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On Mountain Pass Type Algorithms

James Bisgard

Abstract. We consider constructive proofs of the mountain pass lemma,

the saddle point theorem and a linking type theorem. In each, an initial

“path” is deformed by pushing it downhill using a (pseudo) gradient

flow, and, at each step, a high point on the deformed path is selected.

Using these high points, a Palais-Smale sequence is constructed, and the

classical minimax theorems are recovered. Because the sequence of high

points is more accessible from a numerical point of view, we investigate

the behavior of this sequence in the final two sections. We show that

if the functional satisfies the Palais-Smale condition and has isolated

critical points, then the high points form a Palais-Smale sequence, and

- passing to a subsequence - the high points will in fact converge to a

critical point.

Mathematics Subject Classification (2010). Primary 58E05; Secondary

46T99, 47J30.

Keywords. Minimax Methods, Critical Point Theory, Nonlinear Func-

tional Analysis.

1. Introduction

The mountain pass lemma (abbreviated MPL) and the saddle point theorem

(SPT) are fundamental tools of nonlinear analysis. Originally, these theorems

were proved under the assumption that the corresponding functional satisfied

some form of the Palais-Smale (PS) condition. More recent approaches show
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first the existence of (PS) sequences under the assumptions of the MPL or

the SPT, and then show that some subsequence converges. The advantage to

this method is that progress has been made in situations where the functional

doesn’t satisfy the (PS) condition. (See for example, the recent paper [13] and

its references.)

The goal of this paper is to present computationally accessible proofs

of the MPL, the SPT, and a linking type theorem (LTT). First, we present

proofs of versions of the MPL (Section 3), the SPT (Section 4), and LTT

(Section 5), without using Ekeland’s principle or the deformation lemma.

However, it is necessary to make an extra assumption about the regularity of

the functional I (see LL). The general idea is to take an initial path, push it

downhill, pick a high point on this new path and then repeat. Since calculating

these high points is in principle straightforward, the behavior of this sequence

is important to understand. Under the assumption that I satisfies the (PS)

sequence and critical points of I are isolated, we show in Sections 6 and 7

that this sequence of high points is a (PS) sequence, and by passing to an

appropriate subsequence, the high points converge to a critical point.

Throughout, we use a version of the negative gradient flow, although a

semi-linear heat flow can be used for the constructive type proofs. An early

example of the negative gradient approach is used in [8] and [17], where

solutions of certain types of differential equations are found as elements of

the ω-limit set of the negative gradient flow for appropriately picked initial

points. In [3] a heat flow is used to show the existence of homoclinic type

solutions for a Hamiltonian with two wells at different levels, while in [5], a

heat flow is used to prove the basic deformations for the MPL. More recently,

Rabinowitz and Bolotin have used a heat flow for functionals that satisfy the

(PS) condition in cones, in [4] and [16].

There has been much recent work on numerically computing critical

points arising from the MPL. One of the first examples is the mountain pass

algorithm of Choi and McKenna [6]. There, the initial path is a line segment,
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and a new path is found by moving the high point from the original line

downhill and considering a line segment connecting 0 and the deformed high

point. This process is repeated until the gradient at the high point is small.

Unfortunately, there is no guarantee that the values of the functional on the

new line are everywhere smaller than the values on the original, and the

algorithm may not converge. More recently, in [1], Barutello and Terracini

proposed an algorithm for the MPL: given an initial curve γ, their algorithm

constructs a sequence of points yn that converge to a mountain pass type

point. However, the algorithm needs to minimize the size of the gradient

along a flow line. In comparison, finding a sequence of high points is more

computationally accessible. In addition, the methods here apply to the SPT

and a LTT. Lewis and Pang ([10]) used level set methods to detect critical

points of mountain pass type. By minimizing distances between different

components of sub-level sets, Lewis and Pang are able to prove very useful

convergence rates, but such algorithms may be more difficult to implement.

For critical points with higher Morse index, Ding, Costa and Chen in [7]

and later Li and Zhou in [11] and [12] and Wang and Zhou in [18] proposed

algorithms based on a local linking, although we find the ideas here to be

more natural.

2. Pseudo-Gradients and Flows

Suppose that E is a Banach space, and I ∈ C1(E,R). Let K := {x ∈ E :

I ′(x) = 0}. It is well known ([9] or [15]) that there exists a locally Lipschitz

function V : E\K → E such that

(PG1) ‖V (x)‖ ≤ 2‖I ′(x)‖

(PG2) I ′(x)V (x) ≥ ‖I ′(x)‖2.
(PG)
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Note that (PG2) implies that if V (x) = 0, then I ′(x) = 0. Thus, in fact,

V : E\K → E\{0}. Since V is locally Lipschitz, so too is 1
1+‖V (x)‖ . Therefore,

d
dtϕt(x) = − V (ϕt(x))

1+‖V (ϕt(x))‖

ϕ0(x) = x
(2.1)

defines a local flow ϕt on E\K. (Note that if E is a Hilbert space, we may

use the gradient ∇I in place of V .) If ϕt(x) remains away from K, then ϕt(x)

will exist for all t ∈ R, since the right hand side of (2.1) is bounded. We

next investigate how ϕt(x) can approach K. Since V is bounded, if there is

a sequence tn → t0 such that ϕtn(x)→ u ∈ K, we may in fact conclude that

ϕt(x) → u as t → t0. To eliminate the possibility that ϕt(x) → u ∈ K in

finite time, we assume

for each x ∈ K, there is an R > 0 and an M > 0 such

that ‖I ′(u)− I ′(v)‖ ≤M‖u− v‖ for all u, v ∈ BR(x).
(LL)

Assumption (LL) says that for each u ∈ K, there is a ball around u on which

I ′ is Lipschitz. Thus, any functional I whose derivative is locally Lipschitz

will satisfy (LL). In particular, any C2 functional will satisfy (LL). As another

example, if V ∈ C2(R× Rn,R), then I(u) :=
∫ b
a

1
2 |u̇(t)|2 − V (t, u(t)) dt is a

C1 functional on W 1,2([a, b]), whose derivative is locally Lipschitz. If it is also

assumed that V is 1-periodic in t, V (t, 0) = 0 < V (t, x) for all x ∈ Rn\{0},

V (t, 0) is a non-degenerate local maximum for each t, and lim inf
|x|→∞

V (t, x) =

−α < 0 for all t ∈ [0, 1], then I(u) :=
∫
R

1
2 |u̇(t)|2 − V (t, u(t)) dt is a C1

functional on W 1,2(R) whose derivative is locally Lipschitz (see for example

[2]). We now show that, assuming (LL), if x /∈ K, then ϕt(x) cannot reach K

in finite time.

Lemma 2.1. Suppose that I ∈ C1(E,R) and I satisfies (LL). If x /∈ K, ϕt(x)

is defined by (2.1), and ϕt(x)→ u ∈ K as t→ t0, then t0 = +∞.

Proof. Let us suppose that there is in fact an x /∈ K and a t0 ∈ (0,∞) such

that ϕt(x)→ u ∈ K as t→ t0. Since ϕt(x)→ u, we may assume that there is
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a t? such that if t ∈ (t?, t0), then ϕt(x) ∈ BR(u), where R is from assumption

(LL). Now, let

g(x) := − V (x)

1 + ‖V (x)‖
for x ∈ BR(u),

and g(u) := 0. Note that g is then continuous on BR(u) and for x ∈ BR(u),

we have

‖g(x)‖ ≤ ‖V (x)‖
1 + ‖V (x)‖

≤ ‖V (x)‖

≤ 2‖I ′(x)‖ (by (PG1))

= 2‖I ′(x)− I ′(u)‖ (since u ∈ K)

≤ 2M‖x− u‖,

by (LL). Since ϕt(x) ∈ BR(u) for all t ∈ (t?, t0), (2.1) then implies for all

s, t ∈ (t?, t0) with s ≤ t that

‖ϕt(x)− ϕs(x)‖ =

∥∥∥∥∫ t

s

g(ϕτ (x)) dτ

∥∥∥∥
≤
∫ t

s

‖g(ϕτ (x))‖ dτ

≤ 2M

∫ t

s

‖ϕτ (x)− u‖ dτ.

Letting t→ t0, the inequality above implies for all s ∈ (t?, t0) that

‖ϕs(x)− u‖ ≤ 2M

∫ t0

s

‖ϕτ (x)− u‖ dτ.

Gronwall’s Inequality then implies that ϕs(x) = u for all x ∈ (t?, t0), which

is impossible. �

By Lemma 2.1, (2.1) defines a flow on E\K. We now define a flow on all

of E. Inequalities (PG1) and (PG2) imply that ‖I ′(x)‖ ≤ ‖V (x)‖ ≤ 2‖I ′(x)‖,

and so if xn → x ∈ K, then V (xn) → 0, and so we may think of V as being

extended to be 0 at critical points of I. Thus, if x ∈ K, we would expect the
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flow to leave x fixed, and so we define our flow to fix points in K. We now

define ψt : R× E → E by

ψt(x) :=

x if x ∈ K

ϕt(x) if x /∈ K,
(2.2)

where ϕt(x) is the unique solution of (2.1). Since the the right side of (2.1)

is bounded independent of t and x, Lemma 2.1 implies that ϕt(x) exists for

all t ∈ R. Note that clearly ψt(ψs(x)) = ψt+s(x) for all s, t ∈ R and all

x ∈ E. Thus, to verify that ψt defines a flow, we need to show that ψt(x) is

continuous in t and x, which is a consequence of the following lemma.

Lemma 2.2. For every x ∈ E and every T > 0, there is a neighborhood N of

x and a constant K such that for all y ∈ N , if ψt(y) ∈ N for all t ∈ [0, T ],

then ‖ψt(x)− ψt(y)‖ ≤ eKT ‖x− y‖.

Proof. If x /∈ K, then we may use standard arguments, relying on the fact

that V is locally Lipschitz. Suppose now that x ∈ K. In this case, take

N = BR(x), where BR(x) is the ball specified in assumption (LL). Suppose

now that y ∈ BR(x). If y ∈ K, then ‖ψt(x)−ψt(y)‖ = ‖x− y‖ ≤ eKT ‖x− y‖

for any positive T . If y /∈ K, then

ψt(x)− ψt(y) = x− ϕt(y)

= x−
(
y +

∫ t

0

d

dx
ϕs(y) ds

)
= x− y +

∫ t

0

V (ϕs(y))

1 + ‖V (ϕs(y))‖
ds.

Therefore, by (PG1),

‖ψt(x)− ψt(y)‖ ≤ ‖x− y‖+

∫ t

0

‖V (ϕs(y))‖ ds

≤ ‖x− y‖+

∫ t

0

2‖I ′(ϕs(y))‖ ds

= ‖x− y‖+

∫ t

0

2‖I ′(ϕs(y))− I ′(ψs(x))‖ ds,
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since ψs(x) = x for all s and I ′(x) = 0. By assumption (LL), there is an R > 0

and a M > 0 such that if u, v ∈ BR(x), then ‖I ′(u) − I ′(v)‖ ≤ M‖u − v‖.

Therefore, if ϕs(y) ∈ BR(x) for s ∈ [0, t], then we have (since ϕs(y) = ψs(y)

by definition of ψ)

‖ψt(x)− ψt(y)‖ ≤ ‖x− y‖+ 2M

∫ t

0

‖ψs(y)− ψs(x)‖ ds.

If g(t) := ‖ψt(x) − ψt(y)‖, then g is continuous, and the inequality above

implies that

g(t) ≤ g(0) + 2M

∫ t

0

g(s) ds.

But then, by Gronwall’s Inequality, we have g(t) ≤ g(0)e2Mt. Therefore, we

will have

‖ψt(x)− ψt(y)‖ ≤ e2Mt‖x− y‖,

which is the desired statement. �

Lemma 2.2 implies that ψt(x) is continuous in t and x, and in particular

ψt(x) defines a flow on E. Notice also that in our proofs of Lemmas 2.1 and

2.2, we did not use the full strength of (LL), but rather only the following

slightly weaker version:

for each u ∈ K, there is an R > 0 and an M > 0 such

that ‖I ′(x)‖ ≤M‖x− u‖ for all x ∈ BR(u).

That is, we use only the fact that the size of the derivative grows at most

linearly in a neighborhood of the critical point. Without an assumption of

this type, it is unclear how to define a flow everywhere on E. One seemingly

natural possibility is to define

ψt(x) =


ϕt(x) if t ≤ t0

lim
t→t0

ϕt(x) if t > t0,

where (0, t0) is the maximal interval on which ϕt(x) is defined. However,

this definition does not produce a flow, since flow lines cannot intersect. In

the traditional deformation lemma approach, the problem with the behavior
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of the flow close to the critical points is avoided by using locally Lipschitz

cut-off functions that vanish in a neighborhood of critical points. Typically,

these functions are expressed in terms of distance from subsets of critical

points. From a computational point of view, calculating the value of such

cut-off functions is difficult, because their calculation necessitates knowing

the position of the critical points.

Lemma 2.3. For any x ∈ E, f(t) := I(ψt(x)) is non-increasing.

Proof. This is clear if x ∈ K. Suppose next that x /∈ K, and so ψt(x) = ϕt(x).

By the chain rule, we have

f ′(t) = I ′(ϕt(x))
d

dt
ϕt(x)

= − 1

1 + ‖V (ϕt(x))‖
I ′(ϕt(x))V (ϕt(x))

≤ − 1

1 + ‖V (ϕt(x))‖
‖I ′(ϕt(x))‖2

≤ 0,

by (PG2). �

Proposition 2.4. For every x ∈ E and α ∈ R, if I(ψt(x)) ≥ α for all t ≥ 0,

then there is a sequence (tn) with tn →∞ such that I(ψtn(x)) ≥ α is bounded

and I ′(ψtn(x))→ 0 as n→∞.

Proof. Again, this is clear if x ∈ K. Suppose then that x /∈ K. Then ψt(x) =

ϕt(x). By Lemma 2.3 and the assumption that I(ψt(x)) ≥ α, limt→∞ I(ϕt(x))

exists. We have

I(ϕt(x))− I(x) =

∫ t

0

d

ds
I(ϕs(x)) ds

=

∫ t

0

I ′(ϕs(x))
d

ds
ϕs(x) dx

=

∫ t

0

− 1

1 + ‖V (ϕs(x))‖
I ′(ϕs(x))V (ϕs(x)) ds

≤
∫ t

0

− 1

1 + ‖V (ϕs(x))‖
‖I ′(ϕs(x))‖2 dx
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by (PG2). By (PG1), 2‖I ′(x)‖ ≥ ‖V (x)‖, and so ‖I ′(x)‖2 ≥ 1
4‖V (x)‖2.

Therefore,

I(x)− I(ϕt(x)) ≥
∫ t

0

1

4

‖V (ϕs(x))‖2

1 + ‖V (ϕs(x))‖
ds.

Since lim
t→∞

I(ϕt(x)) exists, taking t→∞ in the inequality above, we see that

∫ ∞
0

‖V (ϕs(x))‖2

1 + ‖V (ϕs(x))‖
ds <∞. (2.3)

Therefore, there is a sequence (tn) with tn →∞ such that
‖V (ϕtn (x))‖2

1+‖V (ϕtn (x))‖ → 0.

This implies that ‖V (ϕtn(x))‖ → 0. Note that (PG2) implies that if I ′(x) 6= 0,

then ‖V (x)‖ ≥ ‖I ′(x)‖. Thus, ‖I ′(ϕtn(x))‖ → 0. Thus, the sequence (ϕtn(x))

is a (PS) sequence for I. Since limt→∞ I(ϕt(x)) exists and I(ϕt(x)) ≥ α, we

must also have I(ϕtn(x)) ≥ α, and so the sequence (ϕtn(x)) satisfies the

requirements. �

3. The Mountain Pass Lemma

Suppose now that I satisfies

(MP1) I(0) = 0 and I ′(0) = 0

(MP2) there is an r > 0, α > 0 such that inf
x∈∂Br(0)

I(x) ≥ α

(MP3) there is an e /∈ Br(0) with I(e) ≤ 0.

(MP)

In [19], Willem showed that in this situation, there is a (PS) sequence (xn)

such that I(xn)→ c, where

c := inf
h∈Γ

max
s∈[0,1]

I(h(s)),

and

Γ := {h ∈ C([0, 1]× E,E) : h(0) = 0, I(h(1)) ≤ 0, and h(1) /∈ Br(0)}.

We prove the following version, which is very similar to Barutello and Ter-

racini’s proof in [1]:
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Theorem 3.1. Suppose that I satisfies (LL) and (MP1-3). For any h ∈ Γ,

there is a sequence (tn) with tn →∞ and an s? ∈ [0, 1] such that
(
ψtn(h(s?))

)
is a (PS) sequence with I(ψtn(h(s?)))→ ĉ, where ĉ ≥ c.

Proof. Let h ∈ Γ. For each i ∈ N, we claim that ψi(h(s)) ∈ Γ. Notice that

since ψt(x) is continuous in t and x, ψi(h(s)) is continuous. Moreover, ψt(0) =

0, since 0 ∈ K. Next, Lemma 2.3 implies that I(ψi(h(1))) ≤ I(h(1)) ≤ 0. To

show that ψi(h(1)) /∈ Br(0), note that if ψi(h(1)) ∈ Br(0), there would have

to be a τ ∈ (0, i) such that ψτ (h(1)) ∈ ∂Br(0). By (MP2) and the definition of

Γ, that would imply that I doesn’t decrease along the flow of ψ, contradicting

Lemma 2.3.

For each i, there is an si ∈ [0, 1] so that I(ψi(h(si))) = max
s∈[0,1]

I(ψi(h(s))).

Note that since ψi(h(s)) ∈ Γ, I(ψi(h(si))) ≥ c. Since [0, 1] is compact, passing

to a relabeled subsequence, there is a sequence (si) such that si → s?. We

now claim that I(ψt(h(s?))) ≥ c for all t ≥ 0. If not, then for some large j,

I(ψj(h(s?))) < c. But then, for all large i, I(ψj(h(si))) < c. We may assume

that i > j. Then, by Lemma 2.3, we would have

I(ψi(h(si))) = I(ψi−j(ψj(h(si)))) ≤ I(ψj(h(si))) < c,

which contradicts the choice of si so that I(ψi(h(si))) = max
s∈[0,1]

I(ψi(h(s))).

Proposition 2.4 then implies that the existence of an appropriate sequence tn

so that
(
ψtn(h(s?))

)
is a (PS) sequence for which I(ψtn(h(s?))) ≥ c. �

Notice that Theorem 3.1 doesn’t imply the existence of a (PS) sequence

(un) for which I(un) → c, where c is specified by the standard minimax

formula. However, we have the following

Proposition 3.2. Suppose I satisfies (LL) and (MP1-3). Then there is a (PS)

sequence (un) such that I(un)→ c.

Proof. For every n ∈ N, pick hn ∈ Γ such that max
s∈[0,1]

I(hn(s)) ≤ c + 1
n .

Arguing as in the proof of Theorem 3.1, there is a (PS) sequence (xn,j) such

that c ≤ I(xn,j) ≤ c+ 1
n for all j ∈ N. Since (xn,j) is a (PS) sequence, there
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is a jn such that ‖I ′(xn,jn)‖ ≤ 1
n . Let un := xn,jn . Then I ′(un) → 0 and

I(un)→ c as n→∞. �

A disadvantage of the approach above is the extra regularity assumption

on I necessary to ensure that we have a flow on all of E. Without (LL), cut-

off functions that are 0 in a neighborhood of K are used to get a flow defined

on all of E. An advantage of this method is particular choices of initial paths

h can be used to find critical points with particular behavior. Notice that the

necessary ingredient is a flow that decreases I (Lemma 2.3) and for which

some version of Proposition 2.4 holds. In general, any flow that decreases I

and whose ω-limit sets are non-empty and consist of critical points of I will

work. For example, in [3], a semi-linear heat flow is used together with a

particular choice of initial path to find homoclinic solutions of a double-well

Hamiltonian equation with wells at different levels.

An advantage of this approach is that it is in a sense constructive: In

order to find a (PS) sequence, pick any path in Γ, push the path downhill

using the negative (pseudo)-gradient, keep track of the high points on the

deformed path and use those high points to find an initial value x for which

I(ψt(x)) is bounded from below. This is reminiscent of the idea of some

numerical mountain pass algorithms (for example, [6]): given an initial path,

deform the path in some fashion and pick the high point on the new path

and repeat:

Step 1: Pick an h ∈ Γ, and set i = 1.

Step 2: Deform h using the negative gradient flow to ψi(h(·)).

Step 3: Find si ∈ [0, 1] such that I(ψi(h(si))) = maxs∈[0,1] I(ψi(h(s))).

Step 4: Increment i, and then return to step 2.

We consider the question of convergence of the sequence of high points

ψi(h(si)) in Sections 6 and 7.
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4. The Saddle Point Theorem

Suppose now that I ∈ C1(E,R) satisfies

(SP1) E = V ⊕X, where V is finite dimensional

(SP2) there is a r > 0 and α such that max
u∈∂Br(0)∩V

I(u) ≤ α

(SP3) there is a β > α such that inf
u∈X

I(u) ≥ β.

(SP)

The saddle point theorem ([15]) says that if I satisfies (SP1-3) and the

(PS) condition, then

c = inf
h∈Γ

max
x∈Br(0)∩V

I(h(x)) ≥ β

is a critical value of I, where

Γ = {h ∈ C(Br(0) ∩ V,E) : h = id on ∂Br(0) ∩ V }.

In [19], it is shown under assumptions (SP1-3) that there exists a (PS) se-

quence xn such that I(xn)→ c. We take

Γ1 = {h ∈ C(Br(0) ∩ V,E) : there exists Ah ∈ C([0, 1]×Br(0) ∩ V,E)

satisfying properties (a), (b), and (c) },

where

(a) Ah(0, x) = x for all x ∈ ∂Br(0) ∩ V ,

(b) Ah(1, x) = h(x) for all x ∈ Br(0) ∩ V ,

(c) For each x ∈ ∂Br(0) ∩ V , t 7→ I(Ah(t, x)) is non-increasing.

We then define

c1 = inf
h∈Γ1

max
x∈Br(0)∩V

I(h(x)).

We have the following:

Theorem 4.1. Suppose that I satisfies (SP1-3) and (LL). Then c1 ≥ β. More-

over, for any h ∈ Γ, there is an s? ∈ Br(0) ∩ V and a sequence (tn) with

tn → ∞ such that if un := ϕtn(h(s?)), then (un) is a (PS) sequence and

I(un) ≥ c1.
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Proof. To show c1 ≥ β, it suffices to show that for any h ∈ Γ1, there is

an x ∈ Br(0) ∩ V such that h(x) ∈ X. Let P : E → V be the projection

onto V , and note that Pu = 0 if and only if u ∈ X, and so we need only

show there is an x ∈ Br(0) ∩ V such that Ph(x) = 0. For any t ∈ [0, 1], x ∈

Br(0) ∩ V , let H(t, x) = Ah(t, x). Since H(0, x) = PAh(0, x) = x for all

x ∈ ∂Br(0)∩V , we have deg
(
H(0, x), Br(0)∩V, 0

)
= deg

(
id, Br(0)∩V, 0

)
= 1.

Because deg(Ph,Br(0)∩V, 0) = deg(H(1, x), Br(0)∩V, 0), we need only show

that deg
(
H(1, x), Br(0) ∩ V, 0

)
= deg

(
H(0, x), Br(0) ∩ V, 0

)
. This will follow

from the homotopy independence of the degree if we can show there are no

(t, x) ∈ [0, 1]× ∂Br(0) ∩ V such that H(t, x) = 0. Suppose there was such a

(t, x). Then we would have PAh(t, x) = 0, which implies that Ah(t, x) ∈ X.

(c), (SP2) and (SP3) imply that β ≤ I(Ah(t, x)) ≤ I(Ah(0, x)) = I(x) ≤ α,

a contradiction.

Let h ∈ Γ1. For each i ∈ N, we show that ψi◦h ∈ Γ1. Since h ∈ Γ1, there

is an Ah corresponding to h that satisfies (a-c). We now find an appropriate

Λ for ψi ◦ h. Let

Λ(t, x) :=

Ah(2t, x) if t ∈
[
0, 1

2

)
, x ∈ Br(0) ∩ V

ψi(2t−1) (h(x)) if t ∈
[

1
2 , 1
]
, x ∈ Br(0) ∩ V .

Note that as t ↗ 1
2 , Λ(t, x) = Ah(2t, x) → Ah(1, x) = h(x), and Λ

(
1
2 , x
)

=

ψ0(h(x)) = h(x), and so Λ ∈ C([0, 1] × Br(0) ∩ V,E). For (a), we have

Λ(0, x) = Ah(0, x) = x for all x ∈ ∂Br(0) ∩ V . For (b), Λ(1, x) = ψi(h(x)) =

ψi ◦ h(x) for all x ∈ Br(0)∩ V . (c) follows from the corresponding properties

of Ah and Lemma 2.3. Thus ψ ◦ h ∈ Γ1.

For each i, let si ∈ Br(0) ∩ V be chosen so that

I(ψi(h(si))) = max
x∈Br(0)∩V

I(ψi(h(x))).

Because Br(0) ∩ V is compact, there is a subsequence (sij ) of (si) such that

sij → s? ∈ Br(0) ∩ V . We can make the same argument as in the proof of

Theorem 3.1 to get an appropriate (PS) sequence. �
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We next show that c1 = c. Since Γ ⊆ Γ1, it is clear that c1 ≤ c. The

opposite inequality is an immediate consequence of the following proposition.

Proposition 4.2. For any h ∈ Γ1, there is a h̃ ∈ Γ such that

max
x∈Br(0)∩V

I(h(x)) = max
x∈Br(0)∩V

I(h̃(x)).

Proof. Let h ∈ Γ1 be fixed, and suppose that Ah satisfies (a-c). We then

define

h̃(x) :=

h(2x) if x ∈ Br/2(0) ∩ V

Ah

(
2
r (r − ‖x‖), r x

‖x‖

)
if x ∈

(
Br(0)\Br/2(0)

)
∩ V .

Note that as ‖x‖ ↘ r
2 , Ah

(
2
r (r − ‖x‖), rx‖x‖

)
→ Ah(1, 2x) = h(2x) by (a).

Thus, h̃ is continuous. Next, note that if ‖x‖ = r, then h̃(x) = Ah(0, x) = x

and so h̃ ∈ Γ. The following immediate consequences of the definition and

properties (a-c) of Ah finish the proof:

max
x∈Br/2(0)∩V

I(h̃(x)) = max
x∈Br(0)∩V

I(h(x)) ≥ β

and

max
x∈
(
Br(0)\Br/2(0)

)
∩V

I(h̃(x)) ≤ max
t≥0

max
y∈∂Br(0)∩V

I(Ah(t, y))

≤ max
y∈∂Br(0)∩V

I(y) ≤ α. �

As an immediate corollary, we may argue as in the proof of Proposition

3.2 to get

Corollary 4.3. Suppose that I satisfies (LL) and (SP1-3). Then there is a

(PS) sequence (un) such that I(un)→ c.

The disadvantage of our proof is the extra regularity assumption (LL).

An advantage is the more constructive nature, analogous to the procedure

for the MPL:

Step 1: Pick an h ∈ Γ1, and set i = 1.

Step 2: Deform h using the negative gradient flow to ψi(h(·)).
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Step 3: Find si ∈ Br(0)∩V so that I(ψi(h(si))) = max
s∈Br(0)∩V

I(ψi(h(s))).

Step 4: Increment i, and then return to step 2.

By keeping tracking of the “high” points ψi(h(si)), we get a sequence of

points that (under suitable assumptions on I) converge to a critical point at

level higher than c. We return to the question of convergence in Sections 6

and 7.

5. A Linking Type Theorem

Suppose now that I ∈ C1(E,R) satisfies

(L1) E = V ⊕X, where V is finite dimensional

(L2) there is a ρ > 0 and α > 0 such that I|∂Bρ(0)∩X ≥ α

(L3) there is an e ∈ ∂B1(0) ∩X and an R > ρ such that if

Q :=
(
BR(0) ∩ V

)
⊕ {re : 0 < r < R}, then I|∂Q ≤ 0

(L)

Here, ∂Q refers to the boundary of Q relative to V ⊕ span(e). Again,

Willem showed in [19] that if I satisfies (L1-L3), then I has a (PS) sequence

(xn) such that I(xn)→ c, where

c := inf
h∈Γ

max
s∈Q

I(h(s)),

and

Γ := {h ∈ C(Q,E) : h|∂Q = id}.

Similar to the case of the saddle point theorem, we define

Γ1 = {h ∈ C(Q,E) : there exists Ah ∈ C([0, 1]×Q,E)

satisfying properties (a), (b), and (c) },

where

(a) Ah(0, x) = x for all x ∈ ∂Q,

(b) Ah(1, x) = h(x) for all x ∈ Q,

(c) For each x ∈ ∂Q, t 7→ I(Ah(t, x)) is non-increasing.
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We then define

c1 = inf
h∈Γ1

max
x∈Q

I(h(x)).

Theorem 5.1. Suppose I ∈ C1(E,R) satisfies (LL) and (L1-3). Then c1 ≥ α.

Moreover, for any h ∈ Γ1, there is an s? ∈ Q and a sequence (tn) with

tn → ∞ such that if un := ϕtn(h(s?)), then (un) is a (PS) sequence and

I(un) ≥ c1.

Proof. The proof that c1 ≥ α is similar to the corresponding argument in

Theorem 4.1, and may be found in [9], [15] or [19]. The remainder of the

proof is very similar to the proof of Theorem 4.1. A key step is establishing

that Γ1 is invariant under the flow ψt for t ≥ 0. Given h ∈ Γ1 and its

corresponding Ah and i ∈ N, we use the same definition of Λ with (replacing

Br(0) ∩ V with Q) as in the proof of Theorem 4.1. �

Next, as with the Saddle Point Theorem, the following proposition im-

plies that c1 = c.

Proposition 5.2. For any h ∈ Γ1, there is a h̃ ∈ Γ such that

max
s∈Q

I(h̃(s)) = max
x∈Q

I(h(x)).

Proof. Let h ∈ Γ1 be fixed. Note that Q is a closed, convex subset of a finite

dimensional vector space. Let p ∈ Q◦ (the interior relative to V ⊕ span(e)),

and let F : Q→ Q be given by F (x) = 1
2 (x+p) (since Q is convex, F (x) ∈ Q).

Let Q′ := Im(F ), and note that F is a homeomorphism from Q to Q′, with

inverse F−1(x) = 2x − p. Moreover, Q′ is convex and F (∂Q) = ∂Q′. We

next define a map Π : Q\{p} → ∂Q as follows: since Q is convex, for any

x ∈ Q\{p}, the ray rx(t) = p+ t(x− p) for t > 0 (connecting p to x) crosses

∂Q at exactly one point. This unique point is Π(x). Note that for x ∈ ∂Q′,

Π(x) = 2x− p = F−1(x) and for x ∈ ∂Q, Π(x) = x. Let

f(x) =
dist(x,Q

c
)

dist(x,Q
c
) + dist(x,Q′)

,
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and define h̃ by:

h̃(x) :=

h(F−1(x)) if x ∈ Q′

Ah (f(x),Π(x)) if x ∈ Q\Q′.

Note that as x ∈ Q\Q′ approaches ∂Q′, Π(x)→ F−1(x) and f(x)→ 1. Thus,

Ah(f(x),Π(x)) → Ah(1, F−1(x)) = h(F−1(x)) and so h̃ ∈ C(Q,E). Next, if

x ∈ ∂Q, f(x) = 0 and so h̃(x) = Ah(0,Π(x)) = Π(x) = x, since Π fixed the

boundary of Q. Therefore, h̃ ∈ Γ.

The proof then follows from the following straightforward consequences

of the definition:

max
s∈Q′

I(h̃(s)) = max
x∈Q

I(h(x)) ≥ α

and

max
x∈Q\Q′

I(h̃(x)) ≤ max
t∈[0,1]

max
y∈∂Q

I (Ah(t, y)) ≤ max
y∈∂Q

I(y) ≤ 0,

where we have used the fact that if x ∈ Q\Q′, then Π(x) ∈ ∂Q. Thus, for

x ∈ Q\Q′, h̃(x) = Ah(t, y) for some t ∈ [0, 1] and y ∈ ∂Q. �

As for Theorem 4.1, we immediately have the following:

Corollary 5.3. Suppose that I satisfies (LL) and (L1-3). Then there is a (PS)

sequence un such that I(un)→ c.

There is an analogous algorithm for this type of linking theorem as there

is for the saddle point. In the next two sections, we address the question of

convergence of the sequence of high points to a critical point.

6. Convergence

We henceforth assume that I satisfies(L1-3), (LL), the Palais-Smale condi-

tion, and that the critical points of I are isolated. Note that this implies that

for any a < b, the set Kba = {u ∈ K : a ≤ I(u) ≤ b} is finite.

In the proof of Theorems 3.1, 4.1, and 5.1, the following process was

used:
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Step 1: Pick an h ∈ Γ1, and set i = 1.

Step 2: Deform h using the negative gradient flow to ψi(h(·)).

Step 3: Find si that maximizes I(ψi(h(s))) over the deformed set.

Step 4: Increment i, and then return to step 2.

This process creates a sequence of “high” points si. Because of compactness

of the set from which si is picked, a subsequence of si converged to some s?,

and some subsequence of ψt(h(s?)) was a (PS) sequence for I. Our goal in

the following two sections is to show

1. ψt(s
?) converges as t→∞ to some u ∈ K, and

2. that a subsequence of high points ψi(h(si))→ u.

To do this, we need the following lemmas. The first says that for any x,

ψt(x) has a maximum speed of 1 and the second says that if ψt(x) spends

some interval of time away K, then I(ψt(x)) decreases by at least some fixed

amount on that interval. In what follows, Iba := {x ∈ E : a ≤ I(x) ≤ b}. Since

I satisfies the (PS) condition, there is a critical value ĉ provided by Theorem

5.1.

Lemma 6.1. For any x ∈ E and any t, s ≥ 0, ‖ψt(x)− ψs(x)‖ ≤ |t− s|.

Proof. This is clearly true if x ∈ K. Suppose now that x /∈ K. Supposing that

t > s, we have by (2.1)

‖ψt(x)− ψs(x)‖ = ‖ϕt(x)− ϕs(x)‖ =

∥∥∥∥∫ t

s

d

dt
ϕt(x) dt

∥∥∥∥
≤
∫ t

s

∥∥∥∥ V (ϕt(x))

1 + ‖V (ϕt(x))‖

∥∥∥∥ dt

=

∫ t

s

‖V (ϕt(x))‖
1 + ‖V (ϕt(x))‖

dt

≤ t− s,

as desired. �

Lemma 6.2. Suppose there is a δ > 0 such that ‖I ′(y)‖ ≥ δ for all y ∈ A ⊆ E.

If ψt(x) ∈ A for all t ∈ [a, b], then I(ψb(x)) ≤ I(ψa(x))− δ2

4+4δ (b− a).
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Proof. Note that A and K are disjoint, and so if ψt(x) ∈ A, then ψt(x) =

ϕt(x). Therefore, by (2.1) we have

I(ϕb(x))− I(ϕa(x)) =

∫ b

a

d

dt
I(ϕt(x)) dt

=

∫ b

a

− 1

1 + ‖V (ϕt(x))‖
I ′(ϕt(x))V (ϕt(x)) dt (6.1)

≤
∫ b

a

− 1

1 + ‖V (ϕt(x))‖
‖I ′(ϕt(x))‖2 dt,

where we have used (PG2). Note that (PG1) implies that ‖I ′(x)‖ ≤ ‖V (x)‖ ≤

2‖I ′(x)‖ and so 1
4‖V (ϕt(x))‖2 ≤ ‖I ′(ϕt(x))‖2. Substituting this inequality

into (6.1) gives

I(ϕb(x))− I(ϕa(x)) ≤ −1

4

∫ b

a

‖V (ϕt(x))‖2

1 + ‖V (ϕt(x))‖

= −1

4

∫ b

a

f(‖V (ϕt(x))‖) dt,

where f(z) := z2

1+z . Note that f is increasing for z ≥ 0. Since ‖I ′(ϕt(x))‖ ≤

‖V (ϕt(x))‖ by (PG2) and δ ≤ ‖I ′(ϕt(x))‖ by assmption, we then have

I(ϕb(x))− I(ϕa(x)) ≤ −1

4

∫ b

a

f(δ) dt = − δ2

4 + 4δ
(b− a),

and so

I(ϕa(x))− δ2

4 + 4δ
(b− a) ≥ I(ϕb(x)),

as desired. �

Combining the previous lemmas, we have the following

Corollary 6.3. Suppose that there is a δ > 0 such that ‖I ′(y)‖ ≥ δ for all

y ∈ A. If ‖ψb(x)−ψa(x)‖ ≥ η and ψt(x) ∈ A for all t ∈ [a, b], then I(ψb(x)) ≤

I(ψa(x))− δ2

4+4δ · η.

Corollary 6.3 implies that as ψt(x) transitions between neighborhoods of

Kab , the value of I along the flow line must decrease by at least some amount.

Because we assume that I satisfies (PS), for all η > 0, we know that

δ(η, c, d) := inf{‖I ′(z)‖ : z ∈ Idc \Nη(K)} > 0, (6.2)
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where Nη(A) :=
⋃
x∈A

Bη(x).

We now show that ψt(h(s?)) → u ∈ K as t → ∞. First, we show that

ψt(h(s?)) is bounded, and then we show that I ′(ψt(h(s?)))→ 0 as t→∞.

Proposition 6.4. ψt(h(s?)) is bounded in E.

Proof. This is obvious if h(s?) ∈ K. Suppose then that h(s?) /∈ K. Then

ψt(h(s?)) = ϕt(h(s?)). From Theorem 5.1, there is a sequence (tj) with tj →

∞ such that I ′(ϕtj (h(s?)))→ 0 and I(ϕtj (h(s?))) is bounded. Since I satisfies

(PS), passing to a subsequence, we may assume ϕtj (h(s?)) → u ∈ KMα ,

where M = max
s∈Q

I(h(s)). Therefore, for all sufficiently large j, ϕtj (h(s?)) ∈

N1(KMα ). Because I satisfies the (PS) condition, KMα is compact. Thus, if

ϕt(h(s?)) is unbounded in t, then there exists a sequence (τj) such that

τj →∞ and ϕτj (h(s?)) gets farther and farther from N1(KMα ). Taking A :=

IMα \N1(KMα ) and δ := δ(1, α,M) from (6.2), Corollary 6.3 then implies that

I(ϕt(h(s?)))→ −∞, which is a contradiction. �

Proposition 6.5. I ′(ψt(h(s?)))→ 0 as t→∞.

Proof. Again, this is obvious if h(s?) ∈ K. Suppose then that h(s?) /∈ K.

Then ψt(h(s?)) = ϕt(h(s?)). From the proof of Theorem 5.1, we know that∫∞
0

‖V (ϕt(h(s?)))‖2
1+‖V (ϕt(h(s?)))‖ dt < ∞. Let f(z) = z2

1+z , and note that f is increasing

for z ≥ 0. (PG2) implies that ‖I ′(ϕt(x))‖ ≤ ‖V (ϕt(x))‖ and it follows that∫∞
0
f
(
‖I ′(ϕt(h(s?)))‖

)
dt <∞. Since f(z)→ 0 if and only if z → 0, to show

that I ′(ϕt(h(s?)))→ 0, it suffices to show that f(‖I ′(ϕt(h(s?)))‖)→ 0. Since∫∞
0
f(‖I ′(ϕt(h(s?)))‖) dt < ∞, it suffices to show that f(‖I ′(ϕt(h(s?)))‖)

is uniformly continuous in t. Note that since f ′(z) is bounded for z ≥ 0,

f : (0,∞)→ (0,∞) is Lipschitz, and so we need only show that I ′(ϕt(h(s?)))

is a uniformly continuous function of t. By (LL) and the assumption that I

satisfies (PS), there is an η > 0 such that I ′ is Lipschitz on Nη(KMα ). Since

Lemma 6.1 implies that ϕt(h(s?)) is a Lipschitz function of t, if we can show

that there is a T > 0 such that ϕt(h(s?)) ∈ Nη(KMα ) for all t > T , we will

know that I ′(ϕt(h(s?))) is a uniformly continuous function of t.
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Suppose then that there is no such T . Since ϕtj (h(s?)) → u ∈ Kmα , for

all sufficiently large j, ϕtj (h(s?)) ∈ Nη/2(KMα ). Since there is no appropriate

T , there must a sequence (sj) such that ϕsj (h(s?)) /∈ Nη(KMα ). By picking

appropriate subsequences, we may assume sj < tj < sj+1 < tj+1. Note

that there must be a sub-interval (aj , bj) ⊆ (sj , tj) so that for t ∈ (aj , bj),

ϕt(h(s?)) /∈ Nη/2(KMα ). This implies that ‖ϕaj (h(s?)) − ϕbj (h(s?))‖ ≥ η/2.

Taking A = IMα \Nη/2(KMα ) and δ = δ(η/2, α,M), Corollary 6.3 would imply

that I(ϕt(h(s?)))→ −∞. �

Proposition 6.6. Suppose that (tj) is a sequence such that tj → ∞ and

ψtj (h(s?))→ u as j →∞. Then, in fact ψt(h(s?))→ u as t→∞.

Proof. This is clear if h(s?) ∈ K. Suppose then that h(s?) /∈ K, in which

case ψt(h(s?)) = ϕt(h(s?)). If Prop 6.6 were not true, there must be an

η > 0 and a sequence (sj) such that sj → ∞ and ϕsj (h(s?)) /∈ Bη(u).

Note that since I ′(ϕt(h(s?))) → 0, (ϕsj (h(s?))) is a (PS) sequence, and so

passing to a subsequence, there must be a û 6= u such that ϕsj (h(s?))→ û as

j →∞. Thus, for all large j, we must also have ϕsj (h(s?)) ∈ Bη(û). Since I

satisfies (PS) and critical points of I in IMα are isolated, by taking η smaller if

necessary, we may assume that Nη(KMα ) is a disjoint union of balls of radius η

centered at elements of KMα . Passing to subsequences of (sj) and (tj), we may

assume that sj < tj < sj+1 < tj+1. Since Nη(KM
α ) is a disjoint collection of

balls of radius η centered at elements of KMα , in each interval (sj , tj) there

must be a maximal interval (aj , bj) on which ϕt(h(s?)) /∈ Nη(KMα ). Moreover,

since there are only finitely many balls making up Nη(KMα ), they are all

some positive distance η̂ apart. Thus, since ϕt(h(s?)) must travel between at

least two of them, we may also assume that ‖ϕaj (h(s?)) − ϕbj (h(s?))‖ ≥ η̂.

Replacing η Taking A = IMα \Nη(KMα ), δ = δ(η, α,M) from (6.2) and η = η̂,

Lemma 6.3 would imply that I(ϕt(h(s?)))→ −∞. �
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7. Approximation

In the proof of Theorem 5.1, s? was found as the limit of a subsequence of (si),

and each si was picked so that ψi(h(si)) maximizes I on the image of the map

s 7→ ψi(h(s)). Thus ψi(h(si)) is a sequence of high points as h(Q̄) is deformed.

The goal of this section is to prove that if I satisfies (LL), (L1-3), (PS), critical

points of I are isolated and sij → s?, then ψij (h(sij ))→ u = lim
t→∞

ψt(h(s?)),

i.e. along a subsequence, the high points converge to the same critical point

as ψt(h(s?)). First, we show that elevation of the high points converges to

the same elevation.

Lemma 7.1. I(ψi(h(si)))→ I(u) as i→∞.

Proof. By Lemma 2.3,

I(ψi+1(h(si+1))) = max
s∈Q

I(ψi+1(h(s))) ≤ max
s∈Q

I(ψi(h(s))) = I(ψi(h(si)))

and so I(ψi(h(si))) is a decreasing sequence. Moreover, the choice of si im-

plies that I(ψi(s
?)) ≤ I(ψi(h(si))). Since ψt(h(s?)) → u by Proposition

6.6, Lemma 2.3 also implies I(u) ≤ I(ψi(h(si))). Therefore, to finish the

proof, we need only to show that for any ε > 0, there is an i such that

I(ψi(h(si))) ≤ I(u) + ε.

Let ε > 0 be given. Since ψt(h(s?)) → u, there is an i0 such that

I(ψi0(h(s?))) ≤ I(u) + ε
2 . Since sij → s?, the continuity of the flow and h

implies that there is a ij1 > i0 such that I(ψi0(h(sij1 ))) < I(u) + ε. But then

Lemma 2.3 implies

I(ψij1 (h(sij1 ))) = I
(
ψij1−i0

(
ψi0(h(sij1 ))

))
≤ I(ψi0(h(sij1 ))) < I(u) + ε.

�

Proposition 7.2. Suppose that (xn) is a sequence such that xn → x?, ψt(x
?)→

u ∈ K as t → ∞ and I(ψn(xn)) is a decreasing sequence that converges to

I(u). Then (ψn(xn)) is a (PS) sequence for I.
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Proof. Suppose not. Since I(ψn(xn)) is bounded, there must be a subsequence

(xnj ) and a β > 0 such that

‖I ′(ψnj (xnj ))‖ ≥ β for all j.

Let ĉ := I(u). Since I ′ is continuous on the compact set KMĉ , there is an

η > 0 such that ‖I ′(x)‖ < β whenever x ∈ Nη(KMĉ ). Thus, we must have

ψnj (xnj ) /∈ Nη
(
KMĉ

)
for all j.

Since ψt(x
?)→ u, there is a T such that if t ≥ T , then

‖ψt(x?)− u‖ <
η

3
.

Since xnj → x?, there is a J(T ) such that

‖ψT (xnj )− u‖ <
η

2
whenever j ≥ J(T ).

Taking J(T ) larger if necessary, we may assume that nJ > T . Thus, for all

j > J(T ), we will have

ψT (xnj ) ∈ Nη/2(KMĉ ) and ψnj (xnj ) /∈ Nη(KMĉ )

Let

aj := inf{τ ≤ nj : ψt(xnj ) /∈ Nη/2(KMĉ ) for all t ∈ (τ, nj)}.

Note that aj > T , since ψT (xnj ) ∈ Bη/2(KMĉ ) ⊆ Nη/2(KMĉ ). Moreover,

• ψaj (xnj ) ∈ ∂Nη/2(KMĉ )

• ‖ψaj (xnj )− ψnj (xnj )‖ ≥
η
2

• ψt(xnj ) /∈ Nη/2(KMĉ ) for all t ∈ [aj , nj ].

Since I satisfies (PS), if δ := δ(η/2,M, ĉ) and A := IMĉ \Nη/2(KMĉ ), Corollary

6.3 implies that

I(ψnj (xnj )) ≤ I(ψaj (xnj ))−
δ2

4 + 4δ
· η

2
.

Let α := δ2

4+4δ . Since I(ψn(xn)) decreases to I(u) = ĉ, we have

ĉ+ α · η
2
≤ I(ψaj (xnj )) for all j > J(T ). (7.1)
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Since aj > T , Lemma 2.3 implies

ĉ+
α · η

2
≤ I(ψT (xnj )) for all j > J(T ).

Notice that the left side depends only on ĉ, δ and η, which are all independent

of T , j and J(T ), we may let j →∞ to get

ĉ+
α · η

2
≤ I(ψT (x?)).

Letting now T →∞, we will have

ĉ+
α · η

2
≤ I(u) = ĉ,

which is impossible. �

Theorem 7.3. Suppose that (xn) is a sequence such that xn → x?, ψt(x
?)→

u ∈ K as t → ∞ and I(ψn(xn)) is a decreasing sequence that converges to

I(u). Then ψn(xn)→ u.

Proof. Suppose that this is false. Then there is a subsequence (ψnj (xnj )) and

an η > 0 such that ‖ψnj (xnj ) − u‖ ≥ η. Let ĉ := I(u). Since we’ve assumed

that critical points of I are isolated, by taking η smaller if necessary, we may

assume that Nη(KMĉ ) is a disjoint union of balls of radius η. Moreover, we

may assume that the distance between balls is at least η. By Proposition

7.2, ψnj (xnj ) is a (PS) sequence, and so passing to a relabeled subsequence,

ψnj (xnj ) → û, u 6= û. Moreover, we may assume that ‖ψnj (xnj ) − û‖ <
η
2

for all j. Since ψt(x
?) → u, there is at T such that ‖ψt(x?) − u‖ < η

2 for

all t ≥ T . Since xnj → x?, there is a J(T ) such that if j > J(T ), then

‖ψT (xnj )− u‖ < η. By taking J(T ) larger if necessary, we may assume that

T < nJ(T ), and so T < nj whenever j > J(T ).

On the interval (T, nj), ψt(xnj ) must travel from Bη(u) (at t = T ) to

Bη/2(û) (at t = nj). Let

aj := inf
{
τ : ψt(xnj ) ∈ Bη(û) for all t ∈ (τ, nj)

}
.
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Note that ψaj (xnj ) ∈ ∂Bη(û) and ψt(xnj ) ∈ Bη(û) for all t ∈ (aj , nj). Next,

let

bj := sup
{
τ : ψt(xnj ) ∈ Bη(û)\Bη/2(û) for all t ∈ (aj , τ)

}
.

Note that ψbj (xnj ) ∈ ∂Bη/2(û), and so ‖ψaj (xnj )−ψbj (xnj )‖ ≥
η
2 . Moreover,

ψt(xnj ) /∈ Nη/2(KMĉ ) for all t ∈ (aj , bj). Thus, by Corollary 6.3, if we take

A = IMĉ \Nη/2(KMĉ ), δ = δ(η/2, ĉ,M) and α := δ2

4+4δ , we then have

I(ψbj (xnj )) ≤ I(ψaj (xnj ))− α ·
η

2
for all j > J(T ). (7.2)

Lemma 2.3 and (7.2) together imply that

I(ψnj (xnj )) ≤ I(ψbj (xnj )) ≤ I(ψaj (xnj ))− α ·
η

2

≤ I(ψT (xnj ))−
1

2
αη for all j > J(T ). (7.3)

Since α and η are independent of T, J and j, letting j → ∞ in (7.3) then

implies that

ĉ ≤ I(ψT (x?))− 1

2
αη.

Taking the limit above as T →∞, we have

ĉ ≤ ĉ− 1

2
αη,

which is impossible. �

Taking xn := h(sn) and x? := h(s?), Lemma 7.1 implies that I(ψn(xn))

decreases to I(u), and Proposition 6.6 implies that ψt(x
?) → u ∈ K. There-

fore, if I satisfies (PS) and (LL) and the critical points of I are isolated, the

sequence of high points arising from the mountain pass or saddle point or

linking do in fact converge to a critical point of I. If the critical points of I

are not isolated, then the high points will converge to a connected component

of the critical set.
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James Bisgard

Dept of Mathematics

Central Washington University

400 E. University Way

Ellensburg, WA, 98926-7424

e-mail: bisgardj@cwu.edu


	On Mountain Pass Type Algorithms
	tmp.1600200576.pdf.NKVST

