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ABSTRACT  

ACTIVITY PATTERNS, HOME RANGE, AND MICROHABITAT SELECTION OF A 

TERRESTRIAL TURTLE (Rhinoclemmys rubida perixantha) IN A TROPICAL DRY FOREST 

by 

Taggert Butterfield  

May 2016 

 

Abstract: Turtles are in trouble worldwide, with nearly half recognized by the International 

Union for Conservation of Nature (IUCN) as needing special protection. The Eurasian pond and 

Neotropical wood turtles of the family Geoemydidae are the most diverse turtles and comprise ¼ 

of all turtle species yet basic information on their natural history is lacking. Moreover, seasonal 

tropical dry forest (SDTF), where many geoemydids exist, is considered the most endangered 

ecosystem in the world. We investigated the activity patterns, home range size, and microhabitat 

selection of the Mexican Spotted Wood Turtle (Rhinoclemmys rubida perixantha) in its SDTF 

habitat by tracking turtles with trail spools and radio telemetry. Our data show activity of R. r. 

perixantha was strongly associated with the intense dry season in the tropical deciduous forest, 

where turtles made fewer movements and walked significantly shorter distances 

(wet=46.8±3.6m, dry=21.4± 4m, P<0.05). With the onset of the wet season, turtle activity 

peaked from 1100-1400hr. Male turtles moved significantly farther (P=0.02), and more 

frequently (X2=48.5, P<0.001) than females, and had larger home ranges (males=1.26±.61; 

females 0.55±.19 ha, P<0.001). These differences reflect a reproductive strategy where males 

travel more in search of females, which maximizes fecundity. Furthermore, results from a 

generalized linear model reveal that specific habitat features within the SDTF selected by turtles 
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include leaf litter (F=13.7, P=0.0003), bare ground (F=33.3, P=5.1x10-8), vine-like shrubs 

(F=10.2, P=0.002), and hillslopes (F=35.0, P=2.5x10-8). This was the first field study ever 

conducted on the endangered Mexican Spotted Wood Turtle in its native habitat. 
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Figure 10 Turtles taking refuge in a) leaf litter, b) woody debris, c) vine-like shrub, and 3) 
shelter (rock). White arrows indicate location of turtle. 
 

Based on our final model of microhabitat variables measured using 1x1 meter plots, turtle 

presence is best explained by percentages of leaf litter, woody debris, vegetation, rock, and 

canopy cover at 10 and 150cm. (groups = 18, observations = 143, AIC: 61.4, GLM). Between 

random and non-random plots this model found significant differences in leaf litter (LRT = 13.0, 

P = 3.1x10-4), woody debris (LRT = 10.3, P = 1.3x10-8), vegetation (LRT = 12.1, P = 4.9x10-4), 

rock (LRT = 8.3, P = 3.9x10-3), canopy cover at 10cm (LRT = 6.2, P = 0.01), and canopy cover 

at 150cm (LRT = 5.9 , P = 0.02).  
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DISCUSSION  
 
Is well known that physiology, climatic factors, and reproductive strategies shape life-history 

strategies in ectotherms (Pough, 1980; 1983). Activity patterns in turtles are influenced by 

seasonal weather patterns, environmental structure, and reproductive strategies (Lue and Chen, 

1999; Reagan, 1974; Wechai et al., 2002). In this study, weather patterns (daily and annually) 

and sex shaped the variation of activity in Mexican Spotted Wood Turtles (Rhinoclemmys rubida 

perixantha). Increased turtle activity corresponded with the four-month wet season in the SDTF 

(June-September); during this time turtles were typically observed active mid-day (1100 – 1300 

hr) and walked 47 meters on average between relocations. Also, males in the wet season walked 

greater distances than females. In contrast, turtles were seldom active during the dry season, 

walking 21 meters on average between relocations with most activity during this period being 

associated with atypical dry season rain in November, February, and March (Fig. 4). These 

results highlight the influence of seasonality on terrestrial turtles and are likely a product of the 

low energy demand and male mating strategies in turtles (Berry and Shine, 1980; Penick et al., 

2002).  

Turtles have among the lowest field metabolic rates (FMR) of all reptiles, with lowest 

FMR being recorded in Box Turtles (Terrepene c. carolina) (Nagy, 1982; Penick et al., 2002). 

Low metabolic rates of turtles and other ectotherms reduce energy demand, allowing them to 

flourish in uncertain resource environments, such as the tropical deciduous forest. In these 

environments, turtles take advantage of seasonal peaks in resources to acquire resources, and 

“coast” through periods of low resource abundance. This low energy life-style allows 

ectothermic animals to attain a total biomass that rivals their endothermic counterparts (Pough, 

1980). Because some turtle species are largely herbivorous, their presence may have profound 
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influences on flora composition.  Janzen (1970) revealed that seedlings at increasing distances 

from the parent tree have a higher probability to survive until adulthood and an even high 

probability if seeds pass through the gut of herbivores. Additionally, gut passage of seeds in 

some species of Rhinoclemmys show that this may increase the probability of germination 

(Butterfield, unpublished data; Moll and Janzen, 1995). For these reasons, herbivorous turtle 

populations that can attain a high density of individuals likely influence the species composition 

of their habitat.  

 In general, methods to estimate home range can have profound influence on 

interpretation of home range size, potentially causing misinterpretation of home range (Hemson 

et al., 2005). Methods to calculate home range did not share a significant relationship with home 

range size, however the Brownian Bridge estimates were the least variable and their residuals in 

the general linear mixed model showed the least patterns. For this reason, we suggest using 

several methods to estimate home range and determine which performs best (least inter-

individual variation) for the focal species before drawing conclusions on home range size. Also, 

Brownian Bridge estimation is the most sophisticated method available; taking in account the 

time spent between successive relocations and should always be considered when spatial data 

permit.  

In this study we report home range estimates of the smallest terrestrial turtle (mean strait 

line carapace (SLC = 113mm) yet examined, Rhinoclemmys r. perixantha. These estimates are 

smaller (mean = 0.9 ± 0.4 ha) than those of terrestrial turtles of similar size (Tarrepene carolina, 

SLC = 150 mm, mean = 5.15; T. ornata, SLC = 160 mm, mean = 3.7 ha) (Refsnider et al., 2012; 

Schwartz et al., 1974), and substantially smaller than those of terrestrial turtles in general (mean 

= 20.1 ha; Slavenko et al., 2016).  
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Small body size and home range of R. r. perixantha, is likely a result of their habitat. 

Unlike seasonal rainforest, forest canopy in the SDTF is broken, permitting for higher density of 

understory vegetation (Murphy and Lugo, 1986). These characteristics, coupled with the 

topographic diversity at EBCh probably make movement energetically costly; restricting 

Mexican Wood turtles from occupying larger areas (Legler, 1960). Other factors known to 

influence home range size include availability of cover, nesting sites, food, and access to one 

another (Dodd, 2001). In desert-dwelling Box Turtles (Tarrapene ornate), resource quality has 

been seen to influence home range, with turtles having smaller home ranges in mesic than xeric 

habitats (Nieuwolt, 1993,1996). Opposed to the habitat of desert-dwelling Box Turtles, SDTF 

have higher annual precipitation (Nieuwolt, 1993; Bullock, 1986), resulting in increased resource 

quality that could permit Mexican Spotted Wood Turtles exist in small areas.  

Males had larger home ranges than females. Why? Factors affecting differences in home 

range size include nest site availability, mating strategies, and resource abundance. Gravid 

females in some turtle populations have home ranges substantially larger than males (Chen and 

Lue, 1999, Litzgus et al., 2004), a result hypothesized to be due to searching for nesting sites 

(Chen and Lue, 1999).  In the Mexico Turtle Center (Mazunte, Oaxaca, Mexico), Oaxaca Wood 

Turtles (Rhinoclemmys, r. rubida) females typically excavate shallow nests in leaf litter (Legler 

and Vogt, 2013). If Mexican Spotted Wood Turtles are similar, the abundance of leaf litter 

throughout EBCh could permit females to invest less time and energy into nest site selection, 

resulting in smaller home ranges. In addition to nest site availability, reproductive strategies also 

play a critical role in differing home range sizes, where males are predicted to invest more time 

into looking for mates and less time foraging (Berry and Shine, 1980).  
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Sexual size dimorphism we observed in Mexican Spotted Wood Turtles is uncommon for 

terrestrial turtle species (Berry and Shine, 1980; Gibbons and Lovich, 1990), and common 

among aquatic species. Berry and Shine, 1980 hypothesize males will be, 1) larger than females 

when large size increases success in male combat, 2) smaller than females when small size 

increases mobility, or 3) females are larger because of increased fecundity. In Mexican Spotted 

Wood Turtles the second appears to be true, in which males are smaller to increase mobility. 

Unlike aquatic habitats were smaller turtles can move faster with less consequence, on land 

larger turtles can move longer distance with less consequence. Therefore, the small body plan is 

of Mexican Spotted Wood Turtles is likely a product of aforementioned characteristics of the 

SDTF, that limit the ability for turtles to move. We hypothesize that smaller size observed in 

males is an adaptation to navigate their environment.   

Mexican Spotted Wood Turtles typically took refuge in clumps of leaf litter, woody 

debris, and/or vegetation on hill sides in the tropical dry forest. When compared to random 

locations, microhabitats used by inactive turtles differed in percentages of leaf litter, woody 

debris, vegetation, vine-like shrubs, and slope. Combined these results suggest R. r. perixnatha 

prefer microhabitats with a diversity of structural components, with leaf litter being a particularly 

important component. These results are consistent with other terrestrial turtles; in particular, 

Cuora flavomarginata (Geoemydidae), Tarrepene ornata, and T. carolina (Emydidae) who also 

retreat to similar microhabitats with leaf litter (or ground litter) being a common feature among 

all species (Converse and Savage, 2003; Lue and Chen, 1999; Reagan, 1974). Leaf litter and 

structural components of the forest floor the importance of leaf litter to small terrestrial turtle 

species probably lay in its microclimatic properties.  
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Reagan (1974) discovered that ground litter is critical for overwintering Box Turtles 

(Terrepene carolina), providing insulation to freezing temperatures and retaining high moisture 

content. Additionally, soil in forested areas beneath 10-20cm of leaf litter did not freeze during 

winter months, whereas soil in open grasslands did (Reagan, 1974). In the SDTF likely have 

similar microclimatic properties, providing refuge with high moisture content and ample 

temperatures for wandering Mexican Spotted Wood Turtles. Aside from turtle retreats, leaf litter 

is critical to a myriad of other vertebrates, invertebrates, plants, fungi, bacteria and its 

decomposition of organic material attributes approximately 70% to the annual net carbon flux 

(Raich and Schlesinger, 1992).   

In summary, Mexican Spotted Wood Turtles are mostly active 900 – 1300 hrs during the 

four-month wet season at the EBCh, have small home ranges, and rely on structural components 

of the forest floor to exist. Additionally, Mexican Spotted Wood Turtles are sexually dimorphic 

and their southern subspecies the Oaxaca Wood Turtle (Rhinoclemmys r. rubida) are not. Since 

sexual dimorphism is less common among terrestrial species, Rhinoclemmys rubida, provide an 

opportunity to enhance our understanding evolutionary mechanisms that influence turtle body 

size.  
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APPENDIX 

Table 2 Number of active and inactive observations by hour. Note: Active corresponds to direct 
observation of activity, inactive turtles in these observations may have moved since previous 
location, but were not directly observed active.  

Time 
(24hr) Active Inactive  

900 2 7 
1000 9 38 
1100 33 58 
1200 39 72 
1300 39 93 
1400 31 89 
1500 10 30 
1600 5 66 
1700 22 128 
1800 12 104 
1900 4 68 
2000 1 10 

 
Table 3 Observations of movement, no movement, and amount of precipitation in each 
perspective month during the study period November 2014 – September 2015. Turtles that had 
moved were observed in a new location from previously observed location and not always 
directly observed active.  

Month 
No 

Movement Movement Precipitation (mm) 
Nov 14 10 230 
Dec 17 5 0 
Dec 5 7 0 
Jan 6 3 0 
Jan 5 1 0 
Feb 14 10 125 
Feb 2 6 0 
Mar 40 16 36 
Mar 54 13 264 
Apr 52 13 0 
Apr 39 11 0 
May 30 7 0 
May 48 9 5 
Jun 18 44 29 
Jun 4 52 43 
July 12 114 96 
July 0 91 95 
Aug 1 76 23 
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Aug 2 79 9 
Sep 1 40 11 

 
0.53). 
 
Table 4 Female and Male mean home ranges (hectares) with associated 95% confidence interval, 
below is min-max of home range estimates  

Intra-
Specific 

Class n MCP 
K95% (h adjusted 

by LSCV) 

K95% (h 
adjusted to 

MCP) 

BB95% 
(sig1=0, 

sig2=95% C.I. 
mean distance) 

      Female 6 0.50±.26 0.63±.16 0.5±.26 0.55±.19 

  
0.26-0.96 0.41-0.82 0.26-0.96 0.31-0.78 

      Male 6 1.02±.65 2.07±1.72 0.97±.68 1.26±.59 

  
0.31-2.23 0.50-5.34 0.31-2.23 0.37-2.12 

 


