
Central Washington University Central Washington University 

ScholarWorks@CWU ScholarWorks@CWU 

All Faculty Scholarship for the College of the 
Sciences College of the Sciences 

11-19-2014 

Historical Species Distribution Models Predict Species Limits in Historical Species Distribution Models Predict Species Limits in 

Western Plethodon Salamanders Western Plethodon Salamanders 

Tara A. Pelletier 

Charlie Crisafulli 

Steve Wagner 

Amanda J. Zellmer 

Brian C. Carstens 

Follow this and additional works at: https://digitalcommons.cwu.edu/cotsfac 

 Part of the Biology Commons, and the Population Biology Commons 

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cots
https://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/19?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

Running head: HISTORICAL RANGES AND SPECIES BOUNDARIES. 

Historical Species Distribution Models Predict Species Limits in Western Plethodon 

Salamanders. 

Tara A Pelletier
1,5

, Charlie Crisafulli
2,6

, Steve Wagner
3,7

, Amanda J Zellmer
4,8

, Bryan C

Carstens
1,9

1
Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus 

OH, 43201 

2
U.S. Forest Service, Pacific Northwest Research Station, Olympia, WA, 98512 

3
Department of Biological Sciences, Central Washington University, Ellensburg WA, 98926 

4
Department of Biology, Occidental College, Los Angeles CA, 90041 

5
tarapell@gmail.com 

6
ccrisafulli@fs.fed.us 

7
WagnerS@cwu.edu 

8
zellmer@oxy.edu 

9
carstens.12@osu.edu corresponding author 

© The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of 
Systematic Biologists. All rights reserved. For Permissions, please email: 
journals.permissions@oup.com 

 Systematic Biology Advance Access published November 19, 2014

http://sysbio.oxfordjournals.org/


2 

ABSTRACT 

Allopatry is commonly used to predict boundaries in species delimitation investigations under 

the assumption that currently allopatric distributions are indicative of reproductive isolation, 

however, species ranges are known to change over time. Incorporating a temporal perspective of 

geographic distributions should improve species delimitation; to explore this, we investigate 

three species of western Plethodon salamanders that have shifted their ranges since the end of the 

Pleistocene. We generate species distribution models (SDM) of the current range, hindcast these 

models onto a climatic model 21Ka, and use three molecular approaches to delimit species in an 

integrated fashion. In contrast to expectations based on the current distribution, we detect no 

independent lineages in species with allopatric and patchy distributions (P. vandykei and P. 

larselli). The SDMs indicate that probable habitat is more expansive than their current range, 

especially during the last glacial maximum (21Ka). However, with a contiguous distribution, two 

independent lineages were detected in P. idahoensis, possibly due to isolation in multiple glacial 

refugia. Results indicate that historical SDMs are a better predictor of species boundaries than 

current distributions, and strongly imply that researchers should incorporate species distribution 

modeling and hindcasting into their investigations and the development of species hypotheses. 

KEY WORDS: Pacific Northwest, species delimitation, coalescent, niche model, range expansion 
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The geographic range occupied by a species provides clues into its evolutionary history, 

including phenomena such as ring species (e.g., Wake 1997), hybridization (e.g., Riley et al. 

2003), and local adaptation (e.g., Storfer et al. 1999). Data from field collections document the 

geographic range of a species, and are thus vital to systematic biology (e.g., Mayr 1942), and 

provide key insights into speciation (e.g., Coyne and Orr 2004). As such, distributions of species, 

particularly allopatric distributions within nominal species, often motivate species delimitation 

studies (e.g., Rosell et al. 2010; Weisrock et al. 2010; Leaché and Fujita 2011; Camargo et al. 

2012). For example, under the biological species concept (Mayr 1942) allopatry can be 

interpreted as evidence in favor of reproductive isolation (and thus species status). Data that 

establish allopatric distributions are especially useful to compliment genetic data when little or 

no morphological or ecological variation is present (Fujita et al. 2012; Carstens et al. 2013). 

Molecular investigations into species limits will necessarily utilize geographic data, and can 

incorporate climatic data and species distribution modeling (SDM) in order to quantify 

geographic distributions.  

Species distribution modeling (SDM; Austin 2002; Guisan and Thuiller 2005), also 

known as ecological niche modeling (ENM; Soberon 2005; Lozier et al. 2009), is an approach 

that takes as input a set of sampling localities and a set of climatic data to identify the 

environmental conditions that best predict the current distribution of the focal taxon. SDMs of 

current conditions have been utilized by several species delimitation investigations. For example, 

Rissler and Apodaca (2007) used this approach to quantify differences in the environmental 

niche of two putative lineages to demonstrate the correlation between genetic and environmental 

divergence in the salamander Aneides flavipunctatus. Other investigations have followed this 

approach (e.g., Burbrink et al. 2011; Florio et al. 2012; Zhou et al. 2012), strengthening the 
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overall case for cryptic species. Modeling of these allopatric lineages does not provide causal 

evidence that ecological differentiation is promoting speciation, but instead indicates that the 

environmental conditions in the disjunct regions occupied by putative lineages are different, thus 

implying that dispersal between regions is difficult. 

Estimates of the current distribution of a focal taxon do not necessarily reflect the 

conditions under which species arose, especially in modern times where species’ habitats are 

being lost from the globe at an unprecedented rate (McKee et al. 2004; Butchart et al. 2010). It is 

therefore imperative to consider the dynamic nature of species ranges as distributions may 

change dramatically in size and location over time (Kirkpatrick and Barton 1997; Tingley and 

Beissinger 2009). While identifying temporally dynamic species distributions may be difficult, 

an explicit consideration of changes in the distribution of taxa over time may inform species 

delimitation investigations. It is vital in temperate species that inhabit regions impacted by 

glaciation, because such species have experienced dramatic shifts in their range within a 

relatively recent geologic timeframe. Changes in the distributions of species can be estimated 

using paleodistribution modeling methods. SDMs make use of GIS layers of climate data that are 

collected from global weather stations. These data also serve as the basis for GIS layers that 

describe the historical climate at certain times in the past, notably the last glacial maximum 

(Otto-Bliesner et al. 2006). SDMs of the current distribution can thus be projected onto the 

historical layers to estimate the historical range of the focal taxon. Paleodistribution models have 

provided critical information to comparative phylogeographic studies (e.g., Hugall et al. 2002) 

and served as the basis for phylogeographic hypotheses (Carstens and Richards 2007; Collevatti 

et al. 2012), but are generally not directly applied to investigations that explicitly seek to discover 

or validate species boundaries. This represents a missed opportunity because short of paleopollen 

http://sysbio.oxfordjournals.org/


5 

or fossils, which are available for few taxa, SDMs projected into the past represent the only 

method for estimating the historical range of many species. We demonstrate here that intriguing 

inferences are possible when SDMs, paleodistribution models and molecular approaches to 

species delimitation are combined, by using current SDMs to validate molecular results, but also 

using past SDMs as a tool for developing hypotheses about species limits that can be validated 

with molecular data. 

Plethodon salamanders are an ideal system to explore the relative influence of current 

and historical ranges on species limits. Often, there is little morphological or ecological variation 

among closely related taxa (e.g., Mueller et al. 2004; Kozak et al. 2006; Wiens et al. 2006; Wake 

2009). Dermal respiration limits plethodontids to cool and moist habitat; thus ecologically 

constrained, they tend to exhibit niche conservatism (Kozak et al. 2006; Wake 2009). While 

vicariance is often invoked as the cause of species formation in Plethodontidae, morphological 

homoplasy and/or conservatism makes incipient species difficult to detect (Mueller et al. 2004; 

Wake 2009). Genetic studies have substantially aided cryptic species identification in some taxa. 

For example, genetic data revealed that at least two-dozen speciation events in eastern Plethodon 

occurred in the Appalachian Mountains during the warm, dry climates of the late Miocene and 

Pliocene (7.2-2.5 Ma; Highton and Larson 1979; Highton 1995; Shepard and Burbrink 2009; 

Wake 2009; Highton et al. 2012). The inability of a species to traverse unsuitable habitat may 

constrain migration among populations leading to speciation (Kozak and Wiens 2006), however 

this widely accepted concept is not well studied.  

We focus here on plethodontids from the Pacific Northwest of North America (PNW), 

because this region has experienced dramatic climate driven shifts in habitat since the end of the 

Pleistocene (Brunsfeld et al. 2001). The PNW contains multiple contact zones and 
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phylogeographic breaks (Swenson & Howard 2005), likely induced by some combination of 

climatic variation and shifting species ranges in response to glaciation. Because glaciations 

during the Pleistocene were cyclical, climatic conditions at the last glacial maximum (LGM) 

likely represent the greatest contrast to present-day climatic conditions that we can accurately 

evaluate using SDMs, and thus those from the present and the LGM represent the extremes of 

range shifts in species from this region. 

The current ranges of three western Plethodon species present an opportunity to apply 

recently developed species delimitation methods for taxa with contrasting distribution patterns 

(Fig. 1). Plethodon vandykei occurs in three discrete, isolated regions in Washington State: the 

crest to foothills of the southern Cascade Range (hereafter Cascades), the Olympic Peninsula, 

and the Willapa Hills, though allozymes suggest that the Olympic and Willapa regions are nearly 

identical (Howard et al. 1993). Plethodon larselli is extremely fragmented, with a patchy 

distribution from the southern margin of the Columbia River in Oregon to as far north as 

Wenatchee National Forest (Aubry et al. 1987). If these current distributions are predictive of 

lineage boundaries, we expect to detect two or three independent lineages in both P. vandykei 

and P. larselli (see species tree hypotheses in Fig. 2). Evidence for cryptic diversity is found in 

both mitochondrial DNA (mtDNA) sequence data and RAPDs, which indicate divergence among 

groups on the north and south banks of the Columbia River and western Washington (Wagner et 

al. 2005). In contrast, P. idahoensis has an expansive and continuous range throughout the inland 

temperate rainforest of Idaho, although most of its range was covered by glacial ice as recently 

as ~21Ka. According to this distribution we expect to detect only one lineage in this species. 

Signal in the mtDNA is consistent with recent population expansion and the presence of two 
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haplotype clades suggests population structure due to multiple glacial refugia (Carstens et al. 

2004; Carstens and Richards 2007).  

Our investigation proceeds along two fronts. First, we collect multilocus sequence data 

from across the range of each species and investigate species limits using several molecular 

species delimitation methods. Species limits are defined as lineages with their own unique 

evolutionary history as in de Queiroz (2007). We approach species delimitation from discovery 

and validation standpoints (Ence and Carstens 2011), while considering geographic breaks 

within the current range of the nominal species to develop our hypotheses. We also explore the 

robustness of some of these methods as each has their own set of assumptions and limitations 

(Carstens et al. 2013). Second, species distribution modeling is used to estimate the current and 

historical ranges based on existing locality information. Taken together, these complementary 

approaches allow us to explore the extent to which the possible range of each species may have 

changed during the late Pleistocene/Holocene, and how such changes might inform 

investigations of species boundaries.  

METHODS 

Genetic Data Collection 

Sequence data were collected from several loci from all three species covering their 

current geographic distributions (average 7.5 individuals per potential lineage; Table 1). Primers 

were identified either from the literature or developed using a genomic library (see Table 2 for 

details). Genomic DNA libraries were constructed from P. vehiculum/dunni and Ensatina sp., 

using restriction digest and subsequent subcloning using the Qiagen PCR cloning kit. In total, 70 

primer pairs were tested across P. idahoensis, P. vandykei and P. larselli individuals. Many 
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primers did not amplify across all three species and of those that did, many contained multiple 

bands or peaks in the electropherograms. Given the large genomes of these species (P. vandykei, 

C-value = 69.3 pg [Mizuno and Macgregor 1974]; P. larselli = 49.5 pg [Sessions and Larson

1987]), it seems likely that many primers amplified paralogous genetic regions, and thus were 

discarded. Additional information regarding the tested primers is available as supplementary 

material (S1). 

Ultimately, we confidently sequenced up to nine loci in each species, with five 

homologous loci across species (Table 2). These include the mtDNA Cytochrome b gene (Cyt b) 

and the nDNA Recombination Activating Gene 1 (RAG1), Glyceraldehyde-3-phosphate 

Dehydrogenase Gene (GAPD), the Internal Transcribed Spacer Subunit 1 (ITS1), Ribosomal 

Protein L12 (RPL12), Heat Shock 70 Protein 8 (HSPA8), and three anonymous nuclear loci. 

Conditions for PCR programs are available as supplementary material (S1). Sanger sequencing 

was carried out with BigDye Terminator v3.1 on an ABI 3130XL Genetic Analyzer (Applied 

Biosystems). Sequence editing and alignment were conducted using Geneious v5.4 (Drummond 

et al. 2011); alignments were generally unambiguous due to a paucity of indels. Sequence data 

were phased to alleles using PHASEv2.1 (Stephens et al. 2001) and SeqPHASE (Flot 2010) to 

generate files; most alleles were phased at high probability (> 0.9), otherwise individuals were 

sub-cloned using the Qiagen PCR cloning kit to determine phase. The GAPD locus included 

heterozygous indels so CHAMPURUv1.0 (Flot 2007) was used to determine phase for some 

individuals. Sequences are deposited in GenBank and alignments from this study in Dryad 

(http://datadryad.org, ###). 

Because many methods described below are derived from coalescent theory and thus 

assume that the loci used are not under selection and there is no recombination, we conducted 
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several tests prior to analysis. The SBP and GARD methods implemented in Hy-Phy (Pond and 

Frost 2005; Pond et al. 2006) were used to test for recombination. Tajima’s D (Tajima 1989) and 

Fu and Li’s F statistic (Fu and Li 1993) were calculated in DnaSP (Rozas et al. 2003) for each 

locus to assess neutrality. DnaSP was also used to calculate the number of segregating sites and 

nucleotide diversity for each locus. 

Species Discovery 

Bayesian clustering, as implemented in Structurama (Huelsenbeck et al. 2011), aims to 

discover cryptic diversity without a priori assignment of samples to putative groups. We chose 

this approach because a recent simulation study suggests that it is the most effective of several 

multilocus discovery approaches aimed at detecting cryptic diversity (Rittmeyer and Austin 

2012). Structurama analyses were conducted by treating the level of clustering (K) as a random 

variable using the Dirichlet process gamma priors (0.1, 1) and (1, 10) to explore various 

clustering permutations; 10,000,000 generations sampling every 1000 steps with a burn-in of 

10% were run on all available loci for each species. 

Species Validation 

In contrast to Structurama, both spedeSTEM (Ence and Carstens 2011) and BPP (Yang 

and Rannala 2010) model the divergence of lineages using the multispecies coalescent and 

require the assignment of samples to putative lineages. These methods allow for gene-tree 

heterogeneity across loci because the putative lineages are treated as OTUs (rather than exemplar 

samples as in traditional phylogenetics [Liu et al. 2009]), and therefore allow cryptic lineages to 

be detected early in the diversification process (Carstens and Dewey 2010). However, due to the 
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complexity of parameter space, each method uses a different simplification to account for 

uncertainty in phylogenetic parameter space. SpedeSTEM takes gene trees as input, assumes that 

they are estimated without error, and calculates the species phylogeny while computing the 

probability of a particular model of lineage composition given the data. Alternatively, BPP uses a 

Bayesian approach to integrate over the uncertainty in gene tree space, but does not attempt to 

estimate the species tree. Rather, BPP assesses species limits by collapsing nodes on a guide tree, 

which is assumed by the analysis to be the true species tree. While the phylogenetic uncertainty 

in the species tree is not accounted for by BPP, some users (e.g., Leaché and Fujita 2010) have 

circumvented this issue by using multiple guide trees. We consider these approaches as 

complementary because each considers uncertainty in one of the two relevant regions of 

parameter space, and so we apply both to our data.  

SpedeSTEM, a species delimitation extension of STEMv2.0 (Kubatko et al. 2009), was 

used to analyze data from P. vandykei, P. larselli, and P. idahoensis. For each analysis, we 

removed redundant alleles within populations in order to standardize the number of alleles across 

loci at four per putative lineage. A maximum likelihood search in PAUP* (Swofford 2002) was 

used to estimate the ML gene tree for all loci (see Table 2 for models of sequence evolution 

estimated using DT-ModSel [Minin et al. 2003] and S3), which were then saved with midpoint 

rooting and branch lengths optimized under the molecular clock for input into STEM. Theta (θ = 

4Neµ was estimated using Migrate-n v3.3.2 (Beerli 2009) for each locus treating each species 

as a single population. SpedeSTEM analyses were conducted using version 2.0 written in Python 

and available at: http://carstenslab.org.ohio-state.edu/software.html. STEM produces an 

analytical calculation of the probability of a particular model of lineage composition given the 

data, so the resulting species tree is that which maximizes the likelihood given the gene trees. 
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Once these probabilities are calculated for all models of lineage composition, information theory 

(Anderson 2008) is used to calculate the model probabilities of each species tree. 

BPP was used also to analyze each species. Ambiguous sites were removed and θ = 4Neµ 

was allowed to vary among loci. Six sets of gamma priors were run independently ranging from 

small to large effective population size, and shallow to deep divergence: (2, 1000), (2, 1000); (2, 

100), (2, 1000); (2, 100), (2, 100); (2, 100), (2, 10); (2, 10), (2, 100); and (2, 10), (2, 10) were 

used for the population size parameters (θ) and divergence time (τ0), respectively; the Dirichlet 

process is used to assign the non-ancestral divergence time priors (Yang and Rannala 2010). All 

possible guide trees within each species (Fig. 2a-c) were tested and each analysis was run with 

two different starting trees and both algorithms implemented in BPP to confirm convergence, 

totaling 168 independent runs. Runs were conducted with all available loci for each species. For 

all runs, the first 10% of samples were discarded as burn-in and then 100,000 samples retained in 

the posterior with a sampling frequency of five.  

Species Tree Estimation 

Bayesian species trees were estimated using *BEASTv1.7.1 (Drummond and Rambaut 

2007) for the three species using P. vehiculum, P. dunni, and P. elongatus as outgroups (3 loci), 

and then all eight putative lineages based on geography (Table 1) within the three species (5 loci). 

After trial runs to assess prior settings, a strict clock was used for the anonymous loci C31C32, 

C109C110, and GAPD, and a relaxed clock was used for Cytb and RAG1; two independent runs 

of 2 x 10
8
 generations were conducted with a burn-in of 10%. Besides models of sequence

evolution and using a piecewise constant model, default settings from BEAUTI v1.7.1 were used. 

Convergence and ESS values were confirmed using Tracer v1.5 (Rambaut and Drummond 2007) 
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and runs were combined (LogCombiner v1.7.1) to estimate the maximum clade credibility tree 

(TreeAnnotator v1.7.1). 

Species Distribution Modeling 

To evaluate the contemporary niches and historic distributions, we created a series of 

niche models based on georeferenced sampling localities for each species in conjunction with 

global environmental data. GPS coordinates were obtained from the sampling localities of this 

study, the HerpNet database (http://herpnet.org), and personal communication (PA Garvey-

Darda), totaling 142 P. vandykei, 52 P. larselli, and 329 P. idahoensis GPS points. After removal 

of localities within the same 1km grid cell to prevent pseudo-replication, a total of 76 P. 

vandykei, 42 P. larselli, and 73 P. idahoensis GPS points were used for niche modeling (S2). 

Good predictive power is generally possible with ≥ 15 points (Papes and Gaubert 2007). 

Global environmental data used for constructing niche models for current distributions 

included both climatic and vegetation data. For contemporary SDMs, a total of 19 bioclimatic 

variables are available at 1km resolution (Bio1-19) in addition to four vegetation variables 

(NDVI, NDVISTD, QSCAT, and TREE) and elevation (SRTM) (see S2 for descriptions and 

citations for each variable). For historical distribution predictions, a total of 14 bioclimatic 

variables are available at 1km resolution (S2). Since only a subset of the variables are available 

for the historic predictions, we generated two sets of contemporary SDMs: one with the full set 

of data and a second using only the subset of data available for historic predictions for direct 

comparison. The historical model represents hypothesized species distributions at ~21kya, the 

last glacial maximum (LGM). ArcMap v10.1 (ESRI 2011) was used for data layer manipulation. 

Niche models were created using MAXENTv3.3.3 (Phillips et al. 2006). A total of 80% of the 
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localities for each species were used to predict the model and 20% of the localities were used in a 

jackknife analysis to test the models. The models were evaluated using are under the curve 

(AUC) scores. Each niche model was estimated with both the full set of variables available and 

with pruned data sets that excluded highly correlated variables (r ≤ -0.9 and ≥ 0.9). All SDMs 

were predicted in the grey area shown on the map (i.e. the maps were clipped and are 

demonstrated by the area shown on the maps in grey). In P. idahoensis the map was clipped 

further to prevent over-prediction (see S5). 

Additionally, current and historical niche models for the putative lineages based on 

geography in this study were compared within each nominal species. We did this to look for 

evidence of ecological differentiation among any of the potential lineages. This includes three 

niches in P. vandykei, three niches in P. larselli, and two niches (see below) in P. idahoensis. 

These models are hereafter referred to as regional distribution models (RDM).  

Based on results from the genetic data we further tested for niche divergence between the 

two niches of P. idahoensis using a multivariate niche analysis (McCormack et al. 2010). This 

method first directly compares differences in environmental variation between lineages and then 

compares the extent of these differences to a null distribution of differences in the background 

environment available to each lineage. The method proceeds by describing environmental 

variation using a principal components analysis (PCA) to generate multiple niche axes for each 

of the georeferenced P. idahoensis localities and separately for randomly chosen background 

locations within the distribution of each lineage. For each retained principal components axis, the 

average difference is calculated between the northern and southern lineages, a t-test is conducted 

to test for significance, and finally the differences are evaluated against jackknife comparisons 

from the background data. Niche differences greater than the distribution of background 
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differences suggest significant divergence, whereas niche differences less than the distribution of 

background differences suggest significant conservatism. Niche differences that fall within the 

range of generated background differences fail to reject the null hypotheses of divergence or 

conservatism. 

Statistical analyses were conducted in Stata v11 (StataCorp 2009). All PC axes with 

eigenvalues greater than 1 were retained. Significance in niche differences were calculated using 

two tailed t-tests and the Bonferroni correction was applied to control for multiple comparisons. 

Null background distributions were created using a random sample of 25% of the background 

points with 1000 jackknife repetitions. Significance in niche differences relative to the null 

background distribution was evaluated by determining whether the observed differences fell 

outside the 98% confidence intervals of the null distribution. 

RESULTS 

Collection of Genetic Data 

We obtained sequence data from 5 loci in 20 P. vandykei individuals, 7 loci in 19 P. 

larselli individuals and 9 loci in 21 P. idahoensis individuals (Table 2). Recombination was not 

detected in any locus using both the SBP and GARD methods. Tajima’s D and Fu and Li’s F 

values were not significant for all loci. BLAST found no significant similarity for the three 

anonymous loci. Summary statistics are presented in Table 3. 

Species Discovery 

The results from Structurama were similar using both sets of priors (S4) so we report 

results using just one set of priors (0.1, 1) for simplicity (Table 4). In each of the three species, 
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the posterior probability is highest for two populations, with moderate support for three, and little 

to no support for a single population or more than three. However, within P. vandykei and P. 

larselli these populations do not correspond to geographic regions (see S4 for population 

assignment plots). In P. vandykei the probability of all individuals from the Cascades belonging 

to the same population is 0.87, but lower for the Willapa Hills (p = 0.75) and Olympics (p = 

0.49) regions. If the two coastal regions are pooled (the Olympics and Willapa Hills), the 

probability is 0.46. In P. larselli, the probability that northern Washington samples belong to the 

same population is high (p = 0.99), similarly high for the Oregon samples (p = 0.93), but low for 

the southern Washington samples (p = 0.47). When the two WA regions or the southern 

Washington and Oregon regions are pooled together the probability that individuals are from the 

same population is only 0.5 or 0.46, respectively. Taken together, the assumption of a strict 

correlation between the current boundaries of geographic distributions and genetic populations is 

not strongly supported. Notably however, in P. idahoensis the optimal clustering level is two, 

and this largely corresponds to a division of samples into a northern (p = 0.93) and southern (p = 

0.91) set of river drainages in the northern Rocky Mountains. Only in P. idahoensis do the 

clusters assigned by Structurama correspond with high support to discrete geographic regions 

(see S4 for population assignment plot) so we use this partition for species validation (below), 

following Leaché and Fujita (2010). 

Species Validation 

SpedeSTEM analyses do not support cryptic lineages in any species (Table 5). In each 

species, the model that is consistent with the current taxonomy (i.e., that all populations are 

constituents of the same evolutionary lineage) has the highest support. All runs from the BPP 
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analyses had ESS values well above 200 suggesting the Markov chain is sampling from a 

stationary region of the posterior distribution, but results were not always consistent across runs. 

The mean probability for splitting P. vandykei and P. larselli into three lineages were similar 

(0.57 and 0.59 respectively; Table 4). The mean probability supporting two lineages in P. 

idahoensis is 0.96 (Table 4). Although these analyses do not seem to be heavily influenced by 

the guide tree (S4), the prior distribution appears to have some influence. Results most often 

indicate a single lineage when the priors for θ are large. Conversely, lineages are most often split 

when the priors for θ are small. For example, in P. larselli the mean probability of splitting all 

lineages under priors (2,10) (2,10) is 0.26 (median = 0) while under priors (2,100) (2,100) it is 

0.78 (median = 0.995) (Mann-Whitney U p = 0.00046).  

Species Tree Estimation 

The *BEAST analysis using P. vehiculum, P. dunni, and P. elongatus as outgroups (S3) 

is consistent with previous Plethodon phylogenetic investigations (Wiens et al. 2006; Kozak et al. 

2009). Divergence is deep between most groups relative to the potential lineages within P. 

vandykei, P. larselli, and P. idahoensis. Plethodon vandykei and P. idahoensis are sister taxa 

with P. larselli sister to this pair. The topology is similar when nominal species are divided into 

subsets on the basis of geographic location (topology of Fig. 2a): within P. vandykei, the 

Olympic population and Cascade population are more closely related to each other than the 

Willapa Hills population, and within P. larselli, the two WA populations are more closely related 

to one another than to the OR population.  

Species Distribution Models 
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In order to directly compare the historical and current niche models, the SDMs discussed 

below are based on the reduced set of uncorrelated variables only available at 21Ka, however the 

SDMs built using the full sets of environmental variables are similar to those discussed below 

(S2 and S5). Environmental variable contributions for all models can be found in S5. 

The historical SDM (21Ka) for P. vandykei predicts a single area of high suitability in the 

valley between the Coastal range and Cascade Mountains and somewhat suitable habitat 

extended as far south as northern California. In contrast, the current SDM (AUC = 0.987) 

predicts its distribution throughout the Coastal range and foothills of the Cascades; the current 

three disjunct groups are nested with the current SDM and do not cross the Columbia River as do 

the predicted SDMs (Fig. 3a). A similar pattern is found in P. larselli where the current SDM 

(AUC = 0.990; Fig. 3b) predicts a slightly larger niche than is their known distribution. The 

current known distribution and SDM of this species is greatly reduced compared to the historical 

model (Fig. 3b). The historical model of P. idahoensis (Fig. 3c) is shifted to the southwest and 

there is indication of only slightly suitable habitat in its current predicted niche (AUC = 0.975; 

Fig. 3c), which matches its known distribution, except for patchiness following current 

streambeds. 

There is extensive overlap among the RDMs of both P. vandykei and P. larselli (Fig. 4). 

This is evident for the models from the Cascades (AUC = 0.993) and Olympics (AUC = 0.979) 

in P. vandykei, while the Willapa Hills (AUC = 0.997) region is the most restrictive. The 

Washington south (AUC = 0.992) population of P. larselli predicts the widest area with 

relatively even probability, while the Washington north (AUC = 0.993) and Oregon (AUC = 

0.980) predictions are smaller. The historical RDMs for all the potential lineages in both species 

show slight shifts in distribution but again a lot of overlap among all potential lineages (S5).  
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In P. idahoensis, there is little overlap between the two current northern (AUC = 0.972) 

and southern (AUC = 0.996) RDMs (Fig. 5). The northern RDM slightly projects into the 

southern range but the southern RDM does not project into the north. Intriguingly, the historical 

RDMs are very different from the current distribution of P. idahoensis (Fig. 5). Both the northern 

and southern historical RDMs do not show any areas with high probability. Within the current 

range there are some very faint areas of suitability and two more large solid areas to the 

southwest. The RDMs using the full set of variables are also similar (S5).  

The multivariate niche analyses resulted in four PC axes with eigenvalues greater 

than 1, accounting for a total of 80 percent of environmental variation (Table 6). The first 

three axes were significantly different between lineages (PC1: u = 2.97, p < 0.0001; PC2: u = 

2.31, p < 0.0001; PC3: u = 1.77, p = 0.0001), while the fourth axis showed no significant 

differences between lineages (PC4: u = 0.15, p = 0.72). Moreover, PC axes 1 and 3 were 

significantly more divergent compared to the null distribution generated by random 

background points (p < 0.01), indicating significant evidence for niche divergence of the 

northern and southern P. idahoensis lineages across these two axes. The highest loadings 

for these axes are maximum temperature of the warmest month, precipitation of the driest 

quarter, temperature seasonality, and greenness seasonality. PC axis 2 was significantly 

less divergent than the null distribution generated by random background points (p < 0.01), 

indicating significant evidence for niche conservatism across this axis.  The highest loading 

for this axis was mean diurnal temperature range.  

DISCUSSION 
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Species delimitation investigations are dependent on an understanding of the geographic 

range of the focal taxon. In particular, disjunct distributions within a species motivate many 

molecular investigations because this allopatry provides a way to partition samples to test species 

limits that are external to the genetic data (e.g., Leaché et al. 2010; Burbrink et al. 2011; 

Camargo et al. 2012). However, the distributions of species are not stable through time and 

change in part because they are dependent on climatic conditions that are themselves dynamic 

(Brown et al. 1996). In temperate regions heavily impacted by glaciation, such as the PNW, this 

dynamism in the geographic distribution is pronounced. Consequently, species delimitation 

investigations that incorporate an estimate of the temporal range shifts have great potential. Our 

comparative exploration into species boundaries includes examples of three different types of 

ranges (disjunct, patchy, continuous). We discuss each of these in turn before integrating the 

main findings into a broader context.  

Plethodon vandykei 

The distribution of P. vandykei exemplifies the types of geographic distributions that 

often motivate molecular species delimitation investigations. Populations of this species are 

currently isolated into three allopatric regions that are separated by ~170km. Due to the apparent 

lack of dispersal ability in plethodontid salamanders, it was easy to speculate prior to this work 

that P. vandykei might contain cryptic evolutionary lineages, however, results were opposite our 

expectations. The Olympic Peninsula, Willapa Hills, and Cascades do not contain cryptic 

lineages in this species, according to the results of Structurama, BPP and SpedeSTEM (Fig. 6). 

Given the current range, these results could be explained by speculating that these regions have 

not been isolated for time sufficient to remove shared genetic polymorphism from the 
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populations, or by the possibility that populations are currently exchanging alleles. Gene flow is 

unlikely due to the limited dispersal capabilities of Plethodon salamanders and the potential 

barriers to gene flow (e.g., valleys, rivers, and mountains) intermediate to the three disjunct 

regions. Furthermore, the reconstruction of the historical range of P. vandykei (Fig. 3a) 

demonstrates that there were large amounts of suitable habitat intermediate to the regions 

currently occupied by the species at the close of the Pleistocene and suggests that the current 

populations are derived from a common ancestral population. This model is supported by the 

ecological similarity of the three regions (as evidenced by the RDMs), as well as the presence of 

suitable habitat intermediate to the current disjunct populations of P. vandykei. This ecological 

similarity suggests that additional factors (i.e., microhabitat features, dispersal limitations, and/or 

competition from other Plethodon salamanders present in these regions) prevent P. vandykei 

from expanding its range and bringing the three allopatric regions back into contact.  

Plethodon larselli 

Like P. vandykei, the current distribution of P. larselli also includes populations that are 

apparently isolated from each other. Plethodon larselli occurs on either side of the Columbia 

River and in Washington is separated by high elevation mountains with a patchy distribution; 

this salamander has specific microhabitat requirements of forested rocky talus slopes and are 

only found early in the season during snow melt, restricting them to very cool moist areas 

(Aubry et al. 1987; personal observation). The estimate of the current range appears to contain a 

much smaller habitable area than the LGM but larger than that observed in the field (personal 

observation), while the historical range indicates that there was a great deal of suitable habitat 

throughout the Cascade Range during the LGM (Fig. 3b). Taken together, these results also 
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indicate that the current patchy distribution of P. larselli is a recent development, and probably 

much smaller than its historical range. While ongoing gene flow may prevent genetic structure 

from forming within the Washington distribution of this species, results from a Migrate-n 

analysis (S4) suggest that alleles are being exchanged across the broad Columbia River. Planned 

investigations into congeners P. dunni and P. vehiculum will more rigorously explore the 

potential of this river to inhibit gene flow in western Plethodon. In the meantime, our results 

support the assessment by the Department of Wildlife in Washington State that this species is 

threatened largely due to its strict habitat requirements (http://wdfw.wa.gov/publications/01519). 

Plethodon idahoensis 

The current range of P. idahoensis is strikingly different from that of its close relatives in 

western Washington in that it is large and continuous throughout the northern Rocky Mountains. 

Such a range does not predict cryptic diversity, and this species was initially included in this 

study to provide a counter example to the ranges of the other taxa. However, much of its current 

range is north of the maximal extent of glaciation during the LGM, and the historical 

demographic model that has developed via phylogeographic work on this species is one of post 

glacial expansion from multiple glacial refugia in riverine canyons located to the south of the 

Pleistocene glaciers (Carstens et al. 2004; Carstens and Richards 2007). In contrast to P. 

vandykei and P. larselli, we find genetic evidence for cryptic independent lineages within P. 

idahoensis. First, the clustering level with the highest posterior probability from the Structurama 

analysis is k = 2, and the division of samples into clusters largely corresponds to those sampled 

from northern and southern river drainages (p = 0.91, 0.93). While results from spedeSTEM do 

not support these regions as belonging to separate evolutionary lineages, the BPP analysis shows 
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a high posterior probability (1.0) in support of these clusters as separate lineages. This 

discrepancy could be explained by the shallow divergence between these lineages, as 

spedeSTEM can fail to detect independent lineages when the loci that the gene trees are 

estimated from lack a sufficient number of SNPs, or from the fact that there might be ongoing 

gene flow, despite divergence. While BPP can be mislead by inaccurate specification of the 

guide trees (Leaché and Fujita 2010; but see Zhang et al. 2014), this is not a potential problem in 

P. idahoensis because there are only two lineages (and thus one possible topology). The other

source of error for BPP would be incorrect sample assignment to the putative lineages. To 

explore the probability for a false positive result caused by error in sample assignment, we 

randomized assignment of P. idahoensis individuals and repeated the BPP analysis using priors 

(2,10)(2,10) and (2,100)(2,100). Results from 100 replicates indicate that population mis-

assignment is not likely to mislead our analysis: when samples are randomized, the proportion of 

trees splitting P. idahoensis is 0.01 (mean PP = 0.07, median PP = 0) using priors (2,10)(2,10) 

and 0.3 (mean PP = 0.34, median PP = 0.01) using priors (2,100)(2,100). Taken in total, the 

genetic analyses support the division of P. idahoensis into a northern and southern lineage. This 

was surprising and is important because independent lineages can easily go undetected without 

the use of molecular approaches. Furthermore, the northern and southern lineages are statistically 

divergent in two PC niche axes, indicating that ecological niche differentiation appears to have 

occurred relatively rapidly for some environmental variables. These findings are similar to those 

of Raxworthy et al. (2007), who investigated geckos from Madagascar and found divergent 

ecological niches between closely related speces. This strengthens our evidence for independent 

lineages in P. idahoensis, which may have easily been missed without the use of molecular 

species delimitation methods. 
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The historical RDMs encompass the current distributions at low probability (Fig. 5), 

while the historical SDM does not contain the current distribution of the population as in P. 

larselli and P. vandykei (Fig. 3). This result may suggest that P. idahoensis persisted throughout 

glacial cycles of the Pleistocene outside its current distribution and expansion played an 

important role in shaping the current genetic diversity, or more likely it was restricted to 

extremely small patches of habitat that are not easily detected using this approach (e.g., dual 

refuge model; see Carstens and Richards 2007).  

Integration of molecular and environmental data for species delimitation 

Species delimitation should be conducted using data from a variety of sources (Sites and 

Marshall 2004; de Quieroz 2007;Knowles and Carstens 2007), and results are most meaningful 

when there are congruent signals across these data (Fujita 2012). The widespread availability of 

climatic data, coupled with the clear relevance that estimates of the current and historical ranges 

of species have towards the question of species boundaries, make the integration of SDMs and 

molecular method for species delimitation particularly useful. Estimates of the current and 

historical distributions are an asset when interpreting the results from genetic investigations, as 

demonstrated here in three Plethodon species with dissimilar distributions. In each case, we 

found that the historical distribution of the species was a much better predictor of the results of 

the genetic data than was the current range. Historic ranges may differ dramatically from current 

ranges (Kirkpatrick and Barton 1997; Tingley and Beissinger 2009), and evidence suggests that 

climate refugia may have been more common and widespread than previously thought (Hampe 

et al. 2013). While our models of the historical range of these species are a simplification of a 

complex reality (like all models), they offer evidence external to that provided by the genetic 
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diversity within these organisms, and enable a more nuanced interpretation of evolutionary 

history. 

However, the climatic modeling used here does have shortcomings, and these should be 

acknowledged. First, the PNW has a complex history, and the range dynamics of species from 

this region will not be fully captured with binary models (i.e., the present and end-Pleistocene). 

Montane glaciers persisted in the region long after the close of the Pleistocene, and a dry period 

(the Hypsithermal Interval; Mathews and Heusser 1981) about 10,000-7,500 years ago likely 

initiated a major contraction in Plethodon ranges, factors not considered by our models. 

Additionally, as continental and montane glaciers retreated they left behind glacial till, and both 

the new substrates and potentially protracted plant successional communities would have likely 

created ephemeral conditions where patterns of gene flow may have been very different. 

Additional historical climate models may further elucidate range dynamics in this region, and 

therefore aid in developing hypotheses of species limits. 

Gene Flow and Species Delimitation 

Methods such as spedeSTEM and BPP incorporate a multispecies coalescent model that 

does not parameterize gene flow, and this complicates the interpretation of our results because 

we are forced to make assumptions about what type of analytical model is most appropriate for 

our data. For example, in species where there is no evidence of cryptic lineages, such as P. 

vandykei and P. larselli, an n-island model that does not parameterize temporal divergence 

among populations is likely justified. When we utilize such a model (Migrate-n; Beerli & 

Felsenstein 2001) to estimate gene flow, we find that estimates of gene flow among populations 

are non-zero in both P. vandykei and P. larselli (S4). Model selection results from P. vandykei 
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indicate that models of migration between the Cascades - Olympics and the Cascades - Willapa 

Hills (p = 0.53) or symmetrical migration among all populations (p = 0.43) are optimal. In P. 

larselli the model with the highest probability is that of symmetrical migration among all 

populations (p = 0.98), indicating that alleles are being exchanged across the Columbia River. 

These results indicate that ongoing gene flow may be inhibiting diversification in this species.  

In P. idahoensis, where results from both Structurama and BPP suggest that the species is 

diverging into northern and southern lineages, the n-island model of gene flow implemented in 

Migrate-n is likely not appropriate because it does not parameterize population divergence. 

When we use it to analyze our data, the model with north to south migration has the highest 

probability (0.97), but we attribute this result to erroneous signal from shared ancestral 

polymorphism. Rather than the n-island model, a model that estimates both population 

divergence and migration is required. Carstens et al. (2009) analyzed sequence data (3 loci) from 

P. idahoensis using IMa (Hey & Nielsen 2004) and found that the summed model probability of

isolation-only models (wi = 0.546) was slightly higher than that of isolation with migration 

models (wi = 0.454). However, model choice experiments using Approximate Bayesian 

Computation (Pelletier and Carstens 2014; with five loci) indicate that the isolation with 

migration model offers a better fit to the data than isolation only. How do these results influence 

our interpretation of those from BPP, which does not estimate gene flow? Since gene flow 

homogenizes allele frequencies across the putative lineages, BPP fails to detect actual 

independent lineages more often in the presence of gene flow (Camargo et al. 2012). Given that 

we delimit the northern and southern lineages using BPP, even while there is some evidence of 

ongoing gene flow, indicates to us that the signal of lineage divergence remains strong even in 

the presence of some gene flow. Consequently, we are more inclined to accept the results of the 
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BPP analysis and consider the northern and southern lineages of P. idahoensis to be 

evolutionarily distinct. 

Conclusions 

Given the variety of threats to global biodiversity (Daszak et al. 2000; McKee et al. 2004; 

Butchart et al. 2010; Vörösmarty et al. 2010) and the difficulties inherent in discovering cryptic 

lineages (e.g., Hoagland et al. 1995; Beheregaray and Caccone 2007), it is clear that more 

efficient discovery and characterization of biodiversity is needed (Maddison et al. 2012). The 

technique described above integrates current and historical SDMs into the species discovery 

process and can strengthen any investigation that seeks to quickly and accurately identify species 

boundaries. Notably, the addition of SDMs is accessible, and can be conducted anywhere with a 

computer without extensive investment in time, computational machinery, or the expense 

required for the generation of genetic data. The species distribution models serve two purposes: 

they act as an independent line of evidence in support of results from genetic data, but they can 

also generate species hypotheses that can then be explored in greater detail with additional 

fieldwork and the molecular approaches essential in documenting biodiversity. 
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FIGURE 1. Distribution map and species tree estimate for the western Plethodon (P. vandykei, P. 

idahoensis, and P. larselli) in the Pacific Northwest of North America. P. vandykei, is shown in 

pink, P. idahoensis in purple (dotted line indicates split between northern and southern river 

drainages), and P. larselli in orange. The black dotted line represents the extent of the ice sheet at 

the last glacial maximum (LGM; ~21kya), and the blue dotted line is the Columbia River (CR). 

Labeling corresponds to that in text and Table 1, and represents potential independent lineages. P. 

vandykei: PvaC = Cascade Mountains, PvaO = Olympic Peninsula, PvaW = Willapa Hills; P. 

larselli: PlaWN = Washington north, PlaWS = Washington south, PlaOR = Oregon; P. 

idahoensis: PidN = northern river drainages, PidS = southern river drainages. 
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FIGURE 2. Species trees. A-C are all possible species trees used as guide trees in the BPP 

analyses from the 7 putative lineages hypothesized. A. Topology recovered from *BEAST 

analysis. D. Alternative hypothesis for independent lineages in P. vandykei and P. larselli, where 

there are two independent lineages within each species instead of three. Population labels 

correspond to those in Table 1 and Figure 1.  

FIGURE 3. Current and historical (21kya) SDMs. These models are based on the reduced dataset 

with correlated environmental variables removed (SI2). A. P. vandykei. B. P. larselli. C. P. 

idahoensis – this model was also constructed on a reduced geographic area to prevent 

overprediction into the far southwest (SI5). Note the difference in probability score between the 

current and historical models for P. idahoensis. 

FIGURE 4. Current RDMs for P. vandykei and P. larselli. These models are based on the dataset 

with correlated environmental variables removed (SI2). 

FIGURE 5. Current and historical (21kya) RDMs for P. idahoensis. These models are based on the 

reduced dataset with correlated environmental variables removed (SI2) and constructed on a 

reduced geographic area to prevent overprediction into the far southwest (SI5). Note the 

difference in probability score between the current and historical models for P. idahoensis. 

FIGURE 6. Species delimitation results from Structurama, spedeDTEM, and BPP (results plotted 

using guide tree estimated in *BEAST). Separate blocks represent separate species. 
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SUPPLEMENTARY MATERIAL 

Supplementary material, including data files, can be found in the Dryad data repository at 

http://datadryad.org, ###. 

TABLE 1. Sampling distribution from putative lineages. Population labels correspond to those in 

Figures 1 and 2. P. vandykei: PvaO = Olympic Peninsula, PvaW = Willapa Hills, PvaC = 

Cascade Mountains; P. larselli: PlaOR = Oregon, PlaWS = Washington south, PlaWN = 

Washington north; P. idahoensis: PidN = northern river drainages, PidS = southern river 

drainages. 

Population ID Species Geographic region n 

PvaC P. vandykei Lower Cascades Washington 11 

PvaO P. vandykei Olympic Peninsula Washington 6 

PvaW P. vandykei Willapa Hills Washington 3 

PlaWN P. larselli Kittitas Co Washington 7 

PlaWS P. larselli Skamania Co Washington 6 

PlaOR P. larselli Multnomah Co Oregon 6 

PidN P. idahoensis Northern River drainages of Idaho 11 

PidS P. idahoensis Southern River drainages of Idaho 10 

Total 60 
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TABLE 2. Loci used for analyses. 

Locus Source Forward primer Reverse primer bp 

DT-

ModSel n* 

Tajima's 

D 

Fu and 

Li's F 

RPL12 T. Devitt 5' ATTCCACTGCGCTATTGAT- -CCCAAGTTTGACCCTACAGAGAT 3' 453 K80 92 1.349ns 1.588ns 

HSPA8 T. Devitt 5' ATTCAGGATACCGTTAGCATCAATGT- -TGCCAAGCTAGATAAAATTCAGATCC 3' 492 K80+I 66 -0.239ns 1.109ns 

CYT B 

Carstens et 

al. 2004 5' GAACTAATGGCCCACACWWTACGNAA- -AGGAGTGAGAGTAGAGTAAGTA 3' 662 HKY+I+G 57 0.649ns -0.042ns 

GAPD 

Dolman and 

Phillips 

2004 5' ACCTTTATTGCGGGTGCTGGCATTGC- -CATCAAGTCCACAACACGGTTGCTGTA 3' 653 K80+I 94 0.327ns 0.710ns 

RAG1 

Wiens et al. 
2006 5' AGYCARTAYCAYAARATGTA- -GTGGTGCTTCAGAACATCCTCC 3' 1210 K80+I 108 0.834ns 1.584ns 

5' AGAACCTGGAGCGCTATGAGATGTGGCG- -TTCTTCCTCAAGTGCTTGTCG 3' 

3470 total 

PL1 this study 5' TACCACAAGGCGAGGACTTC- -CCCCAGATCTTTTTCCCATT 3' 215 JC 28^ 1.032ns 0.828ns 

PL14 this study 5' GAATAGCGCCAATCCTGGTA- -CCCCCTGTAGAATTCCCATT 3' 

468^ 

464` F81 

16^ 

34` 

-0.033ns 

^0.773ns` 

0.374ns^ 

0.731ns` 

PL96 this study 5' AGTGGTTGGTTTCGCTTCAC- -CCTCGTTCAGCCAATCATCT 3' 

271^ 

254` 

F81^ 

JC+I` 

22^ 

34` 

1.471ns^ 

1.246ns` 

0.984ns^ 

1.066ns` 

ITS 

Hillis and 

Dixon 1991 5' GAGGGTCGCTTGAACATCAAT- -TGATCTGAGGTCGTAGTCGAGA 3' 884 F81+I 26^ 0.443ns 1.031ns 

5' GAGTGTCAGCACCTCAAGGAC- -GTCGTAACAAGGTTTCCGTAGG 3' 

n* = number of alleles 

^ = P. idahoensis 

` = P. larselli 

ns = not significant 

Loci in bold are aligned across all three species 

50
51
52
53
54
55
56
57
58
59
60
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TABLE 3. Summary statistics for each locus: ss = segregating sites, bp=base pairs, π = nucleotide 

diversity. 

P. vandykei loci ss ss/1000 bp π 

Cytb 12 18.1 0.0072 

RPL12 6 13.4 0.0017 

HSPA8 2 4.1 0.0020 

GAPD 6 10.2 0.0035 

RAG1 5 4.0 0.0009 

P. larselli loci

Cytb 26 39.3 0.0155 

RPL12 7 15.7 0.0063 

HSPA8 8 16.3 0.0048 

GAPD 17 28.2 0.0119 

RAG1 4 3.2 0.0006 

PL14 1 2.2 0.0008 

PL96 2 7.9 0.0031 

P. idahoensis loci

Cytb 43 65.0 0.0106 

RPL12 4 8.8 0.0019 

HSPA8 8 16.3 0.0052 

GAPD 9 15.4 0.0030 

RAG1 13 10.4 0.0019 

PL14 5 10.7 0.0032 

PL96 1 3.7 0.0019 

ITS 13 14.7 0.0046 

PL1 1 4.7 0.0012 
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TABLE 4. Species delimitation results: Structurama and BPP. Structurama results show the 

probability of k = 1 through k = 3 lineages for each species; p = posterior probability. BPP 

results are the mean probability of 1-3 lineages in each species; mean p is the mean probability 

of the species tree with a certain number of lineages using several sets of priors, algorithms, 

starting trees, and guide trees. See S4 for additional details. 

Structurama k p 

P. vandykei 1 0.03 

2 0.73 

3 0.20 

P. larselli 1 0 

2 0.68 

3 0.24 

P. idahoensis 1 0 

2 0.67 

3 0.25 

BPP # lineages mean p 

P. vandykei 1 0.36 

2 0.08 

3 0.57 

P. larselli 1 0.40 

2 0.01 

3 0.59 

P. idahoensis 1 0.04 

2 0.96 
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TABLE 5. Species delimitation results: spedeSTEM. List of all possible species trees for P. 

vandykei, P. larselli and P. idahoensis; wi is the model probability calculated from the likelihood 

score of each species tree. See S4 for all possible species trees AIC values. 

Species Tree Lineages AIC wi 

(PlaWN+PlaWS+PlaOR,(PidN+PidS, PvaC+PvaO+PvaW)) 3 1444.20 1 

(PlaWN+PlaWS+PlaOR,(PvaC+PvaO+PvaW,(PidN, PidS))) 4 4909.38 0 

((PlaOR,PlaWN+PlaWS),(PidN+PidS, PvaC+PvaO+PvaW)) 4 4920.97 0 

(PlaWN+PlaWS+PlaOR,(PidN+PidS,(PvaC, PvaO+PvaW))) 4 5326.52 0 

((PlaWN+PlaOR, PlaWS),(PidN+PidS, PvaC+PvaO+PvaW)) 4 5582.67 0 
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TABLE 6. Environmental variation between northern and southern lineages of P. idahoensis. For each of the four retained principal 

components axes, the loadings are shown for each environmental variable in addition to the proportion of variance explained (in 

parentheses). Mean niche differences for both the actual localities and random background localities are shown at the bottom of the 

table. Axes with significant divergence between lineages based on t-tests after Bonferroni correction are indicated by an asterisk. Axes 

that remain significantly divergent after comparison with the background distribution are labeled with a D, whereas axes that show 

significant conservatism relative to the background are labeled with a C. 

PC1 PC2 PC3 PC4 

Variable Description (0.38) (0.22) (0.11) (0.09) 

Bio 2 Mean diurnal temperature range 0.1698 0.4239 0.2453 -0.1776

Bio 4 Temperature seasonality 0.0939 -0.0969 -0.4651 0.1898

Bio 5 Max temperature of warmest month 0.3964 0.0159 0.0488 -0.0038

Bio 6 Min temperature of coldest month 0.3279 -0.276 -0.0445 0.0828

Bio 7 Temperature annual range 0.144 0.4406 0.1454 -0.1306

Bio 8 Mean temperature of wettest quarter 0.3269 -0.0281 -0.1569 0.0376

Bio 9 Mean temperature of driest quarter 0.368 -0.1365 -0.0056 0.0862

Bio 14 Precipitation of driest month -0.3255 -0.0136 -0.3685 0.2209

Bio 15 Precipitation seasonality 0.0154 -0.4524 0.3241 0.0168

Bio 17 Precipitation of driest quarter -0.3646 -0.0068 -0.1112 0.2042

Bio 19 Precipitation of coldest quarter -0.1734 -0.3507 0.374 0.1089

NDVI 

Normalized Difference Vegetation Index 

(greenness) 0.107 0.1478 0.2263 0.5812

NDVISTD Greenness seasonality (yearly standard deviation) -0.1605 0.0776 0.3992 0.1183

QSCAT Canopy or surface moisture and roughness 0.0307 0.3303 -0.1934 0.2208

SRTM Elevation -0.3507 0.1894 0.1 -0.1006

TREE Percentage of tree cover 0.0663 0.1419 0.1496 0.6216

50
51
52
53
54
55
56
57
58
59
60
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Mean Niche Difference 2.97* D 2.31* C 1.77* D 0.15 

Mean Background Difference 1.52 3.33 0.08 0.14 

98% CI Background Difference (0.51-2.49) (2.99-3.69) (0.00-0.71) (0.00-0.66) 

50
51
52
53
54
55
56
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58
59
60

http://sysbio.oxfordjournals.org/


Oregon

Washington

Idaho

British Columbia

PidN

PidS

PlaWN

PlaO

PlaWS

PvaO

PvaW PvaC
LGM

CR

2 million years

P. dunni

P. vehiculum

outgroup

P. larselli
P. vandykei

P. idahoensis

http://sysbio.oxfordjournals.org/


PlaOR
PlaWS

PlaWN

Pid

PvaO
PvaW

PvaC

d)

a) b)

c)

PlaWN
PlaWS

PlaOR

Pid

PvaC
PvaW

PvaO

PlaWS
PlaOR

PlaWN

Pid

PvaW
PvaC

PvaO

PlaOR

PlaWA

Pid

Pva!
Coast

Pva!
Cascades

http://sysbio.oxfordjournals.org/


215x279mm (300 x 300 DPI) 

http://sysbio.oxfordjournals.org/


215x279mm (300 x 300 DPI) 

http://sysbio.oxfordjournals.org/


215x279mm (300 x 300 DPI) 

http://sysbio.oxfordjournals.org/


Pi
dN

Pi
dSPv

aW
Pv

aC
Pv

aO

Pl
aO

Pl
aW

S
Pl

aW
N

P. vandykei P. idahoensisP. larselli

2 ? 2 ?Structurama

spedeSTEM


BPP

http://sysbio.oxfordjournals.org/

	Historical Species Distribution Models Predict Species Limits in Western Plethodon Salamanders
	tmp.1601068695.pdf.A7GtC

