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ABSTRACT   

Aiming at the conflict circumstances of multi-parameter H.265/HEVC encoder system, the present paper introduces the 

analysis of many optimizations' set in order to improve the trade-off between quality, performance and power 

consumption for different reliable and accurate applications. This method is based on the Pareto optimization and has 

been tested with different resolutions on real-time encoders.  

 

Keywords: HEVC, H.265, pre-processing, subjective quality, Pareto optimization. 

 

1. INTRODUCTION  

High Efficiency Video Coding (HEVC) is the following step in video compression in order to achieve better 

compression efficiency in comparison with previous standards. The main goal of HEVC is to keep the same quality 

while the consumption is less than 50 per cent of the bitstream size when compared with the H264 standard. This can be 

done even  significantly increasing the complexity of the algorithm. The bitstream size reduction means that, at the same 

quality, a compressed video sequence should occupy less storage space or employ less bandwidth in a transmission.  

Expressed in another way, for the same storage size the quality of a compressed video should be better than that 

corresponding to using previous standards. HEVC, aka H.265 [1], is a new coding standardization codec which came up 

as a project of the Joint Collaborative Team on Video Coding (JCT-VC), a collaboration between the ITU-T VCEG and 

ISO/IEC MPEG organizations [1]. HEVC, released in 2013, is of immense complexity and requires a great 

computational effort [2-3], which makes real time execution very difficult to achieve, especially for HD and UHDTV 

resolutions. As HEVC is tremendously complex, several approaches can be found in literature that have tried to reduce it 

[4-15]. 

There are a lot of new tools involved in the HEVC encoding efficiency. HEVC encoders [2, 16] have several input 

configuration parameters that allow enabling or disabling these tools. In this way, the user can set the configuration 

which provides the best trade-off for his interest. Basically, the user’s objective is to find out the best configuration 

which allows obtaining the less encoding time, the minimum bitstrem size and a high level of visual quality. Less 

encoding time allows employing cheaper devices and reducing the power consumption because it is directly related to 

the computationally complexity of the algorithm. Least amount of data allows the reduction of costs in applications such 

as live transmissions using satellite links or 3G/4G technology, the visualization of high-resolution content via ADSL 

connections in real time, teleconferences, etc. The quality is important to achieve a better visual experience from the 

user’s perspective. 

 



 

 
 

 

 

 

Standards for video compression define the syntax or format of a compressed video sequence and a decoding method, 

however, the design of the encoder is not standardized. The main goal of decoders is to obtain video from a standard 

bitstream, for this reason decoders do not provide enough quality or compression efficiency. These characteristics, 

compression efficiency and video quality, directly depends on the encoder side. The standard provides a set of encoding 

tools but how to use them in an efficient way is a design task that becomes critical. This means that not all video 

encoders are implemented in the same way. 

 

Sometimes the encoder implementation does not allow us to meet the real time constraints so it is strictly necessary to 

optimize the code to improve the performance. Apart from the code optimization the best improvements are achieved 

reducing the complexity of different encoding tools and techniques. When a tool is simplified a bistream size increment 

and a loss of quality occur, so the designer has to analyze what is the best trade-off which can be a hard task when 

managing a lot of parameters and optimizations. 

The main goal of this article is to provide an analysis to easily find out the optimal encoder configurations to meet the 

constraints imposed by a user or developer. 

 

The rest of the article is organized as follows. Section 2 is an introduction to HEVC standard, Section 3 focuses on the 

state of the art and Section 4 describes the metrics and framework used in Section 5 in which the proposed analysis is 

explained. Our conclusions are shown in Section 6. 

2. HEVC OVERVIEW 

HEVC standard is based on the well-known block-based hybrid coding architecture, combining both transform coding 

and motion-compensated prediction with entropy coding. As can be seen in Figure 1, each video frame is divided into 

blocks of pixels so the processing of the video frame can be done at block level. Residual data are obtained by 

subtracting the input block with the result of the corresponding predicted block. Spatial redundancies that exist within the 

video frame are exploited in the intra prediction. Temporal dependencies that exist between blocks in successive frames 

are used in inter prediction so that only the changes between successive frames need to be encoded. These dependencies 

are obtained by using motion estimation in which a search is performed in the previously encoded frames (reconstructed 

images in Figure 1) to determine the motion. The remaining spatial redundancies that exist within the video frames are 

exploited by coding residual blocks through transform, quantization and entropy coding. The inverse quantization and 

inverse transform allow the obtaining of the reconstructed image after adding its output to the predicted block. This 

reconstructed frame is a faithful representation of the image that is obtained on the decoder side. The deblocking and the 

sample adaptive offset (SAO) filters are used to remove blocking artifacts caused by the encoding process. 
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Fig. 1. HEVC coding architecture. 



 

 
 

 

 

 

In contrast to previous video coding standards, HEVC uses a flexible quad-tree coding block partitioning structure that 

enables the use of large and multi-sized coding, prediction, and transform blocks. Compared with H264, HEVC employs 

an adaptive motion prediction, an enhanced intra prediction, a new loop filter (SAO) and an improved version of 

Context-Adaptive Binary Arithmetic Coding (CABAC) entropy coding. All of these improvements considerably increase 

the complexity of the encoding process. HEVC also includes new high-level structures for parallel processing. 

As mentioned above, HEVC includes a new quad-tree coding block partitioning structure in which each input video 

frame is split into tiles and/or slices, which are divided into Coding Tree Units (CTUs). Intra slices use spatial prediction 

(intra prediction) within the same slice, without dependency of other slices.  Inter slices, on the contrary, exploit 

temporal and spatial  redundancy (inter prediction) using previously encoded slices. CTUs are similar to the macroblocks 

in previous standards. However, three different sizes are allowed, 64x64, 32x32 and 16x16 pixels for CTUs, whereas 

16x16 is the only size allowed for macroblocks. In the new quad-tree partitioning structure, the CTUs are further 

partitioned into square regions, named Coding Units (CUs), whose sizes can be 64x64, 32x32, 16x16 and 8x8 pixels [17, 

3]. The CU is configured to use a specific prediction mode (intra or inter) [2] and is represented by the leaf node of a 

quad-tree structure. CUs are, in turn, subdivided into one or more Prediction Units (PUs) according to a particular 

partition mode [17, 2]. In inter prediction mode, each Prediction Unit is predicted by using previous reference pictures in 

encoding time. Every PU has a set of motion parameters in order to represent the movement of the current PU as regards 

its reference. In order to characterize the movement, a motion estimation algorithm is applied to the reconstructed images 

which are stored in the decoded picture buffer (Figure 1). In intra prediction mode, every PU is predicted from 

neighboring pixels, exploiting spatial redundancy. The size of PUs range from 64x64 to 4x4 pixels. Finally, the last 

block concept existing in HEVC is the Transform Unit (TU), specified by another quad-tree structure, which is the basic 

unit for transform and quantization. The TUs are always square, varying the size from 32x32 to 4x4.   

As Figure 1 shows, after prediction, residual data are transformed using either a Discrete Cosine Transform (DCT, 

Transform block in Figure 1), or a Discrete Sine Transform (only for Intra Prediction and 4x4 TU size). Finally, the 

quantized transform coefficients, prediction and partitioning information and other headers are encoded using CABAC, 

which generates the resulting bitstream. 

The last concept to be introduced is rate control, an algorithm which dynamically adjusts the quantization parameter 

(QP) in order to achieve a specific target bitrate. To obtain this bitrate, the algorithm allocates a bits budget to each group 

of pictures, to an individual slice, and/or groups of CTUs within every slice in a video sequence, based on the previous 

output bits produced by the encoder. The number of bits generated by the encoder can be modified by varying the QP 

value, the task performed by this rate control algorithm. The algorithm is not a part of the video standard itself, but it is a 

fundamental algorithm in the encoder.  

3. RELATED WORK 

Nowadays, HEVC is the cutting edge encoding standard, being the most efficient solution for transmission of Ultra-high-

definition television (UHDTV) video content since the consumption of the bistream size is less than 50% in comparison 

with the previous H264 standard [18] and allows better use of video distribution channels. HEVC have a large 

complexity [2-3] because of newly introduced coding tools, so several approaches dealing with it can be found in the 

literature. In contrast to previous video coding standards, HEVC makes use of a flexible quad-tree coding block 

partitioning structure which enables the use of large and multiple sizes of coding, prediction, and transform blocks. This 

system is more efficient but also more complex, providing the encoder the capacity to select the proper partition sizes 

[1][2]. In our previous works, several optimized algorithms [4-7] were proposed to accelerate the encoding process. In 

[7] an enhanced CU size decision algorithm based on temporally and spatially homogeneous regions detection is 

proposed. Basically, within the CTU loop, if the image block is classified as spatially or temporally homogeneous, the 

quad-tree partitioning recursive process is finished since a block belonging to any of these categories should not to be 

split into smaller partitions. Obviously, temporal homogeneity is only evaluated in inter CUs, while spatial homogeneity 

is valid for both intra and inter CUs. In this article the optimizations proposed in [7] are used as an example of how to 

compare an algorithm optimization when other state of the art methods. 

 



 

 
 

 

 

 

4. FRAMEWORK 

In order to measure the quality of a flow, different metrics have been typically applied in the video compression 

literature to characterize novel methods, as can be seen in [19-22]. Some of them are the execution time of the algorithm, 

the bitstream size and the Peak Signal-to-Noise Ratio (PSNR). As the aim is to compare with a reference software, it is 

actually measured the difference with respect to this baseline case in terms of percentage, except for PSNR.  Equations 1, 

2 and 3 model these measurements. Notice that a negative value means a reduction in any of the metrics. 



∆𝐵𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚(%) =
𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙(𝑏𝑦𝑡𝑒𝑠)−𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑏𝑦𝑡𝑒𝑠)

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑏𝑦𝑡𝑒𝑠)
×100       (1)



∆𝑇𝑖𝑚𝑒(%) =
𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑇𝑖𝑚𝑒−𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇𝑖𝑚𝑒
×100        (2)



∆𝑃𝑆𝑁𝑅(𝑑𝐵) = 𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑃𝑆𝑁𝑅 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑃𝑆𝑁𝑅       (3)

 

When comparing different video encoders, one of the most important aspects is to stablish a set of common test 

conditions that allows conducting a fair comparison. It is essential to use an extensive test bench that employs sequences 

of several resolutions which include different kind of movements and textures. For this purpose, JCT-VT recommends a 

set of video sequences and common test conditions for HEVC in [23]. This document is very useful for performance 

comparisons with respect to other works but it cannot be used to characterize properly an algorithm since it only uses 

four QP values. However, it is important to develop an encoding algorithm which is able to deal with all the possible QP 

values imposed by the Rate Control [2]. For this reason, we recommend a test bench covering the entire range of 

quantization values (0-51). Moreover, in order to add to the JCT-VT test bench more HD or 4K sequences we propose 

the use of repositories such as [24], [25] and [26]. Therefore, the JCT-VT recommendation is useful for comparison with 

the state of the art methods but it is necessary to complement it with new configurations and sequences for a detailed 

characterization of our algorithms. 

 

5. ANALYSIS 

As has been previously commented, the objective of this study is to find out the best configuration which allows 

obtaining the best execution time reduction by means of negligible quality loss and a low bitstream size increment.  For 

this purpose, the Pareto analysis [27] has been applied to study those solutions providing the best trade-offs. The best 

methods can then be identified as those corresponding to the points that belong to the Pareto Front (i.e., those points that 

are not dominated). 

The analysis can be represented as a multivariable problem, using a chart to represent the ∆Bitstream /∆Time space and 

another chart to represent the ∆PSNR/∆Time space. Solving the problem in this way, the optimal configurations can be 

identified as those that belong to the Pareto Front in both spaces. Recently, the Bjontegaard Delta Rate (BD-Rate) [28] 

metric has been used for HEVC performance comparisons. This metric allows the comparison and analysis of several 

algorithms using only one chart instead of two since BD-Rate takes into account the bitstream size (bit rate) and the 

quality (PSNR) in a unique metric [28]. Therefore, BD-Rate helps to considerably simplify the Pareto Analysis. 

Fig. 2 shows an example of comparison of state of the art methods using Pareto Analysis in terms of BD-Rate/Encoding 

Time Reduction. All of the referenced methods were implemented on the HEVC test model HMv16.2 [2]. HM software 

allows the assessment of the new technologies included in the HEVC standard [2] but it is a non-optimized software 

since it does not have support for exploiting Instruction Level Parallelism (ILP) in Very Long Instruction Word (VLIW) 

architectures. HM also does not support multithreading or any kind of frame parallelism, so encoding with this software 

requires a lot of time being impossible to achieve real-time execution. Despite this fact, HM is widely used in the 

literature since this software implements all HEVC tools and provides the upper level of quality. Moreover, HM test 

model is the software used in the JCT-VT recommendation [23] for comparison purposes. 

 



 

 
 

 

 

 

 

Fig. 2. Pareto analysis for state of the art methods. 

 

In Figure 2 [14], [13], [7], [11] and [10] belong to the Pareto Front so they are the optimal methods. When speed is 

prioritized over the BD-Rate, [10] is the best method. On the contrary, when BD-Rate is considered as the priority, [14] 

could be the best solution. The work presented in [7] could be considered as an intermediate solution in which BD-Rate 

and speed are weighted in an equivalent way. Furthermore, as can be observed in Figure 2, [7] provides the highest 

quality when the encoding time saving is greater than 35%. 

As commented above, BD-Rate is based on PSNR metric. PSNR does not take into account the Human Visual System 

(HVS) whereas it could be necessary to also consider the human perception when trying to accelerate the encoding flow. 

There are a lot metrics based on HVS such as SSIM [29], MS-SSIM [30] and VQM [31] so we might want to conduct an 

analysis using them. If this is the case, the values obtained from the proposed video quality metrics and the related 

encoding speed should be shown in different charts, one chart for every quality metric. Since the value of the quality 

depends on the QP value, it is necessary to use a different chart for every QP value. The quality metrics cannot be 

combined because there is no relation between them and the values obtained for each metric are very different. 

If the rate control algorithm is enabled then the QP value is dynamically adjusted to achieve a target bitrate. The rate 

control is usually enabled in real-world applications since this is the only way of ensuring a constant data rate in a video 

transmission. When comparing two different encoders by enabling the rate control it is absolutely necessary to be sure 

that both encoders are achieving the target bitrate since the number of bits generated for every encoder has to be 

approximately the same to perform a fair comparison because it could happen that a quality increase was associated to a 

bitstream size increment. 

Power-constrained applications require to include the power consumption as an additional parameter. Another important 

factor that affects the outcome of a project is the price of the device which is in charge of the encoding process and the 

related hardware (memory speed and type, peripherals, etc.), so the system cost should also be included. 

In this case, we can employ a chart for the “∆BD-Rate/∆Time” space and a new chart for the “Power Consumption / 

System Cost space”. The optimal points which represent the desired configuration are those points that belong to the 

Pareto Front in both spaces. Figure 3 shows an example of this kind of analysis by using the same HEVC real time 

encoder in different devices. The selected device determinates the visual quality because the encoder includes some 

techniques that are executed in a different way depending on the number of available threads and the GPU model. The 

Pareto front is highlighted in blue color. As can be seen in Figure 3, the points 1, 7, and 8 are within the Pareto Front in 

both charts so they are the optimal configurations 
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Figure 3.a. Pareto Analysis for “∆BD-Rate/∆Time space”. 

 

 

Figure 3.b. Pareto Analysis for “Power Consumption / System Cost space”. 

 

6. CONCLUSION 

In this paper a method to compare different video encoder implementations is explained. The Pareto analysis has been 

employed to obtain the optimal configurations in other kind of applications but it is not widely used in the case of video 

compression algorithms. The main goal of this work is to improve the reader’s knowledge about how to compare 

different HEVC encoders to find out the optimal encoder configuration which provides the desired trade-off in terms of 

quality, speed, bitstream size, power consumption and system cost.  
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