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ABSTRACT 

EFFECT OF QUANTUM DOTS, NOVEL BIOLOGICAL  

IMAGING AGENTS, IN LIVER CELLS  

IN VITRO 

by 

Utshaha Maharjan 

May 2016 

The use of Quantum dots (QDs) coated with polymer and functionalized with 

carboxylic acid groups in medical applications are explored. Their water solubility and 

exceptional stability in aqueous environments make them potentially useful for such 

applications as imaging and ligand attachments. However, there are concerns regarding 

the toxic effects of QDs and the minimal dose that can be used without producing any 

detrimental effects to organisms. In this study, QDs coated with the amphiphilic polymer 

coating tri-n-octylphosphine oxide and poly (maleic anhydride-alt-1-tetradecene (TOPO-

PMAT)) which is functionalized with carboxylic acid groups were used to investigate 

their toxic effect in mouse liver cells. The cells were treated with 2 nM, 20 nM and 40 

nM of QDs for a 24 -hour period and assays were performed to determine the effect on 

cell viability, ATP production, mitochondrial membrane potential and reactive oxygen 
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species (ROS) production. The results showed no significant effect on cell viability, ATP 

production and ROS production. However, the mitochondrial membrane potential of cells 

was significantly decreased when treated with 20 nM and 40 nM QDs. The results 

suggest that TOPO-PMAT QDs could be mildly toxic and precaution should be taken if 

used in higher concentration than 20 nM.  
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CHAPTER I 

INTRODUCTION 

Nanoparticles and Their Uses 

Nanoscience is the study and application of extremely small materials that can 

range from 1-100 nm in size.1 The use of nanotechnology in medicine is spreading 

rapidly as a lot of biological events take place in nanoscale; for example, a strand of 

DNA is only about 2 nm in diameter, and hemoglobin, an oxygen carrying protein, is 5.5 

nm in diameter. Engineered nanoparticles are explored for their possible use in drug 

delivery and cancer imaging and therapy. Due to their small size (1-100 nm) and 

relatively large functional surface area, these particles are able to bind, adsorb and carry 

other compounds such as drugs, antibodies and chemical fluorescence probes, and deliver 

them to targets in the body.2 The main reason to use these nanoparticles in drug delivery 

is to decrease the side effects and toxicity of drugs used in the treatments.2 Although 

these nanoparticles can be very useful for different purposes in medicine, there have been 

concerns that these nanoparticles could be toxic to the human biological system and may 

have detrimental effects on human body parts ranging from cell function to organ 

function such as lungs, brain and heart.2 

Quantum Dots 

 There are several nanoparticles available such as nanotubes, nanowires, fullerenes 

and quantum dots (QDs). Among several nanoparticles, we are interested in QDs as they 

are fully described in terms of their chemical compositions and can be used for various 

medical applications.3 QDs used in this study are highly stable in aqueous environments.4 
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Due to their high stability in aqueous environments they are very useful for biological 

imaging and the carboxyl functional group in the coating makes it convenient for ligand 

attachment for use in targeting specific cancers or cells.5 There are various uses of QDs in 

photovoltaic cells, drug delivery, cancer imaging and as different biochemical probes.  

Similarly, further research has shown their promising use for in vivo applications by 

directing antibodies to cancer cell surface receptors and for siRNA delivery.6  

The Chemical Composition of Quantum Dots 

The chemical composition of QDs can be customized according to their uses. 

They usually consist of three parts: a core, a shell and a coating.  There are several 

different types of cores, shells and coatings that can be customized according to the 

application. QDs have an inorganic semi-conductor core that determines their optical 

properties. The core of QDs are mostly composed of elements from groups III and V, 

such as InAs or GaN or groups IIB & VI, such as CdSe, CdS, CdTe, ZnSe, ZnS or ZnTe. 

The QDs whose cores are composed of elements from groups IIB and VI such as CdSe 

and CdS of periodic table emit visible light and are developed for biomedical purposes 

like diagnosis and cancer therapy. The shells in QDs are commonly composed of ZnSe, 

ZnS or CdS.  Similarly, the QDs can be coated with various compounds depending upon 

their application, such as SiO2, polymers and other molecules such as TOPO (tri-n-

octylphosphine oxide). Also, they are often attached to biomolecules such as RNA, DNA, 

protein and lipids that are used to label cells or tissues, enter inside cells or deliver drugs 

to specific organs in the body.  The physical properties of QDs such as solubility, charge, 

efficiency of optical emission and toxicity can be affected by its coating.7  
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 In this study we are using TOPO-PMAT QDs provided by our collaborators at the 

University of Washington. The TOPO-PMAT QDs are made up of a CdSe core, a ZnS 

shell which are surrounded by a TOPO (tri-n-octylphosphine oxide), and a PMAT (poly 

(maleic anhydride-alt-1-tetradecene)) polymer coating (Figure 1). The intermolecular 

force that holds TOPO and PMAT are hydrophobic interactions. The hydrophobic 

interaction between TOPO and PMAT makes it very stable in aqueous solution which 

makes it very useful for medical purposes. The absorbance spectrum of these TOPO- 

PMAT QDs was determined to be between 400 nm to 500 nm and the fluorescence 

spectrum showed the maximum fluorescence emission at 620 nm (Figure 2).8 

 

Figure 1: Diagram of TOPO-PMAT Quantum Dots.8 
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Figure 2: Maximum absorbance and emission of TOPO-PMAT Quantum Dots.8 

 

Applications of Quantum Dots  

 TOPO-PMAT quantum dots are useful for biological imaging because of their 

high water solubility due to the carboxylic group attached to the outside and exceptional 

stability. These QDs can be used for molecular markers in cells instead of organic dyes 

and antibodies. Mortalin, a member of hsp 70 protein family which is a marker of 

transformed and normal cells depending upon its staining pattern can be stained easily 

with fluorescing quantum dots which otherwise requires several steps of staining with 

primary and secondary antibodies.9 Kaul and colleagues showed that the mortalin 

staining pattern was uniform in cytoplasm and the perinuclear (space between the inner 

and outer layer of nucleus) in transformed (osteocarcinoma, U2OS) cells as reported 

previously by using the organic fluorescent dyes.9 In addition, staining with QDs also 

provides longer fluorescence time. Mortalin stained with the organic dye “Alexa probe” 
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fades away after 3 minutes whereas the mortalin stained with QDs remained for 8 

minutes giving longer and more accurate visualization.  

Similarly, the presence of carboxyl functional groups in the coating of these QDs 

make them useful for ligand attachment. These kind of QDs can be modified accordingly 

for tumor targeting in vivo using antibodies directed to ligand surface receptors on cancer 

cells. Yang and colleagues coupled antibody (ScFvEGFR) with QDs to deliver the 

epidermal growth factor receptor (EGFR) in epidermal growth factor (EGF) expressing 

tumor in vivo mice models via tail vein. The result showed that there were large amounts 

of QDs bound to tumor cells in sections taken from frozen tumor tissues.10 This shows 

that the QDs can be modified to target the tumor cells. Likewise, QDs can also be used 

for SiRNA delivery. SiRNA can be used in knocking down any type of mRNA which can 

be very useful in genomic studies and treatment of some tough diseases such as cancer. 

However, the delivery of siRNA in vivo is very difficult in practice which can be solved 

using QDs as a delivery vehicle. At least 50 copies of SiRNA were delivered to the 

targeted site by using TOPO-QDs in rats with xenograft prostrate tumors.11 There are 

many probable applications of quantum dots in medical fields, and research is ongoing on 

the use of QDs in medical applications. However, there are concerns regarding the toxic 

effect of QDs when used for medical purposes.  

 

Potential Toxic Effect of Quantum Dots  

Despite their usefulness, concerns have been raised about QDs’ potential toxic 

effects in organisms. There are several types of quantum dots depending on their uses. 
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They can be customized according to their uses and applications. They can differ in their 

structure, coating, size, diameter, surface charge, exposure time and the environment they 

are used in. These differences in manufacturing and use determine their stability which in 

turn determine the toxic effect of QDs in living organisms. Stable QDs are more resistant 

to photo-oxidation and remain intact for longer periods of time. Photo-oxidation is most 

likely to occur in unstable QDs and release the components of their cores, shells and 

coating resulting in cadmium related cytotoxicity to cells.12 Unmodified “Naked" QD 

cores are known to produce reactive oxygen species which could be detrimental to 

organisms.6 The induced reactive oxygen species could result in damage to biological 

membranes including plasma membranes and mitochondrial membranes.7  

Due to multiple compositions and uses of QDs, their negative effect on biological 

systems is under intense study especially the toxicity of coating materials. Several QDs 

can be customized in terms of its shell and coating depending on their use, so it is very 

necessary to investigate the toxic effect on organisms. The proper surface coatings can 

reduce their toxic effect on organisms. Kim and colleagues investigated the effect of two 

differently coated QDs, one with 3 mercaptopropionic acid and another with tri-n-

octylphosphine oxide (TOPO) in Daphnia magna. The experiment showed that the 

TOPO coated QDs caused a decrease in survival rate of Daphnia magna when treated 

with higher concentrations (100 µg/L) and 3 mercaptopropionic acid coated QDs 

treatment did not show any changes in survival rate across all the treatment 

concentrations.12 One study showed that the CdSe QDs treated neuroblastoma cells 
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caused cell death via a cadmium-induced mitochondrial apoptosis pathway due to 

formation of reactive oxygen species. 13  

 In another study, toxicity of QDs coated with polyethylene glycol (PEG) in 

different conditions were tested in zebrafish.14 Zebrafish were treated with both 

oxidatively degraded and non-degraded PEG-coated QDs for 48 hours. The result showed 

that both degraded and non-degraded QDs had increased effect in death of zebrafish. 

However, the degraded QDs produced a severe effect when tested for morphological 

deformities such as pericardial, ocular and yolk sac edema. The weathered or oxidatively 

degraded QDs produced more pronounced morphological disorder even in lower 

concentrations (20 µM). The quantum dots coated with organic-COOH showed decreased 

cell viability at the lower concentration of 20 nM when treated up to 24 hours while the 

QDs coated with PEG showed reduced cell viability at 80 nM treated up to 48 hours in 

murine macrophages cells.15 There are several studies for determining the cytotoxic effect 

of QDs on cells but the doses used varies from one study to another. Similarly, studies 

have shown that QDs with amphiphilic or protein coatings or ZnSe or ZnS shell are less 

cytotoxic.16  

Similarly, the size of QDs affects their distribution and retention time in vivo. 

QDs’ coating diameter determine the fate of their accumulation or excretion. QDs are 

excreted via urine if the hydrodynamic diameter is less than 5.5 nm. If the diameter is 

bigger than 5.5 nm, there is a chance that these QDs are deposited in liver.17 Also, the 

same study determined that the increasing hydrodynamic diameter increases blood half-
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life. Another study reported that the smaller sized QDs accumulated in liver within 1 hour 

of treatment and later accumulated in liver (15-80 days exposure) and the large QDs 

accumulated in spleen.18 Similar studies done with PEG chains of different length which 

resulted in different hydrodynamic radii, showed that the increase in PEG length 

increased the retention time of QDs in liver.19  

 Surface charge of the QDs also plays an important role in determining the toxicity 

of QDs. Some research has shown that negatively charged QDs are less toxic than 

positively charged QDs. Some biological applications of QDs requires the use of 

positively charged QDs such as in the SiRNA delivery process.11 Quantum dots with 

negatively charged coatings PEG-COOH or positively charge coating PEG-NH2 caused 

severe coagulation and pulmonary thrombosis at the highest dose.20 Another study done 

using similar (PEG-COOH and PEG- NH2) QDs showed that the cytotoxic effect starts to 

appear when treated with doses of 20 nM after 24 hours of exposure.21 A similar study 

showed that coating of QDs determines the subcellular localization of QDs. PEG-NH2 

coated QDs were localized in lysosomes and mitochondria while the non-functionalized 

PEG coated QDs were distributed evenly throughout the cells.15 

  In addition to the structures of coating, the stability of QDs also depend upon the 

environment of their use. Decreased growth rate was observed in Gram-positive Bacillus 

subtilis and Gram-negative Escherichia coli when treated with QDs dissolved in 

solutions weathered in different pH values. The toxic effect was due to the degradation 

and release of their coating, shell and core materials.22 Kim et. al., (2010) exposed QDs 
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coated with TOPO and 3 mercaptopropionic acid to different forms of light such as white 

fluorescence light with or without UV-B for two days. The Daphnia magna exposed to 

TOPO-QDs exposed to UV-B for 2 days showed a significant rise in production of 

reactive oxygen species (ROS). In another experiment, the ability of QDs to withstand 

the intracellular conditions was determined by treating kidney epithelial cells with QDs. 

The result showed that the structure of QDs were not intact and leaked the cadmium out 

of its core. The acidic and oxidative environment of the lysosome could be responsible 

for the breakdown of QDs. Studies have shown that hypochlorous acid and hydrogen 

peroxide degrade the QDs’ polymer coating, resulting in the release of core 

components.22  

Toxicity can also be affected by the exposure time. In vivo studies have shown 

that the QDs can remain in mice up to two years and in some tissues up to 4 years inside 

a body of an organism. When these are accumulated in vivo these also show the blue shift 

in fluorescence. The blue shift is due to the loss of cadmium and selenium ions from QDs 

which imply that the QDs used are being degraded.23 

Mechanism Behind Negative Effect 

The mechanism of the negative effect of QDs on cells is not fully understood but 

the evidence has shown that cadmium binds and deactivates thiol (sulfhydryl) groups on 

iron-sulfur proteins that are essential for proper cellular and mitochondrial function.24 

One way to monitor the effects of QDs on living organisms is studying their effect on the 

subcellular organelle, the mitochondrion, as it is considered the powerhouse of cells due 
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to its capability of producing energy in the form of ATP which is required for proper 

functioning of cells. 

Mitochondria 

Most eukaryotic cells consist of these subcellular organelles, mitochondria that 

are approximately 10 μm in size. The number of mitochondria present in cells depends 

upon their metabolic capabilities. They consist of two membranes, outer and inner 

membranes, with an intermembrane space in between (Figure 3). The outer membrane is 

permeable and the inner membrane is highly selective compared to the outer membrane 

and only allows some substances to pass depending on the transport system. The inner 

membrane surface area is large due to numerous foldings called cristae. Inside the inner 

membrane is a compartment filled with different enzymes known as the matrix. The 

double membrane structure plays an important role in ATP synthesis and in apoptotic 

signaling pathways. In the inner membrane, the mitochondrial electron transport chain is 

located and ATP synthesis occurs by the process of oxidative phosphorylation. 

Mitochondria are also responsible for the metabolism of fats and proteins and the 

removal of toxic ammonia via the urea cycle and for signaling apoptosis or programmed 

cell death. The proper functioning of mitochondria is necessary for healthy and active 

cells and tissues. Studies have shown that mitochondrial dysfunction may be tied to 

various metabolic and degenerative diseases such as Parkinson’s, atherosclerosis, cancer, 

cardiovascular disease, type II diabetes and dementia.25  
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Figure 3: A mitochondrion showing inner membrane, outer membrane, intermembrane 

space, matrix and cristae. 26 

 

ATP Synthesis 

The majority of ATP required for proper functioning of cells is produced by the 

process of oxidative phosphorylation which includes functions of the electron transport 

chain and F0F1 ATP synthase located in mitochondria. The inner membrane of 

mitochondria consists of four enzyme complexes which are coupled with the enzyme 

complex necessary for ATP synthesis, the F0F1 ATP synthase by a proton motive force. 

The four complexes, complex I (NADH: ubiquinone oxidoreductase), complex II 

(Succinate: ubiquinone oxidoreductase), complex III (Ubiquinone: cytochrome c 

oxidoreductase) and complex IV (cytochrome c oxidase) use several oxidation-reduction 

reactions to harvest electrons from the substrates nicotinamide adenine dinucleotide 

(NADH) and succinate. The harvested electrons are used to reduce the final electron 

acceptor molecular oxygen to water and create a proton gradient. Electrons flow from 

complex I and II (lower reduction potential) to complex III and IV (higher reduction 
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potential). The energy produced from oxidizing substrates is used in pumping protons 

across the inner membrane to the intermembrane space, which results in a proton gradient 

and an electrochemical potential across the inner mitochondrial membrane known as the 

mitochondrial membrane potential.25 In the electron transport chain, the electron from 

complex I or II (NADH or succinate) is transferred to the oxidized form of coenzyme Q 

or ubiquinone resulting, in reduction of coenzyme Q. The reduced form of coenzyme Q is 

called ubquinol, which migrates towards complex III. During this process, complex I is 

able to pump protons towards the intermembrance space. At complex III, ubquinol is 

oxidized again, one electron at a time, and the electrons within the membrane are 

transferred to cytochrome c. From cytochrome c, the electrons are transported to complex 

IV. In complex IV, electrons are transferred to molecular oxygen, generating 2 moles of 

water per mole of oxygen. In addition, complex IV also drives protons across the 

membrane creating a proton gradient. The proton gradient is used by F0F1 ATP synthase 

to produce ATP from ADP and phosphate ions. During ATP synthesis, the created proton 

motive force activates the catalyst to drive the reaction between ADP and phosphate ions 

to produce ATP. In this way, active healthy mitochondria are able to use oxygen, form 

water, and maintain the ATP levels in cells through oxydative phosphorylation (Figure 

4). However, during this process, reactive oxygen species are produced as a by-product of 

the reaction.  
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Figure 4: Electron transport chain and F0F1 ATPase showing oxidative phosphorylation 

and ROS production.27 

 

ROS Production 

The mitochondrial electron transport plays an important role in producing ATP 

which is very essential for life. However, during the process a small amount of electrons 

leak and react with oxygen which results in the formation of reactive oxygen species 

(ROS). The first ROS produced by mitochondria is superoxide anion radical. In the 

electron transport chain (ETC) oxygen is reduced to water through a four electron 

reduction on the surface of complex IV. However, some oxygen is converted to 

superoxide by a one-electron reaction with ubisemiquinone. This is converted into more 

stable hydrogen peroxide (H2O2) due to the action of Mn-superoxide dismutase (SOD) 

present in the matrix of mitochondria. The converted H2O2 can be removed by the 
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antioxidant system comprised of catalase and glutathione peroxidase. In addition, H2O2 

produced in mitochondria also acts as a signaling molecule in the cytosol affecting 

multiple networks such as cell cycle and stress response. If there is an excessive amount 

of H2O2 production due to excessive stress on cells, the antioxidant system of cells may 

not work efficiently to remove it. As a result, H2O2 may generate hydroxyl radical (OH·), 

which is very reactive and is responsible for damaging any molecule it comes into contact 

with.25 Hence the measure of H2O2 produced in cells can be used as a tool for measuring 

the oxidative stress caused by ROS.  

Since mitochondria are very important organelles for the well-being of cells and 

are responsible for the generation of power for proper functioning of cells, studying the 

effects of QDs on this organelle is an effective way to monitor the toxicity of QDs in 

living organisms. The well-being of cells results in proper functioning of tissues and 

proper functioning of tissues results in proper functioning of organs, which in turn results 

in the well-being of an organism. Previous studies in the Thomas lab have shown that the 

mitochondrial functions are negatively affected after treating cells with QDs for 24 

hours.27 In this experiment, we are treating mouse liver cells with three different 

concentrations of QDs for 24 hours and monitoring their effects on the proper functioning 

of cells. 
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Liver Cells as Models for Quantum Dots Toxicity Studies 

Biodistribution in vivo studies in Sprague-Dawley rats showed that QDs are 

initially targeted to liver and spleen.28 The core metal of QDs, Cd was present in 0.92 µg 

Cd g-1 after 24 hours of injection and 1.69 µg Cd g-1 after 30 days of injection.28 Since 

liver is the major target organ for QDs, liver cell culture models for the safety assessment 

of QDs would be relevant and applicable. The biological model used should be able to 

produce a reliable prediction when eventually used in in vivo systems. The measurement 

of toxicity in in vitro cultured liver cells would be comparable to the effect of quantum 

dots in liver. The liver is one organ which breaks down and metabolizes the toxins from 

all parts of the body and excretes them as harmless by-products into the bile, the intestine 

and feces. When using quantum dots for biological imaging or any other medical 

purposes, QDs will probably be routed to the liver. Thus the cytotoxicity assays done in 

mouse liver cells would be an excellent model to predict the effect of QDs in liver.  
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CHAPTER II 

METHODS AND MATERIALS 

In this experiment, Hepa-V cells lines were obtained and maintained in the 

laboratory. A total of four assays were conducted in this study. In the first two assays, 

cell viability assay and ATP luminescence assay, cells were plated in a 96 well plate, and 

in another two assays, mitochondrial membrane potential assay and reactive oxygen 

species (ROS) assay, cells were plated in a 24 well plate. The number of cells plated were 

5000 cells/100 μL for 96 well plate assay and 105 cells/mL for 24 well plate assay. The 

details of the procedures are listed below.  

 

Cell Culture and Passage 

The Hepa-V hepatocyte cell line was obtained from collaborators at the 

University of Washington. The media for cell growth was prepared by adding 50 mL of 

Nu-serum and 10 mL of 100 U/mL streptomycin in 500 mL of Dulbecco’s Modified 

Eagle Medium (DMEM)/F12 medium. The cells were grown in the prepared growth 

medium at 37 °C in a 95% air and 5% CO2 humidified atmosphere in a 25 cm2 tissue 

culture flask. The cell line was maintained by passing cells once or twice a week. For the 

passing of cells, the older media was removed and cells were washed with 3 mL of 

phosphate buffered saline (PBS) at pH 7.4. After washing, cells were treated with 1.5 mL 

of 0.05% trypsin dissolved in PBS for two minutes at 37°C in a 95% air and 5% CO2 

humidified atmosphere. The treatment of cells with trypsin detached cells from the 

bottom of the flask. After cells were detached from the bottom 5 mL of media was added 
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to stop the activity of trypsin. The mixture of media and trypsin was then transferred to a 

sterile conical tube and centrifuged at 800 rpm for 6 minutes. The trypsin and media 

mixture was aspirated and the pellet of cells in the bottom of a conical tube was re-

suspended in 5 mL fresh media. 1 mL of resuspended cells in fresh media was taken and 

transferred to a sterile flask and 4 mL of fresh media was added. The new flask was 

incubated at 37 °C in a 95% air and 5% CO2 humidified atmosphere. This process of 

transferring cells from one flask to the other is known as passage of cells. Cells from 

passage 1 through 9 were used in this study.8, 29  

From the remaining resuspended cells in 5 mL of fresh media, 100 μL of the cell 

suspension was removed and diluted with 200 μL of water, then 10 μL of that solution 

was added to a hemocytometer and the number of viable cells was counted under the 

inverted microscope. 

 

Counting Cells using a Hemocytometer and Plating Cells for Experiments 

A hemocytometer microscope slide has etching or markings that consists of four 

large clear squares on the corners divided into 16 smaller squares each. The detail on the 

hemocytometer can be seen in figure 5. After 10 μL of diluted cell sample was applied to 

the hemocytometer, a coverslip was placed on the cells. Cells in each of those four 

squares including one large central square in the middle were counted. The average 

number of viable cells counted under an inverted microscope on these five large squares 

were calculated by dividing the total number of cells counted by 5. The total number of 

cells present in each mL of media was determined by using the following formula: 
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average number of cells counted in 5 squares of the hemocytometer X dilution factor X 

104. After the number of cells per mL was determined, the cells were diluted using cell 

growth media to 5000 cells/ 100 μL for a 96 well plate assay and 105 cells/ mL for a 24 

well plate assay.  

 

Figure 5: Glass hemocytometer diagram showing square spaces used in counting cells. 
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Treatment of Cells with Quantum Dots 

TOPO-PMAT QDs were also provided by our collaborators at the University of 

Washington. QDs were stored in microfuge tubes wrapped in parafilm at room 

temperature inside a black conical tube to protect them from light. Cells were cultured in 

96 or 24 well plates for 24 hours, and then treated with three different concentrations of 

QDs (2, 20 and 40 nM) for 24 hours at 37 °C and 5% carbon dioxide.8 The stock solution 

of 900 nM of QDs in PBS was sterilized with a 0.22 μm filter attached to a sterile 

syringe. The sterilized QDs in PBS were diluted using an appropriate volume of DMEM 

medium with 10 % Nu-serum and 100 U/mL streptomycin. For 96 well plate assays, 100 

μL of final volume was maintained and for 24 well plate assays the final volume of 400 

μL was maintained for all three concentration of treatments. Following the 24-hour QDs 

treatment, the four assays were conducted.  

 

Cell Viability Assay 

The cell viability assay was used to determine the ability of cells to maintain or 

recover viability. It is an enzyme-based method that works by determining the 

mitochondrial dehydrogenase activity in the living cells. In this experiment we used a 

water-soluble tetrazolium salt, [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-

disulfophenyl)-2H-tetrazolium, monosodium salt] (WST-8, Dojindo Inc.), which is a 

modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, to 

monitor the mitochondrial dehydrogenase activity of cells. WST-8 salts receive two 

electrons from viable cell mitochondrial dehydrogenases to generate an orange, yellow or 
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purple formazan crystal. The assay was used to monitor the effect of QDs on cell 

proliferation compared to untreated cells. In this assay, 5000 cells per 100 μL were plated 

and grown for two days or until cells were 80% confluent and treated with three different 

concentrations of QDs. On the day of assay, older media and QD treatment was aspirated 

and replaced with 90 μL of fresh media and 10 μL of WST-8 salt. One well was added 

with 90 μL of 40 nM QDs only and 10 μL of WST-8 salt which gave the background 

absorbance of QDs only. Then the cells were incubated for 4 hours at 37 °C and 5% 

carbon dioxide. After incubating for 4 hours, the contents of each well was transferred to 

unused wells and absorbance was read at 450 nm using a Synergy II plate reader. The 

background absorbance reading of QDs was subtracted from the absorbance value of 

QDs treated wells. The negative control used in this experiment was 20% dimethyl 

sulfoxide (DMSO). The working mechanism of WST-8 in determining cell viability can 

be seen in following reaction (Figure 6),  
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Figure 6: WST-8 reduction reaction in presence and absence of dehydrogenase. WST-8 is 

reduced by the dehydrogenase activity of cells into WST-8 formazan which is absorbed 

at 450 nm. Dehydrogenase is only produced by healthy cells and is proportional to the 

number of healthy cells. In absence or low amount of dehydrogenase, lower amount of 

WST-8 is converted to WST-8 formazan and absorbance at 450 nm decreases.  

 

Adenosine Triphosphate (ATP) Luminescence Assay 

Cells consume energy during their regular cellular processes of growth and 

metabolism. The required cellular energy form for these processes is adenosine 

triphosphate (ATP). When cells are treated with QDs, the amount of ATP produced by 

cells may be affected. The ATP luminescence assay was used to determine the amount of 

ATP in QD-treated cells compared to control cells. Cells were plated and treated 

similarly to the cell viability assay except a 96 well white luminescence plate was used. 

After the 24 hour QD treatment in 96 well plates, cells were washed with PBS buffer and 

treated with 35 μL of 1.5% triton X-100 at room temperature for 20 minutes. The 
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treatment of cells with Triton-X 100 solubilized the cell membranes to release 

cytoplasmic ATP. Then, 100 μL of assay solution (250 mM glycylglycin buffer, pH of 

7.3, 2 mM EGTA, 2 mM MgCl2˙6H2O, 7.5 mM dithiothreitol, 15 μM luciferin and 10 μg/ 

mL luciferase) was added to the each well and the luminescence intensity of the reaction 

was measured immediately using a Synergy II luminescent plate reader with a plugged 

hole in the excitation filter wheel and a hole in the emission filter wheel. The ATP 

produced by cells in each well with the treatment of QDs was compared to the ATP 

produced by control cells and recorded as percent of control.30 The amount of ATP 

produced in control cells was determined by the ATP standard curve with concentrations 

ranging from 10 -6 to 10 -9 nM by monitoring luminescence with a Synergy II plate reader. 

For positive control (lower amount of ATP production), cells were treated with 10 μM 

antimycin A for 6 hours and luminescence was quantified. 1 μL of 1 mM of Antimycin A 

stock solution prepared in 1:1 PBS and ethanol was taken and added to positive control 

wells resulting in final concentration 10 μM of antimycin A and 0.5% of ethanol in each 

positive control well. The reaction of ATP with luciferin in the presence of luciferase is 

shown in Figure 7.  
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Figure 7: Reaction of luciferin and ATP in presence of luciferase.  

 

Flow Cytometry 

A flow cytometer (Bio-Rad S3e cell sorter) was used to collect data for two 

assays: the mitochondrial membrane potential assay and the reactive oxygen species 

(ROS) assay. Both of the assays used fluorescent dyes. The dye, JC- 10 was used for 

mitochondrial membrane potential assay. JC-10 dye exists as monomers in the cytoplasm 

and monomers aggregate to form J-aggregates inside the mitochondria in cells which was 

measured in two different excitation/ emission spectra in the flow cytometer. The filter 1 

(FL1) channel measures the fluorochrome emission between 525 ± 30 nm and the filter 2 

(FL2) channel measures fluorochrome emission between 586 ± 25 nm.  In this case, the 

JC-10 dye is the fluorochrome. The JC-10 dye was examined for median fluorescence 

intensities using both of these channels and a fluorescence intensity ratio (FL2/FL1) was 

calculated. For the ROS assay only the median fluorescence intensity at FL1 was 

measured. Each experiment was performed until 50,000 events were collected. The 

+ Light 
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number of events refers to the number of single cells analyzed in the experiment. The 

collected number of events were analyzed by using a software program called FlowJo 

(V.10.1). FlowJo allows users to choose a population of cells to be analyzed, a process 

known as “Gating”. It is a process by which dead cells and debris that have been counted 

as events in the experiment are separated from the actual population of live cells being 

analyzed.  

Mitochondrial Membrane Potential Assay 

The mitochondrial membrane potential is related to the cell’s ability to make 

ATP. To monitor the effect of QDs on mitochondrial membrane potential, a lipophilic 

cationic dye JC-10 (Enzo Life Sciences) was used and analyzed using a flow cytometer in 

the Biology Department at CWU. Cells were plated in 24 well plates at 1 X 10 5 cells per 

mL and incubated until cells were 85 % confluent. After treating cells with QDs for 24 

hours, QDs and media were aspirated and cells were washed with 200 μL of warm PBS. 

6.7 μL of 1.5 mM JC-10 dye dissolved in 1:1 dimethyl sulfoxide (DMSO) and 20 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer in Hank’s Balanced 

Salt Solution (HBSS) with final pH of 7.3 with 0.02% pluronic F-127 and 493.3 μL of 

media was added to each well making the final concentration of dye to be 20 μM. The 

final concentration of DMSO in cells was maintained to be 0.67%. After the treatment of 

cells with JC-10, cells were incubated for 30 minutes at 37 °C in a 95% air and 5% CO2 

humidified atmosphere.31 After the incubation, cells were washed with warm PBS and 

200 μL of 0.05% trypsin was added. Cells were detached from the culture flasks and 500 

μL of media was added to stop the activity of trypsin. Cells were transferred to a 5 mL 
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microfuge tube and centrifuged for 6 minutes at 800 rpm. Then the media and trypsin mix 

was aspirated and cells were re-suspended in HHBS buffer. Then the cell samples were 

analyzed using flow cytometry. QDs exposed cells treated with JC-10 produces green 

emission (JC-10 monomers) and orange emission (JC-10 aggregates) indicating low and 

high mitochondrial membrane potential, respectively.  Fluorescence intensities from 

channels FL1 and FL2 were measured in cells by flow cytometry, the median 

fluorescence intensity was analyzed and determined using FlowJo. The ratio of 

fluorescence intensities at FL2/FL1 was calculated. For a positive control, cells were 

treated with 5 μM of carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) in 

ethanol for 10 minutes and then treated with JC-10 dye.32 The 5 μM of FCCP was 

prepared from the stock solution of 1 mM FCCP dissolved in ethanol. 5 mL of the stock 

solution was added to 495 μL of media resulting in final concentration of 5 μM FCCP 

and 1.1% of ethanol. 

 

Growing Cells for Fluorescence Microscopy 

For the fluorescence microscopy experiment Hepa-V cells were grown on a cover 

slip. The 22 mm square coverslip was sterilized by spraying with 70 % ethanol and then 

with flame. The coverslip was placed in a 60 X 15 mm petri dish. 1 mL of cells 

resuspendend in 4 mL of DMEM/F12 was added to the petri dish. The cells were allowed 

to grow for 48 hours in 37 °C in a 95% air and 5% CO2 humidified atmosphere. After 48 

hours, media from the petri dish was removed and added with 3.0 mM JC-10 dye 

dissolved in 1:1 DMSO and 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
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(HEPES) buffer in Hank’s Balanced Salt Solution (HBSS) with final pH of 7.3 with 

0.02% pluronic F-127 and DMEM/F12. Then the petri dish was incubated for 1 hour. 

Then, the petri dish contents were aspirated and the coverslip was washed with 5 mL of 

PBS twice. After washing, the coverslip was taken out of the petri dish using tweezers 

and placed inverted on a microscope glass slide. The coverslip was placed on the glass 

slide in such a way that the side on which cells were growing faced the glass slide. Two 

drops of PBS were added to the glass slide before placing the coverslip. Excess PBS after 

placing the coverslip was removed using a Kim wipe. After placing the coverslip in the 

desired position, it was sealed using clear nail polish on all 4 sides of the coverslip. After 

the nail polish dried, the whole slide was cleaned with lens cleaner and read under a 

fluorescence microscope and images were taken.33  

 

Intracellular ROS Assay 

The intracellular reactive oxygen species (ROS) production was measured using a 

fluorescent dye called CellRox green (Invitrogen, Inc.) and flow cytometry. Cells were 

plated at 100,000 cells / mL in 24 well plate and incubated until 85% confluent then cells 

were treated with QDs for 24 hours. On the day of the assay, the plated cells were 

aspirated and 498 μL of fresh media was added.  2 μL of 250 μM of CellRox green dye 

was then added to the cell plated wells and incubated for 45 minutes protected from the 

light giving a final concentration of CellRox green of 1 μM. After the incubation, the 

media was removed and cells were removed from the plate with trypsin and resuspended 

in FACS (fluorescence activated cell sorting) buffer which consists of 1% BSA and 0.1% 
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sodium azide buffer. For a positive control, 498 μL of 300 μM tert-butyl hydroperoxide 

(TBHP) diluted in media was added to the cells and incubated for 45 minutes.34 TBHP 

reacts with ferrous iron to produce hydroxyl radical via a process of Fenton chemistry 

where the iron is oxidized by the TBHP (Figure 8). 

 

             Figure 8: TBHP reaction with ferrous ion to produce hydroxyl radical, •OH. 

 

Statistics 

For each experiment, the data collected was averaged and standard deviation (Cell 

viability and ATP assay) or range (Mitochondrial membrane potential and ROS assay) 

were calculated. Data collected for each experiment was analyzed for statistical 

significance by using one-way ANOVA and the significance was set to P ≤ 0.05. All the 

statistical analyses were done by using Microsoft Excel version 2013. The replicates for 

the experiments were 3 to 6. 
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CHAPTER III 

RESULTS 

Cell Viability 

 A cell viability assay was used to determine the effect of QDs on cell proliferation 

and the cytotoxic effects to cells that would eventually lead to cell death. Cell viability 

was evaluated by using a modified water soluble MTT assay.  In this method, water 

soluble tetrazolium salt is reduced due to the activity of mitochondrial dehydrogenases. 

The measurement of activity of mitochondrial dehydrogenase produced by the active and 

healthy cells helps to determine the cell viability. Hepa-V cells showed a trend of 

decreased mitochondrial dehydrogenase activity when treated with 2 nM, 20 nM and 40 

nM QDs. The trend showed that the cells treated with 2 nM, 20 nM and 40 nM QDs 

appear to have 21.5%, 20.9% and 13.8% decreased cell viability respectively (Figure 9).  

However, the decrease in dehydrogenase activity was not statistically significant (P>0.05) 

compared to control cells analyzed by one-way ANOVA. The positive control used in 

this experiment (20% DMSO) showed 73% decrease in cell viability. DMSO at 

concentrations higher than 10% causes cells to undergo apoptosis.35 
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Figure 9: Cell viability in liver cells after 24-hr exposure to QDs. Liver cell 

mitochondrial dehydrogenase activity measured by the water soluble MTT assay (WST-

8). Analysis by one-way ANOVA (p=0.08, n=6), indicates no significant effect of QDs 

on metabolic cell death.  Positive control cells were treated with 20 % DMSO for 1 hr. 

 

 

ATP Content in Cells 

Adenosine 5'- triphosphate (ATP) is very crucial in biological systems for 

exchanging energy. It is produced and present in all metabolically active cells as an 

immediate free energy donor. The production of ATP in cells denotes the cellular 

integrity as cells require ATP for proper functioning. An ATP luminescence assay was 

used to determine the quantity of ATP produced by Hepa-V cells. In this method, the 

substrate luciferin was used which reacts with ATP in the presence of the enzyme 
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luciferase to produce light. The result showed that there was no significant decrease in 

ATP produced by cells when treated with different concentrations of QDs (p>0.05, one-

way ANOVA). There was a trend of 2%, 2% and 14% decrease in ATP production by 

cells when treated with 2 nM, 20 nM and 40 nM QDs, respectively (Figure 10). However, 

it was not statistically significant.  

 

Figure 10: ATP production in liver cells after 24-hr exposure to QDs. ATP production of 

liver cells was determined by the Luciferase/luciferin luminescence assay.  Control 

consists 1.5% Triton-X 100. Positive control cells were treated with 10 µM Antimycin A 

for 6 hours. Analysis by one-way ANOVA (P= 0.17, n=6) indicates no significant effect 

of QDs on ATP production of cells. ATP values of the control cells ranged between 42 

nM and 88 nM per 5000 cells. 

 

The positive control used in this experiment was 10 µM antimycin A which 

showed 98% decrease in ATP production. Antimycin A is an antibiotic which interferes 
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with electron flow from complex III to cytochrome C. In the presence of antimycin A 

cytochrome c remains oxidized, eventually stopping the process of ATP production. 

  

Mitochondrial Membrane Potential Assay using JC-10 

 Mitochondria are considered to be the power house of cells since they generate 

ATP. The change in mitochondrial membrane potential (Δψm) indicates the capacity of 

mitochondria to generate ATP and maintain cell health. In this experiment, a cationic 

lipophilic dye (JC-10) was used in order to determine Δψm in cells. JC-10 is a 

mitochondrial membrane permeable dye which can exist in its monomeric and J- 

aggregate forms depending on the Δψm. As mitochondria become more polarized 

(increase Δψm), more JC-10 enters mitochondria and JC-10 starts forming J- aggregates 

shifting the fluorescence emission from 530 nm to 590 nm, fluorescing red. In healthy 

cells, the amount of J- aggregate is always equal to or higher than that of the monomer. 

The result from fluorescence microscopy showed that the JC-10 dye used for the 

mitochondrial membrane potential assay appears to fluoresce both green (FL1) and red 

(FL2) uniformly in the cytoplasm of healthy cells (Figure 11).  
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Figure 11: Fluorescence microscopy images of localization of JC-10 dye in Hepa-V cells. 

Cells were grown on a coverslip for 48 hours and treated with JC-10 dye for 45 minutes. 

Separate images were taken using different fluorescence filters for cells (panel A: ex/em: 

488/530 nm and Panel B: ex/em: 488/590 nm) 

 

As the mitochondrial membrane potential decreases, the amount of fluorescence at FL2 

decreases and hence the ratio of FL2/ FL1.  

 A Δψm assay was performed using JC-10 dye and cells were analyzed using flow 

cytometry. The JC-10 dye forms J- aggregates which fluoresces with emission at 590 nm 

(FL2). In healthy cells with a high mitochondrial membrane potential, the accumulation 

of J- aggregates is equal to or higher than its monomeric form. The results showed that 

the ratio of FL2/ FL1 decreased as the concentration of QDs increased. The ratio of FL2/ 

FL1 is similar when compared between the control cells and cells treated with 2 nM QDs. 

The fluorescence intensity FL2/ FL1 ratio of cells treated with 20 nM and 40 nM 

significantly decreased compared to control cells (P < 0.05, one-way ANOVA) (Figure 

12).  

Panel A

 

Panel B
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Figure 12: Mitochondrial membrane potential in liver cells after 24-hr exposure to QDs. 

JC-10 dye (20 µM) was added to Hepa-V liver cells and incubated for 30 min. Postive 

control cells were treated with FCCP (5 µM) and incubated for 10 min. The median 

fluorescence intensities for both J-aggregates and monomeric forms of JC-10 were 

measured, at Ex/Em = 488/590 nm and 488/525 nm with flow cytometry and their ratio 

was calculated (FL2/FL1). Analysis by one-Way ANOVA (P= 0.00017, n=2) indicates 

significant effect of QDs on Δψm. Two values were averaged and the error bar represents 

the range of those values. 

 

The decrease in FL2/ FL1 ratio showed that the amount of J- aggregates 

accumulated in mitochondria of cells decreased as the concentration of QDs increased in 

the cells. The decrease in amount of J- aggregates suggested that the mitochondrial 

membrane potential of cells was decreasing with increased concentration of QDs in cells. 

The positive control (FCCP) showed a decrease in mitochondrial membrane potential 
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denoted by decreased FL2/ FL1 ratio. FCCP uncouples the mitochondria as a result of 

which mitochondrial membrane potential decreases.32  

Reactive Oxygen Species (ROS) Production in Cells 

Cells produce reactive oxygen species (ROS) during the process of formation of 

ATP through oxidative phosphorylation. In normal conditions, cells have their own 

antioxidant mechanism to remove ROS. However, under stress cells may be making more 

ROS than they remove.  The presence of ROS in cells is an indicator of stress due to 

exposure to chemicals such as QDs.  In this experiment the ROS produced by cells when 

treated with QDs were measured by the fluorescence intensity of CellRox green dye 

which fluoresces brightly in the presence of reactive oxygen species and is detected using 

the FL1 filter in the flow cytometer. Due to limited amount of QDs, the experiment was 

performed two times only. The data for these experiments is questionable because the 

flow cytometer was clogged on the day of the experiment and cells were stored in 

refrigerator for more than two hours before analyzing in flow cytometer. We were unable 

to combine these two experiments together and do a statistical analysis on it.  

The first experiment (trial 1) showed the decreased trend in production of ROS 

when treated with QDs compared to control cells. It showed that the production of ROS 

in cells treated with 20 nM and 40 nM had a decreased trend as compared to control cells 

but increased trend as compared to cells treated with 2 nM QDs. However, the positive 

control in the experiment also showed a decrease in ROS production. For the positive 

control, cells were treated with tertiary butyl hydrogen peroxide (TBHP), a known ROS 

producer with an expected result of increasing ROS (Figure 13, Panel A). 
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The second experiment (trial 2) showed similar trends. The production of ROS 

showed a decreased trend in cells treated with QDs as compared to control cells.  The 

production of ROS in cells treated with 20 nM appeared to decrease as compared to 

control cells but appeared to increase as compared to the cells treated with 2 nM and 40 

nM QDs. The positive control also showed an increase in ROS production which was 

expected (Figure 13, Panel B).  

Even though the positive control did not work on the first experiment, the results 

are comparable in both the experiments. The trend of decreased ROS when treated with 2 

nM QDs was similar in both experiments. When treated with 20 nM, QDs production 

ROS decreased as compared to control but increased as compared to 2 nM treatment and 

the trend is similar in both experiments.  When treated with 40 nM QDs, the ROS 

production decreased as compared to control in both experiments. However, the ROS 

production with 40 nM QDs treatment was equal to ROS production when treated with 

20 nM QDs in first experiment, whereas it decreased slightly in second experiment.  
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Figure 13: Production of reactive oxygen species (ROS) in liver cells after 24-hr 

exposure to QDs. CellRox green dye (1 µM) was added to Hepa-V liver cells and 

incubated for 45 min. Positive control cells were treated with 300 µM tertiary butyl 

hydrogen peroxide (TBHP) and incubated for 45 min.  The median fluorescence 

intensities for CellRox green dye was measured at Ex/Em = 488/530 nm with flow 

cytometry (FL1 median fluorescence intensity). Panel A contains the data from Trial 1 

and panel B contains the data from the Trial 2 of the experiment performed on the same 

day. 
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Comparison of Fluorescence of QDs and JC-10 Dye 

The quantum dots used in these experiments have a maximum fluorescence 

emission at 620 nm which is measured with the FL3 filter on the flow cytometer.8 

However, the emission spectrum of QDs showed some overlap in emission at wavelength 

590 ± 25 nm, which can be measured by using FL2 in the flow cytometer. The dye used 

in these experiments fluoresced and were analyzed and detected through FL1 or FL2 in 

flow cytometer. To show that the median fluorescence intensity of dyes used such as JC-

10 and fluorescence of QDs did not overlap with each other, Hepa-V cells were treated 

with 20 nM of QDs and analyzed with flow cytometry using filters FL2 and FL3. The 

median intensity recorded for QDs at FL2 was 277 and at FL3 was 10,337 (Figure 14, 

Panel A left and right). We compared these median fluorescence intensities to the median 

fluorescence intensities of the cells treated only with JC- 10 dye. The fluorescence 

intensity for cells treated only with JC- 10 was 265 at FL2 (Figure 14, Panel B, and Left). 
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Figure 14: Median fluorescence intensity of Quantum dots (Panel A) and JC-10 (Panel B) 

in FL2 (left) and FL3 (Right). Hepa- V cells were treated with 20 nM QDs for 24 hours 

and analyzed using flow cytometry. The median fluorescence intensity of QDs in both 

FL2 (panel A, left) and FL3 (Panel A, right) is shown. The median fluorescence intensity 

of JC-10 treated cells in both FL2 (panel B, left) and FL3 (panel B, right) is shown.  

 

The median fluorescence intensity of QDs in cells is similar to that of control cells 

with JC-10 stain only. Thus, the result showed that the background of QDs was not 

responsible for the data collected in FL2. Also, the result showed that QD fluoresces 

Panel A 

Panel B 
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remarkably higher when detected through FL3 more than 37-fold increment as compared 

to FL2.  
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CHAPTER IV 

DISCUSSION 

 The TOPO-PMAT QDs used in this study are the group of QDs that would be 

used in imaging and medical purposes due to their extraordinary properties. These QDs 

are highly soluble and stable in aqueous environments.8 The carboxylic functional group 

attached to the coating makes these QDs applicable for ligand attachment which would 

be very helpful in medical applications. 

The cells used in this study are mouse liver cells (Hepa-V) and represent the cells 

of the organ which TOPO-PMAT may encounter if used for medical purposes. QDs with 

a bigger diameter than 5.5 nm are most likely deposited in the liver.17 The diameter of 

TOPO-PMAT QDs used in this experiment is 12.7±0.5 nm8, so these are most likely to 

be deposited in liver. Also as the size increases, the retention time of QDs in liver 

increases.19 Since the liver is the target organ for the QDs of this size, the experiment 

performed in liver cells is representative of the effect that these QDs may have in liver 

when used in vivo.  

The analysis of cells using flow cytometry after treating with QDs for 24 hours 

showed that the QDs were present inside the cells and that the majority of the QDs’ 

fluorescence was detected through channel (FL3) (Figure 14, panel A). The finding was 

similar to previous work done in the Thomas research lab in Hepa-1c1c7 (CR-17) cells.27 

Hepa-1c1c7 cells are also mouse liver cells but with enhanced glutathione levels. The 
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result showed that Hepa-1c1c7 cells were able to uptake and internalize the QDs after 4 

hours of treatment.27 Smith et al. (2012) showed that, nearly all HepG2 (human liver 

cells) were able to internalize TOPO-PMAT QDs.36 Similar studies with different cells 

(human macrophages, human kidney cells) confirmed that the QDs were internalized by 

these cells.8 These data showed that TOPO-PMAT QDs can be readily internalized by 

cells when the QDs come in contact with live cells. Hence a thorough study should be 

undertaken before considering the use of these QDs in vivo as they can be readily 

internalized by many different types of cells.  

Our results showed that the QDs did not have any significant effect on cell 

viability of Hepa-V cells. This result is similar to previous studies in human hepatocytes 

cells. Human hepatocytes did not show any decrease in cell viability when treated with 2 

nM to 40 nM TOPO-PMAT QDs over 24-48-hour period.36 Although our experiment did 

not show any significant decrease in cell viability, the treatment of cells with 2 nM, 20 

nM and 40 nM QDs showed a trend of decreased cell viability by 21.5%, 20.9% and 

13.8% respectively. The cell viability decreased by 20% in lower concentration of 

treatment while it decreased by only 13.8% at higher concentration treatment. The 

finding is similar to the McConnachie and colleagues’ cell viability experiment 

conducted in human kidney cells in which the percent of cell viability increased as the 

concentration of TOPO-PMAT QDs increased to 40 nM.8 This can be attributed to the 

activation of metabolic function of cells to make Nicotinamide adenine dinucleotide 

phosphate (NAD(P)H) more available under stress that may have been produced due to 
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exposure to QDs.37 The presence of more NAD(P)H allows cells to remove more ROS 

using glutathione peroxidase for example, which converts hydrogen peroxide to water 

and oxygen.  

Similarly, our results showed that there was not a significant change in ATP 

production when cells were treated with 2 nM, 20 nM and 40 nM of QDs. The ATP 

production showed a decreased trend, by only 2% when treated with 2 nM and 20 nM 

QDs, and by 14% when treated with 40 nM QDs. This trend showed that the amount of 

ATP produced by cells was constant and cells were able to maintain the amount of ATP 

produced. In previous studies it was shown that cells under stress are triggered to produce 

more ATP.38 The level of intracellular ATP increases as a result of induced stress.38 The 

release of ATP is a response of cells to induced stress. When cells were treated with 

different concentrations of QDs, cells were exposed to the stress. It is possible that in 

response to the QDs induced stress, cells started generating intracellular ATP.  The 

intracellular ATP can be generated from glycolysis and other metabolism pathways such 

as the citric acid cycle in order to regulate the normal function of cells. When cells are 

treated with 40 nM of QDs, the ATP production trend decreased compared to control and 

other treatment cells. The stress from higher concentration treatment may have been more 

than the cells could handle as a result of which the ATP concentration decreased as 

compared to the other treatments.  

The energy produced from oxidizing substrates in the electron transport chain is 

used in pumping protons across the inner membrane to the intermembrane space, which 
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results in a proton gradient and an electrochemical potential across the inner 

mitochondrial membrane known as the mitochondrial membrane potential. The proton 

motive force is used to generate ATP through ATP synthase. The measure of 

mitochondrial membrane potential is a sign of healthy and functioning cells. The result 

showed that the mitochondrial membrane potential decreased significantly when treated 

with 20 nM and 40 nM of QDs. Interestingly, mitochondrial membrane potential 

increases slightly when treated with 2 nM QDs. Similar studies on the effect of CdTe 

QDs on mitochondria showed that the mitochondria swell in the presence of QDs. They 

permeablize the mitochondrial inner membrane to H+ and K+ ions. These ions play an 

important role in distribution of charges across the inner mitochondrial membrane. The 

disturbance in this distribution of charges decreases the proton electrochemical gradient. 

This effect increased as the concentration of QDs increases from 50 nM to 50 µM.39 The 

appropriate level of ion concentration is very important for the proper functioning of the 

mitochondria for the energy generation through the proton electrochemical potential 

gradient.  In the presence of QDs the balance of these appropriate ion gradients is 

disturbed and the membrane potential decreases. The decrease in membrane potential 

indicates mitochondrial uncoupling. Uncoupling of mitochondria disrupts the process of 

ATP formation and ROS production.  

A ROS assay was performed using CellRox green dye and the result showed that 

the production of ROS decreases when treated with different concentrations of QDs in 

two experiments. ROS are produced in cells as a by-product of ATP formation through 
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oxidative phosphorylation. Cells have their own antioxidant process to remove these ROS 

through reaction with superoxide dismutase and glutathione peroxidase. However, if cells 

start producing more ROS, the cells’ natural antioxidant system may not be able to 

remove ROS giving rise to the presence of ROS in cells putting cells under oxidative 

stress. So the measurement of ROS when they are exposed to QDs is a way to determine 

the oxidative stress cells are going through.  

The trend in both the experiments showed that ROS production decreased when 

treated with different concentration of QDs. Even though the flow cytometer was not 

functioning and cells had to be stored in the refrigerator for more than two hours before 

analysis, the trend of decreased ROS production in cells treated with QDs were similar in 

both experiments (Figure 13). Similar effects had been shown when cells are treated with 

uncoupling protein such as UCP 3 and UCP 1.39 The presence of these proteins plays a 

role in uncoupling oxidative phosphorylation which reduces the mitochondrial membrane 

potential. We observed a significant decrease in mitochondrial membrane potential in 

cells treated with QDs. When mitochondria started depolarizing and the mitochondrial 

membrane potential decreased in the presence of uncoupling protein UCP 3 an UCP 1, 

the production of ROS was decreased which is in parallel to our findings. In addition, a 

study on the effect of MPA-CdSe/ZnS QDs on plant cells (Sativa cells) showed that cells 

responded to oxidative stress by increasing the antioxidant enzyme systems such as 

superoxide dismutase.40 When cells are put under stress they respond to it by 

upregulating antioxidant enzymes.41 It is possible that when cells were treated with QDs, 
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cells were under stress and upregulated the antioxidant enzyme as a result of which ROS 

production decreased.  

However, other studies showed the increase in ROS in spite of an increase in 

antioxidant enzyme. The study was performed on liver cells of Mus musculus mouse 

(AML 12) treated with 20 µg/mL- 40 µg/mL CdTe QDs for 24 hours, which showed a 

significant increase in ROS.42 The doses used in this experiment were very high 

compared to our experiment. It is possible that at lower doses (2 nM – 40 nM), the 

increased function of antioxidant systems is enough to remove the ROS and when the 

concentration of QDs treatment increases it is difficult for cells to remove ROS in spite of 

upregulation of antioxidant enzymes.  

 The QDs used in this study are composed of a CdSe/ZnS core/shell. Studies have 

shown that CdSe/ZnS QDs treated MCF-7 cells showed the presence of cadmium to be 

low to none when detected by Cd2+ cell assay compared to other QDs such as CdTe QDs. 

Also it was found that CdSe/ZnS QDs were non-toxic in terms of cell viability. In 

addition, the study showed that upon photoxidation CdTe QDs generate oxidative stress 

which was not found in ZnS coated QDs.43 Since the CdSe core of the QDs used in our 

studies were covered with ZnS, it is possible that we observed mild toxicity due to this 

protective shell. The structure of QDs with ZnS may be manufactured in such a way that 

they remain intact for a long period of time and with less leaking of the core component 

cadmium which is associated with toxicity to cells.24 

 The internalization and toxic effects caused by QDs also depends upon the growth 
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medium used in cell culture. Several nanoparticles such as QDs are known to form 

coronas around them as the proteins in the growth media is absorbed by them. This may 

mitigate the effects of QDs in cells.44 The type of protein coronas formed around QDs 

depends upon the protein components added to the media. Studies have shown that the 

use of fetal calf serum (FCS) in media may agglomerate the nanoparticles showing no or 

low toxicity in cells.45 In our study all cells were grown in DMEM/F12 media 

supplemented with 10% Nu-serum which is substituted for the FCS in the medium and 

shows similar growth of cells. Nu-serum may have resulted in agglomeration of QDs 

used in this experiment which may have resulted in no significant effect in cell viability. 

However, a review paper on the formation of protein coronas states that the QDs with 

amphiphilic coatings do not form large protein coronas compared to hydrophilic QDs.44 

The QDs used in our study were amphiphilic QDs which may not have formed the 

coronas and were not involved in mitigating the toxic effect of QDs. Hence, the observed 

result may not be due to the formation of protein coronas around QDs. The QDs used 

may be less toxic due to the presence of ZnS shell, TOPO-PMAT coating and carboxylic 

acid functionalization. The shell and coating acted as a protective layer around the core of 

QDs and prevented leaking of cadmium from the core.  
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CHAPTER V 

CONCLUSION 

This study found that the TOPO-PMAT coated CdSe/ZnS QDs did not result in 

significant decrease in cell viability and ATP production. In addition, the result showed 

that these QDs resulted in a decrease in mitochondrial membrane potential which denotes 

uncoupled mitochondria. Although the data may not be reliable due to instrument 

malfunction, we observed a decrease in the production of reactive oxygen species (ROS). 

These results on Hepa-V cells suggest that similar effects may be seen on liver cells if 

used in vivo in humans.  

These results showed that the use of TOPO- PMAT QDs is mildly toxic to cells 

indicated by a trend towards decreasing cell viability, ATP production and a significant 

decrease in mitochondrial membrane potential. At the lower concentration (2 nM), results 

showed minimal effect on cell viability, ATP production and mitochondrial membrane 

potential after a 24-hour treatment or exposure to QDs. This might indicate that it is safe 

to use QDs at lower concentrations for in vivo medical applications. However, caution 

should be applied if using in higher concentrations (20 nM or 40 nM) as the QDs may 

have some detrimental effects in organisms.  
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APPENDICES 

APPENDIX A 

Preliminary data using C60 

Cell Viability 

 

 

 

Figure A1. Cell viability after 24-hr exposure to C60. Liver cell mitochondrial 

dehydrogenase activity measured by the water soluble MTT assay (WST-8).  Analysis by 

1-Way ANOVA (p<0.05, n=6), indicates a significant effect of C60 on metabolic cell 

death.  Negative control cells were treated with 20% DMSO for 1 hr. 
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ATP Assay 

 

Figure A2: ATP production in liver cells after 24-hr exposure to C60.  ATP production of 

liver cells was determined by the Luciferase/luciferin luminescence assay.  Vehicle 

control consists of DMEM and the 7.5% BSA in PBS.  Negative control cells were 

treated with 10 M Antimycin A for 6 hours. (P> 0.05, n=9).  ATP values of the control 

cells ranged between 22 nM and 79 nM per 5000 cells. 
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Figure A3. Mitochondrial membrane potential in liver cells after 24-hr exposure to C60.  

JC-10 dye (20 µM) was added to Hepa-V liver cells and incubated for 30 min.   Negative 

control cells were treated with FCCP (5 µM) and incubated for 10 min.  The median 

fluorescence intensities for both J-aggregates and monomeric forms of JC-10 were 

measured at Ex/Em = 488/590 nm and 488/525 nm with flow cytometry and their ratio 

was calculated.  
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APPENDIX B 

STATSTICAL ANALYSIS (QDs Study) 

Cell Viability 

 

ATP Assay 

ANOVA 

Source of 

Variation 
SS df MS F P-value F crit 

Between 

Groups 
541.1337196 3 180.3779065 1.846785609 0.174871735 3.15990759 

Within 

Groups 
1758.082964 18 97.67127576    

Total 2299.216683 21         

 

Mitochondrial Membrane Potential Assay 

ANOVA 

Source of 

Variation 
SS df MS F P-value F crit 

Between 

Groups 
35.37440882 4 8.843602204 64.85889198 0.000169741 5.192167773 

Within 

Groups 
0.681757114 5 0.136351423    

Total 36.05616593 9     

 

ANOVA 

Source of 

Variation 
SS df MS F P-value F crit 

Between 

Groups 
0.015184438 3 0.005061479 2.594869305 0.082553804 3.127350005 

Within 

Groups 
0.037060867 19 0.001950572    

Total 0.052245304 22     
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APPENDIX C 

FLOW CYTOMETRY DOT PLOTS and HISTOGRAMS FOR QDs 

Mitochondrial Membrane Potential Assay 

 

Figure A4: Flow cytometry dot plots and histogram showing gating and median 

fluorescence intensity at FL2 for mitochondrial membrane potential using JC-10 dye. 

A (Top, Bottom): Gating and FL2 intensity of no stain cells, B (Top, Bottom): Gating and 

FL2 intensity of stained cells, C (Top, Bottom): Gating and FL2 intensity of stained cells 

treated with 2 nM QDs, D (Top, Bottom): Gating and FL2 intensity of stained cells 

treated with 20 nM QDs, E(Top, Bottom):Gating and FL2 intensity of stained cells 

treated with 240 nM QDs, F(Top, Bottom):Gating and FL2 intensity of stained cells 

treated with 5 µM FCCP. 
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Reactive oxygen species  

Figure A5: Flow cytometry dot plots and histogram showing gating and median 

fluorescence intensity at FL1 for reactive oxygen species (ROS) assay using CellRox 

green dye. A (Left, Right): Gating and FL1 median intensity of stained cells, B (Left, 

Right): Gating and FL1 intensity of 2 nM, C (Left, Right): Gating and FL1 intensity of 

stained cells treated with 20 nM QDs, D (Left, Right): Gating and FL1 intensity of 

stained cells treated with 40 nM QDs, E (Left, Right): Gating and FL1 intensity of 

stained cells treated with 10 µM of tert. butyl hydrogen peroxide. 
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