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Hydroxyl radical is produced via the Fenton
reaction in submitochondrial particles under
oxidative stress: implications for diseases
associated with iron accumulation

Carin Thomas, Melissa M. Mackey, Amy A. Diaz, David P. Cox

Department of Chemistry, Central Washington University, Ellensburg, Washington, USA

Mitochondrial dysfunction and reactive oxygen species (ROS) are often implicated in diseases
involving oxidative stress and elevated iron. As mitochondria produce ATP by oxidative
phosphorylation, ROS by-products are generated from the electron transport chain. Although
superoxide and hydrogen peroxide have been thoroughly investigated, little evidence documents
hydroxyl radical (HO••) production in mitochondria. In order to determine whether HO•• is generated
under oxidative stress conditions by a Fenton-type mechanism, bovine heart submitochondrial
particles were examined for HO•• in the presence and absence of iron ligands, antioxidant enzymes
and HO•• scavengers. HO•• was measured as 2,3- and 2,5-dihydroxybenzoic acid (DHBA), using
HPLC with electrochemical detection. The iron ligand desferrioxamine significantly decreased
DHBAs, indicating that HO•• generation required iron redox-cycling. In addition, results from
exogenous SOD and catalase, exogenous hydrogen peroxide, and HO••-scavenger studies support
a Fenton-type reaction mechanism. The results indicate that increased HO•• levels occur in
mitochondria under oxidative stress and that the HO•• levels can be modulated with antioxidant
enzymes and iron ligands. Our findings together with reports on iron accumulation in degenerative
diseases highlight the importance of developing mitochondrial-targeted antioxidants for the
therapeutic intervention of diseases associated with mitochondrial dysfunction and oxidative
stress.
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Introduction

Energy demands of complex aerobic organisms
require the efficient synthesis of ATP by mito -
chondrial oxidative phosphorylation. In conjunction
with ATP synthesis, however, aerobic organisms are
exposed to reactive oxygen species (ROS) that are by-

products of the mitochondrial electron transport
chain. Under conditions of persistent oxidant
production, such as during mitochondrial electron
transport chain dysfunction, antioxidant enzymes that
remove ROS may be overwhelmed causing oxidative
stress. Oxidative stress has been implicated in the
pathology of degenerative diseases, including
carcinogenesis, hemochromatosis, Parkinson’s disease,
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Alzheimer’s disease, Friedreich’s ataxia and aging
itself.1–6 Diseases associated with tissue iron
accumulation are of particular concern,7–10 as iron
catalyzes the generation of the highly reactive ROS,
hydroxyl radical (HO•).
During oxidative stress, mitochondria may be

important sites for sustained HO• production via the
Fenton reaction as the precursors and catalysts for
Fenton chemistry are co-located within the
mitochondrial matrix. Superoxide anion radical is
produced in the matrix at complexes I11 and III12 of
the electron transport chain. Hydrogen peroxide is
formed from superoxide by Mn-containing superoxide
dismutase. Low molecular weight iron is present13 and
iron ligands that permit iron redox-cycling are
abundant.14 Thus, an HO• flux could be generated in
mitochondria by the Fenton reaction (Eq. 1), driven
by the reduction of iron by superoxide (Eq. 2) in the
presence of an iron catalyst which is chelated to a
ligand that facilitates redox cycling. Under
mitochondrial oxidative stress conditions which favor
Fenton chemistry and iron reduction by superoxide,
HO• could cause significant biological damage.

Fe2+(ligand) + H2O2→ Fe3+(ligand) + OH– + HO• Eq. 1

Fe3+(ligand) + O2
•–→ Fe2+(ligand) + O2 Eq. 2

The purpose of this study was to test the hypothesis
that HO• is produced via the Fenton reaction in
mitochondria under oxidative stress and that
mitochondrial HO• production can be modulated by
manipulating Fenton reaction conditions.

Materials and methods

Chemicals
All reagents were of the highest grade possible from
Sigma-Aldrich Chemical Co. (St Louis, MO, USA),
EM Science or JT Baker (VWR, West Chester, PA,
USA) and were used as received from the supplier. The
HPLC standards, 2,3- and 2,5-dihydroxybenzoic acid,
were purchased from Sigma-Aldrich Chemical Co.

HPLC hydroxyl radical assay
Hydroxyl radical was measured by aromatic
hydroxylation using salicylate (2-hydroxybenzoate) as
a trap according to published methods.15 The analytes,
2,3- and 2,5-dihydroxybenzoic acid (DHBA), were
detected using a high-performance liquid chromato -
graph (HPLC) equipped with a DHBA-250 column (5
µm particle size; 250 mm × 3 mm i.d. column size) and
a Coularray electrochemical detector from ESA, Inc.

(Chelmsford, MA, USA). The elution profile was
linear with a mobile phase of 50 mM sodium acetate,
50 mM citric acid, 25% methanol (v/v), and 5% 2-
propanol (v/v), adjusted to pH 2.5 with phosphoric
acid. The mobile phase was prepared in 18.3 MΩ-cm
resistance ultrapure water from a NANOpure system
(Barnstead, Dubuque, IA, USA), and was further
purified by a C18 cartridge (Waters, Milford, MA,
USA) to remove trace organics. The DHBA-250
column temperature was maintained at 27ºC and the
flow rate at 0.5 ml/min throughout the analysis.
DHBA concentrations were calculated by reference to
2,3- and 2,5-DHBA standard curves that were linear
with correlation coefficients of r2 ≥ 0.98.

Isolation of mitochondria and submitochondrial
particles
Bovine heart submitochondrial particles (SMPs) were
prepared by differential centrifugation and sonication
according to published methods,16 except that no
EDTA was added. The sonication of mitochondrial
solutions inverts the inner mitochondrial membrane
to form SMPs. This inversion permits the facile
analysis of chemical reactions that occur on the
matrix face of the inner mitochondrial membrane.
The SMPs were uncoupled by several freeze-thaw
cycles until additions of ADP in the presence of
electron transport chain substrates did not increase
oxygen consumption rates. The SMPs were also
exhaustively washed to remove matrix components
such as mitochondrial DNA and enzymes. All
isolation buffers and solutions were treated with
Chelex-100 mesh resin (BioRad) to remove trace
metals. SMP protein concentrations were determined
by the Biuret method with bovine serum albumin as
the standard.

Succinate oxidase (EC 1.3.5.1) enzyme assay
Before SMPs were used for experiments, electron
transport chain function was assessed with succinate
oxidase activity which tests electron flow through
complexes II, III, and IV, coenzyme Q, and
cytochrome c. Succinate is oxidized by complex II and
donates electrons via the electron transport chain to
complex IV where oxygen is reduced to water and
removed from solution. Thus, succinate oxidase
enzyme activity was monitored by measuring rates of
oxygen consumption with a Clarke electrode using 1.0
mM succinate as substrate in a 10 mM or 50 mM
potassium phosphate buffer pH 7.0 with 1.00 mg SMP
protein/ml as previously described.17 SMP succinate
oxidase specific activities ranged between 70–100
nmol O2/min/mg protein.
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SMP metal analysis by ICP-MS
Metal element concentrations were determined using
an X-Series ASX-510 Inductively-Coupled Plasma
Mass Spectrometer (ICP-MS) from Thermo Scientific
Corporation. External metal standards (5–1000 ppb)
were measured in triplicate with percentage standard
deviations ranging from 3–11% for Fe. Three SMP
samples were separated into membrane and
supernatant fractions by centrifugation at 105,000 g
for 55 min. The fractions were digested with nitric acid
at 115ºC for 20 min. Samples were diluted to a final
concentration of 5% nitric acid before analysis in
triplicate.

Submitochondrial particle incubation and Fenton
chemistry reaction conditions
Submitochondrial particles were used in order to
simplify measurement of hydroxyl radical formation
on the matrix side of the inner mitochondrial
membrane. ADP was used as a physiological iron
chelator that occurs in the mitochondrial matrix.
When electron transport is inhibited by antimycin A,
superoxide levels are known to increase which induces
an oxidative stress state.18 Rotenone was used to stop
reverse electron flow from complex II to complex I.
The iron and ligand were first added to reaction tubes
and the solution was thoroughly mixed by pipette.
Following these two additions, buffer was introduced,
then salicylate and any other components such as
H2O2, mannitol and thiourea, SOD, or catalase. The
reactant final concentrations were: 1.00 mg/ml,
submitochondrial particle protein, 200 µM antimycin
A, 2.5 µM rotenone, 10 mM or 75 mM sodium
salicylate, 10 mM mannitol or thiourea, 50 U/ml SOD,
100 U/ml catalase and 1.0 mM disodium succinate in a
10 mM or 50 mM potassium phosphate buffer pH 7.0.
Ligand effects were tested with 20 µM or 100 µM
ADP and 100 µM desferrioxamine (DF) in the
presence and absence of 1.0 µM or 2.0 µM FeCl3.
Reactions were incubated at 30.0ºC for 0.5 h or 2.00 h,
initiated with succinate and stopped with 0.40 M
perchloric acid which precipitated mitochondrial
protein. Each sample was centrifuged, filtered (0.22
µm, Corning spin-x), and the supernatants were
analyzed for dihydroxybenzoic acids by HPLC with
electrochemical detection.

Antioxidant enzyme studies: superoxide dismutase
and catalase
Active superoxide dismutase (SOD) from bovine
erythrocytes (Calbiochem, La Jolla, CA, USA) and
catalase from bovine liver were used. Enzymes were
inactivated by boiling for 1 h in capped microcentrifuge

tubes. Using perchloric acid to precipitate proteins was
found to decrease DHBA solubility and, therefore, was
not used in the antioxidant enzyme studies. Instead,
proteins were separated from supernatant by
filtration. Specifically, after 0.5-h reaction time, 0.6 ml
of each sample was filtered by centrifugation in a
Spin-x microcentrifuge tube with a 0.22 µm nylon
filter and supernatants were analyzed immediately by
HPLC.

Statistical analysis
Results for total DHBA values (sum of analytes 2,3-
DHBA and 2,5-DHBA) are expressed as mean ± SD
of six independent experiments or mean values and
propagated errors √SD1

2 + SD2
2 of triplicate

determinations from two independent experiments.
Statistical analyses were performed using Student’s

t-test with the significance set at P < 0.05.

Results

In the presence of a physiological iron catalyst
Fe(ADP), SMPs generated significantly more HO• as
total DHBA under oxidative stress conditions than
under normal electron transport chain conditions
(Fig. 1). SMPs incubated without electron transport
chain inhibitors produced only 4% of the HO•

generated in the presence of inhibitors. The relative

Figure 1 Electron transport chain inhibition increases HO•

production in submitochondrial particles. HO• was
measured as DHBA in SMPs incubated in the
presence and absence of the electron transport
chain inhibitors, antimycin A and rotenone. Values
are the mean ± SD from six independent experi -
ments (Fe-ADP + AA, rot) and the mean ± range of
three independent experiments (Fe-ADP without
inhibitors). Mean values are significantly different
(P ≤ 0.01). Reaction mixtures contained 100 µµM
ADP, 1.0 µµM FeCl3, 10 mM salicylate, 1.00 mg SMP
protein/ml in a 50 mM potassium phosphate buffer
pH 7.0. SMP succinate oxidase specific activity
was 80 nmol O2/min/mg protein. AA, antimycin A;
DHBA, 2,3- and 2,5-dihydroxybenzoic acid; rot,
rotenone. SMPs, submitochondrial particles
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proportion of SMP-generated HO• was iron-ligand
dependent, with Fe(desferrioxamine)-catalyzed HO•

levels significantly decreased as compared to
Fe(ADP)-catalyzed levels (Fig. 2). Given its log K
(Table 1) and standard reduction potential values,14

desferrioxamine is known to preferentially bind Fe3+

and to inhibit its reduction by superoxide.19

To test the hypothesis that HO• production was
dependent on superoxide and hydrogen peroxide, total
DHBAs were measured in the presence and absence of
exogenous SOD and catalase. The results clearly
demonstrate that these antioxidant enzymes, when
used individually and together, dramatically decrease
DHBA production (Fig. 3). To investigate this
hypothesis further, exogenous H2O2 was added to
SMPs to examine its effects on Fenton reaction
products. The results show that total DHBAs were
elevated in parallel with increased exogenous H2O2

(Table 2). Interestingly, the results also show a trend
towards increasing proportions of the 2,5-DHBA
isomer and decreasing proportions of the 2,3-DHBA
isomer in total DHBA values.

In order to test the hypothesis that a Fenton-type
reaction occurred in SMPs, the effects of hydroxyl radical
scavengers were investigated. Mannitol and thiourea, with
second-order rate constants of 2.7 × 109 M–1s–1 and 4.7 ×
109 M–1s–1, respectively, were chosen. When equimolar
concentrations (10 mM) of salicylate and scavenger were
used, the total DHBA mean ± SD (n = 6) or propagated
error (n = 2) observed were: salicylate alone, 159 ± 20 nM
(n = 6); with mannitol, 91 ± 8 nM (n = 2); and with
thiourea, 55 ± 3 nM (n = 2). All mean values were
significantly different at P ≤ 0.05. The data demonstrate

Table 1 Critical stability constants for organic ligands and
iron

Organic ligand Equilibrium Log K Log K
Fe2+ Fe3+

Desferrioxamine Bg [MHL]/[M] [HL] 30.6
Salicylic acide,g [ML2]/[M] [L]

2 11.2a 28.3a

Succinic acide [ML]/[M] [L] 1.4b 6.9
2,5-DHBAe [M(HL)2] [H]/[MHL] [H2L] 2.1a

2,3-DHBAf [ML2]/[M] [L]
2 28.7c

ADPd,g [ML]/[M] [L] (for Mg2+ 3.2–3.4)

Equilibrium log K data are for conditions of low ionic strength, 0.1 M.
Equilibrium temperatures are 25ºC unless noted: 
a 20ºC, b 37ºC, c 27ºC.
d The critical stability constant listed for ADP is for the association with
Mg2+ as the value for iron was unavailable. Sources: e Martell and
Smith33; f Martell and Smith34; g NIST database.35

DHBA, dihydroxybenzoic acid; L, ligand; M, metal; NIST, National
Institute of Standards and Technology, USA.

Table 2  Exogenous hydrogen peroxide increases HO• generation in submitochondrial particles

Additions Total DHBA (nM) Increase of total Contribution of isomer (%)
DHBA (%) 2,3-DHBA 2,5-DHBA

None 159 ± 20a 39 61
+ 0.50 mM H2O2 205 ± 22a 29 36 64
+ 1.00 mM H2O2 271 ± 2a 70 30 70

Submitochondrial particle (SMP) reaction mixtures contained rotenone, antimycin A, Fe(ADP), 10 mM salicylate, 1.00 mg SMP protein/ml in a 50 mM
potassium phosphate buffer pH 7.0. Electron transport was initiated by the addition of succinate and stopped with 0.4 M perchloric acid. SMP
succinate oxidase specific activity was 85 nmol O2/min/mg protein. Total DHBA values are the mean ± SD for no addition (n = 6) and mean ±
propagated errors for experiments with exogenously added H2O2 (n = 2). Percentage increase of total DHBA and percentage contribution of DHBA
isomers were calculated from nM mean values.
aAll mean values are significantly different from each other (P ≤ 0.01).
DHBA, 2,3- and 2,5-dihydroxybenzoic acid.

Figure 2 Desferrioxamine diminishes HO• production
in submitochondrial particles. HO• was
measured as DHBA in SMPs with ADP or
desferrioxamine (DF) in the presence and
absence of exogenous Fe3+. Values are mean
± SD for Fe-ADP (n = 6) and mean ±
propagated errors of triplicate determin -
ations from two independent experiments for
ADP, Fe-DF and DF without exogenous iron.
All mean values are significantly different
from each other (P ≤ 0.01). Reaction mixtures
contained 100 µµM ADP or desferrioxamine in
the presence and absence of 1.0 µµM FeCl3,
rotenone, antimycin A, succinate, 10 mM
salicylate, and 1.00 mg SMP protein/ml in a
50 mM potassium phosphate buffer pH 7.0.
SMP succinate oxidase specific activity was
70 nmol O2/min/mg protein. DHBA, 2,3- and
2,5-dihydroxybenzoic acid. SMPs, submito -
chondrial particles
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that thiourea was the more efficient scavenger, competing
with salicylate more effectively than mannitol for reaction
with HO•. The observed decreases in total DHBA are
consistent with the second-order rate constant values, and
provide additional support for the hypothesis that HO•

was generated via a Fenton reaction.
Endogenous iron concentrations appeared to

contribute to the total DHBA generated in SMPs as
shown in reactions in which ADP was added without
FeCl3 (Figs 2 and 3). Thus, ICP-MS analysis of three
SMP samples that were separated into membrane and
supernatant fractions was conducted to determine iron
content. The endogenous iron found in SMPs in mean
nmol Fe/mg protein ± SD were: for membrane fractions,
3.89 ± 0.03 and for supernatant fractions, 0.90 ± 0.06.
The mean nmol Fe/mg protein concentration for the
supernatant is equivalent to a micromolar concentration
under experimental conditions, and indicates that SMPs
contained approximately 1 µM endogenous iron in
solution. The majority of the endogenous iron (81%) was
associated with the membrane fraction, most likely in the
form of protein iron–sulfur centers or heme-iron.

Discussion

A growing body of evidence implicates mitochondrial
dysfunction in the etiology of degenerative diseases

that are associated with oxidative stress. Mito -
chondrial dysfunction has been observed in the
protein agglomeration that leads to Alzheimer’s
disease,20 in the dopaminergic neuron loss that occurs
in familial and idiopathic Parkinson’s disease4,21 and in
a mouse model of hemochromatosis.6 ROS generated
from dysfunctional mitochondria may contribute to
disease pathology. Under normal physiological
conditions, antioxidant enzymes minimize cellular
oxidations due to ROS. Our data indicate that
exogenously added SOD and catalase significantly
decrease HO• production in SMPs both in the presence
and absence of exogenous iron. When SOD and
catalase were added simultaneously, the HO• signal
was decreased substantially. Our results support the
notion that under normal metabolic conditions, little
damage is expected from oxidants generated by the
mitochondrial electron transport chain and Fenton
chemistry. This observation is consistent with
measurements of hydrogen peroxide and superoxide in
rat tissues under non-oxidative stress conditions.22

Thus, under normal conditions when the precursors to
HO• are generated at low levels, HO• levels will be
minimized. However, during the persistent oxidative
stress that occurs under pathological conditions,
endogenous antioxidant defense systems may not
provide sufficient protection. Our data imply that
significant increases in HO• levels will occur when

Figure 3 SOD and catalase diminish HO• production in submitochondrial particles. HO• was measured as DHBA in
SMPs in the presence of active enzyme or inactive enzyme (boiled 1 h). Reaction mixtures contained 20 µµM
ADP, 2.5 µµM rotenone, 200 µµM antimycin, 1 mM succinate, 1 mg/ml SMP protein, SOD, 50 U/ml, catalase
(CAT), 100 U/ml and 75 mM salicylate in the absence (open bars) or presence (gray bars) of 2 µµM FeCl3 in 10
mM potassium phosphate buffer, pH 7.00. Values are mean ± SD of three separate experiments and are
normalized to SMP succinate oxidase specific activity of 100 nmol O2/min/mg protein. Symbols represent
values that are significantly different from the corresponding sample with no enzyme addition (**P < 0.01).
DHBA, 2,3- and 2,5-dihydroxybenzoic acid. SMPs, submitochondrial particles



electron transport is chemically inhibited or, by
analogy, malfunctioning due to disease pathology or
conformation abnormalities of electron transport
proteins derived from genetic diseases.23

The mitochondrial matrix sequesters a pool of
chelatable iron that could exacerbate oxidative damage
during increased ROS production.13 Moreover,
increased iron storage in mitochondria has been noted
in central nervous system diseases as well as in aging
animals.9

Conditions of increased mitochondrial ROS
generation and elevated iron set the stage for HO•

production via the Fenton reaction. With an estimated
half-life of 10–9 s, HO• reacts quickly and indis -
criminately with substances that occur within a 93 Å
radius.24 The iron chelator, desferrioxamine, has been
shown to decrease the cellular damage that is associated
with iron-mediated oxidative injury.25 Iron associated
with desferrioxamine has a lower standard reduction
potential (Eº′, –0.45 V, Fe3+-DF/Fe2+-DF) than O2

•– (Eº′,
–0.33 V, O2/O2

•–), making its reduction by O2
•– thermo -

dynamically unfavorable and, therefore, its participation
in Equation 2 unlikely under physio logical conditions.14

By contrast, iron bound to ADP has a reduction
potential (Eº′, +0.10 V, Fe3+-ADP/Fe2+-ADP) that
favors its reduction by superoxide. When desferri -
oxamine was added to SMPs, a statistically significant
decrease in HO• production was observed. Consistent
with previous work,26 the desferrioxamine-dependent
decrease in SMP-derived HO• occurred in both the
presence and absence of exogenous iron suggesting that
SMPs contained an endogenous iron catalyst which was
verified by ICP-MS. However, desferrioxamine did not
completely remove DHBA production in SMPs. The
DHBAs observed in reactions containing desferri -
oxamine (Fig. 2) can be explained by Fe3+ binding to
other ligands in the reaction mixture. One possible
ligand is salicylate which has a log K value for Fe3+

binding that is comparable to that of desferrioxamine
(Table 1). In order to trap hydroxyl radical efficiently,
salicylate was at high concentrations in the reaction
mixtures and was 100–750-fold higher than
desferrioxamine. Salicylate is an effective chemical trap
for hydroxyl radical,15 and has been shown to provide
protection against oxidative stress induced in paraquat-
exposed rats.27 It is plausible that salicylate-bound iron
functioned as a Fenton catalyst in our experimental
system and as a specific target for HO•. Likewise,
succinate could have participated in iron binding (Table
1). In addition, under conditions of oxidative stress,
superoxide could induce the release of iron from
mitochondrial membrane iron–sulfur centers in
complexes I or II, as superoxide is known to cause the

release of iron from iron–sulfur centers.28 Subsequent
binding of the released iron to organic ligands such as
adenine nucleotides or succinate and other Krebs’s cycle
intermediates would form the Fenton catalyst in situ.
Although several reports have been published on the

amounts, the location and the membrane-sidedness of
superoxide and hydrogen peroxide production in
mitochondria,12,22,29,30 sparse evidence documents HO•

formation.26,31 Here we report that significantly increased
submitochondrial HO• production occurs under
conditions of oxidative stress caused by electron transport
chain inhibition. Iron enhances HO• production which is
reversed by desferrioxamine, indicating that a redox-
cycling iron catalyst is required. The effects of antioxidant
enzyme additions, exogenous hydrogen peroxide, and HO•

scavenger studies strongly support the notion that HO•

was produced by a Fenton-type reaction. These results
underline the importance of developing mitochondrial-
targeted antioxidants in the prevention and treatment of
diseases associated with mitochondrial dysfunction,
oxidative stress and elevated iron.32 In particular,
therapeutic strategies that focus on modulating Fenton
reaction conditions by removing catalytic iron, superoxide,
and hydrogen peroxide could provide beneficial effects by
diminishing the formation of HO•.
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