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ABSTRACT  

Often multidimensional data are visualized by splitting n-D data to a set of low dimensional data. While it is useful it 
destroys integrity of n-D data, and leads to a shallow understanding complex n-D data. To mitigate this challenge a 
difficult perceptual task of assembling low-dimensional visualized pieces to the whole n-D vectors must be solved.  
Another way is a lossy dimension reduction by mapping n-D vectors to 2-D vectors (e.g., Principal Component 
Analysis). Such 2-D vectors carry only a part of information from n-D vectors, without a way to restore n-D vectors 
exactly from it. An alternative way for deeper understanding of n-D data is visual representations in 2-D that fully 
preserve n-D data. Methods of Parallel and Radial coordinates are such methods. Developing new methods that preserve 
dimensions is a long standing and challenging task that we address by proposing Paired Coordinates that is a new type of 
n-D data visual representation and by generalizing Parallel and Radial coordinates as a General Line coordinates. The 
important novelty of the concept of the Paired Coordinates is that it uses a single 2-D plot to represent n-D data as an 
oriented graph based on the idea of collocation of pairs of attributes. The advantage of the General Line Coordinates and 
Paired Coordinates is in providing a common framework that includes Parallel and Radial coordinates and generating a 
large number of new visual representations of multidimensional data without lossy dimension reduction.   

Keywords:  Multivariate data, visualization ,multidimensional data ,collocated paired coordinates, parallel coordinates, 
general line coordinates, radial coordinates, axis reconfiguration. 
 

1. INTRODUCTION 

The Big Data studies revealed that now every few days more data are created than for all previous centuries. This leads 
to tremendous challenges to process and manage these data.  Visual analytics is a promising approach to deal with this 
challenge. Information management and decision making can benefit significantly from visualization and visual 
analytics that support multiple coordinated visual representations of multivariate and multilevel data to understand these 
data. Splitting multidimensional n-D data to a set of low dimensional data destroys integrity of n-D data, and leads only 
to a shallow understanding such complex n-D data. This paper attempts to address this long standing and challenging 
task20, 48 by generalizing Parallel and Radial coordinates and by proposing Paired Coordinates that is a new type of n-D 
data visual representation.      

We formulate a common main idea behind Parallel, Radial and Paired Coordinates as a tradeoff a simple n-D point that 
has no internal structure for a 2-D line that has the internal structure. In short here the dimensionally is traded for a 
structure. Every object with an internal structure includes two or more points.  The only elements in 2-D that do not 
overlap if they are not equal are 2-D points.  Other unequal 2-D objects that contain more than one point can overlap.  
Thus, clutter is a direct result of this tradeoff.  The only way fundamentally to avoid clutter is locating structured 2-D 
objects side-by-side as it is done with Chernoff faces. The price for this is more difficulty in correlating features of the 
faces relative to objects that are stacked38.        

A multivariate dataset consists of n-tuples (n-D vectors), where each element of an n-D vector is a nominal or ordinal 
value corresponding to an independent or dependent variable. The techniques to display multivariate data are classified 
in17 as:  

(1) Axis reconfiguration techniques, such as parallel coordinates22,23,46 and radial/star coordinates14,  
(2) Glyphs2,8,27, 37,  
(3) Dimensional embedding techniques, such as dimensional stacking31 and worlds within worlds15, 
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(4) Dimensional subsetting, such as scatterplots10,  
(5) Dimensional reduction techniques, such as multidimensional scaling30,32, 47, principal component analysis24 and 

self-organizing maps26.  

Axis reconfiguration and Glyphs map axis into another coordinate system. Chernoff faces map axis onto facial features 
(icons). Glyphs /Icons are a form of multivariate visualization in orthogonal 2-D coordinates that augment each spatial 
point with a vector of values, in the form of a visual icon that encodes the values coordinates35.  The glyph approach is 
more limited in dimensionality than parallel coordinates17.  There is also a type of glyph visualization where each 
number in the n-D vector is visualized individually. For instance, a vector (0, 0.25, 0.5, 0.75, 1) is represented by a sting 

of Harvey balls  or by color intensities. This visualization is not scaled well for large number of 
vectors and large dimensions, but it is interesting conceptually because it is does not use lines to connect values in the 
visualization. These lines are a major source of the clutter in visualizations based on Parallel and Radial coordinates.  
Parallel coordinates and radial coordinates are a planar representation of an n-D space that map points to polylines. The 
transformation to the planar representation means that axis reconfiguration and glyphs trade a structurally simple n-D 
object to a more complex object, but in a lower dimension (complex 2-D face, or polyline vs. a simple n-D list of 
numbers). Pixel oriented techniques map n-D points to a pixel-based area of some properties such as color or shape25, 16. 

Dimensional subsetting literally means that a set of dimensions (attributes) splat/sliced into subsets, e.g., pairs of 
attributes (Xi,Xj) and each pair is visualized by a scatterplot with total n2 of scatterplots that for a matrix of scatterplots. 
Dimensional embedding also is based on subsets of dimensions, but with specific roles. The dimensions are divided into 
those that are in the slice and those that create the wrapping space where these slices are then embedded at their 
respective position36.   
 
Technically (1)-(4) are lossless transformations, but the dimensional reduction is not. Among lossless representations 
only (1) and (2) preserve n-D integrity of data. In contrast (3) and (4) split each n-D record adding a new perceptual task 
of assembling low-dimensional visualized pieces of each record to the whole record.  Therefore, we are interested in 
enhancing (1) and (2).  

The examples of (1) and (2) listed above fundamentally try to represent visually actual values of all attributes of an n-D 
point.  This ensures lossless representation, but is fundamentally limiting the size of the dataset that can be visualized17.  
The good news is that visualizing all attributes is not necessary for lossless representation.  The position of the visual 
element on 2-D plane can be sufficient to restore completely the n-D vector as it was shown for Boolean vectors in27-29.    
 
This paper is organized as follows.  Section 2 presents the General Line coordinates that generalize the Parallel and 
Radial Coordinates that are well known lossless methods to visualize n-D data in 2-D that do not require data splitting. 
Section 3 presents a class of Paired Coordinates that is a new class of lossless n-D data visualizations that are also free 
from data splitting.   Section 4 compares the Paired Coordinates with other methods.  The benefits of the Paired 
Coordinates are illustrated with examples that include World hunger data and Challenger Space Shuttle disaster. Section 
5 summarizes this paper.  

2. GENERAL LINE COORDINATES AS GENERALIZATION OF PARALLEL AND RADIAL 
COORDINATES  

In a traditional Radial Coordinates also known as a star plot the axes for variables radiate in equal angles from a 
common origin. A line segment is drawn along each axis starting from the origin and the length of the line representing 
the value of the related variable (Figure 1a). Often the tips of the star's beams are connected in order to create a closed 
star shape1,38. A closed contour is not required to have a full representation of the n-D vector. For instance, a link 
between xn and x1 can be skipped.  
 
Without closing the line radial and parallel coordinates (Figure 1b) are mathematically equivalent /homomorphic. For 
every point p on radial coordinate X a point q exists in the parallel coordinate X that has the same value as p. The 
difference is in the geometric layout (radial or parallel) of n-D coordinates on the 2D plane. The next difference is that 
sometimes in the Radial Coordinates each n-D vector is shown as a separate small plot that serves as an icon of that n-D 
vector. In the parallel coordinates all n-D vectors are shown on the same plot.  To make the use of the radial coordinates 
less occluded at the area close to the common origin of the axis a non-linear scale can be used to spread data that are 
close to the origin. Figure 1 shows Radial, Parallel and Generalized coordinates called General Line Coordinates 

http://en.wikipedia.org/wiki/File:Harvey_Balls_Small.jpg


 
 

 
 

(GLC). These GLC coordinates can go in any direction, be of different length, be connected or disconnected,   and use 
curvilinear lines.   
 

 
 

  Figure 1.  General line coordinates with arbitrary directions of line coordinates X1,X2,…X7. 
 

Figure 2 shows a form of the GLC where coordinates are connected to form a circle. We call it Circular Coordinates.  
The circle is splat to segments and each segment encodes a coordinate (e.g., in a normalized scale within [0,1]).  If an n-
D vector has x1 value equal to 0.5 then this is marked as a point on x1 segment. Then all these points are connected to 
form an oriented graph.   

X1   X2                             X3                                 X4                   X5         X6                       X7 
 

X
1
     X

2                             
X

3                                 
X

4                                           
X

5                               
X

6                           
X

7
 

 X
1
               X

2                             
X

3                                 
X

4                                           
X

5                               
X

6                           
X

7
 

(b) 7-D vector in Parallel Coordinates  

(c) 7-D vector in General Line Coordinates with straight lines 

(d) 7-F vector in General Line Coordinates with curvilinear lines 

(a) 7-D vector in Radial Coordinates  



 
 

 
 

 

  
      Figure 2.  Circular coordinates with a vector (0.5, 0.7,  
      0.9, 0.3, 0.4, 0.2) encoded.  The segments of different   
      length separated by red marks correspond to the  
      dimensions X1,X2,…X6.  

    Figure 3.  n-gon coordinates with a vector (0.5,  
    0.7, 0.9, 0.3, 0.4, 0.2) encoded.  The segments of 
    different length separated by red marks correspond  
    to the dimensions X1,X2,…X6.  

 
Another example is the n-gon coordinates shown in Figure 3. The sides of the n-gon encode a coordinate (e.g., in a 
normalized scale within [0,1]).  If an n-D vector has the x1 value equal to 0.5, then this is marked as a point on x1 
segment. After that all these points are connected.  In essence, n-gon coordinates are a special case of the general line 
coordinates, where lines of coordinates are connected to the n-gon.    
 

      

      

 
(a) A distributed set of objects in circular coordinates 

with two coordinates used as a location in 2-D. 
                  (b) Rectangular coordinates with vector  
                   (0.5, 0.6, 0.9, 0.7, 0.7, 0.1) 

Figure 4. Circular and Rectangular Coordinates 
 
Circular and n-gone coordinates also can be used with splitting coordinates where two coordinates are used to identify 
location of the center and n-2 coordinates are used build a circle or  (n-2)-gon at that location with appropriate scaling 
these n-gons will not overlap (Figure 4a). This is a way to represent geospatial data and a link to the glyph-based 
visualization of n-D data. The lines of coordinates in the generalized coordinates can also continue straight each other 
without any turn between them as shown in Figure 4b.  For instance, if n-gon is a rectangle or a square then each edge of 
the square can split to sections that will represent several dimensions as shown in Figure 4b.  
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The parallel and radial coordinates have an good visual property:  lines for two n-D vectors do not cross each other if 
these vectors are ordered, e.g., vector x1 =(x11,x12,…,x1n)  is greater or equal to vector x2 =(x21,x22,…,x2n) if for every 
i=1,…,n  x1i ≥x2i.  Figure 5 illustrate this and other properties for several vectors:  
(a) x1=(0.8,0.8,0.8,0.8,0.8,0.8,0.8,0.8) (magenta); x2=(0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6) (blue), and x3=(0.4,0.4,0.4,0.4,0.4, 
0.4,0.4,0.4) (green). 
(b) x1=(0.6,0.6,0.6,0.6,0.7 0.8,0.8,0.8) (magenta); x2=(0.5,0.5,0.5,0.5,0.5,0.6,0.6,0.6) (blue), and x3=(0.4,0.3,0.3,0.3,0.3, 
0.5,0.5,0.5) (green).  
(c)  x1=(1.0,0.2,1.0,0.2,1.0) (blue); x2=(0.9,0.1,0.9,0.1,0.9) (red); x3=(0.8,0.0, 0.8, 0.0,0.8) (green). 
(d)  x1=(1,0,1,0,1) (blue); x2=(0,1,0,1,0) (red); x3=(1,1,1,1,1) (green).   
 

 

 

 

(a) (c) 
 

 

 

 
(b) (d) 

 
Figure 5. Visual patterns in general line coordinates 

 
Traditional radial coordinates have a difficulty to display data that are close to the origin of the coordinates. These data 
occlude each other because the area next to the common origin is too small. The general line coordinates shown on 
Figure 5a and Figure 5b resolve this issue.  This is a modified radial coordinates where coordinates have no common 
origin.  This is one of the advantages of a large class of general line coordinates visualizations.  In Figure 5a each n-D 
vector (with all equal values of coordinates) is represented by some n-gon. In Figure 5b the n-gon pattern is still visible 
while values of all coordinates of each n-D vectors are not equal.   
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A set of correlated vectors forms another visual pattern that is a set of nested n-gons (Fgure 5a) and a set of distorted n-
gons (Figure 5b).  In parallel and non-vertical (“inclined”) coordinates (second plot in Figure 5c) this pattern is a set of 
parallel polylines. In a “horizontal” coordinates (first plot in Figure 5c) this visual pattern is very distinct too.        
 
Figure 5d illustrates visualization of three n-D vectors in different general line coordinates when vectors are not 
correlated. While each n-D vector has a distinct visual pattern itself the set of three n-D vectors does not form a common 
visual pattern, which is expected for uncorrelated vectors.  The top plot in Figure 5d shows these vectors in the 
“horizontal” coordinates when oriented graphs are simplified to decrease clutter (vertical lines are omitted for the green 
line and deemphasized for the red and blue lines).  It shows that patterns for these vectors are quite different. The next 
visualizations in Figure 5 also show difference in visual patterns in their own ways.     
  
The ultimate benefit from different general line coordinates would be discovering visual patterns within individual n-D 
vectors and within a set of n-D vectors and converting these visual patterns to analytical mathematical forms. It is 
appropriate to do this in two separate steps: (1) getting distinct visual patterns for different subsets of the dataset by 
finding an appropriate GLC, and (2) finding analytical mathematical properties that would describe these visual patterns.  
For instance, the middle plot in Figure 5d shows visually a repetition pattern of half-circles more clearly than other GLC 
visualizations of the same data in Figure 5d.  Thus half-circles serve as a good clue for discovering a mathematical rule 
for the pattern. Only for very simple patterns this can be done in one step where the math properties are observed 
directly from the visual patterns. For the complex ones this cannot be expected and rather a complex analysis is required 
to transform a discovered visual pattern to a mathematical form.   

The second plot in Figure 5c shows three correlated 5-D vectors in the “inclined” GLC that are not parallel. These 
coordinates keep familiar visual pattern of correlated vectors presented in the parallel coordinates. What could be an 
advantage of such coordinates relative to the parallel coordinates? If data are correlated in two coordinates then these 
coordinates can be shown in GLC inclined to each other if the correlation is positive (coordinates arrows have the same 
direction). This can be a clue to analyze the correlation plot for these coordinates. Moreover the correlation plot can be 
overlaid with these two coordinates in GLC. It would require locating these coordinates orthogonally in the GLC.9    

3. PAIRED COORDINATES  

3.1 Definitions 

The idea of the paired coordinates is converting a simple string of elements of vector x=(x1,x2,…xn) in coordinates           
X1, X2, …, Xn  to a more complex structure with consecutive 2-D elements (pairs)  for even n:   

 
{(x1,x2) (x3,x4),…,(xi,xi+1) , …,(xn-3,xn-2), (xn-1,xn)}.  
.  

These pairs have no common elements.  For the odd n this structure is slightly different:   
 
 {(x1,x2) (x3,x4),…,(xi,xi+1) , …,(xn-2,xn-1), (xn-1,xn-)}  

 
that is with pairs (xn-2,xn-1) and (xn-1,xn)  where xn-1 is common  to both pairs. Without such overlap the last element xn 
will not have a pair.  Alternatively, xn can form a pair with itself for an odd n:  

 
 {(x1,x2) (x3,x4),…,(xi,xi+1) , …,(xn-2,xn-1), (xn,xn)}.  

 
The scales of coordinates X1-Xn are normalized to some interval, e.g., [0,1] and constructed pairs (xi,xi+1) are plotted on 
the same (X,Y) 2-D plane. The example below illustrates this process.  
  
Consider six variables, a state vector x=(x, y, x`, y`, x``, y``) in these coordinates, where x and y are location coordinates 
of the object, x` and y` are velocities (derivatives), and x`` and y`` are accelerations (second derivatives) of this object.  
The algorithm to represent vector x in collocated paired coordinates is as follows:  

Step 1.  Normalizing each coordinate to some interval, e.g., the interval [0,1]. 
Step 2.  Grouping elements of x as consecutive pairs (x,y) (x`,y`) (x``,y``). 
Step 3.  Plotting orthogonal normalized Cartesian coordinates X and Y. 



 
 

 
 

Step 4.  Plotting point (x,y) on (X,Y) 
Step 5.  Plotting point (x`,y`) on (X,Y) 
Step 6.  Plotting  point (x``,y``) on (X,Y). 
Step 7.  Plotting a directed graph  (x,y) →(x`,y`) → (x``,y``) with directed paths from (x,y) to (x`,y`) and from 
(x`,y`) to (x``,y``).      

An example is shown in Figure 6 for x=(x,y,x`,y`,x``,y``)=(0.2, 0.4, 0.1, 0.6, 0.4, 0.8).  

  
(a) Collocated Paired coordinates (b) Parallel coordinates 

      Figure 6.  Vector x=(x,y,x’,y’,x’’,y’’)=(0.2,0.4, 0.1, 0.6, 0.4, 0.8) in paired and parallel coordinates. 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

           
(a) Radial (Anchored) paired coordinates. (b) Shifted paired coordinates 

 Figure 7. Radial and Shifted paired coordinates with vector x=(x,y,x’,y’,x’’,y’’)=(0.2 ,0.4, 0.1, 0.6, 0.4, 0.8) 
 
Figure 7 shows an alternative version of the paired coordinates --radial paired coordinates, where (x`,y`) and (x``,y``) 
are considered as a vector that start at point (x,y) as an anchor. At the formal level it means that we plot two vectors  
                                
                    ((x,y), (x+x`,x+y`)),  ((x,y), (x+x``,x+y``))  or  ((x,y), (x+x`,x+y`)),  ((x+x`,x+y`), (x+x``,x+y``)).  
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Visually it is similar to radial coordinates where the directions of axes are defined by the actual data. In contrast with the 
radial coordinates such directions can overlap. On the other side the advantage of the radial paired coordinates is that the 
direction has a meaning as actual vectors of velocity and acceleration in this example.  
 
In the radial coordinated the directions are arbitrary.  An example is shown in Figure 7a for the same vector as above in 
Figure 6, x=(x,y,x`,y`,x``,y``) = (0.2,0.4, 0.1, 0.6, 0.4, 0.8).  
 
Steps 1-4 of the radial paired coordinates are the same as for collocated paired coordinates and steps 5-7 are as follows: 

Step 5. Plotting a point (x+x`,x+y`) on (X,Y)  to represent  (x`,y`)  
Step 6. Plotting  point (x+x``,y+y``) on (X,Y) to represent  (x``,y``) 
Step 7. Plotting a directed  graph (x,y) → (x+x`,y+y`) → (x+x``,y+y``) with directed paths from (x,y) to 
(x+x`,y+y`) and from (x,y) to (x+x``,y+y``).       

 
For comparison Figure 6b shows the same vector x in the parallel coordinates.  It requires 5 lines to show x, in contrast 
both collocated and radial coordinates require only 2 lines. This leads to less clutter when multiple n-D vectors are 
visualized on the same (X,Y) coordinate plane. It is a general property of the paired coordinates to require two times 
fewer lines than the parallel coordinates require.  This is an advantage of the Paired Coordinates.   
  
Figure 7b shows another version of the paired coordinates –shifted paired coordinates with steps:  

Step 1. Normalizing each coordinate to some interval, e.g., the interval [0,1] 
Step 2.  Grouping elements of x as consecutive pairs (x,y) (x`,y`) (x``,y``). 

 Step 3. 
  Step 3.1. Plotting orthogonal normalized Cartesian coordinates (Xp1,Yp1). 

 Step 3.2.  Setting up a shift (ax,ay). 
Step 3.3.  Generating a set of shifted points (0,0), (ax,ay), (2ax,2ay),…, (iax,iay) ,…,(kax,kay), where k is 
the number of pairs in the structure, which is the ceiling of n/2.  
Step 3.4.  Generating orthogonal normalized Cartesian coordinates (Xpi ,Ypi) for all k with origins in  
(iax,iay) with i=1,2,…, k, that is by shifting coordinates (Xp1,Yp1).  In general (Xpi ,Ypi) can also be 
rotated relative to (Xp1,Yp1).   

Step 4.  Plotting point (x,y) on (Xp1,Yp1). 
Step 5.  Plotting point (x`,y`) on (Xp2,Yp2) 
Step 6.  Plotting point (x``,y``) on (Xp3,Yp3). 
Step 7.  Plotting a directed graph (x,y) →(x`,y`) → (x``,y``) with directed paths from (x,y) to (x`,y`) and from 
(x`,y`) to (x``,y``).      

 
Figure 8 shows correlated data from Table 1 in the Collocated Paired Coordinates.  All shapes are identical and existence 
of the shifts is visible. This visualization required only 3 lines for each 8-D vector instead of 7 lines in the parallel 
coordinates.  
 
 Table 1. Correlated 8-D vectors that differ in a shift 

 
X1 X2 X3 X4 X5 X6 X7 X8 

xred 5 6 4 3 7 8 1 3 
xblue 10 11 9 8 12 13 6 8 
xgreen 1 2 0 -2 3 4 -3 0 

 
The 3-D version of Collocated Paired Coordinates is a natural generalization of the visual representations shown above 
by adding the Z coordinate and showing lines in 3-D. 
   
3.2 Examples with real data  

Below we provide examples of the Collocated Paired Coordinates (CPC) for two datasets: (1) World Hunger from the 
International Food Policy Institute [http://www.ifpri.org/book-8018/node/8058] and (2) Challenger USA Space Shuttle 
O-Ring Dataset relevant to Challenger disaster from the UC Irvine Machine Learning Repository4,11.12.  



 
 

 
 

The first dataset that is a time series is shown in Table 2. Figure 9 shows these data in the Collocated Paired coordinates 
and Figure 10 shows them in the traditional time series.  These figures show that the traditional time series required 4 
lines for each 4-D vector. In contrast the CPC required only one line that do not overlap and have no any occlusion for 
these data again in contrast with the traditional time series.  
 

 
 Figure 8. Correlated data from Table 1 in the Collocated Paired Coordinates 
 
  
      Table 2. Prevalence of undernourished in the population (%) [http://www.ifpri.org/book-8018/node/8058] 

  
  

  
Country  

Prevalence of undernourished in the population (%) 

1990-92 1995-97 2000-2002 2006-08 
1 Albania 11 5 5 5 
2 Algeria 4 5 5 4 
3 Angola 67 61 52 41 
4 Argentina 1 1 1 2 
5 Bangladesh 38 41 30 26 
6 Benin 20 18 15 12 
7 Bolivia 29 24 22 27 
8 Botswana 19 23 27 25 
9 Brazil 11 10 9 6 

10 Bulgaria 4 9 9 10 
11 Burkina Faso 14 12 12 8 
12 Burundi 44 56 59 62 
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 Figure 9.  Representation of prevalence of undernourished in the population (%) in paired coordinates. The increasing lines  

indicate the growth of the undernourished population from the first pair of years (1990-92; 1995-1997) to the second pair of   
years (2000-2002; 2006-2008).   

 
 
 Figure 10.  Representation of prevalence of undernourished in the population (%) in a traditional time series.  
 
The Challenger O-rings data include parameters such as (1) temporal order of flight, (2) number of O-rings at risk on a 
given flight, (3) number of O-rings experiencing thermal distress, (5) launch temperature (degrees F), and (5) leak-check 
pressure (psi). These data have been normalized to be in the [0,1] interval before visualizing them. We considered two 
different normalizations of the number of O-rings at risk. This number is 6 in all flights. It is normalized to 0 in the first 

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Albania

Algeria

Angola

Argentina

Bangladesh

Benin

Bolivia

Botswana

Brazil

Bulgaria

Burkina Faso

Burundi

0

10

20

30

40

50

60

70

80

90

100

1990-92 1995-97 2000-2002 2006-08

%
 

Albania

Algeria

Angola

Argentina

Bangladesh

Benin

Bolivia

Botswana

Brazil

Bulgaria

Burkina Faso

Burundi



 
 

 
 

visualization and to 1 in the second visualization.  The used data11 differ from data analyzed by Tufte41 (see p.44). The 
data used by Tufte include three erosion incidents at temperature 53F, which makes the link between low temperature 
and large incidents much more transparent.   Draper’s data are more difficult for revealing this pattern.   
 
Figures 11 and 12 show visualization of Draper’s data in traditional plots. Figure 13 shows the same data in the 
Collocated Paired Coordinates. These figures show that the traditional time series required 4 lines for each 4-D vector. In 
contrast the CPC required only one line per record with low overlap and without occlusion issues for these data in 
contrast with the traditional time series.  
 

  
     Figure 11. Challenger USA Space Shuttle normalized  
     O- Ring dataset in a traditional line chart.  X coordinate is 
    a temporal order of flights. Each line represents an  
    attribute.  

     Figure 12. Challenger USA Space Shuttle normalized O-Ring 
     dataset in a traditional line chart.  X coordinate is a temporal order 
     of flights. Each line represents a flight.  
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    Figure 13. Challenger USA Space Shuttle normalized 
    O-Ring dataset in the Collocated Paired Coordinates.   
    X, Y coordinates are normalized values of attributes. 6 
    O-rings at risk are normalized as 0. 

    Figure 14. Challenger USA Space Shuttle normalized  
    O-Ring dataset in the Collocated Paired Coordinates.   
    X and Y coordinates are normalized values of attributes.  
    6 O-rings at risk are normalized as 1. 

 
Figure 14 shows three distinct flights #2, #14, and #2. They have an orientation that differs from other flights. These 
flights had maximum value of O-rings at risk.  Thus CPC visually show a distinct pattern in flights that has a meaningful 
interpretation. The well-known case is #14, which is the lowest temperature (53F) from the previous 23 Space Shuttle 
launches.  It stands out in the Collocated Paired Coordinates. In the test at high leak-check pressure (200 psi) it had 2 O-
rings that experienced a thermal distress. The case #2 also experienced thermal distress for one O-ring at much higher 
temperature of 70 F and lower leak-check pressure (50 psi).  This is even more outstanding from others with the vector 
directed down. The case #14 is directed horizontally. All other cases excluding   case #21 are directed up.  The case #21 
stands out because it had 2 O-rings that experienced a thermal distress at high leak-check pressure (200 psi) and high 
temperature (75F). In some sense the case #14 contradicts cases #2 and #21. The last two cases happened at high 
temperature (70F, 75F) and at the same or lower leak-check pressure (50 psi, 200 psi). Draper12 and Tufle42 assume 
monotonicity to derive the conclusion that with 31F the number of distressed O-rings will grow.  Draper12 stated that 
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while the pressure at which safety testing for field joint leaks was performed, was available, but its relevance to the 
failure process was unclear. It is likely other factors are involved too.   

4. COMPARISONS 

Below in Table 3 we compare characteristics of the Paired Coordinates with an icon-based technique of Chernoff faces 
and other line coordinates such as Parallel and Radial coordinates. Chernoff faces are multi-part glyphs in the shape of a 
human face and the individual parts, such as eyes, ears, mouth and nose represent the data variables by their shape, size 
and orientation8.  
 Table 3. Comparison of Paired and other line coordinates with Chernoff faces 
Characteristics Chernoff  faces Radial, Parallel and 

General  line coordinates 
Paired Coordinates 

Values of variables can 
be read from visuals 

No38 Yes. Yes. 

Easy to quantify the 
differences  

No38.  How does the size 
of an ear compare to the 
angle of an eyebrow?   

Yes 
 

Yes 

Pre-attentive  perception 
( not serial) 

No 33 ? Open question for a new 
method 

Easy to use  No38 Yes for Radial and Parallel 
coordinates 

Open question for a new 
method. 

Preserving dimension 
(no dimension reduction)  

Up to 18 variables38  
 

Yes Yes 

Represent  the object as a 
whole 

Yes Yes Yes 

Intuitive   Very intuitive38  Likely less intuitive as it is true for any metaphor before it 
will become a familiar one. 

Familiar metaphor  Yes  Less familiar line metaphor now.  
Order of mapping 
variables to visual 
features impacts the 
interpretation 

Yes9 Yes, but less significantly. 
Visuals are more uniform. 

Redundant visuals  Yes. Faces' symmetry 
doubles the visuals  

No No 

Useful for trend analysis Yes33 Yes Open question for a new 
method. 

Useful for decision 
making  

Less useful than for 
trend analysis 33. 

Yes Open question for a new 
method. 

Free from multiple 
crossing lines   

Yes No. For a large number of 
axes it is difficult to 
perceive structures or data 
relations5, 6,17. 

No. This is less an issue for 
Paired Coordinates than for 
Parallel and Radial 
Coordinates, because two 
times less lines are used. 

Easily to spot 
correlations 

No Yes. For parallel 
coordinates 17. 

Yes 

Feasible interactive 
exploration for Big Data 
(tens of millions of n-D 
vectors) 

 No, Visual clutter and slow 
performance, make 
interactive exploration 
infeasible 5. 

No. This is less an issue for 
Paired Coordinates than for 
Parallel and Radial 
Coordinates, because two 
times less lines are used. 

Easy to keep 2-D or 3-D 
spatial context of data 

No  The spatial context of the 
volumetric 3-D data is 
usually lost5

. 

Yes  



 
 

 
 

The use of the faces is based on the human ability to easily recognize faces and small changes in them. However faces 
are not necessarily superior to other multivariate techniques33. In general, icons have advantages over other 
representations when there is a semantic relation between the icons and the task39. The arbitrary match of face features 
with attributes of the n-D vector has no such semantic match.  The features of the faces such as the curvature of the 
mouth, the eye size and the density of the eyebrow are of different importance for our interpretations of the whole face13 
and arbitrary match will lead to very different conclusion about of n-D vectors based on the facial metaphor.   
 
Table 3 presents a comparison of Paired and other line coordinates with Chernoff faces that shows the advantages of line 
coordinates relative to Chernoff faces. There are multiple modifications of Radial and Parallel coordinates methods that 
intend to improve them. Most of these improvements are also applicable to the paired coordinates. Therefore we 
compare “apples to apples”, which is the basic Radial and Parallel coordinates with the basic Paired Coordinates.   
 

5. CONCLUSION  

Further development and application of parallel coordinates took multiple directions18 that include supporting 
unstructured datasets with millions of points, multi-timepoint volumetric datasets with tens of millions of points per 
timestep5 and exploration of large document corpora6. Parallel hierarchical coordinates6,17, Smooth parallel coordinate34, 
Higher order parallel coordinates41, Continuous parallel coordinates18 have been developed as a way to deal with large 
datasets and to decrease clutter from crossing lines. These methods include hierarchical data clustering, proximity-based 
coloring, and navigation tools to support data localization, smooth curves and others. Parametric parallel coordinates 
with axis of different length are proposed21. This work uses a color mapping function that through interactive adjustment 
reduces the influence of individual data on the overall data to achieve a better visualization. 3-D parallel coordinates 
have been developed in45. The X,Y plane represents a traditional parallel coordinates and Z coordinate is used to 
represent the density of the lines in 2-D.  In7,43,44 parallel coordinates are combined with scatter-plot matrixes and 
histograms to produce multiple coordinated views. Parallel coordinates are combined with the statistical analysis 
visualizations40 to form Enhanced parallel coordinates. In all line and paired coordinates the ordering of the axes 
influences the shape of lines and their interpretation. A significant effort has been devoted to controlling the ordering and 
scaling parallel coordinates during the exploration so that the variables of interest can be studied in adjacent axes3. 
 
Most of these approaches are applicable to the General Line Coordinates and to the Paired Coordinates and can be 
applied to develop their more advanced versions. The future work is exploring mathematical properties of the proposed 
visualization methods, developing their advanced versions and applying them to challenging datasets.  
 
The fundamental novelty of the concept of the Paired Coordinates is that uses a single 2-D plot to represent n-D data as 
an oriented graph based on the idea of collocation of pairs of attributes with much less clutter than other methods 
produce. The main advantage of the General Line Coordinates and the Paired Coordinates is that they provide a common 
framework that includes popular Parallel and Radial coordinates and generate a large number of new visual 
representations of multidimensional data without dimension reduction.  
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