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Atmospheric turbulence conditions leading to focused
and folded sonic boom wave fronts

Andrew A. Piacsek?
Department of Physics, Central Washington University, Ellensburg, Washington 98926

(Received 12 July 2000; accepted for publication 9 April 2001

The propagation and subsequent distortion of sonic booms with rippled wave fronts are investigated
theoretically using a nonlinear time-domain finite-difference scheme. This work seeks to validate
the rippled wave front approach as a method for explaining the significant effects of turbulence on
sonic boomdA. S. Pierce and D. J. Maglieri, J. Acoust. Soc. Abi, 702-721(1971]. A very

simple description of turbulence is employed in which velocity perturbations within a shallow layer
of the atmosphere form strings of vortices characterized by their size and speed. Passage of a
steady-state plane shock front through such a vortex layer produces a periodically rippled wave front
which, for the purposes of the present investigation, serves as the initial condition for a
finite-difference propagation scheme. Results show that shock strength and ripple curvature
determine whether ensuing propagation leads to wave front folding. High resolution images of the
computed full wave field provide insights into the spiked and rounded features seen in sonic booms
that have propagated through turbulence. 2@02 Acoustical Society of America.

[DOI: 10.1121/1.1377631

PACS numbers: 43.28.Mw, 43.25.Ch, 43.50[MRS]

I. INTRODUCTION after shock arrival This power law is in approximate agree-
ment with experimental observatiohsy least for times sig-
The stochastic nature of turbulence precludes a completsificantly later than the shock arrival. An extension by Plot-
analytical solution to the problem of predicting how a sonickin and George to incorporate second-order scattering
boom will distort after passing through the atmosphere’s turperturbations permitted a calculation of shock thickehing
bulent boundary layefTBL). In order to predict the precise and a reformulation by Plotkfnyielded a calculation of the
wave form observed at the ground, it would be necessary tgpectral content.
specify the velocity, temperature, and density of the atmo-  The scattering theory necessarily yields a statistical re-
sphere within a considerable volume. The best we can hopgyit, stemming from a statistical description of turbulence; it
for, then, is to predict the average effects of turbulence omjoes not give a reliable prediction of a particular outcome for
certain broadly defined features of the wave form, and tahe fine-scale features of a sonic boom signature. It is not
compute the probablllty of certain extreme distortions, SUCI’t|earl then, whether this theory can give a Satisfactory pre-
as spikes, being present. diction of the probabilities of particular wave form shapes.
Studies of human response to sonic booms suggest thfforeover, molecular relaxation and nonlinearity are incorpo-
three main factors contribute to annoyance: peak amplitudgated into the first-ordelinean scattering theory in an ad
rise time, and overall spectral conténlthough they are  hoc manner, leaving open the question of the significance of
related, there is some degree of independence among thegfse effects on the mechanism of scattering.
factors. Clearly, a model for sonic boom propagation through  This paper describes an effort to apply a numerical
turbulence should predict average values for these wave fo”ﬂ?ropagation scheme to Pierce’s theory of rippled wave
characteristics as a function of general turbulence paramionts. In this model, the first-order effect of turbulence is to
eters. However, signatures of sonic booms created during tegdfract the incoming steady-state sonic boom, producing a
flights show considerable variability: Both peaked andyippled wave front. Where the ripple is concave in the direc-
rounded wave forms have been observed at different microjgn of propagation, the shock will focus and possibly form
phones during the same flight, and among different flights afo|ged wave fronts and caustics. The pressure behind the
the same microphorfeThis suggests that a sonic boom dis- shock (near the axis of focusings strongly influenced by
tortion model should also predict probabilities of certain ex-gjffracted waves originating along the wave front. Where the
treme wave forms. ripple is convex, geometric spreading leads to decreased am-
Two distinct modeling approaches have received signifiyjitydes. Pierce showed that where focusing occurs, the
cant attention: Crow’s scattering thedmgnd Pierce’s model shock front becomes spiked, and where defocusing occurs,
of wave front rippling leading to focusing and foldifigThe  the shock front becomes roundd.
main result of the first-order scattering theory is a power law  \y;qve front ripples will have many length scales, corre-

dependence of rms pressure fluctuations on the distance gfonding to the inertial subrange of turbulence scales. The
the observer behind the shock frdiaiso expressed as time ¢\myative effect of focusing and defocusing at many scales

could conceivably produce a thickened shock front, as well
dElectronic mail: piacsek@tahoma.cwu.edu as either a net peaked or rounded wave form with smaller
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spikes superimposed. Pierce combined this approach witfocal point, or nonlinear effects predominate, causing the

Crow’s statistical model of turbulence and derived a prob-concave wave front to straighten. The range of parameter

ability density function for the arrival time of microshocks values corresponding to shock amplitudes and ripple scales

produced by focusingThe staggered arrival of microshocks typical of sonic booms entering the TBL is shown to encom-

had the effect of thickening the overall shock. This analyticalpass the transition between folding and shock dynamic be-

approach, while initially encouraging, rested on many ashavior.

sumptions and is somewhat difficult to interpret. Numerical results for singly and multiply rippled wave
Since that time, computer speed and availability hagronts are presented in Sec. lll. Different ripple dimensions

reached the point where it is now the standard approach tand different observer locations are explored for singly

numerically solve the equations suggested by these modelippled wave fronts. Finally, the case of a sonic boom wave

of sonic boom propagation. For Pierce’s model to yield afront containing two ripple components is examined. De-

statistical prediction of sonic boom distortion, an initially pending on the observer location, the multiply rippled wave

plane wave front must be propagated through many realizfront produces either extra spikes or a delayed onset of the

tions of turbulence, as in a Monte Carlo method, and statisshock peak.

tigs compiled from the many outcomes..One advantage of NUMERICAL MODEL

this “brute force” approach is that particular model out- .

comes may bear some resemblance to actual outcomes, ufy- Overview

like a solution that incorporates an ensemble average of tur- A modified form of thenPE program developed by Mc-
bulence effects. In this way, probabilities of particular ponald et al®** is applied to propagation of sonic booms
outcomegextremely peaked or rounded wave forms, for ex-with slightly curved wave fronts. ThePE is a time-domain
ample may be computed. approach that models first-order nonlinear wave propagation

As a step in this direction, the present paper discussegat may be diffracted at small angles from the primary axis.
numerical results obtained by propagating the positive phasghe linearized version of thePE is essentially the time-
of a sonic boom with singly and multiply rippled wave domain equivalent of the parabolic equation often applied to
fronts. Turbulence is not incorporated directly into the propa-sound beams. The frame of reference is an observer moving
gation model, but serves only to produce the initial rippling.along the primary axis with the ambient sound spergd,
This simplification permits the study of wave form distortion this eases constraints on the grid spacing and time step size
as a function of propagation distance from a particular realneeded for computational stability. Other features of the al-
ization of wave front rippling. It also makes possible an in-gorithm make it robust at handling steep gradients in the
terpretation of the role played by different rippling scalessolution.
with regard to the location and magnitude of spikes or other ~ TheNnrPEwas developed primarily to model shock propa-
identifiable features of the distorted wave form. Another ad-gation underwater. To make the program suitable for sonic
vantage of assuming that the medium is inhomogeneous onlyoom propagation, the effects of thermoviscous dissipation
within a single thin layer is the ability to assess the timeand molecular relaxation have been incorporated. With the
scales of the evolution of certain features of wave form disprimary direction of propagation coinciding with thxeaxis
tortion, such as primary and secondary spikes. Results preand assuming diffraction occurs only in tke-y plane, our
sented here suggest that some of these time scales are comedified two-dimensionaliPE can be written as follows:
parable to the propagation time through the entire 2 2
atmospheric boundary layer; thus, it may be that distortions a_p+ c +lgi)@+ Co fxﬂdxf_ S5 P -0

0 2 eff 1,2 )

observed at the ground are, to first order, due to wave front pCo/ IX = 0y 2
rippling that occurs near the top of the boundary layer, since @
subsequent rippling may not have had sufficient time to dewherep represents acoustic pressucg,the ambient sound
velop features associated with focusing. speed,B the parameter of nonlinearity, ant}; an effective

Section | describes the numerical experiment. A modi-dissipation coefficient that incorporates thermoviscous
fied version of the NPE program by McDonald and damping as well as the effect of molecular relaxation for a
Kupermar is used to propagate the positive phase of a sonisteady state shock.
boom-like N wave whose wave front is rippled. The precise It should be noted that this method of accounting for
form of the rippling is related to a simplified description of molecular relaxation is not strictly valid for a focusing
turbulence. As discussed previously, no turbulence is incorshock, since focusing is not a steady-state process. Moreover,
porated into the propagation model beyond the initial rip-near focal points and caustics peak pressures may exceed
pling. 150 Pa, at which point vibrational energy states appear fro-

A detailed discussion of the focusing behavior of a weakzen to the passing shock front and no longer contribute to
shock with a finite rise time is presented in Sec. Il. Thisdispersive shock thickening. Modeling the effects of relax-
builds on previous work by the autd8mwhich examines the ation will be discussed in more detail in the following sec-
propagation of a step shock with a single concave ripple irtion.
the wave front. It is shown that two parameters, one associ- A two-dimensional acoustic fieldyo(x,y), is specified
ated with wave front curvature and the other with shockas the initial condition on the discretized coordinatesy;).
overpressure, govern whether geometric propagation préFhe algorithm then marches in time, solving a finite differ-
dominates, such that wave front folding occurs beyond thence approximation of Edq1). At specified times, the solu-
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1
§ 0. FIG. 1. (@) Wave front with parabolic
§ ripple. Ry is the radius of curvature at
8 0.6 y=0; Lq is the ripple amplitude(b)
§ Hyperbolic tangent profile of step
5 0.4 * shock. Distance along the axis is
g normalized with respect to the shock
= 0.2 width; pressure is normalized with re-

spect to the shock amplitude.

-6 -4 -2 2 4 6

normalized distance

tion array is written to disk, then rendered as a three- 86poCo
dimensional image. The high spatial resolution makes it lsh= BPy )
. . ! N . sh
possible to visualize the entire wave field as a smooth sur-
face, in which the details of the shock front may be dis-  When only thermoviscous effects are consideréd,
cerned. =6,=1.86x10 °m?s is the classical damping coefficient
The computational boundaries parallel to thaxis act  in air. In steady-state conditions, with the shock overpressure
as rigid, frictionless walls, reflecting incident waves without between 30 Pa and 120 Pa, the early portion of the ShOCk rise
attenuation or phase shift. This type of boundary was choseis dominated by dispersion associated with @laxation’?
for its simplicity and reliability. However, with such simple The fully dispersed shock front has a rise profile that is simi-
boundaries, care must be taken to make the domain sufflar to the hyperbolic tangent form produced by classical
ciently large that, within propagation times of interest, re-(thermoviscousdamping. The effects of Orelaxation can
flected waves do not contaminate the solution near the shodkus be modeled by replacing the classical dissipation coef-
front. It is also necessary to ensure that the initial wave fronficient with an effective dissipation coefficient,s,"
is perpendicular to these boundaries. _ _ 3 5
The acoustic pressure is set to zero everywhere ahead of Oetf= Ot CrrTac=1.67X107% m7s, @
the shock front. A grid tracking algorithm prevents the shockwhere 7 is the relaxation time of § c, is the frozen shock
front from advancing too close to the front of the computa-speed, andc is the difference between the frozen and equi-
tional domain. librium shock speeds. The frozen shock speed corresponds to
Computations were performed on a DEC Alpha work-a shock rise time that is much shorter than the molecular
station, with a typical grid size of 700 by 1000 points. With relaxation time(such that molecular motion appears frozen
uniform grid spacing, the number of grid points needed to béo the shock whereas the equilibrium sound speed corre-
large in order to achieve satisfactory resolution of the shoclsponds to a shock with a sufficiently long rise time that mo-
front while encompassing the entire positive phase ofNan lecular vibration states are always in equilibrium throughout

wave. the passage of the shock. Note that, in the limit of large
shock amplitudeAc approaches zero and,; approaches
. . 5cl :
B. Initial conditions The wave fron{depicted in Fig. (b)] lies nominally in

The initial pressure field consists of the positive phase ofhe y—z plane atx=0. The shallow ripple is specified as a
anN wave that has a steady-state shock profile and a slightlyariation along they axis of the shock arrival timerg(y), at
curved wave front. In the vicinity of the shock, the wave X=0. An example of the form ofy(y), used in the case of a
form is described by a hyperbolic tangent functishown in ~ step shock with a single concave ripple, is
Fig. 1(@)]; behind the shock front, the wave form amplitude Lo [y |2t
decreases linearly to zero. The hyperbolic tangent shock pro-  ry(y)= 1+ 2F(2) (L ) , (5)
file corresponds to the steady-state solution of &g.ob- 01~-0
tained when the initial condition is a planar step function.wherel is the maximum depth of the ripple af} is the
Traversing thex axis, the shock is specified by minimum radius of curvature of the wave front; both occur at

y=0. Note that the ripple is symmetric about 0; thus, the
(2)  x axis shall be referred to as the “central axis.” At large

values ofy, 7, approaches zero, so the wave front is nomi-
where Pg, denotes the peak shock pressure &gdis the  nally planar except in the vicinity of the central axis. Wave

Taylor length(which can be thought of as the shock width front curvature exists solely in the-y plane; the wave front
given by is uniform along thez axis[normal to the page in Fig.(fy)].

2X
1—-tanh—|,

I:)sh
Po(X)= > -
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The geometry of focusing is then two dimensional. t=0 t=.5Y =t t=154  t=2  1=25% =3
It is convenient and instructive to define nondimensional :
parameters associated with this initial shock profile and wavegs

front curvature. The shock thickness is described by the pa-_‘i?

rameter7=14,/L,, the wave front curvature is described by §

C=Lo/Ro, and the shock amplitude is characterized®y £

= ,BPsh(pocS)*l. Each of these parameters corresponds to a@

physical process that plays some role during wave front fo- £

cusing.

The shock thickness parametéf, can be associated
with diffraction that occurs within the shock front, referred to propagation axis (m)

here as “inner diffraction.” Wher is zero, the shock front

is perfectly abrupt and. in the absence of nonlinearity propaEIG. 2. Geometric evolution of initially concave shock front. Shown is a
L . . ' rogressive sequence of wave frotgslid lineg drawn at equal time inter-

gates exactly according to geometric theory. This leads to gqis. The dashed lines are the ray trajectories.

singularity in acoustic intensity at the point of first focus,

(x,¥)=(Ry,0), where rays launched from the immediate vi-

cinity of y=0 intersect. However, a nonzero value far C. Step shock with a single focus

ensures that the shock amplitude will remain finite, even at  Nymerical experiments investigating the evolution of

the focal point, since frequencies comprising the shock fronshock profiles in the region of a geometrical focus were car-
are not arbitrarily high and will diffract away from the wave ried out to examine the relative importance of diffraction and
front normal when the length scale of wave front curvature isonlinearity in the behavior of the shock front. The wave
comparable to that of the shock thicknéashere7~1). In-  front is curved as described in Sec. Il B, illustrated in Fig.
ner diffraction will always occur within a region arbitrarily 1(b), and the initial shock profile is the hyperbolic tangent
near the focal point as long &is nonzero. function given by Eq.(2), shown in Fig. 1a). Behind the
The wave front curvature parametel, indicates the shock front, the pressure amplitude is constant. Henceforth,
amount of “outer diffraction” from points along the curved this initial condition will be referred to as a “step shock,”
wave front. Diffracted waves originating from beyond the with the understanding that the shock thickness is finite.
inflection points of the initial wave front are responsible for . 11€ Step shock, rather than &hwave, was chosen for

the familiar logarithmic amplitude profile behind the shockt.hIS preliminary investigation in order to have a computa-
Sa : . tional array that was no larger than necessary to observe the
front at caustics? C is inversely proportional to the time

. AR evolution of the shock itself and the vicinity immediately
requweq for the shock to .reach the .focallpomt, Itis dlre(.:tlybehind it. Within this region, the slowly decreasing pressure
proportional to the magnitude of diffraction effects behlndfield of a sonic boom-liké\ wave is nearly indistinguishable

the shock within a unit distander ti'me). of propagatiqn. from a constant pressure field.

The shock strength paramet#, is directly proportional The numerical results for the initial condition just de-
to the strength of nonlinear effects, such as steepening. Thigribed are compared to the linear geometrical evolution of a
parameter can also be expressed in terms of the mach speg@continuous shock that has the same wave front curvature.
of the shock frontM =vgp/co=1+0.5P. Figure 2 depicts the geometrical propagation of the rippled

These three parameters are completely independent ghock; the solid curves are the wave front at successive time
each other. Each represents the degree to which the corriatervals, and the dashed lines trace rays that leave from the
sponding physical effect governs the shock front evolution ainitial wave front on the left. After the point where rays first
t=0. By constructing several initial shock fronts that differ intersect {=t), the wave front becomes folded, forming the
in the relative sizes of these parameters, it is possible t§sh tail, or delta, pattern characteristic of this focusing ge-
assess the relative importance of each physical prdgessr ~ 0metry. Caustics are located at the extremes of the fish tail,
diffraction, outer diffraction, and nonlinearityupon the Yc(X), where the wave front folds back on itself. An observer
shock profile evolution near a focus. located within these extremés y.(X)<y<y.(x) at a dis-

It should be noted that these parameters are defined f(?@ncex from the initial wavefront experiences three shock

the initial state, only. They are useful, nonetheless, becauséOnts p.)assm'g by, 'except §t=0, where two §hocks are ob-
served; outside this region only one shock is observed.

Pr.(t).p?gftlon_}?] a hom(igeneous metzguém 'S de;cermdet bly the It is expected that nonlinear effects may prevent, or alter,
ni |a. state. ) .(.ecurva ure parame. 1,does not completely 4o geometrical propagation shown in Fig. 2 because shock
specify the initial wave front, but it does correspond to thedynamic theory predicts self refraction of the wave front

rate at which diffraction effects contribute to the solutionynen the amplitude is locally increasbdThe geometric re-

along the central axis. _ _ sult will serve as a reference to which numerical results can
The following briefly describes some numerical resultshe compared.

showing thatP and C govern whether a step shock with Five different initial wave forms were created based on
parabolic wave front curvature will propagate according toparticular values folC and P, most of which are within a
geometric acoustics or shock dynamics theory. range that is plausible for sonic booms. These are grouped

523 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 2, Jan. 2002 Andrew A. Piacsek: Focused and folded sonic booms 523



into two sets of three wave forms; in each set, one parameter
is constant while the other is varied.

In the first set, the(C, P) pairs are(0.025, 0.000},
(0.025, 0.0005 and(0.025, 0.002h Here, shock amplitude
(nonlinearity is increasing while the shape of the wave front
remains the same. For the second set, the value®&&25,
0.0005, (0.025, 0.000% and (0.05, 0.000% In this case,
shock amplitude is constant as the initial wave front curva-
ture increases(focal distance decreagesNote that the
middle pair of values in each set is the same.

The initial pressure along theaxis at eacly value was
specified according to the hyperbolic tangent function, Eq.
(2). The midpoint of the shockwhere p=0.5P,) lies at
X= —corp(y). The delay time,ry(y), is given by Eq.(5). b)
The profile and the wave front, along with the variables that
make upP and(, are illustrated in Fig. 1.

The step size in the direction,Ax, is chosen so that the
steepest portion of the rise phase of the shdakm 10% to
90% of Pg,, a distance approximately equal tg) is re-
solved by three grid points. The length of the computational
domain in thex direction, L, is approximately four times
the ripple depthl.4. These dimensions require that the num-
ber of grid points in the direction be at least 107 propagation axis

The aspect ratidy/Ax is restricted by the largest angle
the wave front makes with respect to thexis. To avoid an
exaggerated staircase shape to the discretized wave front, the
aspect ratio is made no larger thé@n'2,

The full wave field solution is rendered as a surface plot
of acoustic pressure; the positixeaxis points to the right
(the direction of propagationIn most cases, the solution
was carried out to five times the focal distané®,. The
results for the first set, in which shock amplitude is varied,
are shown in Fig. 3; the weakest shock is shown in fdit
the strongest shock in pl@t).

The wave field in which nonlinearity is weakest clearly
shows the folded wave front pattern predicted by geometrical A propagation axis
acoustics; compare the plan view of FigaBwith the last
wave front shown in F|g 2. Specifica”y, there is a region FIG. 3. Behavior of focusing step shock: dependence on shock strength.

P - own are full wave field solutions &t 5t; for three initial conditions(a)
along the transverse axis where an observer experl(_jncgj‘%lall initial shock amplitud€12 P3g; (b) moderate initial shock amplitude

three distinct shocks. At the edges of this region, the Secon(g(‘) Pa; (c) large initial shock amplitudé300 Pa. Wave front curvature is
and third shocks merge into one, where ray theory predicts te same in each case.

caustic. In Fig. 8), a secondary shock front can be seen
extending beyond the caustics, its amplitude decaying withhe first shock advances relative to the second shock, which
distance from the caustic. This secondary shock, not pres a purely geometric phenomenon.
dicted by ray theory, is seen in the analytical solution of Note that the amplitude of the second shock decays
Obermeiet® and in the experimental results of Sturtevantmore rapidly than that of the first shock; this is partly due to
and Kulkarny* where they are clearly associated with shockthe more rapid geometric spreading of the central rays which
fronts diffracting from the sharp edges of the parabolic re-make up the second shock, but is mostly the result of the
flecting surface. In the present context, the secondary shoatonlinear decay resulting from the rapid pressure decrease
is believed to be composed of waves diffracted from regiondehind the second shock. Note also that a slight peak devel-
of the initial shock front where the wave front curvature ops on the first shock, similar to what the main shock expe-
changes from convex to concave. riences at the outset. Diffraction from neighboring regions of
The evolution of the weakest shock along the centrathe wave front(outer diffraction destructively interferes
axis is shown in Fig. @). Beyond the point of first focus with the field just behind both shocks on the axis of focus.
(where the shock amplitude is largeshe double shock is By contrast, the wave with the strongest shock ampli-
apparent. The first shock is formed by the intersection otude, shown in Fig. @), possesses a wave front that is still
upper and lower parts of the original shock front; rays aresmooth and without caustics, consistent with the predictions
crossing here, but not focusing. The second shock is the teof shock dynamics. In the vicinity of the central axis there is
minus of rays that have gone through a focus. Over timeonly one shock, referred to by Obermeier as the “shock

pressure

pressure

pressure
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pressure
pressure

initial focus att=t;. (b) C=.025,P
=.025; shock front does not fold. The
initial amplitude in (b) is 25 times
larger than in(a). Profiles are plotted
at t=0, t=t;, t=2t;, t=3t;, t
=4tf y andt:5tf .

FIG. 4. Evolution of shock profiles

along the axis of focusi@) C=.025,

P=.0001; shock front folds after the
/

\\\ L

v

propagation axis propagation axis

disk.” Outside of this shock disk a second shock front islll. SINUSOIDAL WAVE FRONT RIPPLING
observed whose amplitude decays with distance from thg gnnection to atmospheric inhomogeneities

central axis. This feature is also seen in the solution of

Obermeiet’ and in the photographs of Sturtevant and. A Simple model of %tmospheric turbulence, adapted
Kulkarney At the top and bottom corners on the left-hand o™ Panofsky and Duttoff, describes turbulence as a col-

. . lection of vortices. Each vortex is specified by a characteris-
side of the plot can be seen wave fronts reflecting off the. : 2 .

. ic length (diamete), L;, and a characteristic tangential
upper and lower boundaries.

The evolution of the wave form along the central axis is
shown in Fig. 4b). Note that the vertical scale is not the
same as in plota) of the same figure; the initial shock am-
plitudes in the two cases differ by a factor of 25. With no
folding, the pressure profile contains only a single shock,
followed by a logarithmically decreasing overpressure. The
shock amplitude decreases in accordance with the predic-
tions of shock dynamics.

The shock front in Fig. ) advances relative to the
reference frame of the computational domain with speed
vsp— Co=0.5cyP, which is proportional to the shock ampli-
tude. Thus, the shock speed is greatest along the central axis
and decreases with distance from this axis, causing the wave
front curvature to decrease with time.

The solution shown in Fig. (8) appears to represent a
middle ground between geometric acoustics and shock dy-
namics; the wave front is neither folded, nor does it clearly
show self-refraction. With this result as a referen@e
=0.0005 andC=0.025, two further numerical trials were
performed in which the initial wave front curvature was
changed(shock amplitude is held constanwWhen( is in-
creased from 0.025 to 0.0%orresponding to a decrease in
the focal distanceRRy), the wave exhibits geometric folding
behavior, as shown in Fig.(&. When C=0.0125, corre-
sponding to a more shallow curvature, the wave is clearly in
the shock dynamic regime, as shown in Fig)5

These numerical results confirm the presence of a tran-
sition between geometric and shock dynamic behavior for
focusing shocks that have amplitudes and curvatures repre-
sentative of sonic booms. References 16 and 14 show this
transition for shocks with larger amplitudes and shorter focus
lengths. Also demonstrated is the efficacy of describing a propagation axis
curved shock front with two nondimensional parameters , _

FIG. 5. Behavior of focusing step shock: dependence on wave front curva-

efr"Ch qualr;tlfylng the role played by nonlmearlty OT ture. Shown are full wave field solutionstat 5t : (a) large initial curvature
diffraction. (short focal length (b) small initial curvature(large focal length

pressu re

propagation axis

pressuré
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pressure (Pa)
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axis of defocus

Gl
. X\
axis of focus %\\0

L -

plane vortex rippled N
shock front layer shock front

FIG. 6. lllustration depicting the rippling of an initially plane shock front
due to a chain of vortices. Ripple parametBfsandd, can be expressed in
terms of vortex parametets andu, .

pressure (Pa)

speedyu;, at the outer edge. Within this framework, one of

the simplest realizations of turbulence is a thin layer consist-

ing of a linear chain of identical vortices alternating in their

direction of rotation, like a series of gears. An initially plane

wave front passing through this vortex layer will become axis of focus (m)

rippled in a way that is approximately sinusoidal with wave

numberk,= 7T/|-t . This scenario is illustrated in Fig. 6. EIG. 7. Solution for positive phas_,e of sonic boom with shallow sinusoidal
The amplitude,dr, and the minimum radius of curva- rlpal_:e: clase I.(a_) F;Jlfl pressure field at=2.4s, (b) evolution of shock

ture, R,, of a sinusoidal ripple can be expressgd first profie along axs ot Tocts.

orden in terms of the vortex parameters as follows:

cation is that the effects of atmospheric inhomogeneities are

d :ﬁ ©6) realized only for the initial condition. The numerical solution
¢’ assumes a homogeneous medium.
Section 11l B describes the numerical experiment that
L was conducted to assess the contributions to shock profile
10, () distortion from different scales of wave front rippling.

Note thatd, corresponds td. of the parabolic ripple, B. Description of the numerical experiment

described in Eq(5). The nondimensional parameter associ- The initial pressure field consists of the positive phase of
ated with wave front curvature is therC=d,/R, an N wave with a sinusoidally rippled wave front. The wave
=10(u,/c)?. Thus, even ifu, and L, both independently form has approximately the shape of a right triangle: at the
characterize vortices, the focusing behavior of a rippledeading edge, the shock is described by the Taylor profile
wave front, relative to the shock amplitude, depends only ofiEq. (2)]; behind the shock, the overpressure decreases lin-
u,. This is physically plausible, since increasing the size ofearly to zero. The length of the pulse is 20 m, derived from a
the vortex(while maintaining a constant outer velogityill typical sonic boom duration of 120 ms.
both increase the amplitude of the ripple and decrease the Three cases, corresponding to different initial condi-
ripple wave number, with the net result that the ripple cur-tions, were studied. In cases | and Il, the wave front is sinu-
vature is approximately constant. soidally rippled from a single chain of vortices; in case Ill,

The vortex layer just described can be interpreted as ¢éhe ripple has two wave number components. In each case
realization of a single wave number component of turbuthe shock amplitude is 150 P&+€0.0013), resulting in a
lence. A more complete description of turbulence can beshock width of 0.1 m.
obtained via the superposition of many vortex streets within  The first two cases have different initial wave front cur-
a thin layer, each representing a different component of turvature. In case I, vortices with diametey=20 m and speed
bulence. Wave front rippling from such a superposition ofu;=5 m/s produce a ripple deptth =0.3m and focal dis-
vortices will be a linear superposition of sinusoidal ripplestanceR,=128 m; thenC=0.0024 and7=0.33. In case Il,
that would result from each component alone. In this wayyortices have diametdr;=40m and speedi;=12m/s, so
the effects of turbulence within a thin layer can be modeledhat d,=1.4m andR,=112m; the resulting curvature is
directly with wave front rippling. C=0.0125 and the thickness &= 0.071.

It should be emphasized that the rippling occurs along In case lll, the wave front ripple has two components,
only one axis parallel to the wave front; the wave front isdescribed by parameter=0.0125 andC,=0.0015. This
uniform along the other axis. The other important simplifi- wave front was generated by adding a second component to
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FIG. 8. Solution for positive phase of sonic boom with deep sinusoidal
ripple: case Il.(a) Full pressure field at=1.6s, (b) evolution of shock distance (m)
profile along axis of focus.
FIG. 9. Shock profiles of two sinusoidally ripplétiwaves that have propa-
the rippling of case Il. The new component has a highelgated beyond the point of initial focus; one shock front has experienced

. . folding (dashed curve the other has notsolid curve. (a) Shock profiles
wave number, which is produced by smallé;£8 m) and  (ecorded on axis of focugb) shock profiles recorded on the axis that inter-

slower ;=4 m/s) vortices; most importantlgwith regard  sects an inflection point on the initial wave front ripple) shock profiles
to ripple curvaturg the ripple depth of the second compo- recorded on an axis of defocus.
nent is smaller:d,=0.1m. An interesting feature of the

higher wave number ripple component is that the ripplefo|d. It is also evident that the peak amplitude on the axis of
depth equals the shock thickness<(1). focus is larger in the folding case, where it occurs at the
A final comment about the initial conditions should be second Shochehind the |eading ShotkWhen the wave
made regarding the use 6fto predict focusing behavior. In front does not fold, there is only one shock. These results
all three of the sinusoidal ripple cas€sis equal to, or  confirm the shock dynamics prediction that strong nonlinear

smaller than, the smallest value used in the step shocks witkffects contribute to a decrease in the shock amplitdde.
a parabolic ripple ¢=0.0125). In the latter case, the shock  The periodic form of the rippling produces a sort of

did not fold. Since the amplitude of the sinusoidally rippled interference(or “waffle” ) pattern behind the shock front in
N waves is also larger, one might expect that they should alhoth cases. This corresponds to humps seen in the shock
behave according to shock dynamics, if the param@tery  profiles. As propagation continues, the humps steepen and
be meaningfully compared among different curvature shapegyrogress toward the shock front. In the case of no folding,
The results suggest otherwise. the amplitude of the first hump eventually exceeds that of the
shock[see Fig. T)].
IV. RESULTS The observed pressure wave form depends on the loca-
tion of the observer relative to the rippling in the wave front.
The profiles in Figs. 7 and 8 show what would be measured
Numerical results for case($mall wave front curvatupe by an observer situated along the axis of focus. An observer
are summarized in Fig. 7 and the results for caséaige located at some other point on the transverse axis would
curvature are shown in Fig. 8. Plota) in Figs. 7 and 8 measure a different wave form.
shows the full wave field at a propagation distance well be-  Figure 9 shows pressure profiles for both cases at three
yond the point of first focus; plotb) shows the time evolu- different observer locations along the transverse axis: the
tion of the shock profile along the axis of focus indicated inaxis of focus, the axis of defocus, and a point midway be-
plot (a). tween these. The folding shock exhibits significant variation
These plots clearly show that the shock front in case klong the transverse axis. Away from the axis of focus, the
does not fold(it is nearly planar, while that of case Il does initial shock decreases in amplitude and advances relative to

A. Single ripple
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the larger second shock. By contrast, the shock front that case 2 (single ripple component)
does not fold thickens only slightly away from the axis of ~ ------ case 3 (two ripple components)
focus. At all three observation points, the folded shock ex- 4 200 a)
hibits the larger amplitude spike. a

As with the parabolic wave front curvature, there must g
exist some shocks with sinusoidal rippling that exhibit nei- § 100
ther definite geometric nor definite shock dynamic focusing g 50
behavior. Since the numerical results described previously
correspond to initial conditions that are well within the realm 5 10 15 20
of possible rippling produced by actual atmospheric turbu-
lence, one may conclude that not all sonic booms will expe- g 200 b)
rience folding(at least if rippling shapes are approximately &
parabolic or sinusoidal

pressure

B. Multiple ripples

pendent source of spikes and other wave form distortions due
to focusing, although the combined effects do not arise from
a linear process of superposition. The initial wave front cur-
vature of the additional ripple component is small enough 150
(€=0.0015) that it does not lead to wave front folding, un-
like the larger scale ripple. Between the two ripple compo- § 100
nents there is zero phase difference at the axes of focusan 5 50
defocus; both ripple components are focusing and defocusing
together along these axes, albeit at different rates. 5 10 15 20

Results for case Il can be compared with the single- distance (m)
component case Il in Fig. 10. The pressure profiles of both
cases are plotted together at three observer locations, wiffiG. 10. Shock profiles of rippleN waves that have propagated beyond the

: . oint of initial focus; one shock front is rippled with a single sinusoid
the dashed curved representing case il. The proflles all COmg%mponent(solid line), the other is rippled with two sinusoid components

from the full-field solution att=1.6s, at which point the (gashed ling (a) Shock profiles recorded on axis of foctis) shock profiles
shock has propagated approximately five times farther tharecorded on the axis that intersects an inflection point on the initial wave

the focal distanceR,. The case lll profiles, particularly front ripple; (c) shock profiles recorded on an axis of defocus.
along the axes of focus and defocus, exhibit small peaks in
the vicinity of the shock front not seen in the correspondinghas a curvature comparable to its rise phase and would thus
case Il profiles. Behind the main shock in each case, littldoe far from the geometric approximation. In this case, it
difference is seen between the two cases. This is to be exnight be expected that, as focusing occurs, acoustic energy
pected, because the smaller length scélesaandd,) of the s readily diffracted away from ray paths, so that local in-
extra ripple component correspond to a smaller domain ofreases in pressure are less pronounced.
influence in the field behind the shock front. The results demonstrate, however, that focusing of shal-
On the axis of focus, the case Il profile exhibits a peaklow ripples still produces distinct peaks &nd near the
at the leading shockFig. 10@], compared to the smooth shock front. An important implication is that even weak
step bridging the first and second shocks seen in case Il. Thsnic boomgamplitudes less than 100 Ravhich are rela-
may be explained as the approximate superposition of thavely thick due to molecular relaxation, will exhibit spiky
case Il wave field with a nonfolding wave field similar to that features due to focusing.
seen in plot(a) of Fig. 7.
A somewhat more surprising result is the slight rounding
(or delayed maximupnof the initial shock seen in the profile V. CONCLUSIONS
on the axis of defocufFig. 10c)]. Simple superposition of A numerical study of the propagation of sonic booms
folding and nonfolding wave fields does not satisfactorilywith rippled wave fronts was performed in order to qualita-
explain the observed result. tively and, to some extent, quantitatively evaluate the kind of
One feature of these ripples that turned out to be lessvave form distortions that might be produced by various
significant than anticipated is the shock thickness parametescales of wave front rippling. Via a simple model, rippling
T=14,/d, . When7<1, the shock is abrugis perceived by scales are associated with atmospheric turbulence param-
an observer sufficiently remote from the wave front to seesters.

200/ C)

essure (Pa)

150
100 é‘
50
The additional ripple component in case Il is an inde- ;

that it contains many ripplésthe more abrupt the shock, the Whether folding of sonic boom wave fronts occurs de-
better geometric theorffinear or nonlinegrwill describe the  pends on the amount of curvature present in the turbulence
evolution of the shock front. induced wave front rippling. Numerical results indicate that

If Tis close to, or greater than, unity, as is true for theeven for a relatively large amplitudd50 Pa, rippling pro-
larger ripple wave number component in case lll, the shoclduced by plausible turbulence conditions will result in a
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folded wave front. For a given wave front curvature, weakerat each grid point. To make the problem computationally
shocks have a greater tendency to fold, implying that forfeasible, the sonic boom should be discretized on a nonuni-
weaker sonic booms, only the less energetic components ddrm mesh, such that the very fine resolution is applied only
turbulence will produce ripples that do not lead to folding. near the shock front.
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