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[1] Continuous GPS and seismic data from northern
California show that slow earthquakes periodically rupture
the Gorda-North America plate interface within southern
Cascadia. On average, these creep events have occurred
every 10.9 ± 1.2 months since at least 1998. Appearing as
week-long GPS extensional transients that reverse secular
forearc contraction, the data show a recurrence interval 22%
shorter than slow events recognized to the north. Seismic
tremor here accompanies the GPS reversals, correlated
across as many as 5 northern California seismometers.
Tremor occurs sporadically throughout the year, but
increases in duration and intensity by a factor of about
10 simultaneous with the GPS reversals. Beneath west-
central Oregon, three reversals are also apparent, but more
stations are needed to confirm sporadic slip on the plate
interface here. Together, these measurements suggest that
slow earthquakes likely occur throughout the Cascadia
subduction zone and add further evidence for the role of
fault-fluid migration in controlling transient slow-slip
events here. INDEX TERMS: 1206 Geodesy and Gravity:

Crustal movements—interplate (8155); 1243 Geodesy and

Gravity: Space geodetic surveys; 7230 Seismology: Seismicity

and seismotectonics. Citation: Szeliga, W., T. I. Melbourne,

M. M. Miller, and V. M. Santillan (2004), Southern Cascadia

episodic slow earthquakes, Geophys. Res. Lett., 31, L16602,

doi:10.1029/2004GL020824.

1. Introduction

[2] Slow faulting events recently recognized along con-
vergent margins globally are now understood to constitute a
fundamental mode of moment release that both trigger and
are triggered by regular earthquakes [Dragert et al., 2001;
Heki et al., 1997; Hirose et al., 1999; Kawasaki et al., 1995;
Kostoglodov et al., 2003; Larson et al., 2004; Linde and
Silver, 1989; Lowry et al., 2001; Miller et al., 2002; Obara,
2002; Ozawa et al., 2002; Rogers and Dragert, 2003;
Sagiya and Ozawa, 2002]. In the Pacific Northwest, contin-
uous GPS has detected nine slow earthquakes occurring at
13.9 ± 0.9 month intervals within the northern Cascadia
plate interface [Dragert et al., 2001; Miller et al., 2002]
accompanied by harmonic tremor largely absent when slow
earthquakes are not occurring [Obara, 2002; Rogers and
Dragert, 2003]. To date, no observations of Cascadia tran-
sients, also called slow earthquakes, silent earthquakes, or
episodic tremor and slip events, have been made outside of
the northern Puget basin, suggesting either that the unique
bend in the Juan de Fuca plate here is somehow conducive to
slow slip or that instrument density is insufficient outside
this region for confident detection. Since slow earthquakes

may modulate seismogenic rupture either by reducing the
size of a future earthquake, delaying its recurrence, or acting
as a trigger, along-strike variability in the existence of
slow faulting yields important clues about partitioning,
particularly seismogenic segmentation, of the Cascadia
subduction zone. In this report we present continuous GPS
and seismic data from northern California and Oregon
that indicates periodic slow earthquakes occur throughout
Cascadia, and with quite variable recurrence rates.

2. GPS Data

[3] Continuous GPS data from the Pacific Northwest
Geodetic Array and the Bay Area Regional Deformation
Array [Miller et al., 2001; Murray et al., 1998] were
processed with the Gipsy-Oasis II software [Lichten and
Border, 1987] (Figure 1). Precise point positioning and
precise orbits and clocks were used to analyze the phase
data with ambiguity resolution applied [Heflin et al., 1992;
Zumberge et al., 1997]. Daily solutions for station positions
and corresponding matrices of the covariance among the
three position components were determined within the
International Terrestrial Reference Frame (ITRF 2000)
[Altamimi et al., 2002] using daily frame data products
provided by the International Geodynamics Service
[Zumberge et al., 1997]. A regional stabilization was
subsequently applied to each daily position, using a refer-
ence set of 42 stations from the North America plate region;
23 of these are concentrated in the Pacific Northwest, the
remainder are distributed on the stable plate interior or in
other regional networks in western North America. Of the
42 stations, 33 have published positions and velocities in
ITRF 2000. This stabilization transformation minimizes
network-wide position discrepancies, or common-mode
errors. Final time series were simultaneously detrended
and corrected for known artifacts that include offsets due
to hardware upgrades, earthquakes, and annual and semi-
annual sinusoidal signals introduced by mismodeled tropo-
spheric delays and other seasonal effects [Blewitt and
Lavallée, 2002; Nikolaidis, 2002].

3. Seismic Tremor Data

[4] Continuous horizontal component 100-hz seismic
data from Guralp 40T’s and 20-hz seismic data from a
combination of both STS-1’s and STS-2’s spanning four
years from 2000 through 2003 were downloaded from the
Northern California Seismic Network (Figure 1). Eight
stations are available with minor outages that together span
northernmost California , with average spacing of 136 km.
Four stations lie within 150 km of the trench, two of which
(YBH and WDC ) are among the quietest of stations in
northern California based on our examination of four years
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of continuous seismic data from all available stations. Four
additional stations lie sufficiently west and south of where
tremor is expected to be visible and can be used to assess
background noise when picking tremor. Due to the distances
between instruments, signals correlated across stations must
have their genesis in deep-earth processes and cannot be
attributed to anthropogenic, meteorologic or other local noise
sources. Tremor signals are readily correlated by eye
(Figure 2), and their spectra show predominant frequencies
in the 1–5 Hz band, similar to that reported in Japan and
northern Cascadia [Obara, 2002;Rogers andDragert, 2003].
All seismic data in this studywere band-passed between 1 and
5 Hz frequencies and gain-normalized to enhance tremor
identification. The data record a multitude of signals that
include local non-tectonic noise, teleseismic and local earth-
quakes; tremor signals are distinguished by waveform and
coda correlation across adjacent stations. However, due to the
emergent nature of the signal [Rogers and Dragert, 2003],
and the lack of accurately identifiable phases, constraining
event onset time with the precision required to determine
source depth and location becomes highly assumption-
dependent and was not performed in this study.
[5] Identification of tremor entailed plotting all gain-

removed, horizontal seismic traces in spatial and temporal

proximity, similar to historical drum recordings. Tremor was
then identified as signals correlated both temporally and
spatially across at least three stations. Periods during which
no correlated tremor is evident have background seismic
velocities typically less than 0.07 micrometers per second.
We therefore summed the rate of visibly correlated tremor
whose maximum velocities exceed 0.5 micrometers per
second, or roughly 10-times background noise. Figure 2
shows a typical example, approximately 21 minutes of
tremor recorded on 5 seismic stations. This window was
taken from a much longer burst recorded on 12/10/2002,
two days after the onset of transient westward movement of
the GPS station YBHB that began on 12/08/2002. During
the time of this GPS reversal, correlated tremor activity
increased to approximately 90 hours per week.

4. Northern California and Central Oregon
Transients

[6] Purely from the standpoint of deformation, westerly
resets at YBHB are expected for slow earthquakes along
the deeper Gorda-North American plate interface. Surface
deformation from such events results from a sum of
contraction from shallow plate locking and extension
from the slow faulting itself. Since secular deformation in

Figure 1. Topographic/bathymetric map of Northern
California. Red circles represent continuous GPS stations,
blue diamonds represent seismic stations used in this study.
Note the sparse distribution of continuous GPS stations in
Northern California and Coastal Oregon. Vectors represent
motion of each station relative to stable North America.
Note the northwestward movement of station YBHB. This
is due to a summation of east- west oriented compression
from subduction, westerly compression from Basin and
Range expansion, and northwesterly translation of the Sierra
Nevada microplate. During slow earthquakes, fault fluid
migration along the plate interface allows the upper plate
(North America) to move west. This is demonstrated in
Figure 3a where westerly resets are observed at station
YBHB.

Figure 2. Approximately 20 minutes of tremor recorded
on stations from the Northern California seismic network.
Vertical axis is in cm/s and horizontal axis is in hundreds of
seconds after 09:00 UTM on 12/10/2002. Note the overall
waveform correlation between the top 5 seismic stations.
The bottom 3 seismic stations are located on the coast and
do not show evidence of tremor. Obvious digitization errors
in the form of step functions were manually station KHMB
were manually removed.
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southern Cascadia is influenced by roughly east- northeast
directed contraction, westerly oriented Basin and Range
extension, and northwesterly translation due to Sierra
Nevada block and Pacific plate entrainment, slow transient
thrust faulting should appear as westerly jumps seen
predominantly in the longitude, as is the case. Since it is
thought that slow earthquakes result from fault fluid migra-
tion along the subduction interface, this lubrication acts to
relieve the east- northeast directed contraction caused by
subduction of the Gorda Plate, thus the resets seen at YBHB
should be and are opposite to the direction of subduction.
Figure 3a shows GPS residuals at station YBHB demon-
strating periodic resets. For comparison, longitude resets
from Alberthead, British Columbia (ALBH), the time series
from which episodic slow Cascadia earthquakes were first
identified, are shown in Figure 3c. Residuals from YBHB in
northern California show similar characteristics as ALBH,
particularly westerly jumps of up to 4 mm occurring at
1997.46, 1998.52, 1999.30, 2000.24, 2001.12, 2001.90,
2002.93 and 2003.81. The amplitudes are similar to those

at ALBH, but the ‘‘interseismic’’ interval is significantly
shorter: 10.9 ± 1.2 months as opposed to 13.9 ± 0.9 month.
By contrast, time series from nearby stations TRND,
CME1, PTSG and MDMT (Figure 1) show no such
resets, indicating the observed resets are not reference-frame
artifacts.
[7] Transient slow faulting in northern Cascadia was

recognized primarily from deformation reversals correlated
across nearby continuous GPS stations, but the GPS instru-
ment density in northern California is currently insufficient
for any similar correlation. The nearest continuous GPS
station to YBHB lies on the coast (PTSG) at a distance
of 120 km; by comparison, there are seven stations within
60 km of each other in the northern Puget basin. Nonetheless,
Figure 3a shows the longitude component of YBHB
overlying a histogram of hours of correlated tre mor from a
nearby seismic station (YBH). The remarkable correlation
between tremor rate and GPS deformation reversals is readily
apparent and confirms that slow earthquakes occur beneath
northern California. Although background tremor here is
detected during many weeks of the year when no GPS
reversals are evident, the rate of tremor increases by an order
of magnitude during GPS reversals.
[8] Coastal Oregon also shows preliminary evidence

of westerly resets at station NEWP, located in Newport,
Oregon. These reversals have similar amplitudes to those at
YBHB and northern Puget stations, but do not yet show
periodic behavior. NEWP shows three resets in longitude, at
2000.52, 2001.98 and 2003.99. These offsets are not
observed at the GPS station CORV located 60 km inland
in Corvallis, Oregon. The absence of offsets at station CORV
is consistent with relatively narrow, offshore locked and
transition zones at this latitude, also suggested from vertical
deformation rates [Mitchell et al., 1994]. Thus, CORV may
lie well east of the down-dip edge of the transition zone
where slow earthquakes occur. At the present time, however,
the dearth of GPS or seismic data close to NEWP precludes
determination of spatially coherent events.

5. Discussion

[9] The northern California data demonstrate that slow
Cascadia earthquakes are not confined to the structural bight
in the Juan de Fuca plate beneath the northern Puget Basin,
and argue that they occur throughout Cascadia and many
other subduction zones. More importantly, these results
follow Obara [2002] and Rogers and Dragert [2003] in
linking seismic tremor and slow faulting to one underlying
cause, most likely fault fluid transport [Melbourne and
Webb, 2003]. Analysis of tremor alone for source processes
that might constrain such transport is complex, since the
lack of discernible phases prohibits discrimination between
path and source contributions to tremor coda. For example,
delta-function sources, propagated through complex crustal
media, have been shown to cause harmonic volcano tremor
originally attributed to resonance at the source [Chouet et
al., 1987; Kedar et al., 1998; Koyanagi et al., 1987].
Moreover, if Cascadia tremor does indeed result from a
harmonic source at depth, a host of distinct driving
mechanisms could produce source resonance and identical
surface observations, again obfuscating the underlying
physics [Chouet et al., 1987; Koyanagi et al., 1987].

Figure 3. GPS eastings from Yreka, CA, Newport, OR
and Alberthead, BC, and seismic tremor histogram from
Yreka. a.) Blue points are daily GPS station positions in mm
of the longitudinal component of station YBHB. Solid red
line is a plot of the hours of tremor per week at seismic
station YBH. Note the similarity of shape displayed by
ALBH (Figure 3c) and YBHB. The correlation between
GPS offsets and increased tremor activity indicates that
slow faulting occurs beneath Northern California. b.) Purple
points represent daily solutions of station position for the
longitudinal component of GPS station NEWP from
Newport, Oregon. Note the similarity of NEWP offsets
(dashed black lines) to those at ALBH. The lack of seismic
and continuous GPS stations near NEWP precludes the
definitive identification of slow earthquakes here at the
present time. c.) Green points represent daily position
solutions of the longitudinal component of ALBH. Note the
characteristic sawtooth reset shape of the timeseries due to
slow faulting events. For correlation between increased
tremor and GPS offsets at station ALBH, see Rogers and
Dragert [2003]. Solid black lines denote times of known
slow earthquakes at ALBH.
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If both tremor and slow slip are manifestations of hydraulic
transport resonating and unclamping fault walls that sand-
wich pore fluids, an important next step will be to implement
experiments that can constrain near-field (static), non-double
couple components of moment release. These, in turn, will
likely be of great use in constraining slow earthquake
physics at a resolution higher than that afforded by either
GPS or tremor.
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