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Mountain Passes and
Saddle Points∗

James Bisgard†

Abstract. Variational methods find solutions of equations by considering a solution as a critical point
of an appropriately chosen function. Local minima and maxima are well-known types of
critical points. We explore methods for finding critical points that are neither local maxima
or minima, but instead are mountain passes or saddle points. Criteria for the existence
of minima or maxima are well known, but those for mountain passes or saddle points are
less well known. We give an accessible treatment of some criteria for the existence of such
points (including the mountain pass lemma), as well as describe a method that could be
used to find such points.
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1. Introduction. A basic problem of applied mathematics is to provide solutions
(or approximations to solutions) of various equations. One very useful approach to
this goal is the so-called variational method, in which the solutions of an equation are
sought by finding the critical points of an appropriately chosen function.

Example. Solutions of the equation 2xex
2 − 4x+ sinx = 3 correspond to critical

points of the function f(x) = ex
2 − 2x2 − cosx − 3x, since the equation f ′(x) = 0

is equivalent to the given equation. Thus, solutions of the equation can be found by
minimizing the function f .

Example. Suppose A is an n× n symmetric matrix, and suppose b ∈ R
n is fixed.

A very important type of equation to solve is Ax = b. If we define Fb : Rn → R by
Fb(x) =

1
2Ax · x − x · b (where · represents the dot product on R

n), then it can be
shown that ∇Fb(x) = Ax − b. In particular, ∇Fb(x) = 0 if and only if Ax = b.
Thus, solutions of Ax = b correspond to critical points of the function Fb.

In many useful instances, the problem of finding solutions of some type of equation
is equivalent to the problem of finding critical points of an appropriately chosen func-
tion. From elementary calculus, a familiar type of critical point is a local minimum
(or maximum). These can be found by picking an initial point, moving to another
point at which the function is lower, and repeating this process until the function can
no longer be decreased. However, not every function has a minimum or maximum.

Example. Suppose A is a 2 × 2 symmetric matrix, with eigenvalues λ1 and λ2

such that λ1 < 0 < λ2. As mentioned above, solutions of Ax = b can be found as
critical points of Fb(x) =

1
2Ax · x− x · b. In this case, if x1 is an eigenvector for λ1,
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Fig. 1.1 Graph of Fb(x) for a 2× 2 matrix A with one positive and one negative eigenvalue.
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Fig. 1.2 One-dimensional examples.

then for any t ∈ R, we will have

Fb(tx1) =
1

2
tAx1 · tx1 − tx1 · b

=
λ1t

2

2
‖x1‖2 − tx1 · b → −∞

as t → ∞ since λ1 < 0. If x2 is an eigenvector for λ2, a similar calculation shows that
Fb(tx2) → +∞ as t → ∞, since λ2 > 0. Thus, in this case, Fb will have neither a
minimum nor a maximum on R

n. See Figure 1.1 for a graph of F0.
Variational methods can be used to find critical points that are neither minimums

nor maximums. Another useful feature of solving equations by looking for critical
points is that it is sometimes possible to use the existence of one critical point together
with other information about the function to prove that there is at least one other
critical point. For example, suppose F1 : R → R is a smooth real-valued function, and
we know that F has a local minimum at 0 and there is an x1 with F1(x1) < F1(0).
Then, by Rolle’s theorem and the intermediate value theorem, there is a critical point
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Fig. 1.3 Examples of “bad” behavior.

x2 between x1 and 0 (see Figure 1.2a). Alternatively, if F2 : R → R is smooth and has
two local minima at x1 and x2, then F2 must have another critical point x3 between
x1 and x2 (see Figure 1.2b). However, it is important to note that these last two
examples fail if we change the domain from R to R

2. In fact, there are polynomial
counterexamples!

Example. If G(x, y) = x2(1 + y)3 + 7y2, then G has a single critical point (at
(0,0)), which is a local minimum, but not a global minimum ([7]; see the contours in
Figure 1.3a).

Example. If F (x, y) = (x2y − x− 1)2 + (x2 − 1)2, then F has exactly two critical
points, both of which are local minima ([11]; see the contours in Figure 1.3b).

2. The Palais–Smale Condition and Palais–Smale Sequences. As the last two
examples in the previous section suggest, some type of extra assumption in higher
dimensions will be needed. From a naive point of view, if F (x, y) has two local
minima, it seems reasonable that F should have another critical point. After all, if
we think of the two local minima as being the low points in two adjacent valleys,
there should be a mountain pass linking the two valleys, which would correspond to
a third critical point. Using an idea from [2], if we think of pouring water into a
valley containing one of the critical points, the water level should rise until it fills that
valley and then overflow into the adjacent valley. The point at which the water begins
flowing into the adjacent valley would be the third critical point.

However, as we know from the last examples in the previous section, our intuition
is incorrect. We consider now F (x, y) = (x2y − x − 1)2 + (x2 − 1)2. A routine
calculation shows that F has two critical points at (1, 2) and (−1, 0), both of which
are local minima. A look at the contours of F in Figure 1.3b shows that there is a
ridge running parallel to the positive y-axis which separates the valleys in which (1, 2)
and (−1, 0) lie. What happens as we pour water into the valley containing the local
minimum at (1, 2)? As the water level rises, the shoreline advances up the valley,
in the direction of the positive y-axis. Now, notice first that a shoreline is part of
a contour of F (because the water level along a shore is constant), and second that
along the positive y-axis, the portion of the shorelines at water level h and h +�h
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Fig. 2.1 Shorelines at different levels (�h = .3); note how they spread out along the positive y-axis!

get farther and farther apart. (See Figure 2.1.) Next, recall that ∇F (x, y) tells us
two geometric things about the graph of F at the point (x, y):

(i) The direction of ∇F (x, y) tells us the direction of maximum increase of F
(that is, ∇F (x, y) points straight uphill).

(ii) The length of ∇F (x, y) gives us the size of that increase; i.e., the size of
∇F (x, y) tells us about the steepness of the landscape at (x, y).

If the contours of F are far apart, then the landscape is flat and the length of
∇F (x, y) must be small. Since the shorelines along the positive y-axis get farther
apart as the water level rises, there must be a sequence (xn, yn) on those shorelines
for which ‖∇F (xn, yn)‖ → 0. Notice also that along this sequence F (xn, yn) increases
(since the water level rises) and yet F (xn, yn) is bounded from above (since the water
level remains below the ridge separating the valleys). These types of sequences play
such an important role in variational methods that they have their own name.

Definition 2.1. Suppose that F : R
n → R is a continuously differentiable

function. A sequence of points xn such that
(i) F (xn) is bounded and
(ii)

∥∥∇F (xn)
∥∥ → 0

is called a Palais–Smale sequence (or simply a (PS)-sequence) for F .
Example. For F (x, y) = (x2y − x − 1)2 + (x2 − 1)2, a (PS)-sequence for F is

(xn, yn) =
(

1
2n + 1

2n2 , n+ 1
n

)
. Notice that this sequence does not converge! That F

has a nonconvergent (PS)-sequence is a sign of its “bad” behavior. Note also that
(x1, y1) = (1, 2), and that (xn, yn) is in the valley that contains (1, 2)!

Definition 2.2 ((PS)-condition). If F : Rn → R is continuously differentiable,
we say that F satisfies the Palais–Smale condition (or simply F satisfies the (PS)-
condition) if every (PS)-sequence of F has a convergent subsequence.

Note that neither of the last two examples in the previous section satisfies the
(PS)-condition! Geometrically, the (PS)-condition can be thought of as a “steepness”
condition on the landscape given by the graph of F : away from critical points, the
landscape has at least some minimal steepness. From this point of view, the contours
for the last examples in the previous section make it clear that those functions don’t
satisfy the (PS)-condition: in certain directions, their landscapes become flatter and
flatter and yet there aren’t any critical points in those directions. Analytically, the
(PS)-condition is a compactness requirement on the function F . Much more informa-
tion about the history and genesis of the (PS)-condition may be found in [16].
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Fig. 3.1 Mountain pass geometry: red denotes levels lower than the valley centered at 0 between the
two peaks, while blue is a level higher than the middle. Notice that every path that begins
at 0 and ends at x1 passes through blue!

3. Mountain Passes. Throughout this section, we will assume that F : Rn → R

is twice continuously differentiable. Suppose now that F satisfies the following:

(MP1) F (0) = 0.

(MP2) There is an r > 0 and an α > 0 such that F (x) ≥ α for all x with ‖x‖ = r.

(MP3) There is an x1 such that ‖x1‖ > r and F (x1) ≤ 0.

Geometrically, we think of 0 as lying in a valley, surrounded by a range of moun-
tains whose minimum height at distance r from 0 is at least α (see Figure 3.1). Ideally,
there should be a mountain pass over the mountains. Unfortunately, as F in the last
section shows, this may not be true. However, we can show the following.

Theorem 3.1. Suppose F satisfies (MP1-3). Then there is a (PS)-sequence xn

such that F (xn) → c, where c ≥ α.
In the proof, we will pick a path γ that connects 0 and x1, thinking of it as a long

rubber string. Next, we move all the points on this string “downhill” (decreasing the
value of F at all the points on γ). As we do this, the string will move and stretch over
the landscape. Notice, however, that since all points on the string are moved downhill,
points that start in the valley will remain in the valley and points that are close to
x1 must remain outside the valley. Thus, every time we move the string, it must still
cross the mountain range, and so if xn is the highest point along the deformed string,
F (xn) ≥ α. To see why ‖∇F (xn)‖ → 0, recall that the length of the gradient describes
the steepness of the landscape, and if the landscape is very steep, then a small change
in x can make a large change in the value of F (x). Therefore, if ‖∇F (xn)‖ did not go
to zero, then every time the string was deformed, the maximum of F along the string
would decrease too much and eventually we would have F (xn) < α.

4. How to Move Points “Downhill ”. A key ingredient in the proof of Theorem
3.1 is the idea of “pushing” a point “downhill” on the graph of F . Before we prove
Theorem 3.1, we need to be more explicit as to what this function is. Given a point
x, we will want to push x in such a fashion that the direction of movement is in the
same direction as the negative gradient of F at x. That is, if ϕt(x) represents the
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function (in t) that moves a point x, we ideally would use

d

dt
ϕt(x) = −∇F (ϕt(x)) ,

ϕ0(x) = x.

Since F is twice continuously differentiable, the standard existence and uniqueness
theorems for initial value problems apply. However, there is a difficulty: these solu-

tions may not exist for all t > 0 (for example, if F (x, y) = x3

3 , solutions may “blow
up” in finite time). To simplify things, we would like solutions to exist for all time.
This can be guaranteed by making the right side of the differential equation bounded.

With this in mind, let w(x) := ‖∇F (x)‖
1+‖∇F (x)‖2 for x ∈ R

n, and consider

d

dt
ϕt(x) =−w(ϕt(x)) ∇F (ϕt(x)) ,

(4.1)
ϕ0(x) = x.

Note that the right side of the first equation in (4.1) satisfies

‖w(ϕt(x))∇F (ϕt(x))‖ =
‖∇F (ϕt(x))‖

1 + ‖∇F (ϕt(x))‖2 ‖∇F (ϕt(x))‖

=
‖∇F (ϕt(x))‖2

1 + ‖∇F (ϕt(x))‖2 ≤ 1,

and so solutions of (4.1) will exist for all time. (The inequality above also implies that
the maximum speed that ϕt(x) moves x is 1.) Note that since w(x) ≥ 0 for all x ∈ R

n,
if ϕt(x) solves this initial value problem, then the first equation of (4.1) says that the
tangent vector to the curve ϕt(x) has the same direction as the negative gradient (so
we push in the direction of the negative gradient), and the second equation of (4.1)
says that the initial position is x. Thus, for a given initial position x, ϕt(x) describes
how x moves in time if we always push straight downhill. Note also that ϕt(x) = x if
x is a critical point of F . There are two important features of ϕt(x):

(i) ϕt(x) is a continuous function of t and x, and
(ii) ϕt2

(
ϕt1(x)

)
= ϕt1+t2(x).

Property (i) means that if x and y are sufficiently close together, then after pushing
them for the same amount of time, they must remain close. (A word of caution: the
larger t is, the closer together the points must be at the beginning! Property (i) does
not say that two points that begin close together must remain close for all t > 0!)
Property (ii) says that if we begin at x, push x for some time t1 to the point ϕt1(x),
and then use ϕt1(x) as a new initial value to push downhill for some amount of time t2
and end up at ϕt2

(
ϕt1(x)

)
, we have the same effect as if we had just let x be pushed

down for t1+ t2 to get to ϕt1+t2(x). Property (ii) is often referred to as the semigroup
property.

5. Proving Theorem 3.1. We are now ready to prove Theorem 3.1.
Proof. Notice that for any fixed x ∈ R

n, we have the following (where we are
using 〈·, ·〉 to mean an inner product on R

n):

d

dt
F (ϕt(x)) =

〈
∇F (ϕt(x)),

d

dt
ϕt(x)

〉

= 〈∇F (ϕt(x)),−w(ϕt(x)) ∇F (ϕt(x))〉(5.1)

= −w(ϕt(x)) ‖∇F (ϕt(x))‖2 ≤ 0.
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Fig. 5.1 γ (magenta), γ1 (cyan), and γ2 (green). Note that where the contours are close together
(steep terrain), the path is deformed more than where the contours are far apart (flat
terrain).

(5.1) says that F always decreases along ϕt(x), which means that ϕt(x) moves x
downhill.

Next, we claim that ‖ϕt(0)‖ < r and ‖ϕt(x1)‖ > r for all t ≥ 0. Geometrically
(see Figure 3.1), this says that ϕt(0) remains inside the mountain range, while ϕt(x1)
remains outside the mountain range. Geometrically, this is clear since ϕt moves points
downhill and both 0 and x1 are below the minimum height of the mountain range.
Analytically, if there was a t > 0 such that ‖ϕt(0)‖ = r, then assumptions (MP1) and
(MP2) and (5.1) would imply

α ≤ F (ϕt(0)) ≤ F (0) < α,

which is a contradiction. A similar argument shows that ‖ϕt(x1)‖ > r for all t > 0.
Suppose now that γ : [0, 1] → R

n is continuous, γ(0) = 0, and γ(1) = x1. (Thus,
the image of the interval [0, 1] is a path that connects 0 and x1.) For any i ∈ N,
consider γi : [0, 1] → R

n given by γi := ϕi ◦ γ. (γi is γ deformed by ϕt for i units of
time. See Figure 5.1.) Because γ and ϕi are continuous, so too is γi, and so there is an
si ∈ [0, 1] such that F (γi(si)) = maxs∈[0,1] F (γi(s)). Note that γi(si) is a high point
along the path γi. Because γi(0) = ϕi(γ(0)) = ϕi(0) and γi(1) = ϕi(γ(1)) = ϕi(x1),
we know that ‖γi(0)‖ < r < ‖γi(1)‖. Thus, by the intermediate value theorem, there
is an s such that ‖γi(s)‖ = r. Therefore, by assumption (MP2), we know that

α ≤ F (γi(s)) ≤ max
s∈[0,1]

F (γi(s)) ≤ F (γi(si)).(5.2)

Notice that we have a sequence si in [0, 1]. Because [0, 1] is compact, there is a
subsequence sij which converges to some s� ∈ [0, 1]. Let x� := γ(s�).

We now claim that F (ϕt(x
�)) ≥ α for all t ≥ 0. If not, there must be a τ > 0

such that F (ϕτ (x
�)) < α. Since x� = limj→∞ γ(sij ) and F is continuous, we know
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that

F (ϕτ (γ(sij ))) < α

for all large j. By picking J sufficiently large, we may assume that iJ > τ . We have

α ≤ F (ϕiJ (γ(siJ )) (by (5.2))

≤ F (ϕτ (γ(siJ ))) (by (5.1), since τ < iJ)(5.3)

< α,

which is impossible. Thus, F (ϕt(x
�)) ≥ α for all t ≥ 0.

Because F (ϕt(x
�)) is decreasing as a function of t and bounded from below, we

know that limt→∞ F (ϕt(x
�)) exists. Since

∫ ∞

0

d

dt
F (ϕt(x

�)) dt = lim
t→∞F (ϕt(x

�)) − F (x�),

we know that the integral

∫ ∞

0

− d

dt
F (ϕt(x

�)) dt

is finite. By (5.1), we then have

∫ ∞

0

w(ϕt(x
�)) ‖∇F (ϕt(x

�))‖2 dt < ∞,

and so there is a sequence tn such that tn → ∞ and w(ϕtn (x
�)) ‖∇F (ϕtn(x

�))‖2 → 0.
By definition of w(x), we have

‖∇F (ϕtn(x
�))‖3

1 + ‖∇F (ϕtn(x
�))‖2 → 0,

as n → ∞, and so ‖∇F (ϕtn(x
�))‖ → 0. Since F (ϕt(x

�)) ≥ α and F (ϕt(x
�)) is

decreasing, xn := ϕtn(x
�) is a (PS)-sequence with the correct behavior if we define

c := limt→∞ F (ϕt(x
�)).

We have the following automatic corollary.
Corollary 5.1. Suppose that F satisfies the conditions of Theorem 3.1 and F

satisfies the (PS)-condition. Then F has a critical point x2 such that F (x2) ≥ α.

6. A Closer Analysis of the Proof of Theorem 3.1. In the proof of Theorem 3.1,
we used the “high points” γi(si) along the deformed paths γi to find an appropriate
point x� on the initial curve γ. Using these deformed paths, we can actually get a
more descriptive lower bound on the critical value F (x2) than the one provided in
Corollary 5.1. For this, recall the geometric picture of a valley surrounded by a range
of mountains. If F satisfies the (PS)-condition, we know by Corollary 5.1 that there
is a mountain pass leading out of the valley. In some sense, a mountain pass between
0 and x1 should occur at the lowest high point among all possible paths connecting
0 and x1. That is,

ĉ := inf
γ∈Γ

max
s∈[0,1]

F (γ(s))(6.1)
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should be the elevation of the lowest mountain pass leading out of the valley containing
0 if Γ is the set of paths which begin in the valley containing 0 and end outside the
valley at a level lower than F (x1), i.e.

Γ := {γ ∈ C([0, 1],Rn) : ‖γ(0)‖ < r < ‖γ(1)‖, F (γ(0)) ≤ F (0), and F (γ(1)) ≤ F (x1)}.
We can show the following.

Lemma 6.1. Suppose that F satisfies the conditions of Theorem 3.1. Then
(1) ĉ ≥ α, where ĉ is from (6.1);
(2) if xn is the (PS)-sequence from Theorem 3.1 and c := limn→∞ F (xn), then

c ≥ ĉ, where ĉ is from (6.1).
Proof. To prove (1), we show that if γ ∈ Γ, then there is an s̃ such that ‖γ(s̃)‖ = r.

Assuming this, we will have F (γ(s̃)) ≥ α by (MP2). Since this is true for all γ ∈ Γ,
ĉ ≥ α follows from (6.1). To see that there is an appropriate s̃, note that since
‖γ(0)‖ < r < ‖γ(1)‖ and ‖γ(s)‖ is a continuous function of s, the intermediate value
theorem implies the existence of an appropriate s̃.

For (2), we need only show that the high points γi(si) on the curves γi satisfy
F (γi(si)) ≥ ĉ. But this follows immediately from the fact that γi ∈ Γ and the
definition of ĉ.

The following is an immediate corollary.
Corollary 6.2. Suppose F satisfies the conditions of Theorem 3.1 and the

(PS)-condition. Then there is a critical point x2 such that F (x2) ≥ ĉ.
In fact, we have the following.
Lemma 6.3. If F satisfies the conditions of Theorem 3.1 and the (PS)-condition,

there is a critical point z with F (z) = ĉ.
Lemma 6.3 is often called the mountain pass lemma and is due to Ambrosetti

and Rabinowitz [1]. It is one of the most important tools in finding critical points of
functions that may not be bounded from below, and has a huge number of applications.
For example, the bibliography of [13] has over a thousand references!

Proof. By the definition of ĉ, for each j ∈ N, there is a curve γj with ĉ ≤
maxs∈[0,1] F (γj) ≤ ĉ + 1

j . For each of these curves γj , we may repeat the procedure

in the proof of Theorem 3.1, using the assumption that F satisfies the (PS)-condition
and Lemma 6.1 to show that there exists a critical point xj with ĉ ≤ F (xj) ≤ ĉ+ 1

j .

Notice that since ∇F (xj) = 0, the previous inequality implies that xj is a (PS)-
sequence for F . Because F satisfies the (PS)-condition, there is a subsequence xjk

that converges to some z. Since F is twice continuously differentiable, ∇F (z) = 0.
Finally, the inequality ĉ ≤ F (xjk ) ≤ ĉ+ 1

jk
implies F (z) = ĉ, as desired.

In the mountain pass lemma, we begin with a known critical point surrounded by
mountains (a local minimum at 0) and find a second one by picking a path connecting
0 to the region outside the mountains and pushing the points on the path downhill.
Unfortunately, there are situations when the function doesn’t have this sort of ge-
ometry. For example, if A is an n × n symmetric matrix with positive and negative
eigenvalues, then the function Fb(x) =

1
2Ax · x− x · b doesn’t satisfy the conditions

to apply the mountain pass lemma.

7. Saddle Points. When A is an n× n symmetric matrix with positive and neg-
ative eigenvalues and Fb(x) = 1

2Ax · x − x · b, there are complementary subspaces
A+ and A− of Rn on which F goes to +∞ or −∞, respectively. A+ is the subspace
spanned by the eigenvectors with positive eigenvalues and A− is the subspace spanned
by the eigenvectors with negative eigenvalues. More generally, throughout this sec-
tion we assume that F is twice continuously differentiable and that F satisfies the
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following:

(SP1) There are two subspaces A+ and A− of Rn such that Rn = A+ ⊕A−.
(SP2) There exists an α such that F (x) ≥ α for all x ∈ A+.

(SP3) There exist r > 0 and β < α such that F (x) ≤ β for all x ∈ A− with ‖x‖ = r,

i.e., F (x) ≤ β < α for all x ∈ ∂Br(0) ∩A−.

In Figure 7.1, we suppose that F : R3 → R, A+ is one-dimensional and A− is two-
dimensional, which is why ∂Br(0) ∩ A− is a circle. The pluses along A+ mean that
along A+, F is positive (so α > 0), while the minus signs around ∂Br(0) ∩A− mean
that F is negative there (β ≤ 0). Recall that Rn = A+⊕A− means that every x ∈ R

n

may be written as x = y + z for unique y ∈ A+ and z ∈ A−.

� � � � � � � � � � � � �

�
�
�

�

�

�

�
��

�

�

�

�

A�

�Br�0�� A�

Fig. 7.1 Saddle point geometry for F : R3 → R.

Example. Suppose F (x, y) = x2 − y2. We have

R
2 = {(x, 0) : x ∈ R} ⊕ {(0, y) : y ∈ R} = A+ ⊕A−.

Note that if |x| = r, then F (x, 0) = r2 > 0, while F (0, y) = −y2 ≤ 0. Thus, we may
take α = r2 and β = 0. See Figure 7.2.

Example. More generally, suppose that A is an n× n matrix in block form:

A =
P BT

B N

]
,

where P is a j × j symmetric positive definite matrix, N is an (n − j) × (n − j)
symmetric negative definite matrix, and B is an (n− j)× j matrix. Notice that this
means A is a symmetric matrix, and so solutions of Ax = b may be found by looking
for critical points of Fb(x) =

1
2 〈x, Ax〉 − 〈x,b〉. Writing x ∈ R

n as

x =
y
z

]
,

where y consists of the first j components of x and z consists of the remaining n− j
components, we may decompose R

n as

R
n = R

j × {0} ⊕ {0} × R
n−j = A+ ⊕A−.

If x ∈ A+ (i.e., x = [ y0 ]), then Fb(x) =
1
2 〈y, Py〉− 〈y,Πb〉, where Π is the projection

onto the first j components. Since P is symmetric and positive definite, for any
x ∈ A+, we will have

Fb(x) ≥ λ1‖y‖2 − ‖b‖ · ‖y‖ = λ1‖x‖2 − ‖b‖ · ‖x‖,
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X

Y

Z

Fig. 7.2 Saddle point geometry for F (x, y) = x2 − y2.

where λ1 is the smallest eigenvalue of P . Now, the smallest that λ1‖x‖2 − ‖b‖ · ‖x‖
can be is − ‖b‖2

4λ1
, which means

Fb(x) ≥ −‖b‖2
4λ1

for all x ∈ A+.

Thus, we may take α = − ‖b‖2

4λ̂1
. Similarly, if x ∈ A− (i.e., x = [ 0z ]), we will have

Fb(x) ≤ λ̂1‖x‖2 + ‖b‖ · ‖x‖,

where λ̂1 is the largest eigenvalue of N . Since λ̂1 is negative, there is an r̃ such that
λ̂1r̃

2 + ‖b‖r̃ < α. Taking r = r̃ and β = λ̂1r̃
2 + ‖b‖r̃, we have

Fb(x) ≤ β < α for all x ∈ A− with ‖x‖ = r̃.

Therefore, Fb(x) = 1
2 〈Ax,x〉 − 〈x,b〉, and Fb satisfies (SP1-3). Note that the first

example of this section takes P = [1], N = [−1], and B = [0].
We can show the following.
Theorem 7.1. Suppose F satisfies (SP1-3). Then there is a (PS)-sequence xn

such that F (xn) → c, where c ≥ α.
The idea of the proof is similar to what was done in the previous section for a

mountain pass. There, we began with a path γ and deformed it downhill by using ϕt

as defined in (4.1). In the saddle point setting, if A− is j-dimensional, we begin with a
j-dimensional subsurface in R

n whose boundary is the spherical shell of radius r in the
subspace A−, and deform it. By keeping track of the largest value of F (the “high”
points) on these deformations, we can find an appropriate initial point x� for which
F (ϕt(x

�)) is bounded from below. An important ingredient in the proof of Theorem
3.1 was an intersection property: every deformed path intersected the mountain range,
which enabled us to show that our (PS)-sequence satisfied F (xn) → c ≥ α. We will
need a similar ingredient in this setting, namely, that every deformed subsurface
intersects A+. (See Figure 7.3.)

Intuitively, the idea is clear: on the boundary ∂Br(0) ∩A− of the initial surface,
F (x) ≤ β < α, while on the line (representing the subspace A+), F (x) ≥ α. If
we deform the surface using (4.1), the points from the boundary cannot cross the
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A

Br 0 A

Fig. 7.3 Because F on ∂Br(0) ∩ A− is smaller than F on A+, the intersection of the surface that
has boundary ∂Br(0) ∩ A− and A+ cannot be removed by deforming the surface if the
deformation must decrease F .

subspace A+ since ϕt moves points in such a fashion as to make F smaller, and F on
A+ is larger than F on the boundary. Thus, the deformed surface must also always
intersect A+.

8. Proof of Theorem 7.1. The proof of Theorem 7.1 is much more technical
than the corresponding proof of Theorem 3.1, since in the mountain pass setting of
assumptions (MP1)–(MP3), we can use the intermediate value theorem to show the
deformed paths intersect the mountain range. Here, since we are in higher dimensions,
we will need more sophisticated machinery.

Proof. Let γ : Br(0) ∩ A− → R
n satisfy γ(x) = x for all x ∈ ∂Br(0) ∩ A−. (We

could, for example, take γ to be the identity.) For each i ∈ N, let γi : Br(0)∩A− → R
n

be defined by γi(x) := ϕi(γ(x)). (Recall that ϕt(x) is the solution of (4.1), and so
ϕt(x) pushes x “downhill”.) Let us assume for the moment that

for each i ∈ N, there is an x̂i ∈ Br(0) ∩A− such that ϕi(γ(x̂i)) ∈ A+.(8.1)

Since Br(0) ∩A− is compact, there is an xi ∈ Br(0) ∩A− such that

F (xi) = max
x∈Br(0)∩A−

F (x) ≥ α,(8.2)

where for the inequality we have used (8.1) and assumption (SP2). Since Br(0)∩A−
is compact, there is a subsequence xij such that xij → x� ∈ Br(0) ∩ A−. We claim
now that F (ϕt(γ(x

�))) is bounded from below. If not, then there is a τ such that

F (ϕτ (γ(x
�))) < β.

Since xij → x� and ϕτ and γ are continuous, we then know that for all suitably large
j,

F (ϕτ (γ(xij ))) < β.

Taking J sufficiently large that iJ > τ , (8.2) would imply that

α ≤ F (ϕiJ (γ(xiJ ))) ≤ F (ϕτ (γ(xiJ ))) < β,

which contradicts assumption (SP3) that β < α. Since F (ϕt(γ(x
�))) is bounded from

below, we may make the same argument as in the proof of Theorem 3.1 to conclude
the existence of an appropriate (PS)-sequence xn.
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It remains only to prove (8.1). We will use the notion of the degree of a continuous
mapping, which makes the remainder of this proof more technical. The intuitive idea
of why (8.1) holds is explained in Figure 7.3, and readers new to this area should feel
no compulsion to read the following details.

Suppose U is a bounded open subset of Rj , f : U → R
j is twice continuously

differentiable, c /∈ f(∂U), and f ′(x) is invertible for all x ∈ f−1(c). For any such
f, U, c, we define

d(f, U, c) :=

x∈f−1(c)

sgn(det f ′(x)).

Notice that d(f, U, c) has a couple of “obvious” properties:
(d1) d(id, U, c) = 1 if c ∈ U , and d(id, U, c) = 0 if c /∈ U , where id is the identity

mapping;
(d2) if d(f, U, c) �= 0, then there is at least one x ∈ U with f(x) = c;

as well as two important “nonobvious” properties:
(d3) if h(s,x) is jointly continuous in s and x and there is no (s,x) ∈ [0, 1]× ∂U

for which h(s,x) = c, then d(h(s, ·), U, c) is independent of s;
(d4) if f(x) = g(x) for all x ∈ ∂U , then d(f, U, c) = d(g, U, c). (In fact, (d4) is a

consequence of (d3).)
This definition of degree can be extended to continuous functions f : U → R

n and any
c /∈ f(∂U); see [10], [15], or [18]. Even though degree theory may be an unfamiliar
topic for students, it is very useful beyond its application here. Additional applications
can be found in the above references.

Let P : Rn → A− be the projection ontoA−. By assumption (SP1), Pu = 0 if and
only if u ∈ A+. Using (d2), (8.1) follows by showing d(Pϕi(γ(·)), Br(0)∩A−,0) �= 0.

Notice that since γ(x) = x for all x ∈ ∂Br(0) ∩ A−, Pγ(x) = Px = x for any
x ∈ ∂Br(0) ∩A−. Thus, id(x) = Pγ(x) for all x ∈ ∂Br(0) ∩A−. By (d1) and (d4),
we then have

d(Pγ(·), Br(0) ∩A−,0) = d(id, Br(0) ∩A−,0) = 1.(8.3)

Next, we will use (d3), so we need to find an appropriate h. For x ∈ Br(0)∩A− and
s ∈ [0, 1], let

h : [0, 1]× Br(0) ∩A− → A− be given by h(s,x) := Pϕis(γ(x)).(8.4)

Note that h(0,x) = Pγ(x), h(1,x) = Pϕi(γ(x)), and h(t,x) is continuous in t and x.
If we can show that h(s,x) �= 0 for all (s,x) ∈ [0, 1]× (

∂Br(0) ∩A−
)
, then

d(Pϕi(γ(·)), Br(0) ∩A−,0) = d(h(1, ·), Br(0) ∩A−,0) (by (8.4))

= d(h(0, ·), Br(0) ∩A−,0) (by (d3))

= d(Pγ(·), Br(0) ∩A−,0) (by (8.4))

= 1 �= 0, (by (8.3)),

as desired.
It remains to show that h(s,x) �= 0 for all (s,x) ∈ [0, 1]×(

∂Br(0)∩A−
)
. Suppose

that there is in fact a τ ∈ [0, 1] and x0 ∈ ∂Br(0) ∩ A− such that h(τ,x0) = 0. By
(8.4), Pϕiτ (γ(x0)) = 0, and so (by definition of P ) ϕiτ (γ(x0)) ∈ A+. (SP2) then
implies that F (ϕiτ (h(x0))) ≥ α. By (5.1), we then have

α ≤ F (ϕiτ (γ(x0))) ≤ F (γ(x0)) ≤ β,
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where we have used the fact that x0 ∈ ∂Br(0) ∩ A− and (SP3). This contradicts
α > β, and so there can be no such τ and x0.

We have the following immediate corollary.
Corollary 8.1. Suppose F satisfies the assumptions of Theorem 7.1 and the

(PS)-condition. Then F has a critical point x̂ such that F (x) ≥ α.
As it turns out, there is a minimax value similar to (6.1) in this setting:

c̃ = inf
γ∈Γ

max
x∈Br(0)∩A−

F (γ(x)),

where

Γ = γ ∈ C(Br(0) ∩A−,Rn) : γ(x) = x for all x ∈ ∂Br(0) ∩A−
}
.

It can be shown that statements analogous to Lemma 6.1, Corollary 6.2, and Lemma
6.3 are true if F satisfies (SP1-2) and the (PS)-condition. Proofs may be found in [5].

9. From R
n to Hilbert Space. So far, we’ve worked in the setting of Rn, but as

it turns out, with a slight modification of assumption (SP1), every statement we’ve
given holds true in Hilbert space as well! Throughout this section, we suppose E is
a Hilbert space. If F : E → R is differentiable, what is ∇F (x)? Recall that in R

n,
∇F (x) has the following relationship to F ′(x):

〈∇F (x),h〉 = F ′(x)h for all h ∈ R
n,(9.1)

where F ′(x) is a linear operator on R
n and 〈·, ·〉 is an inner product on R

n. Thus,
on E, ∇F (x) should have the same property. If F is (Fréchet) differentiable at x,
F ′(x) defines a linear functional on E by h �→ F ′(x)h, and so the Riesz representation
theorem guarantees the existence of an appropriate ∇F (x). Thus, if F is twice con-
tinuously differentiable, we may define an appropriate ϕt using (4.1). In fact, we can
get away with slightly weaker conditions on F : we need only assume that x �→ F ′(x)
is locally Lipschitz continuous to define ϕt by (4.1).

Critical points in infinite dimensions often correspond to solutions of differential
equations.

Example. Consider the boundary value problem

u′′(x) = cos(u(x)) for all x ∈ (0, 1),
(9.2)

u(0) = 0 and u(1) = 0.

If we multiply the differential equation by any smooth function h(x) satisfying h(0) =
0 = h(1) and integrate over the interval [0, 1], we have

∫ 1

0

u′′(x)h(x) dx =

∫ 1

0

cos(u(x))h(x) dx.

Integrating the left-hand side by parts (note that the boundary terms vanish, since
h(0) = 0 and h(1) = 0), we then have

−
∫ 1

0

u′(x)h′(x) dx =

∫ 1

0

cos(u(x))h(x) dx,

or equivalently

∫ 1

0

u′(x)h′(x) + cos(u(x))h(x) dx = 0.
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Since this must be true for any smooth h that vanishes at 0 and 1, any solution of
(9.2) has the property that

∫ 1

0

u′(x)h′(x) + cos(u(x))h(x) dx = 0 for all smooth h with h(0) = 0 = h(1),(9.3)

which is the weak form of the Euler–Lagrange equation for the functional

F (w) :=

∫ 1

0

1

2
|w′(x)|2 + sin(w(x)) dx.

In fact, under appropriate assumptions, F is differentiable and

F ′(w)h =

∫ 1

0

w′h′ + cos(w)h dx.

Thus, (9.3) means F ′(u) = 0, which in turn means that ∇F (u) = 0. Thus, a solution
of (9.2) is a critical point of F , and under appropriate assumptions on the admissible
functions w, any critical point of F will be a solution of (9.2).

Example. Suppose Ω is an open subset of Rn and ∂Ω is a smooth (n− 1)-dimen-
sional surface. Under appropriate assumptions on f : R → R, if we follow the proce-
dure above, it can be shown that solutions of

�u = f ′(u) in Ω,

u = 0 on ∂Ω

correspond to critical points of the functional

F (w) =

∫
Ω

1

2
|∇w|2 − f(w) dx.

The biggest change in transitioning to infinite dimensions involves the intersection
properties that were used to show that the (PS)-sequences in Theorems 3.1 and 7.1
satisfied F (xn) ≥ α. No change is necessary for the results of sections 3, 5, and 6,
since the intersection property there uses the intermediate value theorem. In sections
7 and 8, we needed to use the degree for functions f : ∂Br(0) ∩ A− → A−, and A−
was a finite-dimensional space (being a subspace of Rn). However, degree doesn’t
generalize to infinite dimensions in a straightforward fashion. (This is related to the
rather remarkable fact that the closed unit “sphere” {x ∈ E : ‖x‖ = 1} in an infinite-
dimensional Hilbert space is deformable to the unit ball {x ∈ E : ‖x‖ ≤ 1}, which is
false in finite dimensions!) A simple option is to replace (SP1) with

(SP1)
�

E = A+ ⊕A−, where A− is finite-dimensional.

With assumption (SP1)�, all the conclusions of sections 7 and 8 hold even for an
infinite-dimensional Hilbert space E. It should be noted that there are alternatives
to (SP1)�. For example, we can restrict the types of functionals F that we consider,
so that ϕt is of a type that allows us to calculate a degree.

An interesting question is how to implement algorithms for finding mountain
passes or saddle points. The treatment here suggests beginning with an appropriate
γ, deforming it by the negative gradient, and keeping track of the high points along
each deformation. It can be shown (see [5]) that if F satisfies the (PS)-condition and
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critical points of F are isolated, then a subsequence of these high points converge to
a critical point. In the finite-dimensional setting, calculating ∇F is straightforward.
In the infinite-dimensional setting, calculating ∇F is less obvious.

Example. Suppose

F (w) :=

∫ 1

0

1

2
|w′(x)|2 + sin(w(x)) dx.

As we’ve shown, critical points of F correspond to solutions of (9.2). An important
question is what functions w will be considered. We will take the Sobolev space
E := W 1,2

0 (0, 1). (While Sobolev spaces may be unfamiliar to some students, they are
a ubiquitous tool in many areas of differential equations. Two excellent references for
students unfamiliar with Sobolev spaces and their uses in differential equations are
[6] and [12].) In this case, it can be shown that

F ′(w)h =

∫ 1

0

w′(x)h′(x) + cos(w(x))h(x) dx.(9.4)

Our question is: for a fixed w, what is ∇F (w)? Note that (9.4) defines a linear
functional on E, and so by the Riesz representation theorem, there is a v ∈ E such
that

F ′(w)h = 〈v, h〉 for all h ∈ E,

where 〈·, ·〉 denotes the inner product on E. Thus, v = ∇F (w). In our case, we may
use

〈v, h〉 =
∫ 1

0

v′(x)h′(x) + v(x)h(x) dx.

Therefore, since F ′(x)h = 〈v, h〉 for all h ∈ E, v must satisfy

∫ 1

0

w′(x)h′(x) + cos(w(x))h(x) dx =

∫ 1

0

v′(x)h′(x) + v(x)h(x) dx

for all h ∈ E, or equivalently

∫ 1

0

(
v′(x)− w′(x)

)
h′(x) +

(
v(x) − cos(w(x))

)
h(x) dx = 0

for all h ∈ E. Suppressing the explicit dependence on x and assuming that w and
v are sufficiently smooth that we may integrate by parts in the first terms, we then
have ∫ 1

0

−(
v′′ − w′′)h+

(
v − cos(w)

)
h dx = 0

for all h ∈ E. Thus, v must satisfy

−v′′(x) + v(x) = −w′′(x) + cos(w(x)) for all x ∈ (0, 1),

v(0) = 0 = v(1).

Notice that this is a linear equation for v! Thus, finding ∇F (w) involves solving a
linear differential equation. Note also that ∇F (w) depends on the inner product. For
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this particular problem and choice of E, we could have used 〈u, v〉 := ∫ 1

0 u′(x)v′(x) dx,
in which case v = ∇F (w) would satisfy

−v′′(x) = −w′′(x) + cos(w(x)) for all x ∈ (0, 1),

v(0) = 0 = v(1).

For more information on how the inner product affects the gradient, the reader is
encouraged to consult the excellent paper [14].

10. Decreasing Regularity and Moving to Banach Spaces. Throughout, we
have assumed that the function F is twice continuously differentiable, which was
primarily done to explain why there is a unique solution of (4.1). A more general
existence and uniqueness theorem implies that (4.1) has a unique solution if we assume
only that F ′ is locally Lipschitz. Remarkably, it turns out that Theorems 3.1 and 7.1
hold under the assumption that F ′ is merely continuous! The necessary tool is the
pseudogradient. At a point x, we want a vector v whose length is “comparable” to
the size of F ′(x), and so that when we move from x in the direction of v, F increases.
The following explains this more precisely.

Definition 10.1. If F : Rn → R is differentiable at x, we say that v ∈ R
n is a

pseudogradient for F at x if
(1) ‖v‖ ≤ 2‖F ′(x)‖ and
(2) F ′(x)v ≥ ‖F ′(x)‖2 (recall that F ′(x) is a linear map from R

n into R).
Since F ′(x)v ≤ ‖F ′(x)‖ ‖v‖, conditions (1) and (2) imply that when F ′(x) �= 0,

we have ‖F ′(x)‖ ≤ ‖v‖ ≤ 2‖F ′(x)‖, and so the length of v is comparable to the
size of F ′(x). In addition, if g(t) := F (x + tv), then the chain rule implies that
g′(0) = F ′(x)v ≥ ‖F ′(x)‖2 (by (2)), and so when F ′(x) �= 0, F will increase if we
move in the direction of v. Thus, a pseudogradient carries the same information as a
gradient vector. There are two advantages to using pseudogradient vectors:

1. It can be shown that if F ′ is merely continuous on R
n, there exists a locally

Lipschitz continuous pseudogradient field for F on {x ∈ R
n : F ′(x) �= 0}. At

the cost of some extra technicalities, a pseudogradient field can be used in
place of a gradient field to prove Theorems 3.1 and 7.1. For details, see [17]
or [21].

2. A pseudogradient doesn’t need an inner product, only the norm. Therefore,
pseudogradients can be used in Banach spaces. This is particularly useful
when working on differential equations in the Sobolev spaces W 1,p(Ω) for
p �= 2. For details, see [17] or [21].

11. Further Reading. The mountain pass and saddle point theorems are extraor-
dinarily useful results for showing existence of solutions of nonlinear equations. They
have a huge number of applications in differential equations, of which we have just
barely scratched the surface here. A reference at a level accessible to advanced under-
graduates and/or beginning graduates without much exposure to functional analysis
is [18]. At a more advanced level, there are several books: [3], [9], [17], or [21]. Even
more advanced are [19] or [20]. In addition, [13] has an extensive bibliography. It is
possible to relax several of the assumptions in section 3 or 7 and get the same type
of results. For example (as discussed briefly above), it is possible to decrease the
regularity required of F . It is also possible to relax the geometric assumptions. There
are alternatives for “pushing” functions. For example, in [4] or [8], a flow arising from
a semi-linear heat equation is used (although this can also be thought of as changing
the inner product; see [14]). In addition, instead of trying to prove that a function F
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satisfies the (PS)-condition, a more common approach is to construct a (PS)-sequence,
and then use information about that particular sequence to extract a convergent sub-
sequence (the approach followed in many of the references, in particular [21]). From
that point of view, the approach here is useful, since different initial γ may lead to
different solutions. Another interesting generalization arises by considering function-
als on metric spaces, not necessarily vector spaces. More information in this direction
can be found in the bibliography of [13].

Acknowledgment. My thanks to the referees for their helpful comments and
suggestions, which have led to an improved paper.
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