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Abstract
Background: Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three
lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or
conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary
placement of gnetophytes based on molecular characters. Here we report on the first complete
gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence
rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications.

Results: The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726
base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR).
Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic
land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits
a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or
present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant
lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed
plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a
monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene
sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these
genes individually, a comparison of average pairwise distances indicates that relative divergence in
Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater
than the average for non-gnetophyte seed plants.

Conclusion: Although the basic organization of the Welwitschia plastome is typical, its compactness, gene
content and high nucleotide divergence rates are atypical. The current lack of additional conifer plastome
sequences precludes any discrimination between the gnetifer and gnepine hypotheses of seed plant
relationships. However, both phylogenetic analyses and shared genome features identified here are
consistent with either of the hypotheses that link gnetophytes with conifers, but are inconsistent with the
anthophyte hypothesis.
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Background
Welwitschia mirabilis Hook f. (Welwitschiaceae) is a mor-
phologically unique gymnosperm ("without parallel
among all living vascular plants" [1]) of the Namib Desert
of southwestern Africa (Namibia and Angola) and is the
only extant member of its genus and family. The species is
dioecious, and each adult plant consists of a giant taproot,
a very short woody stem, and two permanent 'strap-
shaped' leaves [1,2]. Welwitschiaceae is one of three fam-
ilies in the Gnetophyta (each family would be placed in its
own order and class when the group is recognized at the
level of phylum), the other two being Ephedraceae, com-
prised of the genus Ephedra, and Gnetaceae, comprised of
Gnetum. Welwitschiaceae diverged from other gneto-
phytes prior to the early Cretaceous [3].

Gnetophytes are of intense interest not only due to their
peculiar morphology but also because controversies
regarding seed plant phylogeny revolve around their
placement (reviewed in [4,5]). In morphologically based
cladistic analyses [e.g., [6,7]], gnetophytes are the extant
sister to angiosperms (the "anthophyte" hypothesis).
However the anthophyte hypothesis has rarely been
recovered in analyses based on molecular data [4,5,8]. In
recent work, multiple outcomes are often supported, even
within the same paper, depending on which genes, which
sites and which methods are employed [e.g., [5,9,10]].
Gnetophytes have been placed sister to all other seed
plants [e.g., [11]], sister to conifers (the "gnetifer" hypoth-
esis) [e.g., [12]], or nesting within conifers as the sister to
Pinaceae (the "gne-pine" hypothesis) [e.g., [13-15]].

Placement of the gnetophytes based on molecular data
has been problematic, apparently due to accelerated rates
of evolution in the lineage, which can lead to Long Branch
Attraction or LBA [16,17]. Increased taxon sampling to
break up long branches is commonly regarded as an effec-
tive approach for overcoming LBA, as is adding more
sequence data, selecting slower markers, selecting slower
positions and representing lineages with slowly evolving
exemplars [18]. Furthermore, using genomic characters,
e.g., inversions and gene or intron losses, which are less
vulnerable to LBA, can also be helpful [19,20]. In plants,
the chloroplast genome is the primary target when
attempting to generate large amounts of sequence data
and genomic characters for phylogenetics, but unfortu-
nately gymnosperms are very poorly represented among
currently available chloroplast genome sequences. This
paucity of gymnosperm chloroplast genome sequences
(only three gymnosperm plastomes are available, and two
are species from the same genus: Pinus thunbergii [21], P.
koraiensis, and Cycas taitungensis [22]) currently limits the
ability to construct genome level data matrices for seed
plant phylogenetics.

The typical seed plant plastid genome [23] contains two
copies of a large inverted repeat (IR) separated by large
(LSC) and small (SSC) single copy regions. The genome is
usually comprised of 150,000 to 160,000 base pairs (bp),
includes approximately 120 different genes and is highly
conserved in both gene order and content [24-26]. This
general form (excepting some minor variation in IR
boundaries and some differences in gene content between
gymnosperms and angiosperms) is found in plastomes of
Cycas [22], early-diverging angiosperms (such as Amborella
[27] and Nuphar [28]), magnollids [29,30] and various
eudicots [31].

In contrast, some seed plant lineages contain plastid
genomes that vary from this typical form [25]. Some plant
groups contain genomes that lack one copy of the large IR
[32,33] or have greatly expanded IR regions [34]. Gene
loss can occur, and the most extreme examples can be
found in the plastid genomes of parasitic angiosperms
[35]. Rearrangements have affected the gene order of plas-
tid genomes, in some lineages slightly [e.g., [36-38]] but
in a few cases greatly [34,39-41]. And, although the rate of
evolutionary change of plastid genes is largely conserva-
tive [42,43], it is elevated in some lineages [44,45]. Here,
in describing the completely sequenced Welwitschia mira-
bilis plastome, we add to these examples of atypical plastid
genomes and discuss phylogenetic implications.

Results
General Characteristics of the Genome
The 119,726 bp Welwitschia mirabilis plastid genome
[GenBank: EU342371], similar to other chloroplast
genomes, is A+T rich overall and in all compartments
except for the RNA genes [see Additional file 1 and Addi-
tional file 2 for details]. The plastome consists of a large
single copy region (LSC) of 68,556 base pairs (bp) and a
small single copy region (SSC) of 11,156 bp, separated by
two copies of the large inverted repeat (IRa and IRb) of
20,007 bp each (Fig 1). This quadripartite structure is typ-
ical among most land plant and some algal chloroplast
genomes [46,47]. The small size of the genome is unex-
pected; Welwitschia possesses the smallest plastid genome
of any published non-parasitic land plant that still con-
tains the large IR. The genome is similar in size to two
other publicly available chloroplast genomes from gym-
nosperms, Pinus koraiensis (116,866 bp) and Pinus thun-
bergii (119,707). However, both Pinus plastomes have lost
all but 475 or 495 bp (respectively) of their IR [48]. The
Welwitschia plastome is less than 75% the size of the plas-
tid genome reported for Cycas taitungensis [22].

The Welwitschia plastome is also unusually compact (i.e.,
a higher proportion of the genome is comprised of coding
sequence and less of non-coding sequence). Coding
regions constitute 66% of the Welwitschia plastome, mak-
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Gene map of the Welwitschia mirabilis plastomeFigure 1
Gene map of the Welwitschia mirabilis plastome. Genes shown on the inside of the circle are transcribed counterclock-
wise and those on the outside clockwise. Gene boxes are color coded by functional group as shown in the key in the figure. 
The genome shows a structure typical to most chloroplast genomes: two copies of the inverted repeat region separating the 
large and small single copy regions. There are, however, multiple gene-order changes and gene losses relative to the ancestral 
genome organization, as well as slight expansions of the IR at the LSC and SSC boundaries.
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ing this the most compact of any non-parasitic, land plant
chloroplast genome sequenced so far. Pinus thunbergii is
the most similar, with 61% coding (Table 1). However,
the NCBI value for Pinus thunbergii (and perhaps some of
the other genomes) includes non-conserved ORFs and
pseudogenes as coding sequence, which we excluded from
coding in our calculations for Welwitschia. The NCBI cod-
ing percentage values are automatically generated based
on the submitted annotation. Therefore, different meth-
ods of annotation (e.g., whether or not all ORFs are anno-
tated) lead to ambiguities. For example, we recalculated
compactness for the Pinus thunbergii plastid genome,
using the same approach we applied to the Welwitschia
genome, and found P. thunbergii to be 57.3% coding
(rather than the 61% reported at NCBI). Thus our conclu-
sions are conservative, and in no instance would the val-
ues reported in Table 1 be increased if calculated using the
method applied to Welwitschia. Therefore, the compact-
ness of our genome may be even more remarkable when
taking into account that the genomes in the NCBI data-
base may be less compact, by our methods of calculation,
than reported. Even so, overall, the average coding per-
centage of the available land plant genomes, using NCBI
values and excluding Welwitschia, is only 50.0% (Table
1), compared to 66% in Welwitschia.

The LSC boundary of the IR in Welwitschia is located in the
3' end of psbA. The LSC-end of the IR includes the genes
ycf2-trnH-trnI-3'psbA, with ycf2, trnH-GUG, and psbA on
one strand and trnI-CAU on the other. Two events are
required to explain the expanded IR seen in Welwitschia,
from the ancestral seed plant condition (i.e., ycf2 and trnH
duplicated in the IR ancestrally) proposed by Wu et al
[22]. First, trnI-CAU was duplicated into the IR via an
expansion of IRb at the JLB boundary. Second, IRa
expanded at the JLA boundary to include a portion of psbA.
Interestingly, the remnant IR found in Pinus thunbergii,
which includes trnI and 3'psbA, matches the LSC end of
the IR in Welwitschia (almost exactly: in the Welwitschia
plastome only 77 bp more of psbA is duplicated). The
duplication of trnI in this context and followed by a par-
tial duplication of psbA is found in no other completely
sequenced chloroplast genome, and other methods (tar-
geted PCR and sequencing) show this "motif" to exist only
in plastomes of gnetophytes and conifers [22,49]. Pre-
sumably the loss of the IR in pines (and perhaps all coni-
fers) is a further modification of a Welwitschia-like IR.

The gene order in the Welwitschia chloroplast genome is
rearranged compared to more "typical" seed plant plas-
tomes such as Cycas, Amborella, or Nicotiana. There are 14
locations (i.e., breakpoints) where gene adjacencies differ
in Welwitschia compared to Cycas taitungensis, excluding

Table 1: Compactness measures for vascular plant plastid genomes.

Species % Coding Length (bp) Species % Coding Length (bp)

Welwitschia mirabilis 66% 119,726 Nicotiana tabacum 49% 155,943
Pinus thunbergii 61% 119,707 Populus alba 49% 156,505
Psilotum nudum 55% 138,829 Liriodendron tulipifera 49% 159,866
Nicotiana tomentosiformis 54% 155,745 Eucalyptus globules 49% 160,286
Nicotiana sylvestris 54% 155,941 Acorus calamus 49% 153,821
Adiantum capillus-veneris 53% 150,568 Drimys granadensis 49% 160,604
Pinus koraiensis 52% 116,866 Jasminum nudiflorum 49% 165,121
Oenothera elata 52% 163,935 Morus indica 49% 158,484
Arabidopsis thaliana 51% 154,478 Citrus sinensis 49% 160,129
Calycanthus floridus 51% 153,337 Liriodendron tulipifera 49% 159,886
Helianthus annuus 51% 151,104 Daucus carota 49% 155,911
Solanum bulbocastanum 51% 155,371 Gossypium hirsutum 48% 160,301
Lycopersicon esculentum 51% 155,460 Vitis vinifera 48% 160,928
Lotus japonicus 51% 150,519 Spinacia oleracea 48% 150,725
Atropa belladonna 51% 156,687 Oryza sativa 48% 134,525
Panax ginseng 50% 156,318 Amborella trichopoda 48% 162,686
Solanum tuberosum 50% 155,298 Platanus occidentalis 48% 161,791
Nymphaea alba 50% 159,930 Zea mays 47% 140,384
Glycine max 50% 152,218 Saccharum officinarum 47% 141,182
Coffea arabica 50% 155,189 Lactuca sativa 47% 152,765
Nandina domestica 50% 156,599 Piper cenocladum 46% 160,624
Cucumis sativus 49% 155,293 Triticum aestivum 44% 134,545
Oryza nivara 49% 134,494 Phalaenopsis aphrodite 44% 148,964
Daucus carota 49% 155,911 Non-gnetophyte average 50%

Percent coding values for species other than Welwitschia were obtained from the NCBI database. The average reported in the table was calculated 
excluding Welwitschia.
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differences due to gene losses and IR boundary shifts. A
minimum of nine inversions (i.e., reversals on the chro-
mosomal scale that change the order and orientation of
one or more genes) would be required to convert the
Cycas (ancestral) gene order to that of Welwitschia
(derived), in addition to gene losses and IR extent
changes. No gene order changes occur in the IR, but 4
inversions (7 breakpoints) are proposed for the LSC and 5
inversions (7 breakpoints) for the SSC (Fig 2). Although
both Pinus and Welwitschia plastomes have undergone
inversions, they share none in common. Over the entire
plastome, there is only one clear instance where both
genomes are disrupted at the same general location (trnT-
GGU and trnE-UUC, immediately adjacent in unrear-
ranged land plant plastomes, have been moved apart in
both genomes). However, a shared inversion would
require two shared points of disruption. There is a second
possible shared disruption in the region of ndhF. How-
ever, even if there is truly a shared point of disruption
(hard to define due to gene losses), these two endpoints
(trnT-trnE and ndhF) could not have been used together in
a single inversion; if these two breakpoints flanked one
inversion in Welwitschia (with one endpoint in the LSC
and the other in the SSC) the IR would have become a
direct rather than inverted repeat. Since the repeat is still
inverted we can be confident that such an inversion did
not take place.

Gene Content
The Welwitschia genome contains 101 distinct, presuma-
bly functional, genes: 31 unique tRNA genes, four rRNA
gene species, and 66 different protein-coding genes
(including 5 widely conserved ORFs or ycf genes). Four
rRNA genes, eight tRNA genes and four protein-coding
genes are fully or in part duplicated in the IR. Of the 18
genes usually found to contain introns in land plant plas-
tid genomes, only 12 are still present in the Welwitschia
plastome and two, petD and clpP, lack introns. In addition
to genes duplicated in the IR, Welwitschia also has a dupli-
cation of the trnR-CCG gene, as well as a partial duplica-
tion of trnF-GAA. Of the genes normally present in land
plant chloroplast genomes, four (Fig 3) are pseudogenes
(detectable but truncated and containing various
frameshift mutations resulting in numerous premature
stop codons) and 15 are completely absent (at least we
were unable to detect any remnants of them in the
genome).

The entire complement of ndh genes (11 subunits encod-
ing NADH dehydrogenase) is non-functional, with 10
being absent and one, ndhB, being a pseudogene. The
ndhB remnant is a small section of the 5' exon (Fig 3), only
121 bp long, whereas the fully functional Nicotiana taba-
cum ndhB gene is 1,530 bp long. The loss of the ndh genes
also has been reported in Pinus [21], where more of the

genes (seven) remain detectable as pseudogenes. In Wel-
witschia elevated rates and selection for compactness
could accelerate the loss of detectable gene remnants fol-
lowing the initial loss of function. Presumably the rem-
nant ndhB gene is still recognizable because it resides in
the IR where rates are reduced [50]. Within completely
sequenced land plant plastomes, the ndh genes have also
been lost from the chloroplast genome of the orchid Pha-
laenopsis [45] and the non-photosynthetic parasite Epifa-
gus [51]. The genes are found in some but not all green
algal plastid genomes, and are lacking from plastomes of
the red algal lineage and Cyanophora [52].

The genes for the three chl subunits, encoding the enzyme
protochlorophyllide reductase, are also missing or non-
functional, with one gene (chlL) being completely absent
and the other two (chlN and chlB) being pseudogenes. The
chlN and chlB pseudogenes are truncated, to 697 bp and
604 bp respectively, from a full length (as represented by
Pinus thunbergii) of 1,530 bp and 1,401 bp. Based on ear-
lier work [53], we expected chlL to be missing or highly
divergent in Welwitschia. However results of that previous
study, using Southern hybridization, indicated that chlL is
present in Ephedra and Gnetum, conflicting with the results
of Wu et al [22] for Gnetum. An examination of the Wel-
witschia plastome suggests that the loss of the chl genes
may have been initiated by an inversion. One breakpoint
may have been located within the chlL gene itself (Fig 2),
so that the inversion split the gene apart, disrupting it and
causing it to become non-functional. Of course, it is also
possible that the gene was inactivated by simple base sub-
stitution. Once the chlL (or other) subunit was inacti-
vated, no functional enzyme could be produced,
eliminating any selection to retain the other two subunits
as intact genes. It seems suggestive that the chlL gene is
completely missing whereas chlN and chlB remain as
pseudogenes, consistent with the hypothesis that chlL was
lost first. These three genes are also missing from all
angiosperm plastomes [31] as well as from the Psilotum
chloroplast genome [53]. The product of these chl genes
encodes an enzyme that allows chlorophyll to "green in
the dark". An alternative, nuclear-encoded protein that
requires light can also affect chlorophyll maturation. Thus
the loss of these genes presumably would not be lethal
even if the plastid genes were not successfully transferred
to the nuclear genome.

Beyond the loss of the ndh and chl gene families, we were
also unable to detect the genes accD, psaM, rpl23, rps16 or
trnP-GGG in the Welwitschia plastid genome. The gene
accD has been lost independently in numerous prokary-
ote and eukaryote lineages [41]. The gene rpl23 has been
reported missing from the plastome of the angiosperms
Spinacia [54,55] and Trachelium [31]. The gene rps16 has
experienced numerous independent losses in land plants
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Rearrangement scenario showing one possible explanation of differences observed in the Welwitschia SSC regionFigure 2
Rearrangement scenario showing one possible explanation of differences observed in the Welwitschia SSC 
region. Gene order and orientation are represented in the diagram, but genes and IGS are not shown to scale. Map 1 shows 
the SSC and flanking ends of the IR as the region appears in Cycas or Ginkgo, maps 2–6 are hypothetical, and map 7 illustrates 
the region as it appears in the Welwitschia genome. Event a is an inversion that reverses the orientation of trnN. One endpoint 
of this inversion may have disrupted ndhF, leading to its loss. Event b is an inversion that reverses chlN. One endpoint may have 
disrupted chlL. Event c is the copy correction of the second IR copy to reflect the gene order change (event a) in the other 
copy. Events d, e, and f are inversions modifying the order and orientation of blocks of genes within the SSC. Again, in step e, 
inversion breakpoints may have disrupted genes. Events g, h, and i are additional gene losses (chlN is still detectable as a pseu-
dogene) not directly related to inversion breakpoints. Event j is an extension of the inverted repeat into the SSC to copy rpl32 
into the IR. The positions of the inversion endpoints are defined by the gene adjacencies in Welwitschia as compared to the 
ancestral condition, however exactly how those endpoints are combined into inversion events is speculative. Thus the end-
points indicated for events b-f may have been combined in different ways and the events may have occurred in an alternative 
order than that represented in this model.
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Harr plots comparing sequence from the Welwitschia plastome with homologous regions from Podocarpus and GinkgoFigure 3
Harr plots comparing sequence from the Welwitschia plastome with homologous regions from Podocarpus and 
Ginkgo. The extent of genes found in each region of the Podocarpus and Ginkgo plastomes are shown at the top of each graph 
as colored boxes. The Welwitschia (WEMI) sequence is represented as the Y-axis. Diagonal lines indicate regions of similarity 
between the two sequences being compared. Most portions of these genes found in Podocarpus and Ginkgo lack equivalent 
sequence in Welwitschia and the sections exhibiting similarity are disjointed.
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[31,56,57]. Overall, the gene content of Welwitschia
appears to be very close to what Wu et al [22] report for
Gnetum, except that rps15, which is reported as absent in
Gnetum, is present in Welwitschia.

Divergence for Protein-Coding Genes
In most cases Welwitschia plastid genes are more divergent
than the genes of other seed plants. We attempted to
measure relative divergence with a ratio derived from a
simple comparison of pairwise distances, an extension of
the approach used by Hajibabaei, Xia, and Drouin [58].
For each of 57 genes (Table 2), we calculated the average
pairwise distance among non-gnetophyte seed plants and
the average pairwise distance between Welwitschia and
each representative non-gnetophyte seed plant. We then
determined the ratio of these two averages to determine a
"Relative Divergence Factor" for each gene. If the Relative
Divergence Factor is less than one, then that gene in the
Welwitschia plastome shows less divergence than average,
if it is one, the gene is equally divergent, and, if greater
than one, the Welwitschia gene exhibits above average
divergence.

We selected from among 10 taxa to calculate the non-gne-
tophyte average: Ginkgo, Cycas, Pinus, Podocarpus, Ambore-
lla, Nuphar, Nymphaea, Calycanthus, Ranunculus, and
Acorus. We used A) all 10 taxa, as well as B) Ginkgo and
Cycas plus Ranunculus and Pinus, C) Ginkgo and Cycas plus
Amborella and Pinus, D) Ginkgo and Cycas plus Amborella
and Podocarpus, and E) Ginkgo and Cycas plus Amborella,
Pinus and Podocarpus. Phylogenetic structure within the
non-gnetophyte taxa could confound this approach. For
example, in Set A, which contains multiple angiosperms,
Nuphar and Nymphaea, especially, are rather closely
related. Having such "small" distances included in the
non-gnetophyte average could bias the result. However,
we did not obtain very different results when using single
angiosperm exemplars. In terms of the higher-level struc-
ture in the non-gnetophytes, internal branches are proba-
bly so short (Fig 4) relative to the terminals that this
structure would have minimal impact. Also, if the true
phylogenetic position of Welwitschia is anywhere within
the other seed plants, then the bias should be against the
Welwitschia to non-gnetophyte distances. In summary,
this seems a reasonable enough way to investigate which
genes are more or less divergent.

Across all the comparisons and all genes, the Relative
Divergence Factor ranged from 0.87 to 3.45 (Table 2).
[See Additional files 3, 4, 5, 6, 7 for details of the calcula-
tions for each reference set.] For about 20% of the com-
parisons, the difference between the non-gnetophyte
average and the Welwitschia to non-gnetophtye average
was not significant, either because the averages were basi-
cally equal or, more often, because the variation around

Table 2: Comparison of Relative Divergence Factors calculated 
using different reference sets of non-gnetophyte seed plants.

Gene setA set B set C set D set E average

All 1.69 1.53 1.67 1.50 1.54 1.59
atpA 1.53 1.36 1.44 1.30 1.32 1.39
atpB 1.57 1.44 1.59 1.37 1.38 1.47
atpE 1.59 1.52 1.63 1.44 1.47 1.53
atpF 1.58 1.32 1.39 1.30 1.33 1.38
atpH 1.40 1.36 1.23 1.42 1.38 1.36
atpI 1.60 1.56 1.64 1.45 1.50 1.55
ccsA 1.68 1.54 1.81 1.49 1.58 1.62

cemA 1.51 1.27 1.51 1.22 1.27 1.36
matK 1.92 1.77 1.91 1.72 1.81 1.83
petA 1.64 1.48 1.68 1.43 1.49 1.54
petB 1.74 1.79 1.83 1.66 1.74 1.75
petD 1.67 1.52 1.65 1.54 1.60 1.60
petG 1.81 1.55 1.95 1.49 1.65 1.69
petN 1.34 1.16 1.16 1.08 1.10 1.17
psaA 1.95 1.35 1.52 1.37 1.38 1.51
psaB 1.53 1.33 1.42 1.36 1.37 1.40
psaC 1.80 1.86 1.96 1.77 1.95 1.87
psaI 2.54 2.03 2.27 2.02 1.95 2.16
psaJ 1.13 0.87 0.93 1.05 0.88 0.97

psbA 1.51 1.32 1.38 1.29 1.34 1.37
psbB 1.62 1.57 1.66 1.49 1.53 1.57
psbC 1.64 1.51 1.50 1.52 1.51 1.54
psbD 1.76 1.68 1.67 1.46 1.66 1.64
psbE 1.55 1.39 1.74 1.25 1.35 1.46
psbF 2.97 2.64 3.45 2.97 2.67 2.94
psbH 1.65 1.61 1.57 1.39 1.44 1.53
psbI 1.37 1.45 1.43 1.23 1.34 1.36
psbJ 2.17 2.05 2.14 1.78 1.86 2.00
psbK 1.54 1.30 1.35 1.25 1.29 1.34
psbL 1.31 0.97 1.08 1.19 1.03 1.12
psbM 1.33 1.07 1.36 1.02 0.99 1.15
psbN 1.78 1.32 1.50 1.29 1.33 1.45
psbT 1.25 1.39 1.75 0.94 1.16 1.30
psbZ 2.04 2.02 2.19 1.91 2.01 2.03
rbcL 1.48 1.42 1.61 1.32 1.36 1.44
rpl14 1.86 1.62 1.62 1.64 1.68 1.68
rpl16 2.14 2.27 2.28 2.02 2.09 2.16
rpl20 1.61 1.53 1.54 1.45 1.53 1.53
rpl33 2.02 2.39 2.32 2.43 2.46 2.32
rpl36 2.26 1.99 2.28 2.10 1.83 2.09
rpoA 2.15 2.27 2.40 1.93 2.03 2.15
rpoB 1.89 1.69 1.82 1.49 1.58 1.69

rpoC1 2.07 1.69 1.77 1.14 1.57 1.65
rpoC2 1.73 1.58 1.70 1.46 1.54 1.60
rps11 2.62 2.59 2.84 2.24 2.40 2.54
rps12 1.98 1.72 1.46 1.49 1.60 1.65
rps14 2.02 2.01 2.35 1.78 1.91 2.01
rps15 1.88 1.72 1.43 1.61 1.70 1.67
rps18 2.99 2.15 2.43 2.40 2.11 2.41
rps19 1.95 2.19 2.07 2.01 2.05 2.05
rps2 2.10 2.02 2.04 1.82 1.85 1.97
rps3 2.18 2.20 2.35 2.02 2.10 2.17
rps4 1.83 1.73 1.76 1.68 1.62 1.72
rps7 2.20 2.37 2.58 1.64 1.69 2.10
rps8 1.57 1.29 1.40 1.23 1.32 1.36
ycf3 1.95 1.53 1.54 1.69 1.63 1.67
ycf4 1.63 1.36 1.49 1.32 1.05 1.37

Relative divergence factor values indicated in bold are significantly different than 1 
(two-tailed t-test. p < 0.05). Detailed information on each set of calculations can 
be found in Additional files 3, 4, 5, 6, 7.
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Phylogenetic hypotheses obtained using different optimization criteria based on 57 protein-coding plastid genesFigure 4
Phylogenetic hypotheses obtained using different optimization criteria based on 57 protein-coding plastid 
genes. Values associated with branches indicate the level of bootstrap support or, for the Bayesian analysis, posterior proba-
bility. Branch lengths are shown proportional to inferred amount of change in all trees.
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the average was great enough to make them statistically
indistinguishable. About 25% of the genes had an average
Relative Divergence Factor above 2. When the Relative
Divergence Factor was determined as an average of the five
different calculations, only one gene (psaJ) had a diver-
gence rate about equal to the non-gnetophytes (factor of
0.97), whereas 38 genes had Relative Divergence Factors
above 1.5 and 14 above 2.

The average Relative Divergence Factor over all genes for
each reference set ranged from 1.50 to 1.69 (all signifi-
cant, p < 0.0001). The average Relative Divergence Factor
from all genes, over all calculations, is 1.68. For all the
genes together, we also applied Tajima's Relative Rate Test
(Table 3). The Welwitschia genes have very significantly
(p < 0.00001) elevated rates based on any of the compar-
isons conducted, whether the three taxon statement was
compatible with commonly produced trees or not. In
these tests, the proportion of unique sites identified in
Welwitschia relative to the comparison taxa suggests that
the Relative Divergence Factor method might be conserv-
ative.

Phylogenetic Inference
Using the same 57 genes (47,858 aligned nt) as for our
Relative Divergence Factor and Relative Rate comparisons,
we inferred phylogenetic trees using various methods.
Here, we also included genes from the pteridophytes Adi-
antum and Psilotum. The trees shown (Fig 4) include only
Amborella as the representative angiosperm. However,
analyses using other angiosperms (from those listed as
"set A", above) as single exemplars or including all six
angiosperm taxa yielded identical topologies (data not
shown; however we will note that when the six
angiosperms were included together, Amborella was
strongly supported as the earliest diverging angiosperm by
all methods). Neighbor-joining, Minimum Evolution
(ME) and Maximum Parsimony (MP) trees yielded topol-
ogies with Welwitschia diverging first among the seed
plants. In contrast, Maximum Likelihood (ML) and Baye-
sian (BI) analyses resulted in topologies that included a
monophyletic gymnosperm clade and a Welwitschia-Pinus
sister group. Bootstrap (BS) values and posterior probabil-

ities (PP) indicate that each method, except ML, very
strongly supports its particular solution. However, the SH
test indicates that, for these data, the three topologies
shown in Fig 4 do not have significantly different likeli-
hoods. In contrast, the best ML topology (shown in the
figure) is significantly better than the best anthophyte
topology (p < 0.001).

It is interesting to note that although taxon sampling in
our phylogenetic analyses is very limited, the trees
obtained are mostly robust (e.g., high BS, PP values) and
consistent with expectation. In other studies (e.g., [58]
and [5] along with studies reviewed therein), based on
total evidence from fewer genes but more taxa, distance
methods and MP commonly place gnetophytes at the base
of all seed plants, whereas ML and BI support a topology
including gnetifers or gnepines. Here we see exactly the
same pattern. By all methods, Welwitschia is inferred to
represent a long branch, consistent with the relative rate
tests and the relative divergence factor analyses. Since ME
and MP are more likely to be confounded by rate hetero-
geneity, we would guess that the placement of Welwitschia
in these trees is an artifact. However, when MP analyses
were conducted on nucleotide data with the third position
excluded or on deduced amino acid data, both of which
should reduce the effects of rate heterogeneity, the same
MP topology is recovered. As mentioned previously,
according to SH test results, these data (for these taxa)
cannot discriminate among the three topologies of Fig. 4.
Although the addition of more sequence data allows us
(with a sampling of only five seed plant taxa) to do no bet-
ter than earlier work based on better taxon sampling, like-
wise our results are no worse. This suggests that a
significant increase in number of genes (of a level availa-
ble from whole plastome sequences) will allow a rather
limited taxon sampling to provide important insights into
seed plant phylogeny. Of course that sampling will need
to be less limited that what is available to us and must
include at least one conifer II representative.

Discussion
The morphology of Welwitschia makes it a very unusual
organism. The plastid genome also has unusual features.

Table 3: Tajima's Relative Rate Tests between Welwitschia and various other seed plants.

(A, B) C (WEMI, Pinus) 
Ginkgo

(WEMI, Ginkgo) 
Pinus

(WEMI, Amborella) 
Ginkgo

(WEMI, Ginkgo) 
Amborella

(WEMI, Amborella) 
Pinus

(WEMI, Pinus) 
Amborella

Identical sites 28782 28782 27333 27333 26970 26970
Divergent sites, all 3 718 718 1047 1047 1214 1214
Unique differences Seq A 5456 5456 5088 5088 4488 4488
Unique differences Seq B 1615 1805 3220 1955 3497 2057
Unique differences Seq C (reference) 1805 1615 1955 3220 2057 3497

2 statistic 2086.45 1835.81 420.1 1393.68 122.99 902.94
P value (1 df) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Although the overall organization of the genome is typical
of most land plants (i.e., having two single copy regions
separated by two inverted repeat regions), the extent of
the IR, gene content, gene order, rate of nucleotide diver-
gence, and compactness, all are atypical. The phylogenetic
significance of any of these atypical features can, at this
point, be interpreted in only a limited manner. Until
more gnetophyte plastome sequences are available we are
uncertain whether features seen in Welwitschia are unique
to that species or are characteristic of gnetophytes. Like-
wise, traits of the Pinus plastid genomes provide little
detail about the nature of conifer genomes in general.
Derived characters shared between Pinus and Welwitschia
are compatible with either the gnetifer or the gne-pine
hypotheses; however, they are inconsistent with the
anthophyte hypothesis.

There are some differences in gene content that are shared
between Welwitschia and angiosperms. Angiosperms and
Welwitschia (but not Ephedra) lack the three chl genes.
Angiosperms and Welwitschia (but not Gnetum) share the
loss of trnP-GGG. These loss events could be shared due to
common ancestry only if the gnetophytes were not mono-
phyletic, in conflict with almost all recent work. Plastome
gene loss has been a common pattern over the history of
the plastid as an endosymbiont [52,59]. The same genes
are often lost independently in unrelated lineages [52].
Even within angiosperms, where gene content is largely
stable in photosynthetic representatives, some genes have
been lost in multiple instances (reviewed recently in
[31]).

The most distinctive structural feature common to both
Welwitschia and Pinus is the shared IR extent. The Pinus
remnant IR (a 495 bp sequence containing trnI and a 3'
portion of psbA [48]) matches the LSC end of the IR in
Welwitschia and Gnetum [22] suggesting that the Pinus IR
represents a reduction from a Welwitschia/Gnetum-like
ancestor. Welwitschia and Pinus plastomes also both lack
functional copies of all eleven ndh genes, the rps16 gene,
and both introns of clpP. However, due to the reasons
mentioned above, gene losses must be used cautiously as
phylogenetic markers. Phylogenetic analyses, using ML
and BI, based on 57 plastid genes also link Welwitschia
and Pinus (as analyses based on 56 genes linked Gnetum
and Pinus [22]). Of course, a representative of the second
(non-Pinaceae) lineage of conifers (i.e., "conifer II" or
Cupressophyta [60]) is necessary to distinguish between
the gnetifer and gne-pine hypotheses.

Based on the Welwitschia plastome gene organization, we
can speculate (due to placement of breakpoints) that
inversions in the LSC or the SSC (Fig 2) may have initially
destroyed some ndh genes leading to the loss of all the
subunits, as was also a possible explanation in the case of

the chlL gene loss. Inversion endpoints are located in the
areas of the ndhCKJ cluster in the LSC, as well as ndhF and
the ndhHAIGE cluster in the SSC. If any one of the ndh
genes was disabled by an inversion (or by any other type
of mutation) the remaining subunits would gradually
decay to extinction. A gene-disrupting inversion in ndhF
also may have initiated ndh gene loss in Pinaceae.
Although an initial disruption of ndhF is a viable hypoth-
esis to explain ndh loss in both Pinus and Welwitschia, the
gene disrupting inversions could not be held in common
between the gnetophyte and Pinaceae plastomes because,
as discussed earlier, none of the inversions can be shared.
Of course the initial gene disruptions could have been
point mutations, not inversions; in which case, the losses
of the ndh genes could possibly represent a synapomor-
phy supporting the gnepine clade (as ndh genes are
reported missing from other gnetophytes [22,61] and yet
are commonly amplified from members of Cupresso-
phyta [61]). Unfortunately gene losses lack complex char-
acteristics to aid in determining homology.

We detected elevated levels of sequence divergence in
most Welwitschia genes analyzed. Earlier work, based on
limited numbers of genes [15,62-64], has consistently
found gnetophytes to have higher rates of sequence evolu-
tion in genes from each of the three compartments (plas-
tid, mitochondrial and nuclear genomes) and in both
ribosomal and protein-coding genes. Hajibabaei, Xia, and
Drouin [58] showed, for nine genes (four plastid, three
nuclear, and two mitochondrial), that the average pair-
wise distances between gnetophytes and non-gnetophyes
were significantly higher than average pairwise distances
among the non-gnetophytes. Here we expanded their
approach to 57 plastid genes and found that almost all
these genes exhibit above average divergence. We also
found that, using the Relative Rate Test on the 57 genes,
rates in Welwitschia were significantly higher in a variety of
comparisons. Rates in Gnetum also were analyzed [22]
using relative rate tests and, although transition rates in
Gnetum were not always significantly different, transver-
sion rates were. Thus these expanded studies (ours and
Wu et al [22]) indicate that plastome-wide rate elevation
has probably taken place in the gnetophtyes. Rate eleva-
tion is also suggested by the phylogenetic analyses, both
in the estimated branch lengths and, presumably, in the
conflict in outcomes among the different optimization
methods.

The Welwitschia chloroplast genome was found to be unu-
sually compact. The compactness of the genome can be
interpreted in numerous ways, but might suggest that the
small compact Welwitschia genome is the result of selec-
tive pressure to more rapidly replicate the genome by
reducing intergenic space and by losing "non-essential"
nucleotides. It is interesting to note that increased rate of
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replication is one factor hypothesized to lead to increased
mutation rate [65]. The small genome size can be attrib-
uted to the high incidence of gene loss in addition to com-
pactness. This suggests that a small, compact genome was
more important to the success of Welwitschia (or, more
likely, its ancestors) than the function of any genes lost.

Conclusion
Here we describe the first completely sequenced plastid
genome of a gnetophyte. The Welwitschia plastome pro-
vides insight into the rates of sequence evolution of this
highly divergent group of plants, as well as illustrating the
possible gnetophyte pattern of gene loss and rearrange-
ment. The most distinctive, potentially phylogenetically
informative, feature of the Welwitschia chloroplast
genome, the IR extent, supports a relationship of gneto-
phytes with conifers while being inconsistent with the
anthophyte hypothesis. Phylogenetic hypotheses sup-
ported in analyses of 57 plastid genes, but minimal taxo-
nomic representation, also lack any support for an
anthophyte clade. The availability of the Welwitschia mira-
bilis plastome will provide important information for use
in further phylogenetic studies resolving major questions
about the evolution of seed plants. As plastome sequences
for gymnosperms accumulate, genome level phylogenetic
analyses should contribute to the resolution of controver-
sies of seed plant phylogeny; currently however the
number of gymnosperm plastomes is very limited. Addi-
tionally, further gnetophyte plastomes need to be
sequenced in order to determine whether atypical charac-
teristics seen in Welwitschia are shared by all gnetophytes,
or are unusual genomic features of a very unique plant.

Methods
Chloroplast Extraction and DNA Sequencing
Chloroplasts were extracted from leaf tissue of Welwitschia
mirabilis using the sucrose gradient method as described
in Jansen et al [66]. Genomic RCA product (prepared
using the Operon Repli-G Kit) was used to prepare the
template for shotgun sequencing. Shotgun sequencing
was performed at DOE Joint Genome Institute [67].
Assembly and its assessment were conducted using Phrap
as implemented in Consed 15.1 [68]. Additional targeted
sequencing was conducted on PCR products to attain
quality in the finished sequence of a level of Q50 or
higher for every nucleotide [69]. Each of the four IR-SC
boundaries was also confirmed with independent PCR
and sequencing reactions.

Annotation
The Welwitschia genome was annotated with the aid of
DOGMA (Dual Organellar GenoMe Annotator) [70,71].
Each region in which genes were not detected using
DOGMA was investigated using TBLASTX [72] and
ORFfinder [73]. In all cases gene boundaries (start and

stop codons as well as intron/exon boundaries) were
determined through comparison with other plastome
annotations rather than via experimental evidence.

Coding Percentages
The coding percentage of the Welwitschia chloroplast
genome sequence was calculated as the proportion of
nucleotides that would be represented in mature gene
products relative to the total number of nucleotides in the
genome. Introns and pseudogenes were not included in
the coding percentage calculation. The percent coding of
all other genomes reported in Table 1 were obtained from
the NCBI database.

Pseudogenes
Pseudogenes were detected and their extent determined
using a variety of approaches. Any region that was found
using DOGMA to contain fragmentary sequences of genes
was aligned (using ClustalW) to functional versions of
genes from various previously sequenced plants. In addi-
tion, Harr or dot plots were constructed using Pipmaker
[74], under default stringency settings, to compare poten-
tially homologous regions of the Welwitschia genome with
gene sequences from the plastomes of Podocarpus macro-
phyllus and Ginkgo biloba (Raubeson et al, unpublished).
The Harr plots were visually analyzed in order to deter-
mine presence of significant sequence similarity. Pseudo-
genes were annotated as the most extensive region of
detectable similarity.

Gene Order and Loss
Gene order rearrangements were investigated manually
and using GRIMM [75,76]. When using GRIMM (which
requires gene content to be identical), genomes were sim-
plified such that IR expansions or contractions and gene
losses were not taken into account. GRIMM reports the
minimum number of inversions required to "convert"
one genome into another and returns one model of inver-
sions. The specific inversion scenario suggested by
GRIMM is only one of several possible models of equal
length that could explain the observed pattern. As GRIMM
is unable to take into account IR expansion and contrac-
tion, visual analyses were also performed in order to take
into account these events. These visual analyses were also
used to hypothesize the loss of the ndh and chl genes.

Divergence
For 57 shared protein-coding genes (these are the 61 plas-
tid genes first used for phylogenetic inference by Gore-
mykin et al [27], minus four (clpP, petL, rpl2, and rpl32)
that were problematic to align), pairwise distance analyses
were performed initially between 10 taxa (Ginkgo, Cycas,
Pinus, Podocarpus, Amborella, Nuphar, Nymphaea, Calycan-
thus, Ranunculus, and Acorus) and Welwitschia using
MEGA3.1 [77]. The 10 taxa were chosen to represent all of
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the major clades of extant non-gnetophtye seed plants
and constituted reference Set A. Distances were calculated
using both the LogDet (data not shown) and the Kimura
two-parameter models, which gave very similar results.
Default MEGA3.1 parameters were used in all calcula-
tions. Standard error for each distance was calculated via
bootstrapping with 100 replicates. The Relative Diver-
gence Factor was calculated by dividing the average dis-
tance calculated from Welwitschia to each non-
gnetophytes by the average distance from comparisons
among the 10 non-gnetophytes. We repeated these calcu-
lations using Kimura two-parameter distance and differ-
ent subsets of the ten taxa as reference sets. For each of the
five sets of calculations, we determined whether or not the
difference between the two average distances was signifi-
cant using the two-tailed t-test. In addition, we preformed
Tajima's Relative Rate test, using MEGA 4.0 [78], on the
57 concatenated genes.

Phylogenetic Inference
We added Welwitschia plastome genes to the alignment/
data matrix of Leebens-Mack et al [79]. As mentioned
above, four of the "standard" 61 genes were excluded
from our analyses. The pteridophytes Psilotum and Adian-
tum were used to root the gymnosperm tree, although all
analyses were run as and trees generated as "unrooted"
topologies, i.e., we did not force Psilotum and Adiantum to
any particular position on any tree. Bootstrap (BS) trees
(100 heuristic replicates) were generated under Minimum
Evolution (LogDet distances), Maximum Parsimony
(MP), and Maximum Likelihood (ML), using a GTR + I +

 model, optimizations using PAUP4.0b10 [80]. Individ-
ual MP analyses were conducted using branch and bound
searches, always yielding a single most parsimonious tree
identical in topology to the BS tree. Multiple individual
ML heuristic searches were also conducted using estima-
tion of all model parameters and obtaining starting trees
by 10 replicates of random stepwise addition. Mr. Bayes
3.1 [81] was used, with default settings except as noted, to
conduct a Bayesian analysis again using GTR + I +  (the
model indicated by ModelTest [82] as the best fit to the
data). Two analyses were run in parallel for 100,000 gen-
erations. After 6,000 generations, the standard deviation
between the two hot chains was 0.000000 and remained
at that level for the remainder of the run. Visual analysis
using AWTY [83] also indicated that the chains had con-
verged very early in the run. The first ten percent of the
trees were discarded as "burn-in". PAUP4b10 was used to
construct the consensus tree for the 901 trees retained. The
Shimodaira-Hasegawa, or SH, Test [84] was implemented
in PAUP4b10 using 1000 replicates and RELL approxima-
tion.
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