversity and evenness were 5.28 and 0.92,
respectively (Table 3). Although the overall coverage value was
relatively low (33%), collector’s curves of estimated richness
constructed on the basis of season (July or October) showed
that the October sequences were well sampled at both genetic
distances considered (Fig. 2A); the July Chao1, on the other
hand, did not begin to stabilize with sampling effort, although
the nonoverlapping lower 95% confidence interval of the end
point estimate at the D value of 0.03 indicated, as also sug-
gested by DGGE, that in this season the bacterial richness was
higher (July Chao1 
 530; October Chao1 
 295). When
OTUs were defined using a 20% divergence criterion, the
seasonal estimated richness was indiscernible. The overall
Chao1 and ACE richness estimates for OTUs sharing a cutoff
level of 0.2 to 0 (a proxy for a lineage-per-time plot) produced
comparable richness curves and indicated the potential pres-
ence of at least 1,100 unique sequences, with a �50% increase
in richness for sequences sharing less than 1% similarity (Fig.
2B). For both seasons, diversity and evenness increased with
depth (Table 3), again mirroring the DGGE results, and the
former was higher for all July libraries (Table 3); this trend was
reflected in higher estimated richness and lower coverage (July
average coverage, 0.39; October average coverage, 0.60). To-
gether, the richness estimates and diversity indices indicate
that there was a high degree of undescribed diversity, a large
fraction of which likely belonged to clusters containing se-
quences whose taxonomic resolution is finer than that defined
for species.

Phylogenetic distribution of the sequences. The frequencies
of 16S rRNA sequences across different phylogenetic groups in
the libraries were calculated for all samples (Fig. 3). For a
detailed description of the phylogenetic affiliations of the se-
quences and corresponding phylogenetic trees, see the supple-
mental material. The phylogenetic compositions of our clone
libraries shifted both with depth and with origin of the sedi-
ment. The mixolimnion (5-m) sample was dominated by se-
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quences affiliated with Alpha- and Gammaproteobacteria (30
and 18% of the sequences, respectively), followed by low-
G�C-content gram-positive group and Chloroflexi-related se-
quences (both 13% of the sequences); 36, 42, and 45% of
the sequences obtained from the chemocline (20-m), the
monimolimnion (23-m), and the monimolimnnion sediment,
respectively, were related to sequences belonging to the low-
G�C-content group. Sequences related to the Cytophaga-
Flexibacter-Bacteroides (CFB) group were also abundant; a to-
tal of 16% of the sequences from the mixolimnion, the
chemocline, and the monimolimnion sediment libraries were
affiliated with this clade, whereas in the mixolimnion sediment
and the monimolimnion 28 and 21% of the sequences, respec-
tively, were affiliated with this group. The Gammaproteobacteria
were especially prevalent in the mixolimnion library, Chlo-
roflexi-related sequences were present only in the mixolim-
nion and the mixolimnion sediment, and Epsilonproteobacteria-
like sequences were found only in the chemocline library. The
other groups detected in the libraries included Deltaproteobac-
teria, Cyanobacteria (Synechococcus), and various candidate
divisions.

Although not on a sample-to-sample basis, the overall quan-
titative composition of the libraries from October was different
than that of the July libraries. Altogether, 25 and 26% of the
sequences retrieved from the 15- and 5-m libraries, respec-
tively, were affiliated with the Gammaproteobacteria. The
populations of sequences obtained from the chemocline and
the monimolimnion sediment were dominated by sequences
related to low-G�C-content gram-positive bacteria (24 and
41%, respectively). The monimolimnion was dominated by
sequences related to the CFB group (47%), and the mix-
olimnion sediment contained mainly sequences distantly re-
lated to Chloroflexi-like sequences (47%). Sequences related
to the Betaproteobacteria were found only in the chemocline
library.

Clone library comparisons. In order to compare the bac-
terial communities present in each layer, we conducted a �-
LIBSHUFF analysis using the individual libraries. For pairwise

comparisons between sequences belonging to the mixolimnion
and chemocline libraries and between these libraries and the
monimolimnion libraries, the P values were �0.001 (data not
shown); for comparisons between the monimolimnion libraries
within each season, the P values were 0.16 (water versus sed-
iment) and 0.0018 (sediment versus water) for October and
0.013 and 0.087 for July (data not shown). Although it is gen-
erally assumed (61, 66) that nonsignificant LIBSHUFF com-
parisons can reveal whether the community structure of one
library is a subset of another library, recent simulations suggest
that no conclusions can be drawn when one comparison is
significant and the reciprocal comparison is not significant; this
probably indicates that the libraries are different (P. D.
Schloss, personal communication). Thus, the reported margin-
ally significant P values for monimolimnion water and sedi-
ment comparisons indicate that these areas contain signifi-
cantly different bacterial communities.

A parsimony tree containing all the sequences was used for
a parsimony test. The comparison of July with October yielded
a P value of 0.034, while for the interlayer (pooled across
season) and interlibrary comparisons the P values were
�0.001, indicating that there was significant covariation be-
tween phylogeny and community type.

To evaluate the memberships of the communities with pre-
defined OTU definitions, we first applied a SONS community
structure similarity metric, , using a divergence level of 0.03.
A dendrogram of the estimated values supported the notion
that communities were endemic to the chemically demarcated
layers from which they were obtained (Fig. 4). Season, how-
ever, seemed to exert some influence on the differentiation of
communities, particularly the communities from the mixolim-
nion sediments, as suggested by the lengths of the branches
joining these communities in the dendrogram (Fig. 4). We then
pooled the sequences according to layer for a more detailed
analysis of the overlaps between the communities’ members.
Table 4 shows the estimated calculations at the species and
phylum levels. The July and October communities shared a
richness (SA,B Chao) of 115 species and 98 phyla. At a D value

TABLE 3. Diversity parameters of Soap Lake sequences defined by a divergence cutoff of 0.03

Sample Chao1 (95%
confidence interval) Shannon diversity Evennessa Coverageb No. of clones

July
Mixolimnion 88 (48–186) 3.26 0.95 0.48 50
Chemocline 65 (43–128) 3.32 0.96 0.54 53
Monimolimnion �290 (129–458)c 3.70 0.98 0.20 45
Mixolimnion sediment �141 (89–214) 3.83 0.98 0.33 56
Monimolimnion sediment �63 (39–132) 3.24 0.97 0.43 48

October
Mixolimnion 58 (37–127) 2.96 0.88 0.69 46d

Chemocline 32 (28–48) 3.10 0.94 0.78 56
Monimolimnion 53 (38–97) 3.25 0.95 0.51 47
Mixolimnion sediment �130 (75–253) 3.58 0.96 0.43 50
Monimolimnion sediment 53 (41–88) 3.32 0.94 0.63 57

All 653 (553–831) 5.28 0.92 0.33 508

a E 
 H/lnS0.03, where E is evenness and H is Shannon diversity.
b C 
 1 � n1/N, where C is coverage, n1 is the number of singletons, and N is the total number of sequences (49).
c � indicates that the estimate did not stabilize with regard to sampling effort.
d The results for only the 5-m sample are shown for October; the 15-m mixolimnion sample contained a total of 54 clones.
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of 0.03, the estimated fraction of sequences from July that was
shared (Uest) was �46%, while for October the estimated
percentage of sequences belonging to shared species (Vest) was
�72%. The overall community overlap (Ĵabd) was 0.39, which
implies that, if libraries were very large (i.e., exhibited almost
complete coverage), about 40% of the sequences in both com-
munities would belong to shared species-level OTUs (56). In
general, the overlaps between pairs of layers were low; the
highest Ĵabd values were observed for the mixolimnion and the
chemocline and for the monimolimnion water and sediment,
which was consistent with the  dendrogram.

DISCUSSION

Previous work on Soap Lake’s microbiological attributes has
emphasized the description of cultivable isolates, including
aerobic (14), microaerophilic (67), or phototrophic (3) isolates.
Here, we integrated two approaches that not only corroborate
what is known about the microbiology of similar ecosystems

but also provide evidence of the significance of anaerobic pro-
cesses as key contributors to prokaryotic productivity (71).

MPN study. The observed spatial variability corresponded
well with the lake’s redox gradient; no anaerobic bacteria were
found in the mixolimnion, some anaerobic bacteria occurred in
the chemocline, and the largest numbers of anaerobic bacteria
were observed in anoxic regions, including the mixolimnion
sediments. The dominant process underlying terminal carbon
mineralization appeared to be sulfate reduction driven by the
oxidation of lactate and other organic acids. Indeed, methano-
genic growth was not relieved even when we enriched for
TMA-consuming cells. These results agree with the results of a
study performed by Oremland and Miller (51), who observed
little methane production from TMA- or CO2-amended sedi-
ments. The authors concluded, as we did, that sulfate reduction
is the main anaerobic carbon mineralization process, even for
a noncompetitive substrate like TMA. Taken as a whole, the
functional groups that we analyzed seemed to display seasonal
homogeneity, which suggests that their growth patterns are not

FIG. 2. Bacterial diversity in Soap Lake. (A) Collector’s curve of predicted richness (Chao1) for pooled July and October sequences. The
subscript numbers indicate the genetic distance (divergence), and the bold numbers indicate the endpoint estimates and are followed by 95%
confidence limits. The vertical lines indicate 95% confidence intervals. (B) Observed and estimated richness (Chao1 and ACE) with divergence
levels set at 0 to 80%.
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limited by phytoplankton “bloom dynamics” in the oxygen-rich
mixolimnion. Since allochthonous inputs of organic matter are
unlikely, most of the organic carbon supporting anaerobic pro-
cesses (mainly sulfate reduction, but also iron reduction) may
emanate from phototrophically derived DOC pools that are
maintained at constant levels throughout the year (Table 1).
Although we focused on the culturable fraction, this indepen-
dence may suggest that there is a decoupling between phyto-
plankton growth and bacterioplankton production resulting
from nutrient limitation (e.g., a low N/P ratio) (38). Alterna-
tively, although not mutually exclusively, anaerobic carbon cy-
cling may be connected to light-independent chemosynthetic
growth in anoxic compartments (71).

DGGE analysis. We are aware of the potential risks of
drawing “diversity” conclusions based on DGGE (13). How-
ever, the inherent limitations of the technique did not prevent
a comparative assessment; DGGE detected abundant mem-
bers of the targeted communities.

Our results seem to support two conclusions. First, vertical
changes in environmental conditions (salinity, redox potential,
accumulation of reduced compounds) are associated with an
increase in prokaryotic diversity. In contrast, using a DGGE
approach, Ovreas et al. (52) and Koizumi et al. (33) reported
higher diversity in oxic surface water than in anoxic waters. A
possible explanation for this discrepancy is that most of the
sequences that these workers found in anoxic waters were
present at a very low relative abundances and formed faint
bands that were not detected by DGGE, although methodolog-
ical considerations, such as different primer sets or running
conditions, should also be considered. Second, the negative
diversity correlations between archaeal and bacterial popula-
tions in anaerobic compartments suggest that their relative
abundances are tightly linked (for instance, through competi-
tion or cross-feeding) and/or are controlled by a set of envi-
ronmental constraints whose effects are predictable and con-
stant over time (30). Although our knowledge concerning the
ecological significance of archaea in lakes is limited, archaeal
populations from nonmeromictic soda systems appear to be
dominated by Halobacteriales (47), and archaeal nitrification is
thought to be quantitatively important in stratified aquatic
ecosystems (59).

Clone library analysis. In agreement with previously re-
ported findings for other meromictic soda lakes (24, 74), an
important outcome of our clone library analysis is the shift in
the qualitative and quantitative compositions of the bacterial
assemblage across the mixolimnion, the chemocline, and the
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FIG. 3. Frequencies of sequences affiliated with major phylogenetic groups in libraries from the water column and sediments for July and
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FIG. 4. Dendrogram (constructed by the unweighted-pair group
method with arithmetic means) of the pairwise nonparametric esti-
mates of community structure similarity () between Soap Lake sam-
ples obtained from the mixolimnion (5m), the chemocline (20m), the
monimolimnion (23m), and sediments (mixsed and monsed). The
suffixes “j” and “o” indicate July and October, respectively. Dis-
tance 
 1 � .
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monimolimnion. The divergence in the layers was primarily
due to the distribution of two major clades. The clone libraries
from the mixolimnion were dominated by sequences belonging
to the Proteobacteria, while the clone libraries from the moni-
molimnion were dominated by sequences affiliated with the
low-G�C-content gram-positive bacteria and the CFB group.
This trend was observed for both seasons. It is doubtful that
the difference in the compositions that we detected was simply
due to PCR bias, cloning bias, or other analytical errors, as the
changes seemed to be reflected in the DGGE analysis, if only
through changes in diversity, and are consistent with well-
studied properties of these groups. Not only was the discrep-
ancy due to differences in community structure (LIBSHUFF
and parsimony test analyses), but it was also due to the pres-
ence of abundant (and perhaps rare for some undersampled
groups) OTUs. Although inadequate sampling is a matter of
concern with the cloning-sequencing approach, our SONS
analyses showed that the number of sequences that we sam-
pled was sufficient to obtain stable estimates. A caveat for
SONS-based analyses, however, is that it is not possible to
ascertain which clades are responsible for the segregation
among samples (64). Selectively deleting data sets to obtain
such information is not justified, as it could reduce the statis-
tical power, unless more detailed a priori knowledge about the
correspondence between phylogeny and function is obtained
(64).

The bottom water of Soap Lake might be considered to be
more “extreme” than the surface water because of the poten-
tial toxicity of the high concentrations of sulfide and ammonia
that have accumulated in the deep, cold water after extended
meromixis. Hence, it would be expected that this milieu has
relatively limited diversity. The results show, however, that
anoxic deep waters were, in both seasons, more diverse than
oxic surface waters, which was congruent with our DGGE
results. This has also been found to be the case for various cold
marine environments, such as the Arctic Ocean (57), saline
meromictic lakes of eastern Antarctica (5), and permanently
stratified Lake Pavin (39) and Mono Lake (24). Habitats that
experience spatially structured changes in redox conditions are
often associated with concomitant shifts in diversity (for in-

stance, hypersaline microbial mats [40] and wet alpine soils
[12]).

Although the strong physicochemical gradients in Soap Lake
may contribute to the overall diversity of the bacterioplankton
in the lake, it is unlikely that this component of habitat diver-
sity is responsible for the elevated diversity in the monimolim-
nion, as the gradients there are weak relative to those in other
locations in the water column (the oxycline, for example). It is
possible, however, that downward metabolite fluxes across lay-
ers contribute to the generation of chemical complexity (43),
which, coupled with old, stagnant waters, would allow the
maintenance of high diversity levels; indeed, �30% of the total
estimated richness was comprised of monimolimnion se-
quences, suggesting that closely related taxa in anaerobic wa-
ters represent multiple unique ecotypes with diverse ecophysi-
ological capabilities (25). Visual as well as microscopic
inspections indicated that there were elevated concentrations
of particles in monimolimnion sediments, which may provide
an additional range of potential physical niches for specialized
bacterial groups.

Lehours et al. (39), invoking Humayoun et al. (24), proposed
that anoxic environments maintain a higher diversity of ener-
getic pathways (for which we obtained preliminary support
from the MPN study) and that this complexity permits the
retention of higher metabolic and thus ecological diversity.
Such a scenario, however, implies, at least, a concordance
between functional potential (as determined by the presence of
an energetic pathway) and phylogenetic diversity. Because 16S
rRNA genes and functional genes evolve at different rates (37),
such thesis is untenable. As has been observed in soil (21, 77),
it is likely that interspecific and intraspecific competitive inter-
actions are the principal factors that govern the maintenance
of diversity in anoxic samples, while oxic samples are subject to
a different set of ecological forces, which may include grazing
pressure and marked fluctuations in resource supply.

Whereas shifts in bacterial community composition across
space were apparent, the temporal variability was less marked.
According to our SONS analysis, the July and October se-
quence collections shared a core set of an estimated 115 spe-
cies-level OTUs, while phylum-level phylotypes were indistin-

TABLE 4. Estimated community overlap of interseason and intersample comparisons for OTUs defined by 0.03 and 0.2
Jukes-Cantor distances units

Comparison
Uest

a Vest
a Ĵabd SA,B Chao

D 
 0.03 D 
 0.2 D 
 0.03 D 
 0.2 D 
 0.03 D 
 0.2 D 
 0.03 D 
 0.2

Between seasons (July and October) 0.46 0.87 0.72 1 0.39 0.87 115 98

Between layers within the lake
Mixolimnion and chemocline 0.30 0.62 0.69 0.56 0.26 0.42 33 16
Mixolimnion and monimolimnion 0.17 0.98 0.027 0.20 0.024 0.20 5 22
Mixolimnion and mixolimnion sediment 0.043 0.20 0.35 0.40 0.040 0.15 13 13
Mixolimnion and monimolimnion sediment 0.12 0.54 0.048 0.18 0.036 0.16 6 14
Chemocline and monimolimnion 0.19 0.61 0.17 0.93 0.10 0.58 22 38
Chemocline and mixolimnion sediment 0.009 0.32 0.025 0.35 0.007 0.20 1 11
Chemocline and monimolimnion sediment 0.15 0.49 0.63 1.00 0.14 0.49 25 28
Monimolimnion and mixolimnion sediment 0.00 0.31 0.00 0.28 0.00 0.17 0 9
Monimolimnion and monimolimnion sediment 0.29 0.77 0.64 0.80 0.25 0.65 32 19
Mixolimnion sediment and monimolimnion sediment 0.037 0.28 0.010 0.47 0.008 0.21 1 28

a Uest and Vest are the fractions of sequences from the first and second seasons or layers indicated, respectively, that belong to a shared OTU (64).

VOL. 74, 2008 MICROBIAL DIVERSITY OF SOAP LAKE 4885



guishable. The predicted overlap at a genetic distance of 0.03,
however, was low (Table 4), which suggested that temporal
turnover is also an important vehicle for the generation of
diverse “accessory” populations (64) with season-specific eco-
logical roles.

Succession in the phytoplankton community can affect the
concentration and biochemical composition of autochthonous
organic matter available to bacteria (31, 55). Compositional
shifts associated with different phytoplankton-derived DOC
compounds have been documented using 16S rRNA gene-
based analyses (54). This implies that the primary producers
interact with bacteria by introducing variations in the qualita-
tive properties of the compounds that they secrete and thus
select for subsets of the prokaryotic community; i.e., different,
closely related populations may mediate the turnover of dif-
ferent compounds (53). In Soap Lake, sinking detritus derived
from seasonal (spring and fall) blooms of Chlorella sp. and
from other phototrophs (71) may provide an important frac-
tion of fermentable or readily utilizable carbon sources, as
suggested by the high DOC concentrations found in both the
mixolimnion and the monimolimnion (Table 1) and by the
presence of fermentative microorganisms (Table 2). If this is
the case, it is not known which member(s) of the bacterio-
plankton is closely coupled to Chlorella production. Under this
interpretational framework, the higher prokaryotic diversity
observed in July samples may have been associated with a
higher diversity (or increase in quantity) of phototrophically
derived chemical species; conversely, populations following the
progression of phytoplankton blooms are likely exposed to
additional short-term constraints (for instance, diel changes
[36]) that may become more intense during the summer. In-
terestingly, the finding that the mean bacterial Shannon index
(DGGE), although not the archaeal Shannon index (DGGE),
in the chemocline was positively correlated (R2 
 0.71; P 

0.006) with Secchi depth (a measure of overall lake productiv-
ity) may indeed suggest that there is seasonal repetition of
abundant bacterial assemblages endemic to the chemocline
linked to phytoplankton bloom dynamics, to productivity per
se, or to both factors. The fact that a significant relationship
was only found for the chemocline community is not unex-
pected since (i) it is known that bacterial groups respond dif-
ferently to seasonal cycles (for instance, cycles of primary pro-
duction [72]) and (ii) the chemocline lies in the transitional
zone between productivity due to dark carbon assimilation and
productivity due to light carbon assimilation (71). Although we
did not systematically measure other environmental parame-
ters that could potentially limit the seasonal distribution of
prokaryotic assemblages (i.e., the parameters in Table 1), the
data that we do have suggest that there is little variation over
time.

Interestingly, around 30% of the sequences were closely
related (�95% similarity) to sequences retrieved from Mono
Lake, an alkaline (pH 9.8), saline, meromictic soda lake lo-
cated in California (24). Additionally, although their sequences
are not closely related to Soap Lake sequences, previous stud-
ies have shown that marinelike, nonalkaliphilic microorgan-
isms tend to dominate libraries retrieved from oxic portions of
soda lakes (39, 42, 58). Humayoun et al. (24) found that many
of the sequences that they retrieved from anoxic samples clus-
tered with the low-G�C-content group. The cultured repre-

sentatives that closely matched our sequences, such as Thial-
kalivibrio, Belliella, Algoriphagus, Tanella, Tindallia, and
Rhodobaca, were isolated from environments characterized
by physical and chemical parameters that coincide with param-
eters found in Soap Lake. In general, we found that our se-
quences were frequently related to sequences found in ecosys-
tems such as other soda lakes, hypersaline and/or cold
meromictic lakes, marine and brackish waters, marine sedi-
ments, and deep-sea sediments.
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