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Land use influences the spatiotemporal controls on nitrification and
denitrification in headwater streams

C. P. Arango1
AND J. L. Tank2

Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556 USA

Abstract. N and C cycles in headwater streams are coupled, and land use can modify these cycles by
increasing N availability and removing riparian vegetation. To increase our understanding of how land use
modifies the controls on N cycling, we quantified rates of 2 microbial N transformations in a total of 18
agricultural and urban streams (with and without riparian buffers) for 3 y to examine how riparian
vegetation and land use influence sediment nitrification and denitrification. Nitrification rates were highest
in agricultural streams in late spring. Nitrification was not related to streamwater NH4

þ concentrations but
was positively related to sediment C content (linear regression, r2¼ 0.72, p , 0.001). This result suggests that
benthic decomposition provided NH4

þ (via mineralization) to increase sediment nitrification. Denitrification
rates did not differ among landuse types but were positively related to sediment C content and streamwater
NO3

– concentration (multiple linear regression, R2 ¼ 0.78, p , 0.001). Sediment C content, the primary
predictor of denitrification rates, did not differ among land uses, but streamwater NO3

– concentration, the
secondary predictor of denitrification rates, was highest in winter and in agricultural streams, indicating that
land use and season were more important determinants of denitrification than coupled nitrification.
Substrate availability (N and C) for N transformations generally did not differ between buffered and
unbuffered streams within a similar landuse type, probably because of the confounding influence of tile
drainage systems, which effectively decouple stream channels from their riparian zones. Land use
influenced the delivery of the necessary substrates for N transformations but decreased the role of riparian
zones in stream N cycling by simplifying the drainage network of headwater streams.

Key words: nitrogen, denitrification, nitrification, riparian zones, agricultural streams, urban streams.

N frequently limits productivity in terrestrial and
aquatic ecosystems, and humans have effectively
doubled N availability by fixing N industrially on a
large scale (Vitousek et al. 1997). Over ½ of anthro-
pogenically derived N is applied as nitrogenous
fertilizers in agricultural or urban settings, where

application frequently exceeds demand (Vitousek et
al. 1997) and excess N is exported from the landscape
(Carpenter et al. 1998). As a consequence, streams that
drain agricultural and urban catchments often have
elevated dissolved inorganic N (DIN) concentrations
that modify internal N cycling and transformation
rates relative to streams draining less modified

landscapes (Bernot and Dodds 2005). Most streams
in the continental US are heavily modified through
anthropogenic changes in land use (Meyer and Turner

1994), but much of our understanding of stream N
cycling comes from studies in relatively pristine
systems where biotic processing can control N flux to
downstream ecosystems (Peterson et al. 2001).

Anthropogenic activities can increase both NH4
þ

and NO3
– concentrations in stream water, but most of

the increased N load occurs as NO3
– (Peierls et al.

1991). Therefore, we quantified nitrification and
denitrification rates, which can directly influence
NO3

– concentrations, albeit in opposing directions.
During nitrification, CO2 fixation is coupled to the
oxidation of NH4

þ to NO3
–, potentially increasing

NO3
– concentrations and releasing N2O as a by-

product. In contrast, during denitrification, NO3
–

reduction is coupled to organic C oxidation, potential-
ly decreasing stream NO3

– concentrations by produc-
ing nitrogenous gases (N2O and N2). Nitrification
requires NH4

þ (supplied from the water column or
mineralized in the sediments through decomposition
of organic matter) as an energy source, and denitrifi-
cation requires organic C as an energy source. These 2
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N transformations are linked through the stream C
cycle (Bernhardt and Likens 2002). Therefore, agricul-
tural or urban landuse practices can influence the N
cycle directly by increasing NH4

þ or NO3
– availability

or indirectly by altering the C cycle.
Leaf inputs provide an important source of organic

C in forested stream ecosystems. Vegetation typically
is removed from stream banks when land is converted
to agricultural and urban uses. Removal of riparian
vegetation reduces inputs of allochthonous C (Golla-
day et al. 1989) and increases the importance of
autochthonous C in the stream food web (Quinn et
al. 1997). Removal of riparian vegetation also reduces
periodic inputs of large wood to streams and changes
C cycling indirectly by decreasing organic matter
retention (Bilby 1981). Intact riparian vegetation can
moderate daily temperature fluctuations (Abell and
Allan 2002), improve water quality by retaining N as it
moves from uplands to the stream (Peterjohn and
Correll 1984), and alter organic matter dynamics.
Therefore, riparian buffer zones often are used to
mitigate stream degradation associated with urban
and agricultural land uses (Naiman and Decamps
1997).

Seasonal changes in riparian vegetation influence N
and C cycles of forested streams in temperate regions.
Forested streams typically are detritus-based ecosys-
tems. However, autotrophy can be important before
leafout in spring (Mulholland et al. 2006) when
assimilatory demand for N by rapidly growing algae
can drive N uptake and reduce N availability for
heterotrophic microbes (Mulholland 1992). After leaf-
fall in autumn, assimilatory demand for N by fungal
and bacterial biofilms on leaves can dominate N
uptake (Tank and Webster 1998). Discharge in tem-
perate streams typically varies in response to season-
ally shifting precipitation patterns, and seasonal
variation in discharge has important consequences
for N cycling. For example, nutrient concentrations
typically are controlled by hydrology in agricultural
catchments, especially those with subsurface tile
drains that shorten terrestrial water residence time
(Petry et al. 2002, Royer et al. 2004).

To improve our understanding of how land use
alters N cycling in headwater streams, we quantified
rates and controls on nitrification and denitrification in
basins that have been heavily modified by agricultural
and urban land uses. Studies done only during
summer overlook temporal dynamics that can have
important implications for N cycling, and few studies
have addressed how riparian buffers influence sedi-
ment nitrification and denitrification in streams.
Therefore, we used a year-round sampling regime to
investigate how nitrification and denitrification rates

(N transformation rates) vary among forested and
urban and agricultural streams with and without
riparian buffers. We hypothesized that: 1) higher
DIN concentrations in agricultural and urban streams
would lead to higher N transformation rates compared
to forested streams; 2) riparian buffers on agricultural
and urban streams would decrease DIN concentrations
relative to concentrations in unbuffered streams, and
this decrease would lead to N transformation rates
more similar to rates in forested streams; and 3) high
assimilatory N demand by algae in the spring and
decomposers in the fall would reduce overall DIN
availability and decrease dissimilatory N transforma-
tion rates compared to summer and winter.

Methods

Landuse classification

All 18 study streams were within the Kalamazoo
River catchment in southwestern Michigan (Fig. 1),
where historical land cover was mixed-deciduous
forest, oak woodlands, and wetlands; land use today
is a mix of row-crop agriculture and remnant forest
patches. The surficial geology in this region consists
mostly of glacial outwash deposits, and most soils are
alfisols of the Southern Michigan and Northern
Indiana Drift Plains ecoregion. We defined landuse
types as agricultural, urban, forested, buffered-agri-
cultural, buffered-urban, or distal-agricultural (Fig.
2A–F) by considering land use in the whole catchment
and within the 100-m buffer adjacent to the stream
channel and extending upstream to the stream source
along the mainstem and any tributaries (100-m buffer).
We categorized streams that drained catchments in
which the predominant (generally .70% of the
catchment) land use was agriculture or forest as
agricultural or forested, respectively (Fig. 2A, C). In
contrast, we categorized streams that drained catch-
ments in which urban land use was relatively low (15–
49% of the catchment) as urban (Fig. 2B) because even
small amounts of urban land use can have a
disproportionate influence on streams (Paul and
Meyer 2001). We further classified agricultural streams
as buffered-agricultural (Fig. 2D) if they drained
agricultural catchments, but their 100-m buffers were
predominantly forested. We further classified urban
streams as buffered-urban (Fig. 2E) if they drained
urban catchments but their 100-m buffers were
forested or a city park. We used the designation
distal-agricultural (Fig. 2F) when streams drained
catchments that were largely forested but had small
percentages of agricultural land use not adjacent to the
stream.

We used ArcGIS 8.2 (Environmental Systems Re-
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search Institute, Redlands, California) to select candi-
date streams using data downloaded from the
National Land Cover Database (reclassed Landsat
Thematic Mapper imagery from 1992; Vogelmann et
al. 2001). Our decision to use satellite data was
problematic for 3 reasons: 1) the 10-m pixel size of
the raw data can distort landuse percentages within a
catchment; 2) the source imagery was acquired by
satellites in 1992, but our study began in 2003, so 11 y
of potential landuse change is not reflected in the
catchment landuse statistics; and 3) the automated
procedure used to distill satellite data into land-cover
classes can misclassify land uses. To minimize these
problems, we visited each stream to confirm the
landuse configuration of the candidate streams and
selected 3 streams that best represented each of the 6
landuse types. We attribute apparent discrepancies
between our classifications and the landuse data (Table

1) to problems associated with using satellite imagery.

For example, Bullet Brook was located entirely within

a military training area with no agricultural activity,

but the land-cover data classify its catchment as 28%

agricultural.

We attempted to select streams that drained

subcatchments between 100 and 1000 ha in area, and

15 of our study sites met this criterion (range: 127–896

ha; Table 1). However, lack of access to private

property constrained our ability to sample in ideal

sites, so 3 subcatchments were .1000 ha (Table 1). The

larger subcatchments had relatively high discharge

compared to the other sites, but average annual

discharge was still fairly low, and the larger streams

were not outliers with respect to the DIN and sediment

characteristics most likely to control N transformations

(Table 2).

FIG. 1. Study sites in the Kalamazoo River catchment, southwestern Michigan.

92 [Volume 27C. P. ARANGO AND J. L. TANK

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



Sediment nitrification assays

Sand was the predominant substratum in the low-
gradient streams we studied, and we rarely observed
gravel or cobble in the inorganic bedload; however,
each stream had varying proportions of fine benthic
organic matter and silt. We collected monthly sediment
samples for laboratory N transformation assays. We
ensured that the samples reflected the different
proportions of inorganic and organic streambed
materials by taking 25 cores (30 cm2 3 2 cm deep)
from a 100-m stream reach. We pooled the cores into 5
separate samples (;300 mL each). We stored samples
on ice, returned them to the laboratory, and began the
assays immediately. We used the nitrapyrin-inhibition
method (Hall 1984, Kemp and Dodds 2001, Strauss et
al. 2004) to measure sediment nitrification rates in the
study streams. We used 25 mL of sediment from each
pooled sample and added 50 mL of unfiltered stream
water to make a 75-mL slurry in each of 2 flasks. We
designated one flask as the production flask and
added 10 lL of a 10% solution of nitrapyrin dissolved
in dimethyl sulfoxide (DMSO), an organic solvent that
delivered nitrapyrin across the cell membrane where it
blocked the conversion of NH4

þ to NO3
–. We desig-

nated the other flask as the control and added 10 lL of
DMSO without nitrapyrin so that nitrification was not
blocked. During method development, we found that
assays run for periods ranging from 24 to 120 h
yielded the same estimate of nitrification rate, so we
incubated the flasks for 24 to 48 h on a rotary shaker at
150 rpm. At the end of the assay, we added 25 mL of
2M KCl and shook the flasks for 10 min to flush NH4

þ

from cation exchange sites. We centrifuged the entire
slurry and filtered the supernatant into bottles that we
froze for future NH4

þ analysis (described in Physio-
chemical variables below). We calculated nitrification
rate as the difference between NH4

þ in the production
and control flasks and scaled this value by the dry
mass (DM) of sediment in the assays and the assay
duration (units: lg N g�1 DM h�1). We calculated the
nitrification rate for a given month in a given stream as
the average of the 5 sets of paired flasks. We
acknowledge that nitrification rates measured with
this method are probably higher than ambient rates
because they were measured in oxygenated slurries
(Strauss et al. 2004), but we emphasize that they do not
represent maximum potential rates because we did not
amend them with NH4

þ. In addition, we incubated

FIG. 2. Idealized landuse classification system showing agricultural (A), urban (B), forested (C), buffered-agricultural (D),
buffered-urban (E), and distal-agricultural (F) streams.
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sediment slurries at room temperature to minimize
variability not associated with substrate and sediment
characteristics, and we might have overestimated in
situ rates when ambient stream temperatures were
cool.

Sediment denitrification assays

We used the chloramphenicol-amended acetylene-
block technique (Smith and Tiedje 1979, Royer et al.
2004, Inwood et al. 2005, Arango et al. 2007) to
estimate sediment denitrification rates in the laborato-
ry. Acetylene (C2H2) blocks the conversion of N2O to
N2 by denitrifying bacteria, allowing N2O to accumu-
late in the assay bottles. Adding chloramphenicol
inhibits de novo synthesis of denitrifying enzymes and
reduces bottle effects associated with laboratory assays
(Brock 1961, Smith and Tiedje 1979, Royer et al. 2004).
We took 25-mL sediment subsamples from the same
pooled samples used in the nitrification assays (5 per
stream) and added 50 mL of unfiltered site water with
chloramphenicol at a final concentration of 0.3 mM in
the 75-mL slurry. We sealed the bottles with septum
caps for headspace sampling and purged them with
ultrahigh-purity He for 5 min, shaking periodically to
induce anoxia. After purging the bottles, we returned
them to ambient atmospheric pressure and added 15

mL of C2H2, generated by reacting calcium carbide
with deionized water, for a 10% atmosphere of C2H2 in
the assay bottle. We shook the bottles for several
seconds to equilibrate dissolved gases with the
headspace before collecting gas samples. We then
removed a 5-mL headspace subsample and injected 4
mL of the sample into a 3-mL evacuated vial for later
N2O analysis. We maintained constant pressure in the
assay bottles by replacing each headspace subsample
with 5 mL of 10% C2H2 in He balance. We collected
multiple gas samples during the 4.25-h incubation. We
took the 1st sample after 15 min had elapsed and took
additional samples every hour thereafter.

We analyzed N2O concentrations in headspace
samples by manually injecting 100 lL of sample into
a Varian Star 3600 gas chromatograph (Varian, Inc.,
Palo Alto, California) with a Porapak Q column and
electron capture detector (Varian, Inc.) (injector tem-
perature¼ 1208C, column temperature¼ 408C, detector
temperature ¼ 3208C, with a 5% CH4/95% Ar carrier
gas at 30 mL/min), with a valve to vent C2H2 away
from the detector. We used Bunsen coefficients to
calculate total N2O produced in the bottle, plotted N2O
production against time, and calculated the N2O
production rate as the slope of the line of best fit
(r2 . 0.92). We determined denitrification rates by
dividing the N2O production rate by the mass of

TABLE 1. Landuse characteristics of the study streams.

Stream
Catchment
area (ha)

Year of
study

Catchment 100-m riparian buffer

Forest þ wetland
(%)

Agricultural
(%)

Urban
(%)

Forest þ wetland
(%)

Agricultural
(%)

Urban
(%)

Agricultural
Burnips 298 1 2 98 0 5 95 0
Shelbyville 154 2 3 97 0 9 91 1
Sherman 260 3 5 95 0 1 99 0

Buffered agricultural
Spicerville 680 1 30 70 0 65 35 0
Richland 1312 2 26 73 0 44 56 0
Ellis 366 3 22 78 0 68 32 0

Urban
Wayland 201 1 31 20 49 49 21 31
Arcadia 3639 2 44 40 15 17 14 67
Axtell 435 3 39 10 48 19 35 46

Buffered urban
Dorr 233 1 13 73 14 24 73 3
Allegan 127 2 20 72 7 48 47 5
Urbandale 1824 3 48 45 4 73 22 3

Forested
Swan 896 1 71 27 0 86 9 0
Bullet 359 2 64 28 5 85 15 0
Tannery 240 3 72 17 2 77 12 2

Distal agricultural
Bellevue 528 1 44 55 0 75 25 0
Springbrook 358 2 49 49 0 92 8 0
Weber 128 3 48 52 0 71 29 0
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sediment in the assay bottle and assay duration (units:
lg N g�1 DM h�1). We calculated rates for a given
month in a given stream as the average denitrification
rates calculated from the 5 assay bottles. Again, we
recognize that the denitrification rates might be higher
than ambient rates because we measured them in
anoxic slurries (Groffman et al. 2006); however, the
sandy sediments in our study streams are naturally
unconsolidated, and we incubated them with chlor-
amphenicol to limit the response of the microbial
community to the ideal anoxic conditions (Brock 1961,
Smith and Tiedje 1979, Bernot et al. 2003). As with
nitrification assays, we incubated sediment slurries at
room temperature to minimize variability not associ-
ated with substrate and sediment characteristics, and
we might have overestimated in situ rates when
ambient stream temperatures were cool. We point
out that the reported denitrification rates do not
represent maximum potential rates because we did
not amend incubations with additional NO3

– or
organic C.

Sediment characterization

We dried replicate 5-mL subsamples from each
pooled sediment sample to constant mass in a 608C
oven, and then weighed the subsamples to obtain DM
for scaling the N-transformation assays. We also
fumigated oven-dried samples in a dessicator with
concentrated HCl to purge inorganic C from the
sediments (Hedges and Stern 1984). We combusted
fumigated samples in a Costech elemental analyzer
(Costech, Valencia, California) to measure sediment
organic C (% C) and N (% N) content, from which we
calculated molar sediment C:N. For a subset of samples
in the 3-y data set (91 of 216 samples), we collected an
additional sediment core for analysis of exchangeable
NH4

þ. We added 25 mL of 2M KCl to a sediment core,
collected as described above, in the laboratory, and
shook the slurry on a rotary shaker at 150 rpm for 10
min. We centrifuged the entire slurry, filtered the
supernatant (Pall A/E glass-fiber filter, 1 lm nominal
pore size; Pall Corporation, East Hills, New York) and
froze it for future NH4

þ analysis (described in
Physiochemical variables below). We expressed ex-
changeable NH4

þ as the mass of NH4
þ-N per volume

of sediment (lg N/mL sediment).

Physiochemical variables

At each site, we measured streamwater velocity
(Marsh–McBirney 200; Marsh–McBirney, Frederick,
Maryland), width, and depth to calculate discharge,
and we used a Hydrolab Minisonde (Hach Environ-
mental, Loveland, Colorado) to measure temperature,

specific conductance, pH, and dissolved O2. We
filtered stream water through Pall A/E glass-fiber
filters (1 lm nominal pore size) into high-density
polyethylene bottles that were prerinsed with filtered
stream water. We stored the samples on ice and
returned them to the laboratory, where we froze them
for future analyses.

We analyzed multiple sample types (streamwater,
exchangeable, and nitrification assay samples) with the
same chemical methods. We used the phenate method
(Solorzano 1969, APHA 1995) to measure NH4

þ

concentrations on a Shimadzu UV-1601 spectropho-
tometer (Shimadzu, Columbia, Maryland) at 630 nm,
and we used the molybdate method (Murphy and
Riley 1962, APHA 1995) to measure soluble reactive P
at 885 nm. We measured NO3

– (USEPA 1993) with a
Dionex 600 ion chromatograph (Dionex, Sunnyvale,
California), and we quantified water-column dissolved
organic C (DOC) by acidifying samples to pH ,2 and
analyzing them on a Shimadzu TOC-500 C analyzer
using the combustion infrared method (APHA 1995).

We calculated average volume-weighted (AVW)
nutrient concentrations so that we could compare
water-chemistry variables among study streams that
varied in catchment size. We used discharge measure-
ments to calculate daily water volume discharged from
each study catchment. We multiplied nutrient concen-
trations by the volume discharged to obtain the daily
mass of nutrients exported. For each site, we summed
the daily masses of nutrients exported and divided
daily masses by the sum of the daily water volume
discharged to obtain AVW nutrient concentrations
(Table 2). Most of our sampling dates occurred when
stream discharge was near baseflow. Therefore, our
reported AVW concentrations characterize baseflow
nutrient export rather than nutrient loss over an
annual cycle, which would have been much greater
had we included samples taken during storm flows.

Statistical analyses

We used either log10(x) transformation or log10(x)
followed by power transformation of nonnormal data
to meet the assumptions of parametric statistics.
Because we sampled the same streams over a 1-y
period, we analyzed how nitrification and denitrifica-
tion rates and physiochemical independent variables
differed among landuse types and through time using
repeated-measures analysis of variance (rmANOVA)
(SAS, version 9.1; SAS Institute, Cary, North Carolina)
blocked by year to partition interannual hydrologic
variation. We used linear regressions (SYSTAT, version
11; SYSTAT, San Jose, California) to identify evidence
of coupled nitrification/denitrification within and
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among streams, multiple linear regressions (MLRs) to
identify which physiochemical variables were signifi-
cantly related to nitrification and denitrification rates,
and nonlinear regression (SigmaPlot, version 10;
SYSTAT, San Jose, California) to describe the relation-
ship between nitrification rates and sediment C:N. We
used MLRs to analyze the relationship between N
transformation rates and physiochemical variables,
using annual mean values of each physiochemical
variable from each stream to avoid pseudoreplication.

We condensed the landuse attributes from each
catchment (i.e., catchment area, % of catchment in
agriculture, urban, forest, and wetland land-cover
classes, and % of 100-m buffer in agriculture, urban,
forest, and wetland land-cover classes) into continu-

ous, uncorrelated ordination axes using principal

components analysis (PCA) (PCord; MjM Software

Design, Gleneden Beach, Oregon), and we used the

PCA axes as independent variables in linear regres-

sions to identify relationships between catchment land

use and nitrification and denitrification rates and key

independent variables (SYSTAT 11).

Results

Landuse and seasonal patterns in N transformations

Sediment nitrification rates varied over 2 orders of

magnitude (Table 2) and were significantly greater in

agricultural than in distal-agricultural streams (rmA-

TABLE 2. Mean (SE) values of water-chemistry and sediment variables at each study site. Values for the individual streams are
means of monthly values (n ¼ 12 per stream), and mean values for each landuse type are means of the monthly means from the
individual streams (n¼3 per landuse type). Q¼discharge, DO¼dissolved O2, SRP¼ soluble reactive P, DOC¼dissolved organic C,
DM ¼ dry mass.� indicates the variable was not measured.

Stream Q (L/s)
DO

(mg/L)
DO

(% saturation) pH
NH4

þ-N
(lg/L)a

NO3
�-N

(mg/L)a
SRP

(lg P/L)a
DOC

(mg C/L)a

Agricultural

Burnips 12 (6.0) 6.8 (0.2) 72.7 (3.3) 8.0 (0.3) 554 10.8 413 11.0
Shelbyville 9 (1.8) 9.1 (0.7) 82.6 (4.1) 8.1 (0.1) 13 19.5 5 5.4
Sherman 3.0 (1.0) 9.1 (1.2) 92.7 (11.3) 7.6 (0.1) 24 6.23 36 4.5
Mean 8.2 (2.7) 8.4 (0.8) 83.6 (5.8) 7.9 (0.2) 197 (178) 12.2 (3.9) 151 (131) 7.0 (2.0)

Buffered agricultural

Spicerville 23 (9.8) 7.6 (0.5) 90.8 (8.0) 8.0 (0.2) 44 3.28 47 10.1
Richland 48 (2.5) 8.6 (0.4) 75.7 (4.2) 7.9 (0.1) 15 1.63 5 1.2
Ellis 20 (2.1) 8.5 (0.7) 80.9 (3.4) 8.0 (,0.1) 30 0.57 11 2.1
Mean 31 (8.9) 8.2 (0.3) 82.5 (4.4) 8.0 (,0.1) 30 (8) 1.83 (0.8) 21 (13) 4.5 (2.8)

Urban

Wayland 19 (5.3) 9.6 (0.7) 113 (6.6) 8.2 (0.3) 240 0.79 28 6.1
Arcadia 57 (4.8) 9.4 (0.6) 84.6 (4.1) 7.9 (0.1) 43 1.03 8 1.1
Axtell 33 (2.3) 7.3 (0.4) 69.3 (2.8) 7.7 (,0.1) 81 0.18 29 0.9
Mean 36 (11) 8.7 (0.7) 89.0 (12.8) 7.9 (0.2) 121 (61) 0.67 (0.25) 22 (7) 2.7 (1.7)

Buffered urban

Dorr 26 (5.1) 8.3 (0.3) 87.3 (5.0) 8.3 (0.2) 91 1.84 11 2.1
Allegan 20 (3.8) 9.9 (0.9) 87.0 (5.5) 8.2 (0.1) 26 2.06 17 2.9
Urbandale 38 (5.3) 8.6 (0.7) 80.3 (3.3) 8.0 (,0.1) 53 0.39 8 3.5
Mean 28 (5.2) 8.9 (0.5) 84.9 (2.3) 8.2 (0.1) 57 (19) 1.43 (0.52) 13 (3) 3.2 (0.2)

Forested

Swan 19 (3.3) 7.4 (0.3) 77.1 (3.2) 7.7 (0.2) 39 0.53 15 4.1
Bullet 4.6 (1.0) 10 (0.8) 84.2 (6.0) 8.2 (0.1) 9 0.41 4 0.8
Tannery 7.8 (3.3) 7.3 (1.5) 62.3 (11.4) 7.4 (,0.1) 36 0.18 3 4.9
Mean 10 (4.2) 8.2 (0.9) 74.5 (6.4) 7.8 (0.3) 28 (9) 0.37 (0.10) 8 (4) 3.3 (1.2)

Distal agricultural

Bellevue 33 (13) 7.8 (0.3) 84.4 (4.7) 8.2 (0.3) 12 0.13 9 5.9
Springbrook 17 (0.7) 9.5 (0.4) 84.2 (4.2) 8.1 (0.1) 11 0.68 4 0.8
Weber 6.8 (2.2) 6.2 (0.7) 58.1 (4.5) 7.3 (0.1) 22 0.05 6 4.3
Mean 19 (7.6) 7.8 (1.0) 75.6 (8.7) 7.8 (0.3) 15 (3) 0.29 (0.20) 6 (1) 3.7 (1.5)

a Annual volume-weighted concentration
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NOVA, p¼ 0.019; Fig. 3A). Sediment nitrification rates
were significantly higher in May, June, and December
than in March (rmANOVA, p¼ 0.008; Fig. 3A). Stream
temperatures associated with winter (November–
February; mean ¼ 3.68C), summer (May–August;
17.58C), and transitional seasons (March, April, Sep-
tember, October; 10.58C) were statistically distinct
(rmANOVA, p , 0.0001; data not shown). We used
these seasons as a proxy variable for ambient
temperature and found that nitrification rates were
significantly higher in summer than in other seasons
(rmANOVA, p ¼ 0.004). Temporal differences in
nitrification rates were driven by patterns in agricul-
tural and buffered-agricultural streams, which always
had the highest nitrification rates. Pairwise compari-

sons indicated that buffered and unbuffered streams in

the same broad landuse category (agricultural or

urban) had similar nitrification rates.

Denitrification rates also varied over 2 orders of

magnitude (Table 2). Denitrification rates did not differ

among landuse types (rmANOVA, p ¼ 0.17; Fig. 3B),

but they were significantly greater in December,

January, and February than in June (rmANOVA, p ¼
0.004; Fig. 3B). We used seasons as a proxy variable for

ambient temperature and found that denitrification

rates were significantly higher in winter than in

summer (rmANOVA, p , 0.0001). Temporal differenc-

es in denitrification rates were driven by patterns in

agricultural and buffered-agricultural streams, but

TABLE 2. Extended.

Sediment

Exchangeable NH4
þ-N

(lg/mL sediment)
Organic C
content (%)

Molar
C:N

Nitrification
(lg N g�1 DM h�1)

Denitrification
(lg N g�1 DM h�1)

— 3.6 (0.3) 17.7 (0.8) 0.54 (0.13) 1.88 (0.21)
0.14 (0.03) 2.1 (0.3) 23.9 (1.4) 0.23 (0.07) 0.34 (0.08)
2.42 (0.58) 4.8 (0.3) 15.0 (0.8) 1.03 (0.19) 1.31 (0.66)
1.28 (1.14) 3.5 (0.8) 18.9 (2.6) 0.60 (0.23) 1.12 (0.45)

— 7.1 (0.2) 16.6 (0.5) 0.24 (0.10) 1.05 (0.29)
0.33 (0.10) 1.2 (0.2) 16.5 (0.7) 0.15 (0.05) 0.18 (0.02)
0.98 (0.14) 5.3 (1.3) 17.3 (1.1) 0.40 (0.09) 0.18 (0.09)
0.65 (0.33) 4.5 (1.7) 16.8 (0.3) 0.26 (0.07) 0.47 (0.29)

— 1.2 (0.3) 41.5 (3.7) 0.11 (0.04) 0.09 (0.02)
0.40 (0.16) 1.6 (0.2) 127.7 (18.5) 0.07 (0.02) 0.06 (0.01)
0.48 (0.07) 1.1 (0.1) 74.6 (10.2) 0.07 (0.01) 0.05 (0.01)
0.44 (0.04) 1.3 (0.1) 81.3 (25.1) 0.08 (0.01) 0.07 (0.01)

— 0.6 (0.1) 21.3 (0.8) 0.09 (0.04) 0.11 (0.02)
0.04 (0.01) 0.3 (0.1) 30.9 (2.2) 0.01 (,0.01) 0.02 (0.01)
0.34 (0.04) 0.8 (0.1) 26.7 (2.0) 0.08 (0.02) 0.06 (0.01)
0.19 (0.15) 0.6 (0.2) 26.3 (2.8) 0.06 (0.02) 0.07 (0.03)

— 2.7 (0.3) 17.2 (0.7) 0.07 (0.02) 0.11 (0.06)
0.25 (0.05) 1.5 (0.2) 24.9 (1.2) 0.17 (0.03) 0.09 (0.01)
0.15 (0.04) 0.3 (,0.1) 20.2 (0.8) 0.03 (0.01) 0.03 (,0.01)
0.20 (0.05) 1.5 (0.7) 20.8 (2.2) 0.09 (0.04) 0.08 (0.02)

— 1.4 (0.3) 21.6 (2.4) 0.08 (0.05) 0.02 (,0.01)
0.08 (0.02) 0.6 (0.2) 20.1 (1.0) 0.04 (0.01) 0.03 (,0.01)
0.34 (0.06) 0.3 (0.1) 18.0 (0.8) 0.06 (0.02) 0.02 (,0.01)
0.21 (0.13) 0.8 (0.3) 19.9 (1.0) 0.06 (0.01) 0.02 (0.01)
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differences among landuse types were obscured by
high winter variability in agricultural streams.

Agricultural and buffered-agricultural streams al-
ways had the highest N transformation rates, but
nitrification and denitrification were temporally de-
coupled. Nitrification rates were highest in summer,
whereas denitrification rates were highest in winter. N
transformation rates were positively related (across all
sampling events, excluding 3 statistically identified
outliers; n ¼ 213 cases), but the relationship explained
little of the overall variability in the data (linear
regression, r2 ¼ 0.07, p , 0.001; data not shown). N
transformation rates were never positively related

within streams. Coupled nitrification/denitrification
occurs more frequently when streamwater NO3

–

concentrations are ,150 lg N/L (Seitzinger et al.
2006), so we selected the 34 (of 216) cases that met this
criterion among streams and reran the analysis. N
transformation rates were not correlated in this subset
of cases.

Land use and seasonal patterns of DIN and organic C

Streamwater NH4
þ concentration tended to be

higher in urban streams than in streams in other
landuse types (Table 2), but NH4

þ concentrations did
not differ significantly among landuse types (rmANO-
VA, p¼ 0.06; Fig. 4A) or through time (rmANOVA, p¼
0.11; Fig. 4A). Analysis of only those data collected
during the growing season (April–October) showed
that NH4

þ concentrations were similar in buffered and
unbuffered streams within the same broad landuse
category (Fig. 4A). Analysis of the same data subset

FIG. 3. Seasonal and landuse patterns in monthly mean
(61 SE) nitrification (A) and denitrification (B) rates during 3
seasons (summer, winter, transitional) defined on the basis of
periods of statistically distinct stream temperatures. Transi-
tional corresponds to March, April, September, and October.
Months with the same letters are not significantly different.
Lines beneath landuse types in (A) group statistically similar
land uses. Ag¼ agricultural, Ag-Buf¼ buffered-agricultural,
Ag-Dist ¼ distal-agricultural, Urb ¼ urban, Urb-Buf ¼
buffered-urban, For ¼ forested. See text and Fig. 2 for
explanation of landuse types. n ¼ 3 for each datum.

FIG. 4. Seasonal and landuse patterns in monthly mean
(61 SE) NH4

þ concentrations (A) and sediment C content (B).
Months with the same letters are not significantly different.
Abbreviations are as in Fig. 3. See text and Fig. 2 for
explanation of landuse types. n ¼ 3 for each datum.
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showed that NH4
þ concentrations were significantly

lower in streams studied in year 2 than in streams

studied in years 1 and 3 (rmANOVA, p ¼ 0.001), but

that nitrification rates did not differ among years.

Analysis of the full data set showed that sediment % C

tended to be higher in agricultural and buffered-

agricultural streams than in streams in other landuse
types (rmANOVA, p ¼ 0.08; Table 2, Fig. 4B) but did
not vary through time (rmANOVA, p ¼ 0.75; Fig. 4B).

Streamwater NO3
– concentrations were an order of

magnitude higher in agricultural streams than in
streams in other landuse types (rmANOVA, p ,

0.0001; Table 2, Fig. 5A). In pairwise comparisons,
NO3

– concentrations were significantly lower in
buffered-agricultural streams than in agricultural
streams, but NO3

– concentrations did not differ
between buffered-urban and urban streams. Analysis
of only those data collected during the growing season
(April–October) showed that NO3

– concentrations
were similar in buffered and unbuffered streams
within the same broad landuse category. Streamwater
NO3

– concentrations were significantly higher in
winter than in other seasons (rmANOVA, p ¼ 0.001;
Fig. 5A) in streams in nearly all landuse types and
were associated with higher stream discharge in the
winter (rmANOVA, p , 0.0001; Fig. 5B). DOC did not
differ among landuse types (Table 2, Fig. 5C), but DOC
concentrations were significantly higher in October,
corresponding to autumn leaf abscission, than in other
months (rmANOVA, p , 0.001; Fig. 5C).

Factors controlling N transformation rates

Annual mean nitrification rates were positively
related to sediment % C (MLR, r2 ¼ 0.72, p , 0.0001,
n¼ 18; Fig. 6A) but not streamwater NH4

þ concentra-
tion, sediment C:N, or ambient stream temperature. In
year 1, we found no relationship between nitrification
rates and streamwater NH4

þ concentration (n ¼ 6), so
we began sampling exchangeable NH4

þ in the sedi-
ment. In years 2 and 3, we found a significant positive
relationship between nitrification rates and exchange-
able NH4

þ (r2¼ 0.67, p¼ 0.001, n¼ 12; Fig. 6B), but we
found no relationship between nitrification rates and
streamwater NH4

þ concentration (n ¼ 12). Taken
together, the results from the 3-y data set and the 2-y
data set suggested that decomposition of organic C in
the sediment provided a benthic NH4

þ source for
nitrification. We examined this hypothesis using the 2-
y data set and found a positive relationship between
exchangeable NH4

þ and sediment % C (r2 ¼ 0.56, p ¼
0.005; Fig. 6C), supporting a link between NH4

þ

production and decomposition of organic C.
Sediment C:N was not significantly related to

nitrification rate in an MLR, but we found a significant
negative exponential relationship between these vari-
ables (r2¼ 0.42, p¼ 0.016; Fig. 7). Our data set based on
annual means was too small to detect a significant
threshold using a 2-dimensional Kolmogorov–Smirn-
off threshold test, but the data suggest a break at C:N

FIG. 5. Seasonal and landuse patterns in monthly mean
(61 SE) NO3

– concentration (A), discharge (Q) (B), and
dissolved organic C (DOC) (C) concentration. Months with
the same letters are not significantly different. Lines beneath
landuse types in (A) group statistically similar land uses.
Abbreviations are as in Fig. 3. See text and Fig. 2 for
explanation of landuse types. n ¼ 3 for each datum.
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’ 20. Below this value, nitrification rates decrease with

increasing C:N, and above this value nitrification rates

are generally low and have no relationship with

sediment C:N (Fig. 7).

Annual mean denitrification rates were positively
related to sediment % C and streamwater NO3

–

concentration (MLR, R2 ¼ 0.78, p , 0.0001, n ¼ 18;
Table 3) but not to streamwater DOC concentration or
ambient stream temperature. Sediment % C had the
most explanatory power based on coefficient of
determination (r2 ¼ 0.62; Fig. 8).

Relationship between landuse metrics and N transformations

PCA identified 3 gradients that explained 83.7% of
the variability in the landuse data. Axis 1 was an
agriculture–forest gradient (45.8% of the variability),
Axis 2 was a wetland gradient (23.1%), and Axis 3 was
an urban gradient (14.8%). The agriculture–forest
gradient (represented by Axis 1 scores) was signifi-
cantly related to mean annual nitrification (r2¼ 0.32, p
¼0.015; Fig. 9A) and denitrification (r2¼0.41, p¼0.004;
Fig. 9D) rates, with higher transformation rates
associated with more agricultural land use. We also
regressed nitrification and denitrification rates against

FIG. 6. Relationships between mean annual (61 SE)
nitrification rates and sediment C content (A), nitrification
rate and exchangeable NH4

þ (B), and exchangeable NH4
þ

and sediment C content (C). We sampled exchangeable NH4
þ

in only 12 streams.

FIG. 7. Relationship between mean annual (61 SE)
nitrification rates and sediment C:N. The relationship is
described by a significant negative exponential decay
function, but the line of best fit is not included for clarity.
n ¼ 12 for each datum.

TABLE 3. Partial coefficients of determination for inde-
pendent variables that significantly affect denitrification
rates (lg N g�1 DM h�1). The overall regression model for
denitrification had R2¼ 0.78 and p , 0.001. All variables are
log10(x) normalized. DOC ¼ dissolved organic C, 3 ¼ no
relationship, n.s. ¼ not significant (p . 0.05).

Independent variable Correlation Partial R2 p value

Sediment % C þ 0.62 ,0.001
Streamwater NO3

– þ 0.16 0.004
Streamwater DOC 3 3 n.s.
Streamwater temperature 3 3 n.s.
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the fractional measures of agricultural land use in the
whole catchment (Fig. 9B, E) and within the 100-m
buffer (Fig. 9C, F), but these alternate independent
variables did not increase explanatory power relative
to the ordination axis.

Sediment % C was not explained by the agriculture–
forest gradient (Axis 1) or fractional measures of
agricultural land use in the catchment or 100-m buffer
(Fig. 10A–C). However, streamwater NO3

– concentra-
tion was significantly related to the agriculture–forest
gradient (r2 ¼ 0.55, p , 0.001; Fig. 10D) and both
fractional measures of agricultural land use (catch-
ment: r2 ¼ 0.47, p ¼ 0.001; 100-m buffer: r2 ¼ 0.38, p ¼
0.006; Fig. 10 E, F).

Discussion

Seasonal patterns in sediment nitrification rates

Mean annual nitrification rates spanned 2 orders of
magnitude (Table 2), and nitrification rates were

FIG. 8. Relationship between mean annual (61 SE)
denitrification rates and sediment C content. n¼ 12 for each
datum.

FIG. 9. Relationships between mean annual (61 SE) nitrification and denitrification rates and a gradient of agricultural–forested
land use based on principal components analysis (PCA) Axis 1 scores (A, D), % agricultural land use in the catchment (B, E), and %
agricultural land use in the 100-m riparian buffer (C, F). See text for definition of 100-m riparian buffer and ordination details. n¼12
for each datum.
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highest in spring (Fig. 3A). We multiplied our biomass-
scaled rates (lg N g�1 DM h�1) by standing stocks (g
DM/m2) to convert them to areal units (0.4–9.0 mg N
m�2 h�1). Our values spanned roughly the same range
as values measured over a year in Appalachian
mountain streams (0.4–2.0 mg N m�2 h�1; Starry et
al. 2005), Kansas prairie streams (2.2–4.6 mg N m�2

h�1; Kemp and Dodds 2002), and the Upper Mis-
sissippi River (4–15 mg N m�2 h�1; Strauss et al. 2004).
These studies all reported highest nitrification in the
late spring or early summer. The reasons for the high
rates varied among sites but included temperature and
NH4

þ availability (Starry et al. 2005), increased O2 and
NH4

þ availability (Kemp and Dodds 2002), or temper-
ature alone (Strauss et al. 2004).

Nitrification is a metabolic process controlled by
substrate availability, specifically O2 (Kemp and
Dodds 2001) and NH4

þ (Strauss et al. 2002). Primary
producers can stimulate nitrification by affecting the

depth to which O2 is found in the sediment (Rysgaard
et al. 1994). If O2 regulates nitrification, then peak
nitrification rates should be associated with high
primary producer biomass. Autotrophs were abun-
dant at our study sites in early spring when riparian
canopies were open and light levels were increasing,
but nitrification rates were highest in the late spring
(Fig. 3A) when the canopy was closed and primary
producer biomass was declining. We measured nitri-
fication in oxic assays, and thus, might have overes-
timated in situ rates, but the presence of abundant
nitrifying bacteria in sediments at a time when benthic
O2 production was relatively low (late spring) suggests
that other factors than O2 (e.g., NH4

þ availability or
warm temperatures) probably influenced nitrification
rates. Seasonal patterns in nitrification rates were not
related to streamwater NH4

þ concentrations, but they
were related to sediment exchangeable NH4

þ and
sediment % C.

FIG. 10. Relationship of mean annual (61 SE) sediment C content and NO3
– concentrations with a gradient of agricultural–

forested land use based on principal components analysis (PCA) Axis 1 scores (A, D), % agricultural land use in the catchment (B,
E), and % agricultural land use in the 100-m riparian buffer (C, F). See text for definition of 100-m riparian buffer and ordination
details. n ¼ 12 for each datum.
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Influence of land use on nitrification controls

Nitrification rates were highest in agricultural
streams. The positive association between nitrification
and agricultural land use is probably the result of
numerous factors that increase decomposition rates in
agricultural streams. For example, nitrification rates
were strongly related to sediment % C, which tended
to be higher in agriculturally influenced streams than
in urban or forested streams (Fig. 4B), probably
because agricultural fields in the Midwest frequently
are sited on drained wetlands that have highly organic
soils (Mitsch et al. 2001), and cultivation increases soil
erosion (Jones et al. 2001). Decomposition of sediment
C produces exchangeable NH4

þ, which increases
nitrification rates in other midwestern streams (Strauss
et al. 2002) and in large rivers (Strauss et al. 2004). In
addition, water temperatures frequently are high in
agricultural streams because the absence of riparian
vegetation allows greater light penetration to the
stream channel (Osborne and Kovacic 1993). Temper-
ature controls rates of microbial metabolism and can
influence nitrification rates directly (Sheibley et al.
2003) or indirectly by increasing decomposition rates
(Webster and Benfield 1986), which subsequently
increases NH4

þ production.
Sediment C:N can control nitrification indirectly

because heterotrophic microbes outcompete nitrifying
bacteria for NH4

þ when C:N is high (.20), but not
when it is low (,20) (Strauss and Lamberti 2002). We
found a significant negative exponential relationship
between nitrification rates and sediment C:N (Fig. 7).
We were unable to quantify a significant threshold in
this relationship, but a break in the data close to C:N¼
20 corresponds closely to thresholds observed in
studies of small streams (C:N ¼ 15, Kemp and Dodds
2002; C:N¼ 20, Strauss and Lamberti 2002) and forest
soils (C:N ¼ 22, Ollinger et al. 2002). High sediment
C:N might have conferred a competitive advantage to
heterotrophic microbes, especially in urban streams,
where C:N was sometimes very high (Fig. 7).

Seasonal patterns of denitrification rates

Denitrification rates spanned nearly 2 orders of
magnitude and showed a significant seasonal pattern
characterized by highest rates in winter and lowest
rates in summer (Fig. 3B). A meta-analysis of
denitrification in aquatic habitats (i.e., oceans, coastal
environments, estuaries, lakes, and rivers) with a
relatively broad range of NO3

– concentrations (0.01–
13.58 mg N/L) showed that denitrification rates were
highest in summer when water temperatures were
high (Piña-Ochoa and Álvarez-Cobelas 2006). In our
study, denitrification rates were highest in winter (Fig.

5A) when NO3
– concentrations were high, a result

suggesting that seasonal changes in NO3
– delivery

might regulate denitrification. Our N transformation
assays were done at room temperature, so we cannot
determine the extent to which cool stream tempera-
tures would dampen denitrification responses to
higher NO3

– concentrations. However, cold tempera-
tures limit denitrification despite high NO3

– availabil-
ity in other systems (Pattinson et al. 1998).

A distinct NO3
– pulse coincided with the first

significant runoff in late autumn and early winter
(Fig. 5A, B). Southwestern Michigan has a humid
climate with relatively regular rainfall, but the
summers of our study were characterized by below-
average precipitation. NO3

– produced by terrestrial
nitrification accumulates in soil water during dry
periods. When rain flushes this concentrated soil
solution into streams, streamwater NO3

– concentration
can increase dramatically (Morecroft et al. 2000).
Hydrologic flushing of NO3

– by spring runoff
increased NO3

– concentration up to 3 orders of
magnitude over baseflow concentrations in agricultur-
al streams in Illinois (Royer et al. 2006). Our
observation that peaks in denitrification followed
pulses of NO3

– caused by flushing of soil NO3
– after

a dry summer and autumn suggests that sediment
denitrification is subject to seasonal NO3

– limitation in
regions characterized by seasonal drought. This
observation emphasizes the importance of stream-
water NO3

– concentration as a significant predictor of
denitrification in our study streams (Table 3), and it
highlights the importance of hydrology in controlling
the delivery of NO3

– for denitrification.

Landuse influence on the controls of denitrification

Denitrification rates did not differ among landuse
types, but mean annual denitrification rate was
positively related to agricultural land use when
agriculture was treated as a continuous variable (Fig.
9A–C). Moreover, the 2 highest monthly denitrification
rates in our agricultural streams (1.31 and 1.88 lg N
g�1 DM h�1; Table 2) approached the highest rates seen
in Illinois agricultural streams (2.3 lg N g�1 DM h�1;
Schaller et al. 2004). Our rates are among the highest
ever reported in studies based on the method we used.

Agricultural streams frequently have high NO3
–

concentrations (e.g., Johnson et al. 1997, Inwood et al.
2005, Dodds and Oakes 2006) because of excess
fertilizer application to adjacent crops (David et al.
1997) and tile drainage systems that rapidly deliver
terrestrial N to streams (Royer et al. 2004). NO3

–

concentration explained 70% of the variability in
denitrification rates in the meta-analysis done by
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Piña-Ochoa and Álvarez-Cobelas (2006), but it ex-
plained only 16% of the variability in denitrification
rates among our streams (Table 3). NO3

– concentration
might have been a weak predictor of denitrification
rates in our data set because we sampled in all seasons
(cf. summer only in the meta-analysis) and included
‘‘hot and cold moments’’ (sensu McClain et al. 2003) of
denitrification. NO3

– concentrations in most systems
included in the meta-analysis were relatively low
(,1.5 mg N/L; Piña-Ochoa and Álvarez-Cobelas
2006), so denitrification might have been limited by
NO3

– in those systems, whereas denitrification might
have been limited by C in our streams where NO3

–

concentrations were high. This explanation is consis-
tent with the strong relationship between denitrifica-
tion rate and sediment % C in our study (Fig. 8).

Streamwater DOC concentration peaked sharply
during leaf abscission in October (Fig. 5C). DOC in
leachate from freshly abscised leaves ranges from low
to high lability (Strauss and Lamberti 2002), so the
autumn pulse of DOC could have contributed a
relatively labile C source capable of stimulating
denitrification. However, we did not observe a peak
in denitrification associated with the autumn peak in
DOC concentration. Mean annual DOC concentrations
were positively related to % wetlands in the catchment
(r2¼ 0.33, p¼ 0.01; data not shown), but DOC derived
from wetlands often contains a high proportion of
refractory humic substances (Qualls and Richardson
2003), which might not be ideal C sources for
denitrification. Overall, our data suggest that denitri-
fiers derive the bulk of their C from sediment pools
(Fig. 8).

Coupled nitrification and denitrification

Our data suggest limited coupling of nitrification
and denitrification in our study streams. Although
nitrification and denitrification rates were positively
related among streams, this relationship probably
reflected the influence of sediment % C on both N
transformations (Figs 6A, 8) rather than coupled
nitrification/denitrification processes. For example,
agricultural and buffered-agricultural streams had
the highest nitrification and denitrification rates (Fig.
3A, B), but they also tended to have the highest
sediment % C (Fig. 4B). Furthermore, NO3

– concentra-
tions were .150 lg N/L in 176 of 216 samples, and
NO3

– concentrations .150 lg N/L discourage coupled
nitrification/denitrification (Seitzinger et al. 2006).
However, we cannot exclude the possibility that
coupled nitrification/denitrification occurred in study
streams with low NO3

– concentrations (e.g., Bellevue
or Weber; Table 2) because redox-optimized laboratory

slurries (the method we used) are not ideally suited to
detect coupled N transformations.

Effect of riparian buffers on nitrification and denitrification

NO3
– concentrations differed significantly between

agricultural and buffered-agricultural streams, but not
between urban and buffered-urban streams. Riparian
buffers had no effect on NO3

– concentration during the
growing season, and % agricultural land use in the
100-m riparian buffer was only weakly related to
streamwater NO3

– concentration. Collectively, these
results suggest that riparian buffers have limited
influence on water and sediment chemistry or their
effects on N transformations in our study streams.
Riparian buffers can moderate stream temperatures
(Abell and Allan 2002), reduce sedimentation (Hub-
bard et al. 1990), and decrease nutrient flux from
terrestrial to stream ecosystems (Peterjohn and Correll
1984), but the effectiveness of riparian buffers is
dictated by their interaction with the hydrosystem
(e.g., Houser et al. 2005). All of our study catchments
had tile drains or simplified drainage networks that
quickly routed runoff and shallow groundwater to the
streams and decreased interaction of runoff and
shallow groundwater with riparian buffers. Hydrolog-
ic flushing of soil-water NO3

– in autumn and rapid
routing of upland sediment to streams probably were
augmented by these simplified hydrosystems (e.g.,
David et al. 1997, Royer et al. 2004). Thus, anthropo-
genic modification of the hydrosystems uncoupled
riparian buffers from the stream channels, with the
consequence that riparian buffers had little influence
on the variables we studied, and hydrology became
the most important factor controlling delivery of
substrates for N transformations to the streams.

The absence of spatiotemporal patterns in sediment
C content provides further evidence of the overriding
importance of hydrology in these streams. Natural leaf
packs were present in all streams during our autumn
field sampling, and we expected sediment % C to
increase in autumn and early winter as the leaves were
incorporated in the sandy sediments during fragmen-
tation and breakdown. Sediment % C did not differ
among months (Fig. 4B) or between streams with and
without riparian buffers, despite obvious differences in
riparian vegetation. Managing agricultural and urban
streams as drains requires channel straightening,
subsurface tile drains, and periodic dredging to
remove large wood. All but 1 of the distal-agricultural
and forested streams in our study were also managed
as drains though they did not include subsurface tiles.
Drain management practices increase the frequency
and magnitude of peak flows, decrease channel
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complexity, and reduce the capacity for organic matter
retention (e.g., Bilby 1981, Allan et al. 1997). Thus,
landuse practices that simplify catchment hydrology
and in-channel complexity might constrain N trans-
formations by reducing organic matter retention in
these streams.

Riparian zones reduce nutrient and sediment trans-
port from uplands to streams (Peterjohn and Correll
1984, Osborne and Kovacic 1993, Lee et al. 2003,
Sabater et al. 2003), but the benefits of riparian buffers
were small in these streams with anthropogenically
modified hydrosystems. Landuse practices can discon-
nect riparian zones from the hydrosystem, with the
consequences that the streams are loaded with
sediment and NO3

–, and DIN concentrations remain
high despite high N transformation rates. These results
do not mean that riparian buffers should be disre-
garded as tools to mitigate water-quality degradation.
Instead, hydrologic connectivity between uplands and
riparian zones in landscapes heavily modified by
human activity should be reestablished and main-
tained as a way to restore the functions of riparian
zones.

Studies in relatively pristine streams show that
substrate availability governs N transformations
(Jones et al. 1995, Kemp and Dodds 2002, Piña-Ochoa
and Álvarez-Cobelas 2006). Landuse-modified streams
do not differ fundamentally from pristine streams.
Substrate availability still controls N transformation
rates, but land use governs substrate availability.
Routing solutes and organic matter through the
drainage network can overwhelm the influence of
riparian zones and leave hydrology in control of
substrate delivery to the stream. N application to
uplands increases NO3

– concentrations and uncouples
denitrification and nitrification, with the consequence
that C limits denitrification. Our results confirm that
streams are integrated with the landscape (Hynes
1975, Vannote et al. 1980), and they highlight the
importance of understanding how land use mediates
N transformations.
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