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Five members of the elephant family roamed
North America during the Quaternary—Mam-
muthus meridionalis (southern mammoth) in
the early Pleistocene; Mammuthus imperator
(imperial mammoth) in the middle Pleistocene;
and Mammuthus columbi (Columbian mam-
moth), Mammuthus primigenius (woolly mam-
moth), and Mammuthus exilis (dwarf mammoth)
during the late Pleistocene (Maglio 1973, Gra-
ham 1986, Lister and Bahn 1994, Roth 1996).
Mammoth remains are found throughout west-
ern North America in areas that were predom-
inantly Pleistocene parkland or grassland, rang-
ing from northern Alaska to southern Mexico
(Lister and Bahn 1994).

Most mammoth remains found in Washing-
ton State that are identifiable to species are
from Columbian mammoths and consist of sin-
gle elements, typically a molar or tusk (Barton
1998, 1999). Less common are sites with mul-
tiple associated skeletal elements. In eastern
Washington most mammoth sites are found
within Missoula Flood slackwater deposits south

of Cordilleran ice sheet end moraines (Barton
1999; Fig. 1). During the late Pleistocene these
mammoths inhabited low parklands and grass-
lands of the Columbia Plateau, feeding on
grasses and herbaceous plants (Barton 1998).

Glacial Lake Missoula floodwater surges
across Idaho, Washington, and Oregon occurred
from after 19,000 14C yr BP until after 12,700
14C yr BP (Waitt 1985, Benito and O’Conner
2003). These floods were temporarily ponded
in tributary valleys as they encountered hydrau-
lic constrictions. Wallula Gap, one such con-
striction (Fig. 1), caused backflooding of the
Walla Walla, Snake, Yakima, and Columbia
River valleys (Symons 1882, Russell 1893,
Bretz 1919). Backfloods up the tributary val-
leys carried loads of silt, sand, and ice-rafted
basalt and crystalline boulders (Bretz 1969).
The resulting slackwater deposits were termed
the “Touchet Beds” after the type locality in
the Walla Walla River valley (Flint 1938; Fig. 1).
These slackwater deposits are massive to rhyth-
mically laminated, typically upward fining beds
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of silt and sand (Flint 1938, Carson et al.
1978). Bedding commonly encloses the 13,000
14C yr BP Mount St. Helens (MSH) S tephra
couplet (Mullineaux et al. 1978, Waitt 1980).
Grain size and deposit thickness of these beds
decrease upvalley in the tributaries (Bretz
1928). Erratics, as well as folds, faults, and
clastic dikes, are common in the strata (Flint
1938).

In May 2001 parking lot construction un-
covered a nearly complete, but highly frac-
tured, tusk (Fig. 2) near Moxee City in the
middle Yakima River valley of central Wash-
ington State (Figs. 1, 3). Initial excavation re-
vealed the tusk of a proboscidean, presumably
that of a Columbian mammoth (Mammuthus
cf. columbi; Greg McDonald, National Park
Service, written communication, November
2002), encased within generally fine-grained
sediments. Subsequent excavation disclosed
more detail on the site’s stratigraphy and geo-
morphology than was originally ascertained.
The purpose of this study was to (1) identify
the tusk and briefly discuss its taphonomy and
(2) place this tusk in local and regional mor-
phostratigraphic contexts.

STUDY SITE

The site is located in the Moxee Valley about
6 km southeast of Yakima and 1 km northwest
of Moxee City (Fig. 1). The tusk was found at
about 320 m elevation, approximately 24 m
above and 5 km east of the Yakima River on
the southwest-facing footslope of a southwest-
trending hill (Fig. 3). The broad Moxee Valley
is bounded by Yakima Ridge and the Rattle-
snake Hills. A mid-latitude, continental, semi-
arid climate consisting of cool, moist winters
and hot, dry summers characterizes the setting.
Today, deep and well-drained soils are found in
lower portions of the Moxee Valley (Lenfesty
and Reedy 1985). Irrigated fruit orchards, hop
fields, hayfields, and associated farmsteads
dominate land use of the valley. Historical air
photos reveal that the study site was irrigated
and farmed prior to being converted to a park-
ing lot in 2001.

METHODS

We examined the site and surrounding area
between July 2001 and July 2002. The stratig-
raphy of the west face of a 5-m-long trench
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Fig. 1. Extent of Missoula Flood backwater flooding to 350 m elevation in south central Washington (adapted from
Waitt 1980). Mammoth sites include (1) Walla Walla/Gardena, Mammuthus columbi (Scott and Clem 1967); (2) Artesian
Coulee/Dead Canyon, Mammuthus spp. (Newcomb and Repenning 1970); (3) west Richland, Mammuthus spp. (Waitt
1980, Martin et al. 1982); (4) western Pasco Basin, Mammuthus spp. (Waitt 1980); (5) Yakima Valley, Mammuthus spp.
(Waitt 1980); and (6) Umatilla, Mammuthus spp. (Gilbow 1981).



adjacent to the tusk was described after estab-
lishing a 25 × 25-cm grid network from a level
line datum. Sedimentary structures, bone,
gravel, and unit boundaries were assessed
within each grid square. Samples were taken
from the trench wall at 10-cm intervals.
Stratigraphy was also described on the north
face of a 3-m-long trench adjacent to the tusk.
The west face of the parking lot excavation
was described and sampled unit by unit.
Stratigraphic units across the study area were
geometrically correlated using a geodetic total
station. We assessed sediment colors with a
Munsell Soil Color Chart, texture following Gee
and Bauder (1979), and general calcium car-
bonate content of these samples via reaction
with hydrochloric acid to discern different
stratigraphic units and structures. The geomor-
phology of the area was analyzed on topo-
graphic maps, on air photo stereopairs, and in
the field.

We examined exposed sections of the plaster-
jacketed tusk at the Yakima Valley Museum in
December 2002 and June 2003. Using metric
tapes and forestry calipers, we measured tusk
length, basal diameter, and overall curvature.
We then compared these data with detailed
field drawings from the tusk excavation. We
analyzed Schreger angles on a large, unattached
portion of the tusk in June 2003 following the
methods of Espinoza and Mann (1991). Schreger
angles form at the intersection of dextral and

sinistral arching lines that radiate outward from
the central axis of the tusk. These lines and
their resultant angles and patterning are unique
to proboscidean dentine. The range of angles
produced in the tusks of any given genus of
proboscidean (e.g., Elephas) is probably unique
to that genus, although the ranges of such angles
in various proboscidean genera often show
considerable overlap with other members of
the order. Fortunately, the overlap in the range
of these angles for North American mammoths
(Mammuthus spp.) and American mastodons
(Mammut americanum) is minimal (Fisher et al.
1998, Barton and Kester 2001, Trapani and
Fisher 2003). This allows suitably dated and
preserved tusks from North America to be
assigned to a genus with some confidence.

RESULTS

Tusk

The Moxee City mammoth find consists of
a single, relatively complete proboscidean tusk
and numerous small, nearby bone fragments.
The tusk is a right tusk measuring 210 cm in
length along its outer curve, with a chord
length of 120 cm measured directly from the
base to the tip. The basal portion of the tusk is
heavily damaged, but a partial profile of the
remaining section suggests a basal diameter of
approximately 15 cm, with a reconstructed
basal circumference of 45 ± 3 cm. The basal
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Fig. 2. The Moxee City Mammoth tusk and associated bones in situ in the Alexandria Moulding, Inc., parking lot, near
Moxee City, Washington. Note taxonomically unrecognizable bone remnants adjacent to the tusk (see arrows).



diameter was calculated by fitting a circumfer-
ence to a traced curved section of the tusk,
which was then compared with field drawings
from the excavation. One hundred eight
Schreger angles measured on the polished
section of the tusk range from 55° to 94°, with
a mean of 78°. Multiple transverse and longi-
tudinal cracks and areas of exfoliation are pres-
ent on the proximal 180 cm of the tusk. Cracks
and exfoliated patches are edge rounded and
filled with sediment. The distal 30 cm of tusk,

including the tip, shows little evidence of such
alteration. Multiple recent transverse/radial
compression fractures divided the tusk laterally
into segments, many of which broke into indi-
vidual fragments that were scattered around
the tusk at the site.

Site Stratigraphy

We identified 5 stratigraphic units in the
trenches immediately east and north of the
mammoth tusk and in the wall of the parking

420 WESTERN NORTH AMERICAN NATURALIST [Volume 65
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Fig. 3. Moxee City Mammoth site, Moxee Valley, Washington (adapted from the Yakima East, Washington 7.5′ U.S.
Geological Survey quadrangle). Note upper extent of Touchet Beds at 320 m (1050 feet) as identified by Bentley et al.
(1993).



lot excavation ~50 m east of the trench. The
tusk was located in the 4th unit from the bot-
tom (Unit 4). 

UNIT 1.—The lowest deposit, Unit 1, con-
sists of poorly sorted, nonstratified, round to
subangular basalt pebbles and cobbles in a
clay to sandy loam matrix (Fig. 4; Tables 1, 2).
The >40-cm-thick unit exposed in the wall of
the parking lot excavation is composed of 2
subunits: 1A and 1B. The lower subunit, 1A, is
a gravelly, sandy loam cemented and indurated
by calcium carbonate. Unit 1B, a gravelly clay,
displays a medium prismatic pedogenic struc-
ture and clay skins on ped faces. Basalt gravels
in both subunits are generally unweathered.

UNIT 2.—Unit 2 unconformably overlies
Unit 1, with a gently undulating lower bound-
ary. This light gray unit ranges from 50 cm to
100 cm in thickness, includes a range of tex-
tures, and is intruded by clastic dikes (Fig. 4;
Tables 1, 2). Textures include sandy loam, loam,
and silt loam. This unit lacks grading and stra-
tification. However, a 10-cm-thick lens of round

to subangular basalt and assorted crystalline
pebbles mixed with coarse sand is present in
the wall of the parking lot excavation. This
lens occurs approximately midway in the unit.
Clastic dikes are 3–60 mm wide, straight to
sinuous to branching, and sandy loam to silt
loam in texture, and they commonly display
vertical stratification parallel to their walls.
They are often lighter or darker than the sur-
rounding deposits. Some clastic dikes truncate
abruptly at the upper boundary of Unit 2 while
others continue upward into Unit 3.

UNIT 3.—Unit 3 is conformably separated
from Unit 2 by a gradational, gently undulating
contact. This unit ranges from 40 cm to 70 cm
in thickness and is characterized by a silt loam
texture (Fig. 4; Tables 1, 2). Like Unit 2, this unit
lacks grading and stratification. Basalt pebbles
and irregularly shaped sand lenses are scattered
throughout this light gray unit. Clastic dikes
also dissect the unit but are less numerous than
those in Unit 2. As in Unit 2, several of the
clastic dikes end at the top of the unit while
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Fig. 4. Detailed stratigraphy of wall of the parking lot excavation ~50 m east of the trench (A) and trenches immedi-
ately east and north of mammoth tusk (B), Moxee City Mammoth site. Note the inset map showing locations of measured
sections. Also note the position of tusk in Unit 4 relative to bones in Units 3 and 4.



others extend into Unit 4. Dike widths, com-
position, stratification, and texture are similar to
those of Unit 2. Highly decomposed and taxo-
nomically undiagnostic <4-cm-diameter bone
remnants (Andrew Granitto and Michael Siebol,
Yakima Valley Museum, written communication,
June 2002) appear as resistant knobs exposed
on the trench walls in this unit.

UNIT 4.—Unit 4 is conformably separated
from Unit 3 by a gradational, moderately un-
dulating contact. This unit, like Units 2 and 3,
consists primarily of silt loam and lacks grad-
ing and stratification (Fig. 4; Tables 1, 2). It
ranges from 30 cm to 70 cm in thickness and

includes scattered basalt gravels and numerous
irregularly shaped sand lenses. Unit 4 includes
fewer clastic dikes and gravels than Unit 3.
The tusk was located near the base of this unit.
An AMS radiocarbon date on tusk collagen
indicated that the Columbian mammoth died
14,570 ± 50 14C yr BP (CAMS 79942; Granitto
and Siebol, written communication, January
2002). Like Unit 3, numerous taxonomically
unrecognizable, small bone remnants were
observed in Unit 4.

UNIT 5.—Unit 5 unconformably overlies
Unit 4 along a gradational, gently undulating
contact. This unit ranges from 10 cm to 50 cm

422 WESTERN NORTH AMERICAN NATURALIST [Volume 65

TABLE 1. Characteristics of sediment exposed in trench immediately east of tusk, Moxee City mammoth site.

Sample React Clastic Sand 
Unit depth (cm) Texture Color w/ HCl dike lens Gravel Bone

5 +70 clay loam 5Y 7/2 (light gray) yes no no no no
4 +60 silt loam 2.5Y 7/2 (lt. gray) yes
4 +50 silt loam 2.5Y 7/2 (lt. gray) yes
4 +40 silt loam 2.5Y 7/2 (lt. gray) yes yes yes yes no
4 +30 silty clay 2.5Y 7/2 (lt. gray) yes
4 +20 silt loam 2.5Y 7/2 (lt. gray) yes
3 +10 silt loam 2.5Y 7/2 (lt. gray) yes
3 0 silt loam 2.5Y 7/2 (lt. gray) yes
3 –10 silt loam 2.5Y 7/2 (lt. gray) yes
3 –20 silt loam 2.5Y 7/2 (lt. gray) yes yes yes yes yes
3 –30 silt loam 2.5Y 7/2 (lt. gray) yes
3 –40 silt loam 2.5Y 7/2 (lt. gray) yes
3 –50 silt loam 2.5Y 7/2 (lt. gray) yes
2 –60 silt loam 2.5Y 7/2 (lt. gray) yes
2 –70 loam 2.5Y 7/2 (lt. gray) yes
2 –80 silt loam 2.5Y 7/2 (lt. gray) yes
2 –90 silt loam 2.5Y 7/2 (lt. gray) yes yes yes yes no
2 –100 silt loam 2.5Y 7/2 (lt. gray) no
2 –110 loam 2.5Y 7/2 (lt. gray) no
2 –120 sand loam 2.5Y 7/2 (lt. gray) no
1 –130 sand loam 2.5Y 7/3 (pale yellow) yes no no no no

TABLE 2. Characteristics of sediments exposed in wall of parking lot excavation ~50 m east of trench, Moxee City
Mammoth site.

Unit depth React Clastic Sand
Unit (cm) Texture Color w/HCl dike lens Gravel Bone

5 0–10 silt loam 2.5Y 7/2 (light gray) yes no no no no
4 10–44 silt loam 2.5Y 7/2 (light gray) yes no no no no
3 44–76 silt loam 5Y 7/2 (light gray) yes no no no no
2 76–158 silt to silty 2.5Y 6/3 (light yellowish 

clay loam brown) to 2.5Y 7/2 
(light gray) yes yes no yes no

1B 158–178 clay 10 YR 5/3 (brown) yes no no no no
1A 178–>200 sandy loam 10YR 8/2 (very 

pale brown) yes no no no no



thick. While the light gray color and clay
loam/silt loam texture are similar to underly-
ing units (Fig. 4; Tables 1, 2), this stratum lacks
clastic dikes, irregularly shaped sand lenses,
erratics, bone remnants, and tusk.

DISCUSSION

Mammoth

TAXONOMY.—Fisher et al. (1998:106) mea-
sured Schreger angles on 82 prehistoric pro-
boscidean tusks—38 American mastodon tusks
and 44 mammoth tusks of various species
(including Mammuthus primigenius and M.
columbi). All were tusks “independently iden-
tified by dental or skeletal evidence.” They
found that mastodon Schreger angle values,
with a mean of 124.7° and a range of 113°–
149°, “differed significantly (P < 0.001) from
mammoth values” with a mean of 87.1° and a
range of 62°–105°. Our examination indicates
that the 78° mean and the 94° upper range
values for Schreger angles on the Moxee City
tusk are well below those reported for Ameri-
can mastodons. Instead, they fit well into the
range of previously reported results for mam-
moths (Fisher et al. 1998). Based on these re-
sults, and lacking any mitigating or conflicting
data, the Moxee City tusk is herein assigned to
the genus Mammuthus.

The only evidence that may be used to assign
the mammoth tusk to species is circumstantial.
Columbian mammoth and American mastodon
have been reported from Pacific Northwest sites
during the period coincident with the latest
Missoula floods. Currently, no reliably docu-
mented evidence exists for other late Pleis- 
tocene mammoths (specifically woolly mam-
moths), or for other Proboscidea, such as 
gomphotheres (Barton 1999), in the Pacific
Northwest. Further, the absence of an enamel
band on the tusk precludes a gomphothere
diagnosis. Given the Schreger angle analysis
indicating the genus of the tusk, and its 14,570
14C yr BP AMS date, we conclude that the
tusk is most likely from a Columbian mam-
moth. The length and girth of the Moxee City
tusk are analogous to those of an African ele-
phant (Loxodonta africana) tusk of at least 15 ±
3 years of age, a late subadult or early prime
adult life stage (Sikes 1971, Lister and Bahn
1994).

TAPHONOMY.—Surface features on the tusk
reveal direct evidence of at least 2 taphonomic

events. The multiple transverse and longitudi-
nal cracks and areas of exfoliation suggest a
bone weathered to taphonomic weathering
stage 2 or 3 (on a scale of 1–5; Behrensmeyer
1978, Lyman 1994). This weathering indicates
initial exposure, hence weathering, of the tusk
following the death of the mammoth. Cracks
with well-rounded edges, filled cracks, and ex-
foliated patches on the proximal end also sug-
gest that the tusk was initially exposed and
weathered prior to burial. However, the lack
of similar weathering on the distal portion of
the tusk indicates that the tip was not exposed
to the same degree of weathering as the rest of
the tusk. All of this suggests initial partial bur-
ial of the tusk on a pre-flood landscape prior to
its entrainment and final deposition within
Unit 4 sediments.

The multiple fresh transverse/radial com-
pression fractures on the tusk’s uppermost sur-
face likely occurred during construction exca-
vation of the site. Additional torsional cracking
was caused by exposure and desiccation of the
tusk after discovery.

Morphostratigraphic Context 
of the Tusk

The tusk is part of a dynamic morphostrati-
graphic environment that has been impacted
over the past 10 million years by (1) tectonic-
and climate-driven fluvial erosion and deposi-
tion, (2) pedogenic development, (3) slackwater
deposition, (4) eolian deflation, and (5) loess
deposition (Fig. 5).

EROSION AND DEPOSITION.—Folding and
faulting of the Columbia River Basalt Group
(CRBG) and associated interbeds (e.g., Ellens-
burg Formation) resulted in the formation of
Yakima Ridge, Moxee Valley, and Rattlesnake
Hills after deposition of the Saddle Mountains
Basalts <10.4 million yr BP (Reidel et al. 1994).
The uplift of Yakima Ridge relative to the Moxee
Valley enhanced sheetflow and stream erosion
of the Ellensburg Formation in the Pliocene
and early Pleistocene (Fig. 5A). Ultimately,
sheetflow and stream erosion stripped much
of the Ellensburg Formation on Yakima Ridge,
thus creating valleys between basinward slop-
ing, stepped, erosional remnant (i.e., pediments)
ridges and hills (Fig. 5B; Waters 1955). Mapped
outcrops of Ellensburg Formation pediment
project stratigraphically and topographically
from the south flank of Yakima Ridge (Camp-
bell 1979, Bentley et al. 1993, Schuster 1994)
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1.5 km downslope to the hill on which the tusk
was located (Fig. 3).

As incision continued, alluvial fans com-
posed of CRBG gravels were deposited on the
footslopes and toeslopes of Yakima Ridge, often
burying portions of the Ellensburg Formation
pediment (Fig. 5B). An alluvial fan origin for
the sediments draped over the pediment rem-
nant hill is supported by the deposit’s breadth
(>50 m), slope (dipping to the south and west),
and footslope location and the presence of gen-
erally subangular to subrounded basalt clasts seen
in Unit 1. This fan originated near the termi-
nus of a stream flowing from Yakima Ridge.

LANDSCAPE STABILITY I.—The indurated
and laminated, carbonate-rich subunit 1A soil
Bkm horizon and the clay-rich subunit 1B soil
Bt horizon of the alluvial fan deposits of the
parking lot excavation (Fig. 4) indicate (1) a
setting that was sufficiently stable for a soil to
develop following the erosional/depositional
episodes and (2) that this period of pedogene-
sis occurred over a significant time period.
The Bkm horizon displays indurated and lami-
nated stage IV (on a scale of I–VI) soil carbon-
ate development similar to that of the Table
Grounds surface in the Beaver, Utah, area that

has been dated as early to middle Pleistocene
(Machette 1985). The similarity of the Beaver
climate to that of the middle Yakima River val-
ley suggests that the Moxee City Bkm horizon
represents a soil that began to form at least
several hundred thousand years ago.

MISSOULA FLOOD SLACKWATER DEPOSI-
TION.—The initial pulse of slackwater flow
stripped the A horizon from the well-devel-
oped Unit 1 soil, thus ending the lengthy
period of landscape stability. The 3 floods re-
corded at the site resulted in the deposition of
slackwater strata (Units 2, 3, and 4) to an ele-
vation of ~320 m in Moxee Valley (Figs. 3,
5C). The lack of rhythmites at the mammoth
site, compared to nearby Union Gap (Allison
1933), Zillah, and Mabton (Waitt 1980; Fig. 1),
is due to (1) relatively few floods reaching the
middle Yakima River valley (Waitt 1980) and
(2) its high-energy, nearshore location, which
provided a poor sorting environment for fine-
grained sediments when the temporary slack-
water lakes were present in the middle Yakima
River valley.

Clastic dikes are present in each of the 3
Missoula Flood slackwater units. The cross-
sectional and planimetric characteristics of the
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Fig. 5. Morphostratigraphic context and landscape evolution of the Moxee City Mammoth site and surrounding
environs.



dikes generally match previous descriptions
by Jenkins (1925), Flint (1938), Lupher (1944),
Alwin (1970), and Black (1979). Clastic dikes
confined to Units 2 and 3 suggest formation
during or soon after the deposition of each of
these units, and before the deposition of sub-
sequent units. Conversely, clastic dikes that
extend across 1 or 2 unit boundaries may have
formed (1) during or following the deposition
of subsequent units or (2) by reactivation of
dikes in lower units during or following depo-
sition of subsequent slackwater sediments. 
Clastic dikes at the site did not extend into the
Unit 5 loess, suggesting that the process(es)
creating the dikes ended before deposition of
loess.

Individual gravel clasts, gravel lenses, and
sand lenses within Units 2, 3, and 4 were de-
posited when sediment-laden icebergs grounded
on the slackwater lake margin. These gravel
and sand lenses are similar to clusters of sand-
to boulder-sized ice-rafted erratics found else-
where in Yakima River valley slackwater de-
posits (Russell 1893, Smith 1903, Bretz 1930,
Allison 1933, Flint 1938). The mixed-clast lith-
ologies noted at the site are consistent with
those identified by Waitt (1980), who attributed
CRBG gravels to the Okanogan lobe and crys-
talline rocks to the Pend Oreille lobe of the
Cordilleran ice sheet.

The relationship of the taxonomically undi-
agnostic, small bone remnants of Unit 3 to
similar bones and tusk of Unit 4 (Fig. 4) is
problematic. Barring further information about
the bone remnants of each unit, we assume
that they are unrelated to each other or to the
tusk. The total inclusion of the tusk within
Unit 4, combined with taphonomic informa-
tion suggesting earlier partial weathering of
the tusk and its association with mixed-lithol-
ogy sand and gravel, suggests that the mam-
moth died away from the site and below 320
m elevation. Following death, the tip of the
mammoth’s right tusk was partially buried,
exposing the remaining portion to weathering.
Subsequently, the tusk and surrounding sedi-
ments were entrained in and ultimately rede-
posited by the last of 3 Missoula Floods to
surge up the Yakima Valley to an elevation of
~320 m. The scope of the study did not per-
mit the determination of the geographic origin
of the tusk or the associated basalt and crys-
talline rocks; however, the overall condition of
the tusk suggests a local origin (perhaps the

lower Yakima River valley?) and rather limited
exposure to the turbulence of the flood. The
crystalline rocks may have originated as pri-
mary clasts as near as north central Washing-
ton. Alternatively, the tusk and erratics could
have been entrained quite close to the site,
having been picked up from previously
flooded surfaces. The moderately undulating
boundary separating Unit 3 from Unit 4 may
reflect the melting of an ice-raft and subse-
quent deformation of the bed.

The presence of the 13,000 14C yr BP Mount
St. Helens (MSH) S tephra couplet (Mulli-
neaux et al. 1978, Waitt 1980) at the Moxee
Drain southwest of the study area (Campbell
and Reidel 1999), as well as its known trajec-
tory from Mount St. Helens to the Spokane
area (Stradling and Kiver 1986), suggests that
this tephra was initially deposited at the site
but was subsequently eroded by fluvial or eolian
action. Given its absence from the mammoth
site, the timing of middle Yakima River valley
slackwater flooding can be best determined by
the position of the 14,570 ± 50 14C yr BP tusk
within the slackwater deposits. Accepting Benito
and O’Conner’s (2003) post-19,000 14C yr BP
date for the initiation of late Pleistocene Mis-
soula Floods suggests that the first 2 Missoula
Flood strata (Units 2 and 3) were deposited at
the site later than 19,000 14C yr BP and prior
to 14,570 14C yr BP. The tusk age and degree
of weathering suggest that the subsequent
slackwater stratum (Unit 4) was deposited soon
after 14,570 14C yr BP. The AMS date, com-
bined with few slackwater deposits at the site,
supports Waitt’s (1980) assertion that earlier
Missoula Floods were larger than subsequent
floods, and that later Missoula Flood slack-
waters generally did not flow as far upstream
as the Moxee City Mammoth site.

LOESS DEPOSITION.—The Unit 5 loess has a
clay loam and silt loam texture and lacks
erratic sands, gravels, and clastic dikes. Late
Pleistocene (<13,000 14C yr BP) and Holocene
winds likely deflated nearby poorly vegetated
portions of the Yakima River floodplain, trans-
ported these sediments downwind, and de-
posited them as the Unit 5 loess atop the older
slackwater deposits (Fig. 5D). Loess thick-
nesses vary because of landscape position.
Unit thickness may have been 50 cm at the
footslope position of the tusk. The heavy equip-
ment operator who discovered the tusk removed
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~1.30 m of combined overburden (Unit 5 and
much of Unit 4) before encountering the tusk
(Granitto and Siebol, written communication,
June 2002). Conversely, only ~10 cm of loess
is present in the excavation of the shoulder
slope of the wall of the parking lot. The loess
of the site likely corresponds to the post-MSH
S tephra, L1 loess identified by Busacca and
McDonald (1994). With slackwater deposits and
a presumably sediment-charged Yakima River
located upwind on the nearby floodplain, it is 
surprising that the L1 loess at the site is so
thin compared with >400 cm loess accumula-
tions at locations northeast of the Pasco Basin.
Busacca and McDonald (1994) attribute these
thickness differences to the poor potential for
loess preservation on steep anticlinal slopes
due to water erosion. The relatively thin loess
combined with the site’s location at the base of
Yakima Ridge suggests that the upwind source
areas for the loess may have been more spatially
limited and/or deficient in deflatable sediments
than originally thought.

LANDSCAPE STABILITY II.—The Warden soil
formed in the Missoula Flood slackwater de-
posits and the overlying loess mantle (Lenfesty
and Reedy 1985) during the Holocene. This
Xerollic Camborthid reflects the relatively short
pedogenic development time since loess depo-
sition and the semiarid climate of the Moxee
Valley. The position of the site above the
Yakima River floodplain and away from any
present-day streams draining Yakima Ridge
has enhanced site stability. However, irrigated
agriculture in the past century has likely
enhanced eluviation, soil weathering, and tusk
decomposition.

CONCLUSIONS

Remains of at least 6 mammoths have been
found previously in the Missoula Flood slack-
water deposits of south central Washington
(Scott and Clem 1967, Newcomb and Repen-
ning 1970, Waitt 1980, Gilbow 1981, Martin et
al. 1982, Barton 1999). This study is unique in
central Washington proboscidean finds in its
detail of tusk analysis and its focus on the mor-
phostratigraphic context of the find. The tusk
is significant because it represents the 1st
application of Schreger angle analysis to an
otherwise undiagnostic proboscidean tusk from
central Washington. Further, the Moxee City

mammoth is the 1st AMS-dated mammoth in
the Yakima River drainage. At 14,570 ± 50 14C
yr BP, the tusk is currently the oldest radio-
metrically dated Columbian mammoth in the
Missoula Flood slackwater deposits in central
Washington. This well-dated tusk provides tem-
poral control on late Quaternary events where
the MSH S tephra is missing, thus enhancing
understanding of a complex morphostrati-
graphic environment characterized by fluvial
erosion and deposition, pedogenic develop-
ment, slackwater deposition, eolian deflation,
and loess deposition.
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