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Relational Methodology for Data Mining and Knowledge Discovery 

Vityaev E.E.*1, Kovalerchuk B.Y.2 

1 Sobolev Institute of Mathematics SB RAS, Novosibirsk State University, Novosibirsk, 630090, Russia. 
2 Computer Science Department, Central Washington University, Ellensburg, WA, 98926-7520, USA. 

Abstract.  
Knowledge discovery and data mining methods have been successful in many domains. 

However, their abilities to build or discover a domain theory remain unclear. This is largely 
due to the fact that many fundamental KDD&DM methodological questions are still unex-
plored such as (1) the nature of the information contained in input data relative to the domain 
theory, and (2) the nature of the knowledge that these methods discover. The goal of this pa-
per is to clarify methodological questions of KDD&DM methods. This is done by using the 
concept of Relational Data Mining (RDM), representative measurement theory, an ontology 
of a subject domain, a many-sorted empirical system (algebraic structure in the first-order 
logic), and an ontology of a KDD&DM method. The paper concludes with a review of our 
RDM approach and ‘Discovery’ system built on this methodology that can analyze any hy-
potheses represented in the first-order logic and use any input by representing it in many-
sorted empirical system.   

1. Introduction. 
A variety of KDD&DM methods have been developed, however their abilities to build or 

discover a domain theory remain unclear.  The goal of this paper is to clarify this and associ-
ated questions. We start from the questions about the nature of the information contained in 
input data relative to the domain theory.  

 Question 1. What is the nature of the information contained in input data relative to the 
domain theory and what is the empirical content of input data?  

At first we note, that quantities in data are not numbers themselves, but numbers with an 
interpretation. For example, abstract numbers 200, 3400, 300, 500 have three different inter-
pretations shown in Table 1. 

Table 1. 
Interpretation  Values Meaningful operations 

Abstract numbers 200, 3400, 300, 500 Meaning of 20 > 30 is not clear.  
These numbers can be just labels.  

Abstract angles 200, 3400, 300, 500 300 meaningfully greater that 200 
Azimuth angles 200, 3400, 300, 500 Azimuth operations 

Rotational angles 200, 3400, 300, 500 Rotational angle operations 

For every quantity there are relations and operations that are meaningful for this quantity. 
This interpretation of quantities is a core approach of the Representational Measurement The-
ory (RMT) [26], [37]. The RMT interprets quantities as empirical systems – algebraic struc-
tures defined on the objects of subject domain with the set of empirically interpretable rela-
tions and operations that define the meaning of the quantity (see the next section for defini-
tions). The empirical content of quantities, laws and data is expressed by their (many-sorted) 
empirical systems. 
                                                           
1 Corresponding author. E-mail: vityaev@math.nsc.ru 
 



 2

More specifically main statements of the measurement theory relative to data mining is-
sues are as follows [26], [37]: 

• numerical representations (scales) of quantities, laws and data are determined by the cor-
responding empirical systems; 

• scales are unique up to a certain sets of permissible transformations such as changing  
measurement units from meters to kilometers for ratio-scales; 

• the laws and KDD&DM methods need to be invariant relative to the sets of permissible 
transformations of quantities in data. 

To represent the empirical content of data in accordance with the measurement theory we 
need to transform the data into many-sorted empirical systems. These transformations are 
described in [23] for such data types as pair comparisons, binary matrices, matrices of order-
ings, matrices of proximity and attribute-based matrix.  

The problem of extraction the empirical content of data and transformation of it into the 
many-sorted empirical systems for the general case is considered in section 3. This transfor-
mation depends on the subject domain. For example, for many physical quantities, there ex-
ists the interpretable operation •, which possess all formal properties of additive operation +. 
However, medicine and other areas may have no empirical interpretation for the operation •. 
For example, empirical system of temperature, measured by a thermometer, may include op-
eration • that produces it temperature t3 from temperatures t1 and t2, such that t3 = t1•t2. But 
this operation in medicine may be non interpretable. In that case, the • operation should be 
removed from the empirical system of temperature in medicine and the corresponding scale 
should be reconsidered. The order relation for temperature is obviously interpretable in medi-
cine, and the order relation may be included in the empirical system of temperature in medi-
cine. Physical temperature measured by thermometer for the case of medicine is for example 
the indirect measure of the metabolic rate of the patient. Thus, the empirical content of data 
and scales depend on the interpretation.  

Question 2. What determines the interpretation of data and what information may be ex-
tracted from data?  

The interpretation depends on ontology, which determines the view of the ‘real-world’. 
The subject domain and ontology are closely connected. The patient in medicine may be con-
sidered from many points of view: psychology, physiology, anatomy, sociology and so on. 
Thus, we cannot properly extract information from data about the patient without setting up 
an ontology.  

Consider another example from the area of finance. What is the empirical content of fi-
nancial time series? It also can be viewed from many points of view that include the points of 
view of (1) a trader-expert, (2) one of the mathematical disciplines, (3) technical analysis, (4) 
trade indexes etc. We need to specify the ontology to extract the empirical content and inter-
pret all relations and operations to define the meaning of all quantities contained in data. The 
information extracted from data is represented by many-sorted empirical system with that set 
of relations and operations.  

Question 3. What is the nature of the knowledge that a particular KDD&DM method ex-
tracts from input data?  

As was pointed out above any KDD&DM method contains a view of the “real-world” (on-
tology of the method). More completely, from our viewpoint, any KDD&DM method explic-
itly or implicitly assume: 

(1) some quantities for input data;  
(2) ontology of particular KDD&DM method (including a language) to manipulate and 

interpret data and results;  
(3) class of hypothesis in terms of that language to be tested on data (knowledge space of 

the KDD&DM method, see definition in section 5); 
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(4) Interpretation of the ontology of particular KDD&DM method in the ontology of the 
subject domain. For example, to apply a classification method that uses spherical 
shapes for classes of data, we need first to interpret spherical shapes in the ontology of 
the subject domain. Otherwise, we cannot interpret the results of classification. 

 The knowledge extracted by a KDD&DM method is the set of confirmed hypothesis that 
are interpretable in the ontology of the KDD&DM method and in the ontology of the subject 
domain.  
 The results of the KDD&DM methods should not depend on the subjective choice of the 
measurements units of quantities contained in data. Thus, KDD&DM methods need to be 
invariant relative to a sets of permissible transformations of quantities. In section 4, we define 
the invariance of KDD&DM methods relative to permissible transformations of scales. But, 
as we pointed out above, the scales of quantities depend on the interpretation of the relations 
and operations with data. Hence, the invariance of the method cannot be established before 
we revise the scales of all quantities based on the interpretation of their relations and opera-
tions. For example, we need to determine a new scale for temperature relevant to medical 
data before we can establish the invariance of the KDD&DM method for such data. We dis-
cuss this issue in section 3.  

The invariance of a KDD&DM method is closely related to interpretability of its results in 
the ontology of the subject domain. If a KDD&DM method uses operations or relations, that 
are not interpretable in the language of the method (and hence in the subject domain ontol-
ogy), then it may obtain non-interpretable results. For example, average or sum of patients’ 
temperatures in the hospital has no medical interpretation. If all relations and operations, used 
in the algorithm, are included in the empirical systems of quantities, then the algorithm will 
be obviously invariant relative to the permissible transformations of scales for these quanti-
ties.  

Thus, to avoid the non invariance of the method and non interpretability of its results we 
need to use in the algorithms only relations and operations that are interpretable from the 
many-sorted empirical system. It means that the hypotheses tested by the method include 
only those interpretable in the ontology of the subject domain relations and operations. Then 
the knowledge space of particular KDD&DM method is a set of hypothesis formulated in 
terms of the relations and operations interpretable in the ontology. According to the meas-
urement theory, any numerical data type can be transformed into a relational form that pre-
serves all relevant information of that numerical data type.  

Now we can formulate our answer to the question about the nature of the knowledge that 
KDD&DM methods extract -- any KDD&DM method extracts a confirmed hypothesis from 
its knowledge space. In this context, the main characteristics of each KDD&DM method are 
the method’s ontology and knowledge space. 

Discoveries of many KDD&DM methods are not invariant to the permissible transforma-
tions of scales of input data. As a result, these discoveries are not fully interpretable in the 
subject domain ontology. The interpretation usually is not explicitly defined and may be sub-
jective. The expert in the subject domain can obtain a correct conclusion using non invariant 
method by using informal intuitive extraction of interpretable results from the confirmed hy-
potheses, but this is rather an art of Data Mining. 

The Relational Data Mining (RDM) approach [24-25, 51-52] and “Discovery” system de-
scribed below allow us to overcome presented limitations. This approach is based on the first-
order logic for knowledge extraction from the many-sorted empirical systems for various 
classes of hypothesis.  

The relational approach: 
a) extending the data type notion;  



 4

b) using first-order logic and the measurement theory for presenting various data types 
as many-sorted empirical systems;  

c) using any background knowledge expressed in the first-order logic for learning and 
forecasting;  

d) extracting various hypotheses classes formulated in the first-order logic. 
 
This approach allows us to answer to the following question.  

Question 5. Can a subject domain theory be discovered by using KDD&DM methods?  
As was pointed out above any KDD&DM method discovers some class of hypothesis. In 

the relational data mining approach, classes of hypotheses are extended to classes of hypothe-
ses presented in the first-order logic. Several KDD&DM methods discover wide classes of 
hypotheses in the First-Order Logic (FOL). We compare some FOL methods with our rela-
tional approach and the “Discovery” system in section 6.  

In sections 7-14, we present a series of definitions and prove that a subject domain theory 
can be discovered by using the relational data mining approach. We define notions of law and 
probabilistic law (section 10), a subject domain theory T as the set of all laws, and the theory 
TP as the set of all probabilistic laws. Next, a theorem is proved that the set SPL of Strongest 
Probabilistic Laws (with the maximum values of conditional probability) contains a subject 
domain theory T, and T ⊂ SPL ⊂ TP. We define a notion of a most specific rule (section 13) 
and prove that an inductive statistical inference (based on these rules) avoids the problem of 
statistical ambiguity. Next in sections 12 and 13, a special semantic probabilistic inferences is 
defined that infers theories T, TP, set SPL and generalizes the logical inference of logic pro-
gramming.  

Finally, we describe the “Discovery” system, which implements semantic probabilistic in-
ferences and discovers theories T, TP and sets SPL, MSR. As a result, it is proved that sub-
ject domain theory T, its probabilistic approximation TP and its consistent probabilistic ap-
proximation MSR can be discovered in the frames of the relational approach using the “Dis-
covery” system. The “Discovery” system has been successfully applied to solutions of many 
practical tasks (see website www.math.nsc.ru/AP/ScientificDiscovery). 

The original challenge for the RDM “Discovery” system was the simulation of discover-
ing scientific laws from empirical data in chemistry and physics. There is a well-known dif-
ference between the “black box” models and basic models (laws) in modern physics. The 
lifetime of the latter models is much longer, the scope is wider, and their background is 
sound. There is reason to believe that the RDM “Discovery” system captures certain impor-
tant features of the discovery of laws.  

2. Representative Measurement Theory 
In accordance with the measurement theory, numerical representations of quantities, laws 

and data are determined by the corresponding empirical systems. In this section we present 
required definitions from the measurement theory [26],[37].  

An empirical system is a relational structure that consists of a set of objects A, k(i)–ary re-
lations P1,…,Pn  and k(j)-ary operations ρ1,…, ρm defined on A,   

A = 〈A, P1,…,Pn, ρ1,…, ρm〉  
 
Every relation Pi is a Boolean function (a predicate) with k(i) arguments from A, and ρj is 

the k(j) argument operation on A. A system R  

R = 〈R,T1,…,Tn, σ1,…, σm〉,   
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is called a numerical system of the same type as system A, if R is a subset of mRe  , m ≥ 1, 
mRe is a set of m-tuples of real numbers, every relation Ti has the same arity k(i) as the corre-

sponding relation Pi, and every real-value function σj has the same arity k(j) as the corre-
sponding operation ρj.  

A numerical system R is called a numerical representation of the empirical system A, if a 
(strong) homomorphism ϕ: A → R exists such that:  
 Pi(a1,…,ak(i)) ⇒ Ti(ϕ(a1),…, ϕ(ak(i))), i = 1,…,n; 
 ϕ(ρj(a1,…,ak(j))) = σj(ϕ(a1),…, ϕ(ak(j))), j = 1,…,m. 

The strong homomorphism means that if predicate Ti(ϕ(a1),…, ϕ(ak(i))) is true on    
〈ϕ(a1),…, ϕ(ak(i))〉, then there exists tuple 〈b1,…,bk(i)〉 in A, such that Pi(b1,…,bk(i)) is true and 
ϕ(b1) = ϕ(a1),…, ϕ(bk(i)) = ϕ(ak(i)). We will denote such homomorphism between the empiri-
cal system A and numerical system R as ϕ: A → R. Thus, the numerical system R represents 
a relational structure in computationally tractable form with a complete retention of all the 
properties of the relational structure. 

In the measurement theory, the following process is in place:  
(1) finding a numerical representation R for empirical system A;  
(2) proving a theorem that homomorphism ϕ: A → R exists; and  
(3) defining the set of all possible transformations f: R → R (the uniqueness theorems) 
of the homomorphism ϕ, such that fϕ is also homomorphism fϕ: A → R.  

Example: A relational structure A = 〈A, P〉 is called a semi-ordering, if for all a, b, c ∈ A 
the following axioms are satisfied:  

(P(a,b)&P(b, c) ⇒ ∀d∈A(P(a, d)∨P(d, c))). 
Theorem [10]: If A = 〈A, P〉 is semi-ordering, then there exists a function U: A → Re such 

that: 
P(a,b) ⇔ U(a) + 1 < U(b). 

There are hundreds of numerical representations known in the measurement theory with 
few most commonly used. The strongest one is called the absolute data type (absolute scale). 
The weakest numerical data type is the nominal data type (nominal scale). There is a spec-
trum of data types between them. They allow us comparing, ordering, adding, multiplying, 
dividing values and so on. The classification of these data types is presented in table 1. The 
basis of this classification is a transformation group. The strongest absolute data type does 
not permit to transform data at all, and the weakest nominal data type permits any one-to-one 
transformation. Intermediate data types permit different transformations such as positive af-
fine, linear and others (see table 1). 

Table 1. Numerical data types. 
Transformation Transformation Group Data type (scale) 

X → ƒ(x), F :Re → (onto)Re, 1→1 transformation group Nominal 
X → ƒ(x), F :Re → (onto)Re  homeomorphism group Order 

X → rx + s, r > 0 Positive affine group Interval 

X → txr,  t,r > 0 Power group Log-interval 
X → x + s Translation group Difference 

X → tx, t > 0 Similarity group Ratio 
X → x Identity group Absolute 

 
 The transformation groups are used to determine the invariance of law. The law expression 

must be invariant to the transformation group; otherwise it will depend not only on the nature, 
but on the subjective choice of the of measurement units. 
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3. Data type problems 
Below we consider a problem of the empirical content of data. A data type in the object-

oriented programming languages as well as in the measurement theory is relational structure 
A with the sets of relations and operations interpretable in the domain theory. For instance, a 
“stock price” data type can be represented as a relational structure A = 〈A; {≤, =, ≥}〉 with 
where nodes A are individual stock prices and arcs are their relations {≤, =, ≥}. Implicitly, 
every attribute in the data represents a data type, which can take a number of possible values. 
These values are elements of A. For instance, the attribute “date” has 365 (366) elements 
ranging from January 1 to December 31. There are several meaningful relations and opera-
tions with dates such as  <, =, >, and middle(a,b). For instance, the operation middle(a,b) pro-
duces the middle date c = 01.05.99 for inputs a = 01.03.99 and b = 01.07.99. Conventionally, 
in attribute-value languages (AVL), this data type as well as many other data types are given 
implicitly, i.e., the relations and operations are not explicitly presented.  

Below we consider this implicit situation in more detail for six cases:  
1. Physical data types in physical domains. 
2. Physical data types in non-physical domains. 
3. Non-physical data types in non-physical domains 
4. Nominal discrete data types. 
5. Non-quantitative and non-discrete data types. 
6. Mix of data types. 

 
 1. Physical data types in physical domains. Data contain only physical quantities, on-
tology and physics domain background knowledge of the learning task. This is a realm of 
physics with well-developed data types and measurement procedures. In this case, the meas-
urement theory [26] provides formalized relational structures for all the quantities and 
KDD&DM methods can be correctly applied.  
 2. Physical data types for non-physical domains. The data contain physical quantities, 
but the ontology and domain background knowledge of the learning task does not refer to 
physics. The background knowledge may refer to finance, geology, medicine, and other ar-
eas. In such cases, the real data types are not known, even when they represent physical quan-
tities (as we pointed out above for the temperature in medicine). If the quantity is physical, 
then we can define the relational structure from structures available in the measurement the-
ory. However, the physically interpretable relations of the relational structure are not neces-
sarily interpretable in ontologies of other subject domains. Interpretation of the relations and 
operations should be provided for a new domain. If relations are not interpretable, they 
should be removed from the relational structure. The invariance of the KDD&DM results is 
not guarantied if the relation is not removed and a data mining method uses it (see the next 
section for definitions). 
 3. Non-physical data types in non-physical domains. For non-physical quantities, data 
types are virtually unknown. There are two sub-cases: 

a. Non-numerical data types.  It has been demonstrated in [23] that several data types 
such as pair-wise and multiple comparison data types, attribute-based data types, order, 
and coherence matrixes data types can be represented in many-sorted empirical systems 
in the rather natural way. Without such representation, the invariance of KDD&DM 
methods cannot be rigorously established.  
b. Numerical data types. Here, we have a measurer x(a), which produces a number as a 
result of a measurement procedure applied to an object a. Examples of measurers are 
psychological tests, stock market indicators, questionnaires, and physical measuring in-
struments used in non-physical areas.  
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Let us define a set of empirically interpretable relations and operations for the measurer 
x(a). For any numerical relation R(y1,…,yk) ⊂

kRe  and operation σ(x1,…,xm): mRe → Re, 
where Re is the set of real numbers, an empirical relation PR on Ak and an empirical opera-
tion ρσ: Am → A can be defined as follows 

PR(a1,…,ak) ⇔ R(x(a1), …, x(ak))                                                    
ρσ(a1, …,am) = σ(x(a1), …, x(am))                                                

The values x(a) provided by the measurer obviously have an empirical interpretation, but the 
relation PR and operation ρσ may not. We should find relations R and operations σ that have 
an empirical interpretation in the subject domain ontology. The set of derived interpretable 
relations is not empty, because at least one relation (P=) has an empirical interpretation: 
P=(a1,a2) ⇔ x(a1) = x(a2).  

In the measurement theory, many sets of axioms that establish strong data types are based 
only on ordering and equivalence relations. Some strong data types can be constructed from 
interactions of the quantities with weak data types, such as ordering and equivalence.  

For instance, given weak order relation <y (for the attribute y) and n equivalence relations 
1 nx x, ...,≈ ≈  for the attributes x1,…,xn, one can construct a complex relation G(y,x1, …,xn) ⇔   

y = f(x1, …, xn) (defined by the axiomatic system) between y and x1,…,xn, such that 
f(x1,…,xn) is a polynomial [26]. For the polynomial the multiplication, power and sum opera-
tions are required. However, these operations can be defined for y, x1,…,xn using relation G, 
if a certain set of axioms in terms of relations <y , 

1 nx x, ...,≈ ≈ is true for A.  
Ordering and equivalence relations are usually empirically interpretable in the ontology of 

various subject domains. The invariance of the KDD&DM is not guarantied for initial nu-
merical data types for which they usually applied, but is guarantied for revised scales, based 
on relations PR and operations ρσ. 
 4. Nominal discrete data types. Here, data are interpretable in the corresponding rela-
tional structures, because there is no difference between the numerical and empirical systems 
beyond possible use of different symbols. All numbers can be considered as names, and can 
be easily represented as predicates with a single variable. The KDD&DM methods and their 
results are invariant if discrete data types are used as names. 
 5. Non-quantitative and non-discrete data types. Data contain no quantities and dis-
crete variables, but do contain ranks, orders and other non-numerical data types. This case is 
similar to the above item 3a. The only difference is that such data are usually made discrete 
by various calibrations with a loss of useful information. 
 6. Mix of data types. All the mentioned difficulties arise in this case. To work with 
such mix requires a new approach. Our Relational Data Mining approach provides it using a 
relational representation of the data types.  

4. Invariance of the KDD&DM methods 
The results of the KDD&DM methods must not depend on the subjective choice of the 

measurement units, but usually it is not the case. Let us define the notion of invariance of a 
KDD&DM method. To that end, we will use the common (attribute-based) representation of 
a supervised learning [54] (fig. 1), where:  
– W={w} is a training sample; 
– X(w) = (x1,…,xn) is the tuple of values of n variables (attributes) for training example w;  
– Y(w) is the target function assigning the target value for each training example w; 

The result of KDD&DM method M learning on the training set {X(w)}, w ∈ W is a rule J  

J = M({X(w)}),   
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that predicts values of the target function Y(w). For example, consider w with unknown value 
Y(w) but with the values all its attributes X(w) known, then 

J(X(w)) = Y(w),  

where J(X(w)) is value generated by the rule J. The resulting rule J can be an algebraic ex-
pression, a logic expression, a decision tree, a neural network, a complex algorithm, or a 
combination of these models. 

If the attributes (x1,…,xn, Y) are determined by the empirical systems A1, …, An, and B 
having the transformation groups g1, …, gn, and g, respectively, then the transformation 
group G for all attributes is a product G = g1×…×gn×g. 

The KDD&DM method M is invariant relative to the transformation group G iff for any 
g∈G rules  

J = [M({X(w)})],  Jg = [M({g(X(w))})],  

produced by the method M, generate the same results and for any X(w), w ∈ W 

 gJ(X(w)) = Jg(g(X(w)). 

If the method is not invariant (that is the case for majority of the methods), then predictions 
generated by the method depends on the subjective choice of the measurement units.  

The invariance of the method is closely connected to the interpretability of its results.  
The numerical KDD&DM methods assume that a numerical standard mathematical opera-

tion such as +,-,*, / can be used in an algorithm despite possible non-interpretability. In this 
case, the method can be non-invariant and can deliver non-interpretable results. In contrast a 
KDD&DM method M is invariant if it uses only information from empirical systems 
A1, …, An, and B as data and produces rules J that are logical expressions in terms of these 
empirical systems. This approach is proposed in Relational approach to Data Mining 
[23],[25], [47], [51]. 

Population

Representation training examples by 
descriptors:  (x1,x2...., xn)= X(w)

Target values 
Y(w)

Assigning (learning) 
rule/classifier J by the 
KDD&DM method M

M({X(w)}) = J,
J(X(w)) = Y(w)

Y(w)

X(w)

Training 
sample 
W={w}

{X(w)}={(x1,x2...., xn)}

Assigning target values 
to training examples

Figure 1. Schematic supervised attribute-based data mining model 
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5. Relational methodology for the analysis of KDD&DM 
methods 

A non invariant KDD&DM method M: {X(w)} → J can be analyzed and another invariant 
method can be extracted from M. Let us define a many-sorted empirical system A(W) that is 
a product of empirical systems A1,…,An, B bound on the set W. The empirical system A(W) 
contains all interpretable information from a learning sample W. Next we define transforma-
tion W → A(W) of all data W into a many-sorted empirical system A(W), and replace the 
representation  

W → {X(w)}  

by the transformation  

W → A(W) → {X(w)}.  

Based on method M: {X(w)} → J,  we define a new method ML: A(W) → J such that  

ML(A(W)) = M({X(w)}) = J,  

using transformation W → A(W) → {X(w)}. Thus, method ML uses only interpretable in-
formation from data A(W) and produces the rule J using method M.  

Let us analyze the transformation of the interpretable information A(W) into the rule J 
through the method M. If we apply only interpretable operations to the interpretable informa-
tion A(W) from the method M, we may extract some logical rule JL from rule J. This rule JL 
will contain only interpretable information from the rule J, expressed in terms of empirical 
system A(W).  

Let us define the next method  

MLogic: A(W) → JL,  

where the rule JL is a set of logical rules (1) for rule J produced by method M, and interpret-
able information A(W),  

A(W) → {X(w)}, M: {X(w)} → J.  

The method MLogic is obviously invariant. If we consider all possible data for the method 
M, and all rules JL, that may be produced by the MLogic method, then we will obtain a class 
of rules (hypotheses) {JL} (knowledge space) of the KDD&DM method M. As a result we 
obtain: (1) an ontology of the particular KDD&DM method M as an empirical system A(W), 
and (2) a knowledge space {JL} of the method M.  

There are First-Order Logic (FOL) methods that are capable discovering some sets of hy-
potheses (knowledge space) presented in the first-order logic. Thus, these FOL methods that 
are invariant simulate (model) traditional KDD&DM methods at some extent. 

6. First-order logic approaches 

Let us consider the existent FOL-methods and compare them with the proposed relational 
approach and the Discovery system. 

A variety of relational KDD&DM systems has been developed in recent years [29]. Theo-
retically, they have many advantages. However, in practice, the complexity of the language is 
greatly restricted reducing its applicability. For example, some systems require that the con-
cept definition be expressed in terms of attribute-value pairs [27][6] or only in terms of unary 
predicates [17],[30][19][43][41]. The systems that allow workable relational concept defini-
tions (e.g., OCCAM [33][11][2]) place strong restrictions on the form of induction and the 
initial knowledge that is provided to the system [35].  
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The major successful applications of the FOL have been described in [3],[4],[7],[8], [21], 
[32],[36] that are in domains of chemistry, physics, medicine and others. Tasks, such as mesh 
design, mutagenicity, and river water quality, exemplify successful applications. Domain 
specialists appreciate that the learned regularities are understandable directly in domain 
terms. Fu [13] has justly observed: “Lack of comprehension causes concern about the credi-
bility of the result when neural networks are applied to risky domains, such as patient care 
and financial investment”.  

Advantages of the first-order logic (FOL) methods. Comprehensive predicate invention. 
Human-readable and comprehensible form of rules. Logical relations (predicates) should be 
developed to exploit advantages of the human-readable forecasting rules.  In this way, FOL 
methods can produce valuable comprehensible rules in addition to the forecast. Using this 
technique, a user can evaluate the performance of a forecast as well as a forecasting rule. Ob-
viously, comprehensive rules have advantages over a forecast without explanations. The 
problems of inventing predicates were considered in the previous section and in [23].  

Advantages versus disadvantages of the attribute-value languages (AVLs) methods and the 
first-order logic methods (table 1). Bratko and Muggleton [4] have indicated that the current 
FOL systems are relatively inefficient and have rather limited facilities for handling numeri-
cal data. The purpose of Relational Data Mining (RDM) is to overcome these limitations of 
the current FOL methods. There are two types of numerical data in data mining:  

(a) a numerical target variable;  
(b) numerical attributes used to describe objects and discover patterns.  
Traditionally, the FOL methods solve only classification tasks without direct operations on 

the numerical data. The ‘Discovery’ system handles an interval forecast of continuous nu-
merical variables, like prices, along with classification tasks. The ‘Discovery’ system handles 
numerical time series using the first-order logic techniques, which is not typical of ILP and 
FOL applications. 
Table.1. Comparison of the AVL-based and first-order logic methods 

Method  Advantages for the learning process  Disadvantages for the learning process  
Method based on attrib-
ute-value languages 

Simple, efficient, and   handles noisy data. Limited form of background knowl-
edge. Lack of relations in the concept 
description language. 

Method based on the 
First Order Logic  

Appropriate learning time with a high number of 
training examples. 
Sound theoretical basis (first-order logic, logic 
programming). 
Flexible form of background knowledge, problem 
representation, and problem-specific constraints. 
Comprehensive representation of background 
knowledge, and relations among examples. 

Inappropriate learning time with a high 
number of arguments in the relations. 
 
Poor facilities for processing numeri-
cal data without using the measure-
ment theory. 

 
Background knowledge and ontology. Knowledge Representation is an important and in-

formal first step in Relational Data Mining. In the attribute-based methods, the attribute form 
of data actually dictates the form of knowledge representation. Relational data mining has 
more options for this purpose. For example, for RDM the attribute-based stock market infor-
mation, such as stock prices, indices, and volume of trading should be transformed into the 
first-order logic form. This knowledge includes much more than just attribute values. There 
are many ways to represent knowledge in the first-order logic language. Data mining algo-
rithms may work too long to “dig out” relevant information or can even produce inappropri-
ate rules. Introducing data types [12] and concepts of the representative measurement theory 
[26][37] into the knowledge representation process helps to address this representation prob-
lem. In fact, the measurement theory developed a wide set of data types, which cover the data 
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types used in [12]. The FOL systems have a mechanism to represent background knowledge 
in a human-readable and comprehensive form.  

Hybridizing the logical data mining methods with a probabilistic approach. This is done 
by introducing probabilities over logical formulas [5][9] [14] [21] [23][25] [31][45] [47] [48]. 
For financial data mining this was done in [22][23] [45][47][48] using the ‘Discovery’ sys-
tem that has been applied to predict the SP500C time series and to develop a trading strategy. 
This RDM method outperformed several other strategies in simulated trading [22][23]. 

Statistical significance. Traditionally, the FOL methods were purely deterministic, which 
originated from logic programming. The deterministic methods have a well-known problem 
of handling data with a significant level of noise. This is especially important in financial 
data, which are very noisy. In contrast, the RDM can handle noisy and imperfect data includ-
ing numerical data. Statistical significance is another challenge for deterministic methods. 
Statistically significant rules are advantageous in comparison with rules tested only for their 
performance on training and testing data [29]. Training and testing data can be too limited 
and/or not representative. There are more chances that rules would fail to give a correct fore-
cast on other data if we .rely only on them,. This is a difficult problem for any data mining 
method, especially for deterministic methods, including ILP. Intensive studies have been 
conducted for incorporating a probabilistic mechanism into the ILP [31].  

Hypotheses space. It is well known that the general problem of rule generating and testing 
is NP-complete [18]. Therefore, the above discussion is closely related to the following ques-
tions. What determines the number of rules? When to stop generating rules?  

The number of hypotheses is another important parameter. It has already been mentioned 
that the RDM with the first-order rules allows expressing naturally a wide variety of general 
hypotheses. These more general rules can be used in solving classification problems as well 
as for interval forecasting of continuous variables. The algorithmic complexity of FOL algo-
rithms is growing exponentially with the number of combinations of predicates to be tested. 
A restraint to halt this exponential growth is required in order to reduce a set of combination. 
To address this issue, we propose an approach based on data types and the measurement the-
ory. This approach provides better means for generating only meaningful hypotheses using 
syntactic information. A probabilistic approach also naturally addresses knowledge discovery 
in situations with incomplete or incorrect domain knowledge. In this way, the properties of 
single examples are not generalized beyond the limits of statistically significant rules. 

FOIL, FOCL and ‘Discovery’ algorithms. The algorithm FOIL [38][39] learns constant-
free Horn clauses, a useful subset of first-order predicate calculus. Subsequently, the FOIL 
was extended to use a variety of types of background knowledge to increase the class of prob-
lems solvable, to decrease the hypothesis space explored, and to improve the accuracy of 
learned rules.  

The FOCL (First Order Combined Learner) algorithm  [35] extends FOIL. FOCL uses the 
first-order logic and combines its information based optimality metric with background 
knowledge. The FOCL has been tested on various problems [36] that include a domain 
describing when a student loan is to be repaid [34].  

As indicated above, the general problem of rule generating and testing is NP-complete. 
Therefore, we face the problem of designing NP-complete algorithms. Several related ques-
tions are raised. What determines the number of rules to be tested? When to stop generating 
rules? What is the justification for specifying particular expressions instead of any other? The 
FOCL, FOIL and ‘Discovery’ systems use different stop criteria and different mechanisms to 
generate rules for testing. The RDM ‘Discovery’ system selects rules, which are probabilistic 
laws (see section 10) and consistent with measurement scales [26] for a particular task. The 
algorithm stops generating new rules when they become too complicated (i.e., statistically 
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insignificant for the data) despite the possibly high accuracy of the rules when applied to 
training data. The FOIL and FOCL are based on the information gain criterion. 

The ‘Discovery’ system contains several extensions over other FOL algorithms. It enables 
various forms of background knowledge to be exploited. The goal of this system is to create 
probabilistic laws in terms of the relations (predicates and literals) defined by a collection of 
examples and other forms of background knowledge.  

The ‘Discovery’ system, as well as FOCL, have several advantages over FOIL:  
• Improves the search of hypotheses by using background knowledge with predicates 
defined by a rule in addition to predicates defined by a collection of examples. 
• Limits the search space by posing constraints. 
• Improves the search for hypotheses by accepting as input a partial, possibly incor-
rect, rule that is an initial approximation to the predicate to be learned.  

There are also advantages of this RDM system over FOCL which. 
• Limits the search space by using the statistical significance of hypotheses and 
• Limits the search space by using the strength of the data type scales. 

The above advantages are ways of generalization used in this system. Generalization is the 
critical issue in applying the data-driven forecasting systems. The Discovery system general-
izes data through probabilistic laws (see below). The approach is somewhat similar to the hint 
approach [1]. The main source for hints in the first-order logic rules is the representative 
measurement theory [26]. Note, a class of general propositional and first-order logic rules, 
covered by the system is wider than the class of decision trees. 

7. Subject domain theory 
In this section, we introduce the notion of subject domain theory and define the property 

of an experiment, which necessitate the universal axiomatizability of this theory.  
Let us introduce the first-order logic L of signature ℑ = 〈P1,...,Pk〉, k > 0, where P1,...,Pk are 

predicate symbols of the arity n1..., nk. An empirical system [37][26] is a finite model M = 
〈B, W〉 of the signature ℑ, where B is the basic set of the empirical system, W = 〈P1,...,Pk〉 is 
the tuple of predicates of the signature ℑ defined on B. Every predicate Pj can be also defined 
as a subset P ⊆ Bnj on which it is true.  

Let us represent a subject domain by the many-sorted empirical system M = 〈Α, W〉. A 
Subject Domain Theory (SDT) Τ = 〈Α, W, Obs, Sℑ〉 is a set that consists of:  
- the tuple of predicates W of the signature ℑ;  
- the measuring procedure Obs: B → 〈B,W〉, mapping any finite subset of objects B ⊂ A 

into the protocol of measurements, represented by a finite (many-sorted) empirical 
system (data) D = 〈B,W〉;  

- axiom system Sℑ, that should be true on any protocol of measurement. The defintion 
of the truth of an axiom in an empirical system D is a standard definition of the truth 
of expression on a model (empirical system). 

Task: a task of discovering a subject domain theory is determining a system of axioms Sℑ 
that is true on data (presented by a many-sorted empirical system D = 〈Β, W〉).  

All observation results Obs: B → 〈B, W〉 are “parts” of empirical systems – any observa-
tion result is a finite submodel of the subject domain M. In this case, we can prove that the 
axiomatic system Sℑ is universally axiomatizable. Let PRM = {Obs(B) | B ⊂ A} be a set of all 
the experimental results that can be obtained as protocols (submodels) of observations. Using 
[28] it is not difficult to prove the following theorem.  

Theorem 1. If PRM is a set of all finite submodels of the subject domain M, then the 
axiomatic system Sℑ is logically equivalent to the set of universal formulas. 
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We will assume that the condition of the theorem is true for our subject domain and, 
hence, the axiomatic system Sℑ is universally axiomatizable. 

8. What is the law? 

It is known, that a set of universal formulas Sℑ can be reduced to the set of rules (1) by the 
logically equivalent transformations with literals A0, A1, … , Ak. 

C = (A1&...&Ak ⇒ A0 ), k ≥ 0, (1)

 Therefore, we can assume that the axiomatic system Sℑ is a set of rules (1).  
Thus, the task of discovering  a subject domain theory is reduced to discovering rules (1). 

Let us analyse this task. What can we say about the truth of the axiomatic system Sℑ on a set 
of experimental results PRM, by using a logical analysis of axioms? 
- The rule C = (A1&...&Ak ⇒ A0) is true on PRM, if its premise is always false on PRM. 

We prove in the theorem below that in this case some logically stronger subrule, link-
ing atoms of the premise, is true on PRM; 

- The rule C is true on PRM if some of its logically stronger subrule that contains only a 
part of the premise and the same conclusion, is true on PRM.  

Let us clarify logically stronger subrules from which the truth of the rule follows.  
Theorem 2 [48][49]. The rule C = (A1&...&Ak ⇒ A0) logically follows from any rule of 

the form: 

(1) Ai1&...&Aih ⇒ ¬Ai0 , where {Ai1,...,Aih,Ai0} ⊂ {A1,...,Ak}, 0 ≤ h < k, and 

(Ai1&...&Aih ⇒ ¬Ai0) ¢ ¬(A1&...&Ak) ¢ (A1&...&Ak ⇒ A0); 

(2) (Ai1&...&Aih ⇒ A0), where {Ai1,...,Aih} ⊂ {A1,...,Ak}, 0 ≤ h < k, and 

(Ai1&...&Aih ⇒ A0) ¢ (A1&...&Ak ⇒ A0), 
¢  – provability in a propositional calculus. 
Definition 1. A subrule of rule C is a logically stronger rule (1) or (2), defined in the theo-

rem 2 for rule C. 
It is easy to see that any subrule has also form (1). 
Corollary 1. If a subrule of rule C is true on PRM, then the rule C is also true on PRM. 
Definition 2. A law on a set of experimental results PRM is rule C, which is true on PRM, 

and none of its subrules is true on PRM. 
Let L be the set of all laws on PRM. It follows from the logic and methodology of science 

that hypotheses that are most falsifiable, simplest and contain the smallest number of parame-
ters can be viewed as laws. In our case, all these properties, that are usually difficult to de-
fine, follow from the logical strength of the laws. The subrules are: 
- logically stronger than the rules and more prone to become false (falsifiable) because 

they contain weaker premises and, therefore, applicable to larger datasets; 
- simpler, because they contain a smaller number of atomic expressions than the rule;  
- include a smaller number of "parameters" (the number of atomic expressions may be 

regarded as parameters "tuning" rules to data). 
Why should the laws be most falsifiable, simplest and contain smallest number of parame-

ters? In general, views differ from one author to another. In our case, for the hypotheses of 
the form (1), we can give a specific answer to this question. Discovery of laws is in fact solv-
ing a more relevant task – identifying logically strongest theory, describing our data and pro-
viding a probable meachanism of data generation. It can be proved that from a set of laws L 
the subject domain theory Sℑ is inferrable  

Theorem 3 [51]. L ¢ Sℑ. 
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Therefore, the task of the subject domain theory Sℑ discovery is reduced to discovering a  
set of laws L. 

9. Events and their probability 
Let us generalize the notion of a law for a probabilistic case. We define a probability on a 

set of experimental results PRM and logical expressions. We assume that objects for the ex-
periment are selected randomly from set A. For the sake of simplicity we introduce the dis-
crete probability function on A as a mapping µ: A → [0,1] such that [14] shown in (2).  

∑
∈

=
Λ
µ

a
a 1)(  and µ(a) ≠ 0, a ∈ A. 

∑
∈

=
Bb

bB )()( µµ , B ⊆ A 
(2)

The discrete probability function nµ  on the product (A)n  will be thereby defined by   

)(...)(),...,( 11 nn
n aaaa µµµ ××=  

More general definitions of probability function µ are considered in [14]. Let us define an 
interpretation of language L on the empirical system M = 〈Α, W〉 as mapping I: ℑ → W. This 
mapping associates every signature symbol Pj ∈ ℑ, j = 1,...,k, the predicate Pj from W of the 
same arity. Let X = {x1, x2, x3, ... } be variables of language L. The valuation ν is defined as a 
function ν: X → A.  

Let us define the probability for sentences of language L. Let U(ℑ) be a set of all atomic 
formulas of language L of the form P(x1,…,xn); ℜ(ℑ) is a set of all the sentences of language 
L, obtained by the closure of set U(ℑ) relative to logical operations &,v,¬. The formula $ϕ  is 
defined by νIϕ, ϕ ∈ ℜ(ℑ), where predicate symbols from ℑ are substituted by the predicates 
from W, that is by interpretation I and variables of the formula ϕ are substituted by objects 
from A by the validation ν. The probability η of sentence ϕ(x1,…,xn) ∈ ℜ(ℑ) on M is defined 
as follows  

η(ϕ) = µn({(a1,…,an) | M £ $ϕ , ν(x1) = a1,…, ν(xn) = an}), where £ is the truht on M (3) 

10. General notion of law, probabilistic laws on PRM 
Now we revise the concept of law on PRM in terms of probability. Let us do it in such a 

way that the concept of the law on PRM be a particular case of this definition.  
The law is true on PRM rule, whose subrules are false on PRM. Let us revise the concept of 

the law on the PRM. The law is such a true on PRM rule, which cannot be made simpler or 
logically stronger without losing the truth. This property of the law "not to be simplified" 
allows stating the law not only in terms of truth but also in terms of probability. 

Theorem 4 [48][49]. For any rule C = (A1&...&Ak ⇒ A0), the following two conditions 
are equivalent: 

1. the rule C is a law on PRM; 
2. (a) η(A0/A1&...&Ak) = 1 and η(A1&...&Ak) > 0; 

(b) the conditional probability η(A0/A1&...&Ak) of the rule is greater than the condi-
tional probability of each of its subrules. 

This theorem gives an equivalent definition of the law on PRM in probability terms. 
Definition 3. A probabilistic law on PRM with conditional probability 1 is rule C = 

(A1&...&Ak ⇒ A0) such that: 
 a) η(A0/A1&...&Ak) = 1 и η(A1&...&Ak) > 0; 



 15

 b) the conditional probability η(A0/A1&...&Ak) of the rule is greater than the conditional 
probability of each of its subrules. 
 We denote a set of all probabilistic laws on PRM with conditional probability 1 as LP1. 

Corollary 2. A probabilistic law on PRM with conditional probability 1 is a law on PRM. 
Therefore, the task of the subject domain theory Sℑ discovery is reduced to a task of dis-

covering all probabilistic laws on PRM with the conditional probability equal to 1. 
The definition of probability (3) is based on the random choice of objects for the experi-

ment. Experiments are “parts” (submodels) of the empirical system M = 〈Α,W〉, and it is not 
assumed that the truth values of predicates can change during the experiments. As we noted 
above a more general definition of the probability function µ is given in [14]. This definition 
includes cases with “noise”, when truth-values of predicates can change. We cannot require 
the complete logical truth of the laws on PRM for experiments with “noise” and the definition 
of the law on PRM should be changed.  

Let us consider items 1 and 2 of the theorem 4 from the standpoint of the "not to be sim-
plified" law: 
- a law is such a rule, which is true on PRM, and it cannot be simplified (to be logically 

stronger) without a loss of the truth. 
- a probabilistic law on PRM with conditional probability 1 cannot be simplified (to be 

logically stronger) without loosing (decreasing) the value 1 of the conditional prob-
ability, so that it became less than 1.  

This makes a following general definition of law feasible: 
Definition 4. The law is such a rule of the form (1) based on truth, conditional probability, 

and other estimations, which cannot be made logically stronger without reducing their esti-
mations. 

Therefore, we may generalize the definition of the probabilistic law with conditional prob-
ability 1 by omitting condition η(A0/A1&...&Ak) = 1 from the point (a) of definition 3. The 
remaining condition (b) expresses the property of the law in the sense of definition 4.  

Definition 5. A probabilistic law on PRM is a rule C = (A1&...&Ak ⇒ A0), k ≥ 0, such that 
the conditional probability of the rule η(A0/A1&...&Ak), η(A1&...&Ak) > 0 is greater than the 
conditional probability of each of its subrules. 

We denote the set of all probabilistic laws on PRM as LP.  
Corollary 3. L ⊂ LP. 
Definition 6. A Strongest Probabilistic Law (SLP-rule) on PRM is a probabilistic law C = 

(A1&...&Ak ⇒ A0), which is not a subrule of any other probabilistic law. 
We define SPL as a set of all SPL-rules.  
Proposition 3. L ⊂ SLP ⊂ LP. 
Consider the task of the subject domain theory Sℑ discovery in the “noise” conditions.  
Definition 7. We say that the “noise” is “saving”, if sets of laws LP1 and LP are equal. 
The task of subject domain theory Sℑ discovery in the presence of noise is, thus, reduced 

to two tasks (1) evaluation if the noise is “saving”; (2) discovery  of set LP. It follows from 
theorems 3 and 4, corollary 2 and definition 7 that if the noise is “saving”, then LP ¢ Sℑ,  and 
the task of subject domain theory Sℑ discovery is reduced to the set LP discovery. In the pa-
per [50] we describe two examples of “saving” “noise” that satisfy the definition 7.  

11. The models of predictions and  
statistical ambiguity problem   

 The next question about the subject domain theory Sℑ discovery is how to use the theory. 
The main its use is prediction. Now we consider the models of predictions and statistical am-
biguity problem for predictions. 
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 One of the major results of the Philosophy of Science is so-called covering law model that 
was introduced by Hempel in the early sixties in his famous article ‘Aspects of scientific ex-
planation’ [15][16]. The basic idea of this covering law model is that a fact is ex-
plained/predicted by subsumption under so-called covering law, i.e. the task of an explana-
tion/prediction is to show that a fact can be considered as an instantiation of a law. In the 
covering law model, two types of explanation/predictions are distinguished: Deductive-
Nomological (D-N) explanations/predictions and Inductive-Statistical (I-S) explana-
tions/predictions. In D-N explanations/predictions, a law is deterministic, whereas in I-S ex-
planations a law is statistical.  

Right from the beginning, it was clear to Hempel that two I-S explanations can yield con-
tradictory conclusions. He called this phenomenon the statistical ambiguity of I-S explana-
tions [15][16]. Let us consider the following example of the statistical ambiguity.  
 As opposed to the classical deduction, in statistical inference it is possible to infer contra-
dictory conclusions from consistent premises.   
 Suppose that the theory LP makes the following statements: 
- (L1): Almost all cases of streptococcus infection clear up quickly after the administra-

tion of penicillin;  
- (L2): Almost no cases of penicillin resistant streptococcus infection clear up quickly 

after the administration of penicillin; 
- (C1): Jane Jones had streptococcus infection; 
- (C2): Jane Jones received treatment with penicillin; 
- (C3): Jane Jones had a penicillin resistant streptococcus infection; 
It is possible to construct two contradictory arguments from this theory, one explaining 

why Jane Jones recovered quickly (E), and the other one explaining its negation why Jane 
Jones did not recover quickly (¬E) 

Argument 1 Argument 2 

L1 L2 

C1,C2 C2,C3 

E 

 

[r] 

 

 ¬E 

 

[r] 

 The premises of both arguments are consistent with each other. They could all be true. 
However, their conclusions contradict each other, making these arguments rival ones. So, the 
set of rules LP may be inconsistent.  

Hempel hoped to solve this problem by forcing all statistical laws in an argument to be 
maximally specific. That is, they should contain all relevant information with respect to the 
domain in question. In our example, premise C3 of the second argument invalidates the first 
argument, since law L1 is not maximally specific with respect to all information about Jane in 
LP. Thus, theory LP can only explain ¬E, but not E. We will return to this example below.  
 The Deductive-Nomological explanations/predictions of some observed phenomenon G 
are inferred by the rule:  

L1,…,Lm 
C1,…,Cn 
G 

 

 

 

It satisfies the following conditions: 
i. L1,…,Lm are universally quantified sentences (having at least one universally quanti-

fied formula), C1,…,Cn have no quantifiers or variables;  
ii. L1,…,Lm, C1,…,Cn ⇒ G; 
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iii. L1,…,Lm, C1,…,Cn is consistent; 
iv. L1,…,Lm ⇏ G; C1,…,Cn ⇏ G;  

We assume that for deductive-nomological inference of predictions we will use laws from 
L. Therefore, due to theorem 3, we may infer any prediction that follows from the subject 
domain theory Sℑ [58].   

Hempelian inductive-statistical explanations/predictions of some observed phenomenon G 
are inferred by the analogous rule: 

L1,…,Lm 
C1,…,Cn 
G 

[r] 
 

where [r] is the probability of inference. 
In addition to points i-iv, it satisfies the following Requirement of Maximal Specificity 

RMS: 
v. RMS: All laws L1,…,Lm are maximal specific. 

In Hempel [15][16] the RMS is defined as follows.  
An I-S argument of the form: 

p(G;F) = r 
F(a) 
G(a) 

[r] 

is an acceptable I-S prediction with respect to a knowledge state K, if the following require-
ment of maximal specificity is satisfied. For any class H for which the following two sen-
tences are contained in K 

∀x(H(x) ⇒ F(x)), 
     H(a), (4)

exists a statistical law p(G;H) = r’ in K such that r = r’. The basic idea of RMS is that if F and 
H both contain the object a, and H is a subset of F, then H provides more specific information 
about the object a than F, and therefore law p(G;H) should be preferred over law p(G; F). 

For inductive-statistical inference of predictions, we may use probabilistic laws LP. How-
ever, in the next sections we present a new definition of a maximum specificity requirement 
and a coressponding definition of maximum specific rules that solve the problem of statistical 
ambiguity. 

12. Semantic Probabilistic Inference of the Set of Laws L and 
LP 

In this section, we define a semantic probabilistic inference of the sets of laws L, probabil-
istic laws LP and SLP. This inference also gives us possibility to define maximum specific 
rules. 

Definition 8 [46]. A semantic probabilistic inference (SP-inference) of some SPL-rule is a 
sequence of probabilistic laws, which we designate as C1 ⊏ C2 ⊏ ... ⊏ Cn such that: 

C1,C2,...,Cn ∈ LP, Cn – SPL rule, Ci = i i
1 ki(A &...& A G)⇒ , i = 1,2,...n, n ≥ 1 , 

the rule Ci is subrule of the rule Ci+1, η(Ci+1) > η(Ci), i = 1,2,...n-1, 
(5)

Proposition 4. Any probabilistic law belongs to some SPI-inference. 
Proposition 5. There is a SPI-inference for any SPL-rule. 
Corollary 4. For any law from L there is a SPI-inference of that law. 
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Let us consider a set of all SP-inferences of some sentence G. This set constitutes the se-
mantic probabilistic inference tree of sentence G (see fig. 1). 

Definition 9. A maximum specific rule MS(G) of the sentence G is a SPL-rule of the se-
mantic probabilistic inference tree of sentence G that has maximum value of the conditional 
probability.  

We define a set of all maximum specific rules for any atom G as MSR. 
Proposition 6. T ⊂ MSR ⊂ SPL ⊂ TP.  

13.  Requirement of Maximal Specificity and Solution of the 
statistical ambiguity problem 

Now we define the RMS for a probabilistic case. We suppose that class H of objects in (4) 
is defined by some sentence H ∈ ℜ(ℑ) of the language L. Therefore,  according to RMS 
p(G;H) = p(G;F) = r for this sentence. In terms of probability, it means that η(G/H) = η(G/F) 
= r for any H ∈ ℜ(ℑ) that satisfies (4).  

Definition 9. The rule C = (F ⇒ G) satisfies the Probabilistic Requirement of Maximal 
Specificity (PRMS) iff: 

the equtions η(G/F&H) = η(G/F) = r for the rules C = (F ⇒ G) and C’ = (F&H ⇒ G) fol-
low from: H ∈ ℜ(ℑ) and F(a)&H(a) (in this case the sentence (4) ∀x(F(x)&H(x) ⇒ F(x)) 
is true and η(F&H) > 0 due to (2)),  

 In other words, PRMS means that there is no other sentence H ∈ ℜ(ℑ) that increases or 
decreases the conditional probability η(G/F) = r of the rule C by adding it to the premise. See 
lemma 1 below.  

Lemma 1 [52]. If sentence H ∈ ℜ(ℑ) decreases the probability η(G/F&H) < η(G/F) then 
the sentence ¬H increases it: η(G/F&¬H) > η(G/F).  

Lemma 2 [52]. For any rule C = (B1&...&Bt ⇒ A0), η(B1&...&Bt) > 0 of the form (2) 
there is a probabilistic law C’ = (A1&...&Ak ⇒ A0) on M which is subrule of the rule C and 
η(C’) ≥ η(C). 

Theorem 3 [52]. Any MS(G) rule satisfy PRMS. 
Corollary 5 [52]. Any law on M satisfies the PRMS requirement. 
Theorem 4 [52]. The I-S inference is consistent for any laws L1,…,Lm ∈ MSR.  

It follows from the theorem, that after discovering a set of all maximum specific rules 
MSR we can predict without contradictions by using I-S inference. 

Let us illustrate this theorem by using the previous example. The maximum specific rules 
MS(E) and MS(¬E) for the sentences E and ¬E are the rules: 

[L1'] : ‘Almost all cases of streptococcus infection, that are not resistant streptococcus in-
fection, clear up quickly after the administration of penicillin’; 

 

   G 

⇐ A1
1&...&A1

k1& 

⇐ A2
1&...& A2

k2& 

 A7
k2+1&...&A7

k7& 

 A6
k2+1&...&A6

k6& 

 A5
k2+1&...&A5

k5& 

 A4
k1+1&...&A4

k4& 

 A3
k1+1&...&A3

k3& 

Fig 1.  Semantic Probabilistic Inference tree.
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[L2] : ‘Almost no cases of penicillin resistant streptococcus infection clear up quickly af-
ter the administration of penicillin’. 

The rule L1’ have the greater value of conditional probability, then the rule L1 and hence 
is a MS(E) rule for E. These two rules can’t be fulfilled on the same data. 

14. Relational Data Mining and ‘Discovery’ system  
This paper reviewed the theory behind the Relational Data Mining (RDM) approach to the 

knowledge discovery and the ‘Discovery’ system [23, 47] based on this approach. The novel 
part of the paper is in blending RMD approach, representative measurement theory and cur-
rent studies on ontology. In this approach, the initial rule/hypotheses generation is task-
dependent. More detail about examples of such domain and task specific set of 
rules/hypotheses are presented in [23] for an initial set of hypotheses for financial time series. 
For a particular task and a subject domain, the RDM system selects rules that are simplest 
and consistent with measurement scales (data types). It implements the semantic probabilistic 
inference and discovers all sets of rules L, LP, SLP, and MSR using data represented as a 
many-sorted empirical system. In this way a complete and consistent set of rules can be dis-
covered. The system was successfully applied for solving many practical tasks from cancer 
diagnostic systems, time series forecasting to psychophysics, and bioinformatics (see scien-
tific discovery website [42] for more information). 
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