Central Washington University

ScholarWorks@CWU

All Faculty Scholarship for the College of the

Sciences College of the Sciences

6-1995

Vibrational properties of a loaded string

Samantha Parmley
Tom Zobrist

Terry Clough
Anthony Perez-Miller

Mark Makela

Follow this and additional works at: https://digitalcommons.cwu.edu/cotsfac

b Part of the Quantum Physics Commons


https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cots
https://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F292&utm_medium=PDF&utm_campaign=PDFCoverPages

Paul A. Tipler, Physics for Scientists and Engineers (Worth, New York,
1991), Chap. 11.

2David Halliday, Robert Resnick, and Jearl Walker, Fundamentals of Phys-
ics, 4th ed. (Wiley, New York, 1993), Essay 3.

3Douglas C. Giancoli, Physics for Scientists and Engineers, 2nd ed. (Pren-
tice Hall, Englewood Cliffs, NJ, 1989), Chap. 13.

“Haps C. Ohanian, Physics (Norton, New York, 1989); Marcel Wellner,
Elements of Physics (Plenum, New York, 1991); Marcelo Alonso and Ed-
ward J. Finn, Physics (Addison-Wesley, Reading, MA, 1992); Raymond A.
Serway, Physics for Scientists and Engineers, 3rd ed. (Saunders College,
Orlando, FL, 1992).

SDuncan J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed.
(Butterworth—Heinemann, Oxford, 1992).

SCapillarity Today, edited by G. Pétré and A. Sandfeld, Lectures Notes in
Physics No. 386 (Springer, Berlin, 1991); G. Cevc and D. Marsh, Phos-
pholipid Bilayers: Physical Principles and Models (Wiley, New York,
1987).

"Francis W. Sears and Gerhard L. Salinger, Thermodynamics, Kinetic
Theory and Statistical Mechanics, 3rd ed. (Addison-Wesley, Reading, MA,
1975); R. Becker, Theory of Heat (Springer, Berlin, 1967); O. Redlich,
Thermodynamics: Fund. tals, Applications (Elsevier, Amsterdam,
1978).
8E.A. Guggenheim, Thermodynamics, 5th ed. (North Holland, Amsterdam,
1967).

N. K. Adam, The Physics and Chemistry of Surfaces (Oxford University,
Oxford, 1941).

10Samuel Glasstone, Textbook of Physical Chemistry (Van Nostrand, New
York, 1949), Chap. 7.

UFrancis W. Sears, Mark W. Zemansky, and Hugh D. Young, University
Physics, 6th ed. (Addison-Wesley, Reading, MA, 1982), Chap. 12.

27, W. Adamson, Physical Chemistry of Surfaces, 4th ed. (Wiley—
Interscience, New York, 1982), Chap. 10.

BD. P. Woodruff, The Solid—Liquid Interface (Cambridge University, Cam-
bridge, 1973), Chap. 2.

YDavid Tabor, Gases, Liquids and Solids and Other States of Matter, 3rd
ed. (Cambridge University, Cambridge, 1993), Chaps. 6 and 10.

I5Michael J. Jaycock and Geoffrey Derek Parfitt, Chemistry of Interfaces,
1st ed. rev. (Ellis Horwood, Chichester, 1986), Chap. 1.

16G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univer-
sity, Cambridge, 1987), Chap. 1.

YR. H. Fowler, Proc. R. Soc. London Ser. A 159, 229 (1937); Physica
(Hauge) 5, 39 (1938), pointed out that the surface tension is not the inter-
nal energy nor the potential energy per unit area of the surface, but the
superficial density of the Helmholtz free energy. It is interesting, however,
to show here both physical interpretations.

185ome authors consider that there is no difference between the Helmholtz
and the Gibbs function for this system. Even though the theory of gener-
alized work (see, for example, Ref. 19) establishes that the Gibbs function
of the interface should be defined as G=F— yA, there is no definitive
agreement yet. See Chap. 2 of Ref. 15 for a brief comparison of the two
most common approaches.

191 P. Bazarov, Thermodynamics (Pergamon, Oxford, 1964), Chap. 7.

A, B. Pippard, Elements of Classical Thermodynamics for Advanced Stu-
dents of Physics (Cambridge University, Cambridge, 1964), Chap. 6.

YJoseph W. Kane and Morton M. Sterheim, Physics (Wiley, New York,
1975), Chap. 8.

224, Sandfeld, “Thermodynamics of surfaces,” in Physical Chemistry. An
Advanced Treatise, edited by (Academic, New York, 1971), Vol. I, Chap.
2C.

233, M. Haynes, “Surfaces,” in Problems in Thermodynamics and Statistical
Physics, edited by P. T. Landsberg (Pion, London, 1971), Chap. 8.

#Murray R. Spiegel and Lorenzo Abellanas, Mathematical Handbook of
Formulas and Tables (McGraw-Hill, New York, 1970).

25Abraham Marmur, “Capillary rise in thin porous media,” J. Phys. Chem.
93, 4873-4877 (1989).

25There are other mechanical approaches to explain capillary rise or depres-
sion [see, for example, Ernest K. Chapin, “Two contrasting theories of
capillary action,” Am. J. Phys. 27, 617619 (1959)], but that in Fig. 4(c)
is the most suited to this paper.

2H. N. V. Temperley and D. H. Trevena, Liquids and Their Properties (Ellis
Horwood, Chichester, 1979), Chap. 9.

Vibrational properties of a loaded string
Samantha Parmley, Tom Zobrist, Terry Clough, Anthony Perez-Miller, Mark Makela,

and Roger Yu

Department of Physics, Central Washington University, Ellensburg, Washington 98926
(Received 6 September 1994; accepted 17 October 1994)

In this paper we discuss our study of a string—mass chain and its anology to quantum mechanical
systems. Theoretical predictions are made based upon the numerical solution to the wave equation.
These predictions are tested experimentally using both normal mode analysis and pulse analysis.
The frequency band structures for periodic and disordered string mass chains are studied as well as
their corresponding eigenfunctions. The theoretical and experimental results are in accord. This
experiment, suitable for advanced physics majors, demonstrates many important features of
quantum mechanics: eigenvalues, superposition principle, band structure, gap modes, and Anderson
localization. © 1995 American Association of Physics Teachers.

L. INTRODUCTION

The study of eigenstates and the corresponding eigenfunc-
tions for periodic, quasiperiodic, and random systems has
evolved from the Bloch periodic potential model to the
Yablonovitch photonic crystal' and to Maynard’s quasiperi-
odic, macroscopic models.>> In this paper we present theo-
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retical models for periodic, quasiperiodic, and random
string—mass chains and compare the theoretical model to our
experimental results.

Periodic spring—mass and string—mass chains are exten-
sively used as examples of eigenvalue problems because of
the simplicity in mathematical treatment. For a string—mass
chain, the mass of the string is usually assumed to be zero
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and the equation of motion of the nth mass for its transverse
vibration of small amplitude yields the dispersion relation*

2_
w,=

4T0 . 2( nmw )

o Sin N+ n=1,2,3,....,N—1. (1
Here T is the tension, m is the magnitude of the point mass,
a is the separation between masses, and N is the number
of masses. This dispersion provides a cutoff frequency,
e =2(To/ma)'?, which suppresses all the possible res-
onant frequencies above wp,,.° A more realistic model
takes into account the mass of the string. The mass density
function o(x) can be described by superimposing a delta
function on a constant string—mass density.* If the number of
masses is sufficiently large, the Kronig—Penney model
(KP),” in which an infinite string—mass chain is assumed,
can be used to approximate the dispersion relation.
Ose:guera8 has employed the KP model and analytically
shown multiple frequency bands and gaps in an infinite mass
chain. Realistically, all the experimentally achievable
samples are finite. For a finite sample, the vibrational local-
izations due to irregularity in a nearly periodic structure were
studied experimentally and theoretically by Hodges and
Woodhouse.” Their theoretical method is based on the ap-
proach originally developed by Herbert and Jones' and
Thouless™ for a finite chain of N pendula. The phenomenon
of Anderson localization in an acoustic context was well
demonstrated by the experiment reported in Ref. 9. More
recently, a paper by Maynard and his co-worker” describes a
more refined experimental study on periodic and quasiperi-
odic string—mass systems. The authors found band structure
and Anderson localization in the system by monitoring the
transverse wave amplitude while sweeping the driving fre-
quency.

For our model the theoretical predictions are made based
upon the numerical solution of the wave equation. The dif-
ferential wave equation is transformed into a matrix equation
by Fourier expansion. With the formalism presented here it is
possible to determine the eigenvalues and eigenfunctions to
any degree of accuracy. There is no restriction on the distri-
bution and the magnitude of the masses; therefore, the ap-
proach may be employed to simulate not only perfect one-
dimensional crystals, but also disordered crystals,
quasicrystals, and amorphous structures.

On the experimental side, techniques of studying the dy-
namical properties of a microscopic electronic system or a
macroscopic mechanical system fall into two categories: nor-
mal mode analysis (NMA) and pulse analysis (PA). In NMA,
the transmitted amplitude through the system is recorded
while the exciting (driving) frequency is being swept. The
response of the system is expected to be enhanced when the
exciting frequency is near a resonant (eigen)frequency. In
PA, a pulse, which is rich in frequency, is received by the
system. The subsequent vibration of the system is recorded.
Then the spectrum is obtained by carrying out a Fourier
transform of the time series. The spectrum reveals all the
important information about the eigenproperties of the sys-
tem by peaking its value at eigenfrequencies. In the experi-
ments reported here, both methods were used and the results
are compared.

Another purpose of the present research project is to simu-
late quantum physics effects at a macroscopic level. In the
classroom it is difficult to provide demonstrations of fasci-
nating quantum mechanical phenomena. With our experi-

548 Am. J. Phys., Vol. 63, No. 6, June 1995

mental setup, it is possible to achieve a classical wave sys-
tem which precisely duplicates the salient features of
quantum electronics.

II. THE THEORETICAL MODEL

The theoretical model was developed from the standard
model for a vibrating string. The first deviation from the
standard model accounts for variation in tension. The model
is then expanded to include point masses. Due to the com-
plexity of the resulting equation only the linear portion is
solved for the massed string.

The nonlinear model developed accounts for the variation
in tension due to amplitude of the wave form. This model has
also been worked on by several other authors ge.g., Carrier,12
Lf:a':,13 Oplinger,14 Murphy and Ramakrishna). 5> With the as-
sumption of vertical planar vibration one can find the change
in tension as a function of position x [Fig. 1(a)],

T(x)=Ty+YA(ds—dx)/dx, (2)

where T is the tension at zero displacement, Y is Young’s
modulus, A is the cross-sectional area, and ds is the
stretched length of the element dx. ds may be expressed in
terms of the vertical displacement element du,
ds=[(dx)*+(du)*}"%; then the tension becomes

2
T(x)=To+YA| \/1+| 2 —1), 3)

ox
where the vertical displacement u=u(x,t). Now the equa-
tion of motion for the string, according to Newton’s second
law of motion, is"

2

o) 2y = - [T(ysin()] @
Here, o(x) is the line mass density of the string and
0=tan“1(-&l). (5)
ox ‘

For small angle vibrations du/dx is much smaller than unity.

Then, from Eq. (3) T(x)~Ty+YA/2(du/dx)? and sin 8

=~du/dx. Equation (4), combined with these equations, may
be reduced to

Fu T u 4 3 ou\? é*u 6

ox) Gr=To gzt 3 YAl 5] 32 ©)

Since we are primarily interested in the eigenmodes of the
system the solution U,(x,t) can be written as

Up(x,8)=Upy(x)cos(W,t), ™)

where the upper case {}, and U ,(x) denote the nonlinear nth
normal frequency and its wave function. Their linear coun-
terparts are denoted by w, and u,(x). By substituting Eq. (7)
into Eq. (6) and making the so-called ‘“‘rotating-wave ap-
proximation” only a single frequency component is kept in
the time dependence.'® Then Eq. (6) becomes

o(x)Q2U,+[Ty+9YA/8(U,)*U,=0. (8)

We will first discuss the solution to this nonlinear equation
for a bare string of length L stretched with tension Ty. When
the string vibrates in the vicinity of the nth eigenfrequency
w,=nm/L(To/a)'/* predicted by the linear theory, the pat-
tern of the standing wave can be approximated by the sine
wave,
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U,(x)=b, sin(nmx/L), 9)

due to the boundary conditions; u,(0)=u,(L)=0. Substitut-
ing Eq. (9) into Eq. (8) and equating the coefficients of the
sin(nrx/L) terms, the amplitude—frequency relation reads

Q2 nm\* 9YA ,inmw 4_0 10)
o n—TO T - 16 Bn T — VY,
then,
9YA _[nm\*
2_ 2 2{ 7
Ql=(w,)*+ 6o (L ) (11)

It is clear that the resonant frequencies are shifted upward
due to the nonlinearity of the string.

For a loaded string the mass density o(x) is no longer
constant and the problem becomes rather complex. To our
knowledge the equation has not yet been solved exactly. In
the present paper, all the theoretical results are the solutions
of the linear version of Eq. (6);

u P*u
o(x) = T, et (12)

Now, the linear version of Eq. (8) has the following form:
(0,)20(x)u,(x) + Totin(x)=0. (13)

We w111 numerically solve this equation and use perturbation
theory to qualitatively determine the upshifted eigenfre-
quencies of the nonlinear system,

2_ 2 9YA 2
Q’n=wn+ ,.(x)ﬂ,, o (in) updx. (14)
By taking advantage of the vanishing boundary conditions,

the wave function in Eq. (13) can be expanded in a Fourier
sine series,

Uy(x)= \/iL—E Cm sm( wx) (15)

L

An exact solution of Eq. (13) with any desired accuracy can
be achieved by including a sufﬁciently large number of sine
waves in the Fourier expansion. We have found that 100 sine
waves, N, =100, lead to our desired accuracy.!®

Upon substituting Eq. (15) into Eq. (13), multiplying both
sides by (2/L)"? sin(mx/L), and integrating over x from
zero to L the differential equation is transformed into the
following N pax XN gax Matrix equation:'®

2
2 C Tim® TO( ) 61 m O,
1=1,2,...,Npax - (16)
The matrix elements oy, are defined as
L lmx mmx
a'l,,,=J dxo(x)sin| ——|sin . 17)
0 L L

A software package in the IMSL Math/Library is used to
diagonalize the matrix and to find the eigen frequencies w,, .
The package also provides the coefficients of the wave func-
tions [Eq. (15)] simultaneously.
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Fig. 1. (a) Hlustration of the displacement of the string element dx. (b) The
setup of the experiment on the loaded string. All the physical parameters are
given in the text.

III. EXPERIMENTAL METHODS AND APPARATUS

As we discussed above, both techniques, NMA and PA,
are used in studying the dynamical system. In reality, when
NMA is used, the response of a nonlinear system depends
not only on the driving frequency, but also on the driving
amplitude. In general, upward frequency sweeping results in
a different response from that of downward sweeping due to
the hysteretic effect of a nonlinear system. In the present
paper, all the NMA data are taken by sweeping the frequency
upward. In PA, an external impulse, which is spectrally
broad, excites the system to a transient state which is a linear
superposition of its eigenstates. The time evolution of such a
state in real space and its spectral density function in Fourier
space reveal interesting physical properties of the system’s
resonance band structure.

The experimental setup to drive and record the motion of
the string is schematically shown by the flow chart in Fig.
1(b). A Tektronix FG 504 Sweeping Function Generator,
which can either be set to specific frequencies or to sweep
through a range of frequencies, produces a sinusoidal wave.
The signal is then run through an amplifier to an audio
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Fig. 2. Resonant frequencies of a bare string vs. the ordinal number.

speaker. The string is physically attached to the voice coil of
the speaker so that the string and the speaker vibrate at the
same frequency.

We have devised two methods for recording data from the
transducer. One is to run the signal from the transducer
through a rectifier to produce a dc signal which corresponds
to the string’s amplitude. This signal is then run into a
Sargent—Welch x—y recorder which produces a hard copy
graph of amplitude versus frequency for the range of fre-
quencies swept by the function generator. This method al-
lows us to perform NMA. The second method of recording
the data is based on the use of a computer driven digitizer.
The signal from the transducer is run through a linear ampli-
fier, then through a low-pass filter and into the digitizer. The
low-pass filter is used to eliminate aliasing. The digitized
data enable us to analyze the real time series in the frequency
domain by fast Fourier transform (FFT). The spectrum ex-
hibits peaks which can be used to identify the eigenfrequen-
cies of the system. This method is used primarily for PA and
for looking at the spectral component for a given eigenfre-
quency.

The physical parameters of the system used in the experi-
ment shown in Fig. 1(b) are the followmg string length L is
1.65 m, mass density is 3. 35%1073 kg/m, each mass is 0.49
g, tension is 36.7 N. In all the calculations reported here, we
have assumed that the change in tension due to adding the
masses is negligible, which is a good approximation because
the total mass loaded is only about 5 g.

IV. RESULTS AND DISCUSSION

In this section we present our experimental results and
discuss how they compare to our theoretical model. We first
look at normal mode analysis for the bare string and string
with up to five masses. Then we look at pulse analysis for the
same system. And finally we discuss the effects of disordered
mass spacing.

The experimental data gathered from the bare string di-
verged from the linear model which caused us to look at the
nonlinear model; this divergence is shown in Fig. 2. The
divergence appears to be parabolic, this can be explained as
a combination of the change in amplitude and the nonlinear-
ity of the system. As the string is stretched vertically the
tension increases and so does the natural frequency; how-
ever, the amplitude of vibration decreases with frequency as
1/n ”2 In addition, the solution of the nonlinear model, Eq.
(11), mdlcates that the upshift in frequency squared is pro-
portional to n*, while B, decreases as 1/n', Taking these
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Fig. 3. Resonant frequencies of a loaded string. For the string with fixed
number of masses, the calculated (experimental) data are plotted in the
right-hand (left-hand) column.

two factors into consideration, the nonlinear solution has a
parabolic shift which agrees with our experimental data.

Figure 3 depicts the theoretical (right-hand column) and
the experimental (left-hand column) resonant frequencies
measured by the NMA for up to five point masses. The cal-
culated frequencies are obtained by solving the wave equa-
tion [Eq. (16)] for each massed system. For comparison, we
also show the bare string frequencies. For a string with one
mass at the center, there would be only one resonant fre-
quency if the mass of the string were neglected.*® In the
present case, resonant frequencies above the lowest one are
found since the mass of the string is finite. The measured
frequency of the lowest mode (n=1) is slightly lower than
that of the no-mass string since the string feels the inertia of
the point mass. For the second mode, the mass is stationary
and only the string moves; this is why its frequency coin-
cides with the second of the no-mass string. In the third
mode, the mass vibrates again, but its amplitude is sup-
pressed and so is its frequency. The point mass is stationary
for n=4, whose frequency again matches that of the no-mass
string. As one can see from Fig. 3, for the one-mass string,
the frequencies are paired, except the lowest mode. For the
two-mass string, the lowest two eigenmodes, describing the
in-phase and out-of-phase motions of the masses, form the
lowest frequency band and the upper bands are composed of
three eigenmodes in which the point masses are almost sta-
tionary. The formation of frequency bands is even more clear
as the number of masses becomes larger. Figure 3 (e.g., five
mass data) shows that the widths of higher bands become
narrower. This is due to the greater suppression of motion of
the point masses. It is also seen that the width of a certain
band increases as the number of loaded masses increases. If
the separation between the masses is kept constant, the fre-
quency bandwidth ought to be saturated as the number of
masses becomes large. However, in the experiment per-
formed here, the total length of the string is constant, and the
mass separation becomes smaller with more evenly loaded
masses; therefore, the bandwidth increases accordingly. It is
also worth noting that, in general, the experimental frequen-
cies are higher than the theoretical ones predicted by linear
theory. The discrepancy becomes larger for higher modes.
Based on perturbation theory [Eq. (14)], the shift in fre-
quency squared due to the nonlmeanty depends upon the
integration. In the 1ntegrand b2 decreases in n, but the
square of du,(x)/dx increases faster than n? when the string
is loaded with masses. Therefore the frequency shift be-
comes larger at higher modes.
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Fig. 4. The lowest seven eigenfunctions of the 3-mass string. The positions
of masses are marked. The lowest three eigenstates, forming the lowest
band, show much greater vibration amplitude of masses.

To better understand the eigenmodes and the formation of
the bands, we plotted the calculated lowest seven eigenfunc-
tions [see Eq. (13)] in Fig. 4, for the three-point-mass sys-
tem. These seven eigenmodes constitute the lowest two
bands, as shown in Fig. 3. For the fundamental and the first
two harmonics, the masses are at antinodes; whereas, in the
first excited band the string segments have much larger am-
plitude than the masses.

The eigenmodes of the string are studied using PA by
plucking the string and recording its time series, G(x,t), at a
chosen position x=a. The frequency spectrum, S(w), is ob-
tained from the time series by FFT.

The time series and the frequency spectrum for the bare
string plucked near one end seem to be in good accord with
the NMA data. The time series, shown in Fig. 5(a) indeed
seems noisy; however, the FFT [Fig. 5(b)] clearly shows
strong resonance peaks. At lower frequencies the peaks are
almost evenly spaced, whereas at higher frequencies the
spacing between neighboring peaks increases as also shown
in Figs. 2 and 3. If the theoretical results are compared, one
finds that the odd modes, whose wave forms are antisymmet-
ric, have relatively much weaker oscillatory strength (see the
weak structure in between two strong peaks). We believe this
is because the initial displacement is an even function. We
also note that the oscillator strength favors lower frequency
modes whose wavelengths are more comparable with that of
the initial displacement.

The time series for the three-mass string looks similar to
that for the bare string; however, its FFT shows that the
frequency components are grouped (Fig. 6). The spectrum is
easier to understand if one compares it with Fig. 3. Three
peaks near 30, 50, and 80 Hz form the lowest band. The
excited bands are all composed of four resonant states as
seen in Fig. 3. In all the excited bands, the lowest two reso-
nant frequencies are closer to each other. This trend is also
displayed in both Figs. 3 and 6. The band gap becomes wider
at higher frequencies this is also consistent with Fig. 3.
Quantitatively, the NMA and PA data match very well.

In order to study periodicity and disorder we use a string
with more point masses. We expect that the difference be-
tween a perfectly periodic and a random system would be
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more significant in a string with more masses. We present the
results of ordered and disordered systems in a paralle]l fash-
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comparison. Thirteen masses are evenly spaced on the string

2000

3
8

o
——
|
_——

Amplitude ( arb. unit )

-1000

2000 50 100 150 200

Time (ms )

16000

12000

( arb. unit )

8000

MMW
0 N,
300 400 500 600 700 800

Frequency ( Hz)

S(1)

Fig. 6. The experimental vibration signal (a) and its Fourier transform (b)
for the 3-mass string. The localizations of peaks closely match the result
shown in Fig. 3.

Parmley et al. 551



(2) god
o
600 a®
[u] sm"
UDD-..
—~ 500 a a®
» gl w
- Usw
~ 400
gm
€ 20 gut® ® Theoretical
o
al i
100 n O 0O Experimental
g8
o L S ST VO VA S U " ——
3 6 9 12 18 18 21 24 7 30
Ordinal Number
900
aoo[ (b) ¢
700 gao® *
- oo
# 600 UDS-I..-.
— »
500 _Y LR
400
300 P
w ® Theoretical
200 go@?
o :
100 no a O Experimental
o
oL T e e ey
3 6 9 12 15 18 21 24 27 30

Ordinal Number

Fig. 7. a (b) shows the resonant frequencies of the periodic (random) 13-
mass string as a function of the ordinal number n.

for the periodic system. Random variation in mass separation
is incorporated in the disordered string. It can be seen in Fig.
7 that the NMA data and the theoretical predictions match
quite well for both systems, especially in the lowest bands.
The dispersion is especially interesting in two limits; long
wavelength and short wavelength. At the Brillouin zone
boundary, n=13, the group velocity of the system, which
equals the derivative of frequency with respect to the wave
vector k (or n), is almost zero. It is clearly seen in the eigen-
functions shown in Fig. 8(a) that when n=13, all the masses
are vibrating out of phase and the wavelength A=2a, so that
the wave of the system looks more like a standing wave with
zero group velocity. At the other end of the Brillouin zone
boundary, n =1, the wavelength A is large. One can view the
system as a continuum and the string wave becomes an
acoustic wave.!” In the second band, significant discrepancy
between the theoretical and experimental data is observed.
The experimental data shows a nonzero group velocity (finite
slope) near n=14. The structure in the middle of the band,
n=20, displays a smaller group velocity. Maynard and his
co-workers? have observed regions of low response in the
second band in a similar measurement. They attributed the
effect to the ~13% variation in the size of the commercial
lead masses. We believe that the same argument may be
applied to our data shown in Fig. 7.

The dispersion relation for the random system, shown in
Fig. 7(b) resembles that of the periodic system in the lowest
band. The wave functions of the lowest band for both sys-
tems are all extended (see Fig. 8). In a disordered system, the
wave functions generally have three types of characteristics:
(i) extended, (ii) localized, and (iii) critical which is the com-
bination of (i) and (ii).!® In Fig. 8(b), the gap mode (GAP 1)
is strongly localized whereas the lowest and the highest
states in the second passing band (n=14, 27) are critical. The
gap mode in between the second and third bands (GAP 2) is
also highly localized."
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Fig. 8. The eigenfunctions of the lowest two bands of the periodic (left-hand
column) and the random (right-hand column) 13-mass string. The positions
of masses are marked.

In the spectrum S(w), [Fig. 9(a)], four frequency bands are
distinguishable for the periodic system. In the first and sec-
ond band, one can actually see 13 and 14 peaks, respectively,
corresponding to 13 and 14 eigenfrequencies in each band.
The first band has a more powerful frequency spectrum.
Again, the size of the plucked initial wave form is in the
same order of magnitude as wavelengths of the lowest band.
One of the theoretical (linear theory) predictions for the me-
chanical system considered here is that the bandwidth of
higher bands decreases, which is just the opposite of an elec-
tronic band structure. This is due to weaker coupling be-
tween string segments caused by lower amplitude vibration
of the masses. The theoretical wave forms in Fig. 8(a), show
that the amplitude of vibration of the masses becomes
smaller in the higher bands. In contrast, the measured fre-
quency bandwidth does not decrease significantly because of
the upshift in frequency due to the nonlinearity of the sys-
tem.

For the disordered system, three bands are visible in the
spectrum shown in Fig. 9(b). The distinct feature in the spec-
trum is the active response in the gaps. Immediately above
the lowest passing band and below the second band, weak
peaks corresponding to the localized gap mode can be easily
observed.

In summary, we have studied the vibrational properties of
a string loaded with point masses, both numerically and ex-
perimentally. For a periodically loaded string we have found
that the resonant frequencies form bands whose wave func-
tions are extended. In contrast to the periodic system,
strongly localized modes (in the gaps or near the edges of the
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Fig. 9. Spectrum for the periodic (a) and random (b) 13-mass string.

frequency bands) are found in a randomly loaded string. The
physical properties found in the classical system are reminis-
cent of many important quantum mechanical effects. The ex-
periment presented here provides vivid visualization of those
effects in our advanced physics courses.
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I started my attempt. Step 1. Draw picture.

Another dead end.

HOMEWORK PROBLEMS

What would give you uniform heat flux anyway? If the heat flux is uniform, why isn’t the
temperature uniform? Ack—ack, as Bill the Cat would say.

Step 2. Look for similar sample problem in book. There isn’t one that’s even close.

Step 3. Look through four different heat transfer books on office mate’s shelf. Rohsenow said
yesterday that we could bring to the test any book we wanted to. “The only thing you can’t bring,”
he said with a wink, “is a consultant.” There’s nothing in them, either.

Step 4. Look through class notes, then office mate’s class notes from previous year’s lecture.

Step 5. Think about what’s going on in the problem. Refer to the picture. Redraw the picture.

Pepper White, The Idea Factory—Learning to Think at MIT (Penguin Books, New York, 1991), pp. 40-41.
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