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[1] A total of 954 continuous GPS position time series from 414 individual sites in nine
different GPS solutions were analyzed for noise content using maximum likelihood
estimation (MLE). The lengths of the series varied from around 16 months to over
10 years. MLE was used to analyze the data in two ways. In the first analysis the noise was
assumed to be white noise only, a combination of white noise plus flicker noise, or a
combination of white noise plus random walk noise. For the second analysis the spectral
index and amplitude of the power law noise were estimated simultaneously with the white
noise. In solutions where the sites were globally distributed, the noise can be best
described by a combination of white noise plus flicker noise. Both noise components show
latitude dependence in their amplitudes (higher at equatorial sites) together with a bias to
larger values in the Southern Hemisphere. In the regional solutions, where a spatially
correlated (common mode) signal has been removed, the noise is significantly lower. The
spectral index of the power law in regional solutions is more varied than in the global
solutions and probably reflects a mixture of local effects. A significant reduction in noise
can be seen since the first continuous GPS networks began recording in the early 1990s. A
comparison of the noise amplitudes to the different monument types in the Southern
California Integrated GPS Network suggests that the deep drill braced monument is
preferred for maximum stability. INDEX TERMS: 1206 Geodesy and Gravity: Crustal movements—

interplate (8155); 1208 Geodesy and Gravity: Crustal movements—intraplate (8110); 1244 Geodesy and

Gravity: Standards and absolute measurements; 1294 Geodesy and Gravity: Instruments and techniques; 1299

Geodesy and Gravity: General or miscellaneous; KEYWORDS: GPS, time series analysis, uncertainty
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1. Introduction

[2] As with many other geophysical phenomena, noise in
GPS position time series can be described as a power law
process [Mandelbrot, 1983; Agnew, 1992], or one with time
domain behavior that has power spectrum of the form

Px fð Þ ¼ P0

f

f0

� �k

; ð1Þ

where f is the temporal frequency, P0 and f0 are
normalizing constants, and k is the spectral index

[Mandelbrot and Van Ness, 1968]. Naturally occurring
processes often have more power at low frequencies
compared to higher frequencies and have negative indices
ranging from �3 < k < �1. Such nonstationary
processes, including classical Brownian motion (or
‘‘random walk’’) with k = �2 (or Px / 1/f 2) are called
‘‘fractional Brownian motions.’’ Stationary processes with
�1 < k < 1, including the special case of uncorrelated
white noise (k = 0, P is flat), are called ‘‘fractional
Gaussian’’ processes. The special case of k = �1 (or
Px / 1/f ) called ‘‘flicker’’ noise is commonly observed
in a wide variety of dynamical processes, including
sunspot variability, the wobble of the Earth about its axis,
undersea currents, and uncertainties in time measured by
atomic clocks [Gardner, 1978; Mandelbrot, 1983].
[3] It is important to understand the noise content of GPS

position data so that realistic uncertainties can be assigned
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to parameters estimated from them. The assumption that the
noise is purely white leads, for example, to grossly under-
estimated site rate uncertainties. Zhang et al. [1997] con-
cluded that rate uncertainties were 3–6 times greater when
the preferred white plus flicker noise model was used
instead of the white noise only model. Likewise, Mao et
al. [1999] concluded that their rate uncertainties were
underestimated by as much as an order or magnitude if
they neglected the correlated noise. The estimate of the
standard error in rate is dependent upon several parameters
of power law noise including the amplitude, spectral index,
and sampling interval [Williams, 2003a]. It is clear that the
assumed noise type greatly affects the resulting rate uncer-
tainty, and so an important part of deriving crustal motion
models from GPS data is to classify and quantify the noise
components.
[4] While analyzing the noise in GPS time series is

important for providing realistic parameter uncertainties, it
does not provide a means for reducing that noise.
However, classification of the noise components can
provide clues as to the source of the noise and point to
the right fields of research to help increase the accuracy
and precision. For example, geodetic monument instabil-
ity due to varying conditions of the anchoring media
(e.g., soil, bedrock, buildings) is considered an important
source of noise, thought to follow a random walk process
[Johnson and Agnew, 1995]. Therefore some continuous
GPS arrays have adopted very expensive deep drill
braced monuments [Wyatt et al., 1989] as the preferred
approach to minimize this error source [e.g., Bock et al.,
1997; Wernicke et al., 2000]. The new western North
America Plate Boundary Observatory (PBO) [Silver et al.,
1999] is planning to install about 850 new continuous
GPS monuments using the deep drill braced monument
designed by F. Wyatt for SCIGN and adopted by other
continuous GPS (CGPS) networks in this region. An error
analysis of existing CGPS time series, some with histories
of over a decade, can help to distinguish if these monu-
ments are necessary, or whether other much less expen-
sive solutions are sufficient.
[5] The presence of a spatially correlated, common mode,

positioning error in GPS time series [Wdowinski et al.,
1997] has, to a certain extent, divided GPS time series
analysis into two types, global and regional, which mirrors
the global and regional nature of GPS networks. Where
there is a network of sites with sufficiently small baseline
distances, the common mode signal can be reduced either
by the use of a filtering algorithm (also known as stacking)
[Wdowinski et al., 1997] or by the use of a regional
reference frame and daily Helmert transformations [e.g.,
Hurst et al., 2000]. In the case of a globally distributed set
of sites the baseline distances are generally so large that the
sites are considered to be uncorrelated from each other.
The common mode noise cannot therefore be reduced, and
the noise in the series is typically higher than for regional
networks [Mao et al., 1999].
[6] The work presented here follows from previous

studies in this field. The time between this study and those
previous studies has allowed us to collect longer time series,
a recognized shortcoming in the previous work. In addition,
we have attempted to analyze a greater number of sites, both
global and regional, from several different GPS solutions to

hopefully gain a bigger insight into the nature of the noise
components.

2. Previous Work

[7] Zhang et al. [1997] examined 19 months of contin-
uous GPS (CGPS) data from 10 sites in southern Cal-
ifornia. A common mode signal was removed from the
position time series so the results were for a regional
network. Using maximum likelihood estimation (MLE)
with integer spectral indices, Zhang et al. [1997] found
that the noise in the data was best described as a
combination of white noise and flicker noise. Using the
power spectra, the noise was characterized by a fractal
noise process with spectral index of �0.4. Mao et al.
[1999] examined 3 years of data from a global distribution
of 23 CGPS sites. Using both MLE at integer spectral
indices and power spectra, they concluded that white noise
plus flicker noise best described the noise content of the
time series. A latitude dependence was found for the white
noise part of the vertical component. Three permanent
GPS sites in Europe were analyzed by Calais [1999]. A
combination of white noise and flicker noise was the
preferred model. Higher-frequency (1–30 s) GPS position
time series have also been shown to contain white noise
plus flicker noise [Bock et al., 2000; J. Langbein and
Y. Bock, High-rate real-time GPS network at Parkfield:
Utility for detecting fault slip and seismic displacements,
submitted to Geophysical Research Letters, 2004]. Several
studies also acknowledge the importance of random walk
noise in GPS data. Cumulative disturbances from the soils
and weather displace geodetic monuments with respect to
the deeper crust [Johnson and Agnew, 1995; Langbein and
Johnson, 1997]. Whether or not the random walk noise is
detectable depends on the length of the time series, the
sampling frequency, and the relative amplitudes of the
other noise components. Random walk noise has been
identified in continuous strainmeter data [Wyatt, 1982,
1989; Wyatt et al., 1989] and two-color electronic distance
meter data [Langbein and Johnson, 1995], as well as very
short baseline (50 m) GPS data from Piñon Flat Observa-
tory (PFO) [Johnson and Agnew, 2000]. Random walk
amplitudes can be as high as 3 mm/yr1/2 for some geodetic
data [Johnson and Agnew, 1995]. However, this type of
disturbance can be mitigated by carefully designed monu-
ments, like those GPS stations deployed in southern
California in which the base is securely anchored at depth,
laterally braced, and decoupled from the surface [Wyatt et
al., 1989; Bock et al., 1997]. With this type of monument,
for example, the random walk amplitude for the 50 m PFO
baseline is only 0.4 mm/yr1/2 [Johnson and Agnew, 2000].
However, regional GPS networks have much longer inter-
station spacings so that other sources of error such as
known random atmospheric propagation effects [Williams
et al., 1998] could dominate the error budget.

3. Data

[8] In this study we analyze both global and regional time
series of site positions. In addition, instead of restricting
ourselves to data from just one analysis approach we chose to
investigate several different data sets that were processed by
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different analysis groups, with a mix of different software
packages and different processing strategies. A summary of
the nine GPS solutions described in this paper is given in
Table 1.
[9] Figure 1 shows the distribution of sites used in this

analysis and the number of solutions in which sites
appear. The overlap of some sites in different solutions
allows us to compare results between global and regional
networks and between solutions. In total, there are 414
separate sites used in this analysis, of those 57 appear in
five solutions, 32 in four solutions, 51 in three, and 115
in just two. The other 158 sites appear in just one
solution. All of the sites that appear in four or more
solutions are in California, and all but one of these,
QUIN, are in southern California. An example of a time
series for a site, FVPK, for which there are five solutions
is given in Figure 2. FVPK is located in the margin of a
basin undergoing uplift and subsidence due to groundwa-
ter pumping effects [Bawden et al., 2001; Watson et al.,
2001] and is therefore subjected to large nonlinear defor-

mation signals in both the horizontal and vertical. While
the background deformation appears similar in all five
solutions, the noise is evidently different in each.

3.1. SOPAC Reanalysis Global Solution

[10] In mid-1999, the Scripps Orbit and Permanent
Array Center (SOPAC) began an extensive reanalysis of
more than a decade of continuous GPS observations
[Nikolaidis, 2002]. The daily site coordinates were esti-
mated from the GPS measurements using the GAMIT
software, version 9.94 (and 10.01) [King and Bock, 2000],
and the GLOBK software, version 5.04 [Herring, 2000a].
A distributed network processing strategy [Zhang, 1996]
was used with up to 48 sites per network. To obtain
station coordinates in the International Terrestrial Refer-
ence Frame (ITRF) 1997, an adjustment was performed,
using GLOBK’s GLORG module, constraining the
ITRF1997 coordinates and velocities of appropriate global
tracking sites that compose the reference network. The
particular set of stations used to define the global refer-

Table 1. Summary of the Nine GPS Solutions Used in This Study

Solution Reference Software Package Start Date Stop Date

Number of
Sites

in Solution

Number of
Sites
Used

Average
Length,
years

Maximum
Length,
years

SOPAC global Nikolaidis [2002] GAMIT/GLOBK 20 Jan. 1991 12 Jan. 2002 600 207 3.6 10.7
SOPAC SCIGN Nikolaidis [2002] GAMIT/GLOBK 20 Jan. 1991 12 Jan. 2002 221 147 2.7 10.7
JPL global (SCIGN_1.0.0) Zumberge et al. [1997] GIPSY/OASIS II 22 Jan. 1991 28 April 2002 >500 268 2.5 9.8
JPL SCIGN (SCIGN_2.0.0) Hurst et al. [2000] GIPSY/OASIS II Jan. 1998 April 2000 127 58 2.2 2.2
USGS SCIGN http://pasadena.wr.usgs.gov/ GAMIT/GLOBK July 1997 June 2001 231 112 2.5 3.9
PANGA PANGA Miller et al. [2001] GIPSY/OASIS II Jan. 1998 Dec. 2001 58 54 3.9 3.9
SOPAC PANGA http://sopac.ucsd.edu/ GAMIT/GLOBK Sept. 1992 March 2003 43 30 4.4 10.5
SOPAC BARGEN http://sopac.ucsd.edu/ GAMIT/GLOBK Aug. 1996 March 2003 47 47 4.7 6.6
REGAL REGAL Calais et al. [2000] GAMIT/GLOBK Jan. 1996 July 2001 31 31 4.0 5.5

Figure 1. Map of the 414 sites used in this study. The boxes indicate the spatial extent of the four
regional networks used. Sites marked with a diamond appear in only one solution, a star in two solutions,
a square in three solutions, a triangle in four solutions, and a circle in five solutions.
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ence frame was chosen to provide optimal stability over
the entire reanalysis period.

3.2. SOPAC Reanalysis SCIGN Regional Solution

[11] GPS observations from the Southern California In-
tegrated GPS Network (SCIGN) (Figure 3b) were included
in the SOPAC reanalysis described above and provide
globally referenced topocentric north, east, up (NEU) posi-
tion time series. The regional solution differed from the
global solution by some additional steps. First, a common
mode error signal was computed as the daily weighted mean
of the residual noise from a set of regional fiducial sites
[Wdowinski et al., 1997]. With the goal of maintaining
optimal reference frame stability over the 11-year analysis
interval, the regional fiducial sites were chosen to be those
with the earliest observation history. These are eight sites of
the Permanent GPS Geodetic Array (PGGA), a forerunner
to SCIGN [Bock et al., 1993, 1997]: PIN1, PIN2, ROCH,
JPLM, GOLF (combined GOLD and GOL2), SIO3 (com-
bined SIO1, SIO2, and SIO3), VNDP, and MOJM. Second,
postseismic exponential decays and/or rate changes were
modeled at sites within a certain distance of large earth-
quakes (Joshua Tree, Northridge, Landers, Hector Mine).
The above steps formed an iterative process and included
the MLE error analysis described in this paper.

3.3. Jet Propulsion Laboratory SCIGN_1.0.0
Global Solution

[12] The Jet Propulsion Laboratory (JPL) daily global
solution spans the 10-year period from 22 January 1991 to
28 April 2001. The data were processed using the point-
processing strategy in the GIPSY-OASIS II software
[Zumberge et al., 1997].

3.4. JPL SCIGN_2.0.0 Regional Solution

[13] In addition to the SCIGN_1.0.0 solution, JPL also
provides a regional solution for the SCIGN network that

uses a regional reference frame to reduce the noise in
station coordinates. The SCIGN_2.0.0 solution [Hurst et
al., [2000] used fixed precise GPS orbits and clocks in a
precise point-positioning mode, followed by double dif-
ference ambiguity resolution and subsequent transforma-
tion into a regional definition of the ITRF1997 using a
Helmert transformation.

3.5. U.S. Geological Survey Rapid Analysis SCIGN
Regional Solution

[14] The U.S. Geological Survey (USGS) Pasadena
office provides a rapid analysis solution of daily site
coordinates for the SCIGN network. The data are pro-
cessed using the GAMIT/GLOBK software, and the
processing is initiated 7 hours after the end of each
UTC day. The analysis used predicted IGS orbits, and
the data were processed in several subregions, which
were then combined in GLOBK. A common mode bias
was removed by performing a seven-parameter transfor-
mation in the GLORG module of the GLOBK software.
A total of 37 SCIGN sites were used to redefine the
reference frame origin.

3.6. PANGA Regional Solution

[15] The analysis procedures used in the Pacific Northwest
Geodetic Array (PANGA) [Miller et al., 1998] (Figure 3a) are
described by Miller et al. [2001]. The data were processed
using GIPSY/OASIS II software using the precise point-
positioning technique, and JPL generated fiducial free orbit
solutions. Common mode signals were removed from all
sites using the method described byWdowinski et al. [1997].
The residuals from sites ALBH, CABL, DRAO, GOBS,
PABH, and QUIN were used to form the common mode
signal.

3.7. SOPAC PANGA Regional Solution

[16] SOPAC adopted the methodology of Nikolaidis
[2002] for its weekly production of daily GPS position
time series, as well as updating the underlying reference
frame to ITRF2000 [Altamimi et al., 2002]. The GPS data
from the PANGA array were processed as part of
SOPAC’s production solutions. Unlike the SCIGN solution
described in section 3.2, which used just eight sites with a
long observation history to compute the common mode
error, all reasonable sites in the PANGA array were used,
that is, sites that are sufficiently long and considered to be
stable.

3.8. SOPAC BARGEN Regional Solution

[17] The GPS data from the Basin and Range Geodetic
Network (BARGEN) [Davis et al., 2003] in the western
United States (Figure 3c) are also processed with respect to
ITRF2000 as part of the SOPAC weekly production sol-
utions of daily GPS position time series. As for the SOPAC
PANGA solution, all reasonable sites were used to form the
common mode error, which was then removed from the
individual time series.

3.9. REGAL Regional Solution

[18] The GPS data from the REGAL [Calais et al.,
2000] network in the western Alps (Figure 3d) were
processed with the GAMIT/GLOBK software along with
data from 10 global IGS stations to serve as ties to

Figure 2. Time series for the north component of the
SCIGN site FVPK from five individual GPS solutions
(named). Each series is arbitrarily offset for clarity.
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ITRF97. The processing scheme is described by Calais et
al. [2000].

4. Maximum Likelihood Estimation

[19] We used maximum likelihood estimation (MLE) as
described by Langbein and Johnson [1997], Zhang et al.
[1997], and Mao et al. [1999] in order to measure the
amounts of white noise and power law (flicker, random
walk) noise in the time series. To allow the consideration of
a wider range of power law processes, MLE is also used
here to establish an overall power law noise model that best
describes the data. To estimate noise components using

MLE, the probability function is maximized by adjusting
the data covariance matrix. Therefore

lik v̂;Cð Þ ¼ 1

2pð ÞN=2 detCð Þ1=2
exp �0:5v̂TC�1v̂

� �
; ð2Þ

where lik is likelihood and det is the determinant of a
matrix, or if we take the natural logarithm,

MLE ¼ ln lik v̂;Cð Þ½ � ¼ � 1

2
ln detCð Þ½ þ v̂TC�1v̂þ N ln 2pð Þ

�
;

ð3Þ
where ln is the natural logarithm, N is the number of
epochs, C is the data covariance matrix, and v̂ are the postfit

Figure 3. Maps of the sites used in the study from the regional GPS solutions for (a) PANGA array,
(b) SCIGN array, (c) BARGEN array, and (d) REGAL array. Symbols for sites are the same as in
Figure 1.
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residuals from some linear (or nonlinear) model applied to
the original time series using weighted least squares with
the same covariance matrix C. The model typically consists
of an intercept, a linear trend (velocity), and sinusoidal
terms for an annual (and possibly semiannual) signal. The
model may also contain terms for offsets (either artificial or
coseismic) and, in the event of a large coseismic event,
some form of decay term to describe postseismic motion
[e.g., Nikolaidis, 2002]. The covariance matrix C can
represent many forms of Gaussian stochastic noise such as
white, power law, first-order Gauss Markov, autoregressive,
moving average, band pass together with a multitude of
combinations of the above. In this paper we assume that C
is the combination of two noise sources, a white noise
component and a power law noise component such that

C ¼ a2wIþ b2kJk; ð4Þ

where aw and bk are the white and power law noise
amplitudes, respectively, I is the N 	 N identity matrix, and
Jk is the power law noise covariance matrix with spectral
index k. The maximum likelihood problem is typically
solved using the downhill simplex method [see Press et al.,
1992].
[20] The time series may, of course, contain more than

two noise sources, and some, or all of them, may not be
power law noise. The theme of this paper is a reconnais-
sance of the noise present in a lot of stations as seen by
several processing centers and as such is assisted by limiting
the number and type of noise models to a minimum. A
thorough examination of different models and their combi-
nations will be done in the future using a few representative
stations.

4.1. Power Law Noise With Integer Spectral Indices
and White Noise

[21] In previous error analysis studies of GPS time series
[Zhang et al., 1997; Mao et al., 1999; Calais, 1999]
involving MLE, the power law noise was restricted to two
special forms, random walk (k = �2) and flicker (k = �1)
for which a derivation of the covariance matrix existed.
Three noise models were tested, white noise only, white
noise plus flicker noise, and white noise plus random walk
noise. The preferred model, white noise plus flicker noise,
was the model having the largest log likelihood value for
most sites. A check on the spectral index was performed by
fitting a function to the power spectrum of each component
of each time series. Zhang et al. [1997] fit just a single
power law noise to their spectrum and derived a mean
spectral index of �0.4 ± 0.1. Mao et al. [1999] fit a power
law plus white noise curve to the data. The weighted mean
of the estimated spectral index for all three components was
�0.89 ± 0.28. However, both Zhang et al. and Mao et al.
noted that the power spectral method does not produce
particularly accurate estimates of the spectral index, an
opinion confirmed by Beran [1994] and Langbein and
Johnson [1997]. The main reason for choosing specific
spectral indices was that at the time of the previous studies,
no general form for the covariance matrix of power law
noise was known. The exact covariance matrix for random
walk noise was given by Langbein and Johnson [1997],
while an approximation for the flicker noise covariance

matrix was given by Zhang et al. [1997] and derived from
an algorithm described by Gardner [1978] for generating
such noise. There are some advantages to assuming a
specific type of noise model for all the time series. First,
it is easier to compare the noise characteristics of data sets if
a parameter or noise model is held fixed. Second, it is easy
to assume that all sites are, to some extent, affected by the
same noise sources such as monument motion [Langbein
and Johnson, 1997], atmospheric loading [vanDam et al.,
1994], and reference frame [Herring, 2000b] and should
therefore have a similar power spectrum. Third, MLE poses
a large computational burden, in particular if the time series
is long or there are many noise model parameters to solve.
This burden can be reduced by keeping the number of
models to test to a minimum. If the purpose is to provide
more robust uncertainties on the linear model parameters,
for instance, the site velocity, then a model such as white
noise plus flicker noise might not be exact, but it may be
close enough and certainly better than the traditional ‘‘null’’
hypothesis of white noise. For the above reasons and for the
ease of comparison with the previous studies we initially
chose to investigate the three power law noise models
described above.

4.2. Power Law Noise With Any Spectral Index and
White Noise

[22] Counter arguments to the above suggest that the
spectral index should also be estimated. First, stochastic
models can provide clues in the search for the physical
phenomena that affects the time series. For example,
random walk noise due to monument motion is widely
regarded as being present in geodetic time series. However,
except for the 50 m baseline at Piñon Flat Observatory
[Johnson and Agnew, 2000], random walk has not been
found in GPS time series, probably due to the shortness of
the time series and the dominance of other noises. The
dominant noise signal so far is something near to flicker
noise, and it is spatially correlated and therefore caused by
some other phenomena. The search should be for some-
thing that produces flicker like noise. Second, we now have
a method for producing the power law covariance matrix
for any spectral index. The power law covariance matrix,
Jk, is computed by means of fractional differencing/
integration [Hosking, 1981; Johnson and Wyatt, 1994] and
is described by Williams [2003a]. Third, as computing
power continues to increase, what was a computational
burden in the past may now not be such a problem.
Therefore we have also applied the MLE to estimate the
spectral index of the time series. There is, however, still a
large computational burden. For example, the longest time
series analyzed in this study is site YELL in the SOPAC
global solution with 3722 data points. Estimating the noise
parameters for the white plus flicker noise model took
4 hours for all three components. Estimating the spectral
index along with the noise magnitudes took 41

2
days. The

MLE algorithm is performed in two stages to speed up
the computation. The ‘‘inner’’ stage uses the downhill
simplex algorithm to find the noise parameters for a given,
fixed, spectral index in the same manner as the fixed models
above. The ‘‘outer’’ stage uses the Brent method [Press et
al., 1992] to find the spectral index that returns the
maximum log likelihood value.
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[23] Langbein and Johnson [1997] and Mao et al. [1999]
demonstrated with synthetic data that the MLE technique
could recover accurate and precise estimates of the noise
magnitudes and their uncertainties. They also tested power
spectral analysis of the time series for estimating the
spectral index. Langbein and Johnson [1997] concluded
that while the method could establish that the simulated data
contained colored noise, the estimates of the index were
biased low and the estimates of the random walk component
were not very accurate. Mao et al. [1999] found that they
could estimate reliable indices from time series of 2 years or
longer. However, the indices estimated from the power
spectra appeared to be biased even from time series of
15 years in length. The usefulness of estimation using the
power spectrum is discussed by Beran [1994]. We tested the
MLE method on synthetic time series of varying lengths
(Table 2). For short time series the mean spectral index is
biased low. When there is 3.5 mm of white noise and
8.5 mm/yr1/4 of flicker noise, a ratio typical of the global
GPS time series studied in this paper, then the bias is
negligible for series longer than around 2000 to 3000 points.
For random walk noise with a similar ratio, the length
needed is even longer. The rate of convergence of the RMS
of the estimated indices is approximately n�1/2 as predicted
by Beran [1994]. Three factors contribute to the index bias
and size of the RMS: the ratio of the two noise amplitudes
(bk/a), the length of the series, and a trade-off between the
trend in the time series due to tectonic motion and the trend
due to the noise.
[24] The ratio of the two noise amplitudes is a proxy for

the crossover frequency, i.e., the frequency at which the two

processes have equal power. If a time series is assumed to
contain two noise sources, then the overall length of the
series must be at least longer than the crossover period.
Typically, the length of the series must be sufficient for the
power law noise to be ‘‘visible’’ over the white noise. For
flicker noise plus white noise a ratio of b�1/a 
 11 leads to a
crossover frequency equal to the daily sampling frequency,
and therefore the flicker noise dominates. Ratios lower than
this indicate that the crossover frequency is within or lower
than the range of frequencies covered by the time series.
The simulated series with no white noise or 0.7 mm white
noise and 8.5 mm/yr1/4 of flicker noise show little or no bias
at only 256 points and a significantly reduced RMS. Unlike
the previous studies this MLE algorithm tested for single
noise models, i.e., white noise only or power law noise only
which reduced or even eliminated the failure of the algo-
rithm to converge. When the number of points in the series
was small and/or the noise ratio high, then the algorithm
would often prefer a power law only model. The series was
of insufficient length to detect the presence of two noise
models but still acknowledged the presence of correlated
noise. A single power law noise model would be biased low.
In one experiment the white noise was fixed to its correct
amplitude and not estimated. The bias was lower than when
both noise amplitudes were estimated and the RMS was
reduced.
[25] Removal of a trend from the data removes significant

amounts of power from the spectral estimates at the lowest
frequencies [Langbein and Johnson, 1997; Johnson and
Agnew, 2000]. A trend is estimated in the real data because
it is assumed the data represent tectonic motion. However,
power law noise in a series will also possess a trend, and there
is no way to split the trend into its two components. By fitting
a trend, all of it has been attributed to tectonics causing a low
bias in the estimated spectral index, that is, closer to zero. If
no trend is estimated from the synthetic series, which have no
trend, we see that there is no bias even for series with only
256 data points. Therefore the spectral indices derived from
the shorter CGPS time series in this study should be treated
with caution noting that they are likely biased low.

5. Results

5.1. Integer Spectral Index Analysis

[26] In the previous studies, Zhang et al. [1997] and Mao
et al. [1999] produced tables of log likelihood for each site,
for each component, and for each of the three models. With
954 sites in this study we summarize the results for each
solution in Table 3. The north, east, and vertical components
are treated separately, giving 2862 log likelihood compar-
isons. For all solutions, white noise plus flicker noise or
white noise plus random walk noise is generally preferred to
a white noise only model. At the sites where white noise
only is preferred, the length of the time series is short,
typically under 2 years of data. The shortness of the series is
probably such that the time-correlated component cannot be
determined when forced to be an integer spectral index. In
section 5.2, when the spectral index is estimated, the most
likely noise model for these sites is a power law only noise
model with low spectral index and no white noise. While
time-correlated noise is likely to exist at these sites, the
length is preventing a significant determination of the

Table 2. Test Results of Spectral Index Analysis Using the MLE

Algorithm on Synthetic Time Series

Number of Points Mean Index RMS
Number of
Simulations

3.5 mm White Noise; 8.5 mm/yr1/4Flicker Noise
256 �0.70 0.51 ± 0.01 2000
365 �0.73 0.36 ± 0.01 720
500 �0.78 0.31 ± 0.02 100
1000 �0.87 0.20 ± 0.01 300
2000 �0.95 0.13 ± 0.01 44
3000 �1.03 0.10 ± 0.02 9
256a �1.06 0.55 ± 0.03 200
256b �0.82 0.27 ± 0.01 200

0.7 mm White Noise; 8.5 mm/yr1/4Flicker Noise
256 �1.04 0.18 ± 0.01 200
256a �0.96 0.19 ± 0.01 200

8.5 mm/yr1/4Flicker Noise Only
256 �1.02 0.16 ± 0.01 100
365 �0.99 0.13 ± 0.01 100
500 �0.97 0.10 ± 0.01 30
1000 �1.01 0.07 ± 0.01 30
2000 �1.02 0.05 ± 0.01 30

4.0 mm White Noise; 9.0 mm/yr1/2Random Walk Noise
365 �1.56 0.61 ± 0.03 300
500 �1.70 0.49 ± 0.03 100
1000 �1.86 0.31 ± 0.01 300

aIn this test, no slope or intercept was estimated while calculating the
spectral index and noise parameters.

bIn this test the white noise was not estimated but was fixed at the correct
value.
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properties. However, the presence of colored noise in the
GPS time series is confirmed. White noise plus flicker noise
is clearly the dominant noise model, although there are
more sites in the regional solutions where white noise plus
random walk noise is preferred.

[27] The maximum log likelihood values confirm that of
the three models, white noise plus flicker noise is the
preferred model, as suggested by Zhang et al. [1997], Mao
et al. [1999], and Calais [1999]. Therefore only the ampli-
tudes from the white noise plus flicker noise analysis are
presented here. A summary of the noise magnitudes for each
solution is provided in Table 4 and, for those sites in the
SCIGN array that are common to five different solutions, in
Figure 4.
[28] For the two global solutions we find that as expected,

the horizontal components are less noisy for white and
flicker noise magnitudes than the vertical components by a
factor of 2–3. The east components, also as expected, are
somewhat noisier than the north components because of no
(SOPAC) or incomplete (JPL) integer-cycle phase ambiguity
resolution in the global solutions. The white noise ampli-
tudes are about 2 times larger in the JPL global solutions
compared to the SOPAC global solutions, in all three
components, while the flicker noise amplitudes are only
marginally larger. The white noise amplitude differences are
probably due to processing strategies (what these may be are
beyond the scope of this paper), while the comparable flicker
noise amplitudes may reflect a common physical basis, such
as seasonal atmospheric mass distributions [e.g., Dong et al.,

Table 3. Summary of the Log Likelihood Tests for the Integer

Spectral Index Analysisa

Solution

Models

wn + fn, % wn + rw, % wn, %

SOPAC global 96.6 3.4 0.0
JPL global 97.4 2.6 0.0
SOPAC SCIGN 76.0 21.8 2.2
JPL SCIGN 59.8 33.3 6.9
USGS SCIGN 89.9 9.2 0.9
PANGA PANGA 88.3 10.5 1.2
SOPAC PANGA 71.1 28.9 0.0
SOPAC BARGEN 75.2 24.8 0.0
REGAL REGAL 96.8 3.2 0.0

aModels are white noise plus flicker noise (wn + fn), white noise plus
random walk noise (wn + rw) and white noise only (wn). Columns
represent the percentage of time series for which the log likelihood value
for a specific model is the highest. The higher the log likelihood, the
more significant and likely the model is as a candidate for the noise in
the time series.

Table 4. Mean, Weighted Mean, and Median of the White Noise and Flicker Noise Amplitude Estimate for the North, East, and Vertical

Components of the Site Time Series for Each Solutiona

Solution

White Noise, mm Flicker Noise, mm/yr1/4

North East Vertical North East Vertical

SOPAC global
Mean 1.5 ± 0.6 2.3 ± 1.0 3.9 ± 1.9 5.3 ± 2.2 7.6 ± 3.0 20.2 ± 5.5
Weighted mean 1.4 2.1 3.9 4.9 6.8 20.1
Median 1.3 ± 0.4 2.0 ± 0.5 3.3 ± 0.9 4.3 ± 1.8 6.6 ± 1.8 18.7 ± 3.4

JPL global
Mean 3.0 ± 0.7 4.6 ± 1.9 7.7 ± 2.6 7.7 ± 2.1 10.6 ± 4.2 23.1 ± 7.8
Weighted mean 2.9 4.1 7.3 7.6 9.6 22.0
Median 2.8 ± 0.6 4.1 ± 1.1 7.0 ± 2.0 7.3 ± 2.3 9.6 ±3.0 21.5 ± 6.6

SOPAC SCIGN
Mean 0.8 ± 0.2 0.9 ± 0.4 3.0 ± 0.5 2.2 ± 1.6 2.3 ± 1.5 7.0 ± 5.0
Weighted mean 0.7 0.8 3.0 2.2 2.1 7.2
Median 0.7 ± 0.2 0.8 ± 0.3 3.0 ± 0.6 1.9 ± 1.1 1.9 ± 1.3 5.8 ± 3.7

JPL SCIGN
Mean 0.9 ± 0.3 1.1 ± 0.5 3.6 ± 0.9 2.0 ± 0.8 2.1 ± 1.0 7.0 ± 3.2
Weighted mean 0.8 0.9 3.3 1.8 1.7 6.5
Median 0.9 ± 0.4 1.0 ± 0.5 3.6 ± 1.5 2.0 ± 1.3 2.0 ± 1.4 5.7 ± 4.3

USGS SCIGN
Mean 1.4 ± 0.4 1.8 ± 0.5 4.1 ± 1.0 3.1 ± 1.7 3.6 ± 1.5 9.2 ± 3.7
Weighted mean 1.1 1.6 3.7 2.5 3.4 8.4
Median 1.2 ± 0.7 1.6 ± 0.8 4.0 ± 1.4 2.9 ± 1.9 3.3 ± 1.5 8.5 ± 3.5

PANGA PANGA
Mean 1.7 ± 0.8 2.3 ± 1.1 5.0 ± 1.9 3.9 ± 2.0 4.4 ± 2.0 12.5 ± 4.9
Weighted mean 1.4 1.7 4.6 3.3 3.6 11.0
Median 1.4 ± 0.9 1.9 ± 1.4 4.6 ± 2.5 3.8 ± 2.4 3.8 ± 2.5 11.4 ± 6.6

SOPAC PANGA
Mean 0.6 ± 0.2 0.8 ± 0.4 2.4 ± 0.7 2.7 ± 1.1 2.8 ± 1.0 8.6 ± 4.0
Weighted mean 0.6 0.7 2.4 2.4 2.4 8.5
Median 0.6 ± 0.2 0.7 ± 0.3 2.2 ± 0.6 2.5 ± 1.6 2.5 ± 0.9 7.7 ± 2.5

SOPAC BARGEN
Mean 0.5 ± 0.1 0.7 ± 0.1 2.3 ± 0.6 1.3 ± 0.4 1.3 ± 0.6 5.5 ± 2.2
Weighted mean 0.5 0.6 2.2 1.2 1.2 4.9
Median 0.5 ± 0.1 0.7 ± 0.2 2.2 ± 0.5 1.2 ± 0.4 1.2 ± 0.7 5.4 ± 3.1

REGAL REGAL
Mean 2.0 ± 0.7 2.2 ± 0.6 4.2 ± 1.1 5.0 ± 1.6 5.0 ± 1.3 10.9 ± 5.5
Weighted mean 1.7 1.9 3.4 4.5 4.6 8.8
Median 1.8 ± 1.2 2.0 ± 0.9 4.1 ± 1.0 4.7 ± 2.2 4.8 ± 2.4 8.7 ± 6.0
aThe range indicated by the plus/minus is the standard deviation for the mean and the interquartile range (IQR) for the median.
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2002] atmospheric noise [Williams et al., 1998], or second-
order ionospheric effects [Kedar et al., 2003].
[29] For the SOPAC and JPL regional solutions the

results are strikingly similar in both white noise and flicker
noise magnitudes and in all three directions. In this case, the
north and east noise amplitudes are nearly the same,
reflecting essentially complete and successful phase ambi-
guity resolution. The vertical magnitudes are about 3 times
larger than the horizontal magnitudes. Removing the com-
mon mode signature (though using different approaches)
significantly reduces (by a factor of 2–3) the amplitudes
of both the white noise and flicker noise components,
supporting our explanation that a significant amount of

the flicker noise is due to a common physical basis with
large spatial extent. The remaining flicker noise is probably
due to regional-scale processes such as atmospheric effects,
not to monument motion which is thought to follow a
random walk process. Both noise components are therefore
spatially correlated to some extent. This can also be seen in
the power spectrum of the common mode signal from the
SOPAC SCIGN (regional) solution (Figure 5). The common
mode signal has flicker noise magnitude of 5.6, 7.0, and
21.6 in north, east, and vertical, respectively, and white
noise magnitudes of 1.9, 2.7, and 4.3 (NEU), which are
very similar to the average noise magnitudes in the SOPAC
global solution.

Figure 4. Comparison of white noise and flicker noise amplitudes in the north, east, and vertical
components for those sites in the SCIGN array that are in five different solutions. Error bars are 1s formal
errors.
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[30] The USGS solution is about 50% worse than the
SOPAC or JPL (regional) solutions in both noise processes
and in all coordinate components. This may be accounted
for by the fact that the USGS solution is based on a rapid
analysis of the data before the more accurate IGS final orbits
are available since both SOPAC and USGS use the GAMIT/

GLOBK software, although with different processing strat-
egies. The significantly lower noise magnitudes for the
SOPAC PANGA analysis compared to the PANGA PANGA
analysis is most likely due to not resolving integer-cycle
phase ambiguities in the latter analysis after point position-
ing. In addition, the PANGA analysis group use sites
outside of the array and fewer sites to remove common
mode signals. The same factors may explain the larger noise
magnitudes in the REGAL REGAL solution. The SOPAC
SCIGN solutions show slightly lower flicker noise ampli-
tudes and slightly higher white noise amplitudes than the
SOPAC PANGA solutions. The lower flicker noise in the
SOPAC SCIGN solutions may be due to more variable
meteorological conditions in the Pacific Northwest com-
pared to southern California, while the higher white noise
amplitudes may be due to the longer SCIGN time series.
[31] The SOPAC BARGEN solution provides the lowest

noise amplitudes for both noise processes and all compo-
nents. There are several reasons for this. BARGEN is the
most homogeneous network tested in terms of monumenta-
tion (Wyatt-designed deep drill braced monuments, in rock)
and environment (desert conditions). It is noteworthy that
the white noise plus flicker noise model is still preferred
over the white noise plus random walk model, indicating
that monument noise is still not the limiting factor. On the
other hand, the BARGEN sites are generally younger than
the SCIGN sites, explaining the reason for the lower white
noise amplitudes in the SOPAC BARGEN solutions.
[32] Mao et al. [1999] found a latitude dependence for

white noise in the vertical component. With around an order
of magnitude more stations in this study we can investigate
latitude dependence in the global solutions. The white and
flicker noise amplitudes as a function of site latitude is
plotted in Figure 6 for the JPL and SOPAC global solutions.
Also plotted is an arbitrarily derived function to highlight
any midlatitude dependence and a hemisphere bias. The
function takes the form

s ¼
aþ be�cl2

l > 0

aþ d e�cl2 � 1
n o

þ b otherwise;

(
ð5Þ

where s is the noise amplitude, l is the site latitude, and
a, b, c, d are the estimated parameters. Using the standard
F test, we found that for the white noise magnitude in all
three components and for both solutions we could reject
the null hypothesis that the noise was equal at all latitudes.
In the case of the flicker noise we could only reject the
null hypothesis for the east component in both solutions.
However, the fit to the data does suggest that there is a
latitude dependence in the north and vertical components.
In all cases the fit to equation (5) showed a significant
positive bias for Southern Hemisphere sites i.e., sites in the
Southern Hemisphere are noisier than sites in the Northern
Hemisphere.
[33] It seems likely that as the number of sites available

for the global reference frame increases the noise in the
time series should decrease. To see whether this is indeed
the case, we took some of the longest sites and analyzed
2 years worth of data from the series, stepping every year;
that is, we analyzed 1991–1993, 1992–1994, 1993–1995,
etc. We used those sites with more than 3000 epochs in

Figure 5. Power spectrum in the north, east, and vertical
components of the common mode noise in the SOPAC
regional SCIGN solution. Solid line is the fitted spectra of
white noise and flicker noise based on the average
amplitudes from the SOPAC global solution. Dashed line
is the fitted spectra of white noise and flicker noise
estimated using the MLE algorithm on the common mode
time series. Note also the prominent peak at around a period
of 13.6 days. This is also seen in the JPL global time series.
An explanation of this is provided by Penna and Stewart
[2003].
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their series. We could therefore look at three solutions,
SOPAC global (17 sites), JPL global (12 sites), and
SOPAC SCIGN (5 sites). The weighted mean for each
time span is plotted for the three solutions in Figure 7. A
weighted least squares fit to the data of a slope and
intercept is also plotted in Figure 7, and the values are
listed in Table 5. In all cases, apart from the vertical
component of white noise in the JPL global solution, there
is a significant decrease in noise with time. This result
reflects the improvement in the global reference frame

and the resulting improvements in analysis products (e.g.,
satellite orbits, Earth orientation parameters).

5.2. Power Law Noise With Estimated Spectral
Index and White Noise

[34] The spectral indexes for all three components of the
954 time series were estimated (Figure 8). The spectral
indices range from �3.0 (vertical component of GOL2 in
the JPL SCIGN solution) to 1.0 (east component of ERLA
in the PANGA PANGA solution, 597 points) with a mean

Figure 6. White noise and flicker noise amplitudes as a function of latitude for the two global GPS
solutions: (a) the JPL (SCIGN_1.0.0) global solution and (b) the SOPAC global solution. Note the
different scales on the y axis. The hemisphere bias and its formal error are plotted on each panel; positive
indicates larger amplitudes in the Southern Hemisphere. Uncertainties are 1s formal errors.
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index of �0.92 and standard deviation of 0.43. By individ-
ual components the means and standard deviations are
�1.0 ± 0.5 (north), �0.9 ± 0.4 (east), and �0.8 ± 0.4
(vertical). The two global solutions show a mean and
standard deviation that is consistent with the values seen
for the simulated time series containing white noise plus

flicker noise. Our larger database of values from longer time
series confirm the previous conclusions ofMao et al. [1999]
and Zhang et al. [1997] that the noise processes in GPS time
series can be adequately described by a white noise plus
flicker noise model. The larger spread of estimates for the
regional solutions suggests a combination of noise sources

Figure 7. White noise and flicker noise amplitudes in the north, east, and vertical components as a
function of the median time of the analysis period. Triangles indicate the results from the JPL
SCIGN_1.0.0 global solution. Circles are from the SOPAC global solution. Stars are from the SOPAC
SCIGN solution. Uncertainties are 1s formal errors.

Table 5. Estimated Slope and Intercept Parameters for the Change in Amplitudes of White Noise and Flicker Noise as a Function of

Timea

White Noise Flicker Noise

Intercept, mm Slope, mm/yr Intercept, mm/yr1/4 Slope, mm/yr5/4

SOPAC Global
North 1.73 ± 0.08 �0.08 ± 0.01 5.32 ± 0.29 �0.15 ± 0.05
East 2.63 ± 0.12 �0.13 ± 0.02 6.46 ± 0.36 �0.12 ± 0.06
Up 5.71 ± 0.27 �0.36 ± 0.05 20.95 ± 0.86 �0.40 ± 0.14

JPL Global
North 3.65 ± 0.17 �0.12 ± 0.03 11.53 ± 0.48 �0.67 ± 0.09
East 4.74 ± 0.25 �0.14 ± 0.04 10.72 ± 0.63 �0.40 ± 0.11
Up 7.90 ± 0.52 �0.07 ± 0.09 26.15 ± 1.60 �0.68 ± 0.30

SOPAC SCIGN
North 0.98 ± 0.07 �0.04 ± 0.01 3.38 ± 0.27 �0.22 ± 0.04
East 1.48 ± 0.13 �0.11 ± 0.02 2.97 ± 0.38 �0.21 ± 0.06
Up 4.03 ± 0.28 �0.22 ± 0.04 9.31 ± 1.31 �0.71 ± 0.21

aThe reference used for the intercept is 1992. Errors are 1s formal errors.
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instead of perhaps a single dominant signal in the global
solutions. These noise sources may be due to a combination
of differences in atmospheric effects from region to region
and local site effects such as type and variety of geodetic
monuments (discussed further below), as well as other local
conditions. For example, in southern California, Bawden et
al. [2001] and Watson et al. [2001] found widespread
groundwater and oil pumping that contaminated the tectonic
signal measured at certain GPS stations. An excellent
correlation can be found between sites whose time series
are expected to be contaminated (see also http://quake.
wr.usgs.gov/research/deformation/modeling/socal/la.html)
and those in this study with spectral indices lower than
around �1.5. For example, FVPK has spectral indices of
�2.7, �2.2, �0.9 for north, east, and vertical, respectively.
The uncharacteristically large spectral indices are due in this
case to unmodeled nontectonic deformation at these sites.

5.3. Spatial Correlation

[35] The reduction in time-correlated noise from global
solutions to regional solutions, which have had common
mode noise removed, suggests that some of the noise is
spatially correlated. We can examine this by examining the
correlation between time series of sites in a solution as a
function of the station separation (Figures 9 and 10). The
site-to-site correlations are calculated from the residuals,
thereby removing the influence that a trend and annually
repeating signal would have on the estimated value.
[36] Traditionally, the significance of any correlations is

tested with the implicit assumption that the two series are
white. In this case, if the two series are uncorrelated and the
number of common points is sufficiently large (N > 500 say),
then the estimated correlation coefficient is distributed
normally with a zero mean and a standard deviation of
N�1/2 [Press et al., 1992]. Other methods have been pro-
posed to account for non-Gaussian probability distributions;
however, these may still be inappropriate for time-correlated
noise. The danger of spurious correlations in economic time
series was discussed by Granger and Newbold [1977]. They
performed simulations on several time-correlated noise
models and showed that high correlations that would
be considered significant from the standard tests were
achieved from two uncorrelated series. We performed
similar simulations to investigate the significance of the
spatial correlations seen here. Pairs of time series with noise
similar to what we would expect for the global sites in the
horizontal (8.5 mm/yr1/4 flicker, 3.5 mm white) and vertical
(21 mm/yr1/4 flicker, 6 mm white) were simulated. Time
series of length 32, 64, 128, 256, 512, 1024, and 2048 were
used. In this case, a decrease in standard deviation of the
estimated correlation is seen with length, but it is slower than
the N�1/2 for white noise. Further, the standard deviation
tended to a steady value of just below 0.1 for large N. With
this in mind, we can be confident of the significance of the
correlations seen in Figures 9 and 10.
[37] In the two global solutions (Figure 9) a gradual

decrease in correlation is seen from about 0.8 at around
0.1� (10 km) to a correlation of 0.5 at around 10� (1000 km).
The correlation drops sharply to zero at around 40�. In the
JPL global solution the correlations between the PIN1 and
PIN2 sites, which are 50 m apart, are 0.79, 0.78, and 0.72
(753 common epochs) in north, east, and vertical compo-

Figure 8. Histograms of the estimated spectral index for
the north, east, and vertical components at sites in the
different GPS solutions. Values inside the parentheses
indicate the mean and standard deviation of the spectral
estimates.
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nents, respectively. In the SOPAC global solution the corre-
lations for PIN1-PIN2 are 0.88, 0.88, and 0.85 (2691 com-
mon epochs). Note that the closeness of the sites is not taken
into account in either the JPL or SOPAC global solutions.
[38] In the regional solutions the picture is less clear

(Figure 10). In the JPL SCIGN solution the correlations are
virtually zero at all station separations; that is, there is no
common mode signal remaining in the time series. In the
SOPAC and USGS SCIGN solutions, correlations are still
evident between sites, although they are rarely above 0.5 and
decrease quickly to zero correlation for larger site separa-
tions. In both PANGA solutions a relatively low correlation is
seen across all the angular distances. The PANGA array is
larger in extent and has a larger station separation than the
SCIGN array so the correlations at small angular distances
are not seen. There is a small positive correlation remaining
between sites less than 2� apart in the SOPAC BARGEN
solution. In the REGAL solution the correlations are larger
and are more on par with the correlations seen in the global
solutions. However, the decrease in correlation is faster
reaching zero correlation at around 8� and continuing to
decrease into a negative correlation up to �0.25. The
REGAL vertical component has lower overall correlation
values but a similar pattern to the horizontal.
[39] The reduction in correlation from the global solu-

tions to the regional solutions is a clear indicator that the
common mode noise has, to some extent, been removed in
the regional solutions. However, the different degrees to
which the common mode noise has been removed can either
be attributed to the different methods used to filter out the
common mode and/or the number of sites used in the filter.
The USGS and JPL SCIGN SCIGN solutions estimate a
daily seven-parameter Helmert transformation to a reference
frame defined by the positions and velocities of a set of

sites. In the USGS solution, 37 sites are used, whereas all
the available sites are used in the JPL solution. The SOPAC
SCIGN, PANGA, and BARGEN solutions and the PANGA
PANGA solutions use the Wdowinski et al. [1997] method,
which is equivalent to a daily three-parameter (translations
only) Helmert transformation in a topocentric (NEU) coor-
dinate system. The PANGA PANGA solution used six sites
and the SOPAC SCIGN solution used eight sites. If the
difference in reduction was due to the method used, then the
USGS solution would be expected to have less spatial
correlation and smaller noise amplitudes than the SOPAC
SCIGN solution. The SOPAC solution, uses only eight sites
to form the common mode signal, yet the noise in the series
is comparable to that of the JPL solution. It does, however,
suffer from a greater correlation between sites. It seems
likely that the number of sites used to remove the common
mode noise is the main contributing factor. A preliminary
look at the ‘‘production’’ time series from SOPAC (at http://
sopac.ucsd.edu) and the SOPAC PANGA and SOPAC
BARGEN solutions which differ from the Nikolaidis
[2002] series primarily in the use of a greater number of
sites to form the common mode signal appears to show a
noise reduction compared to the SOPAC SCIGN solution
used here. That the PANGA PANGA and REGAL REGAL
solutions have larger noise amplitudes than the SCIGN
solutions is related partly to the larger intersite distances
and areal extent as well as to other differences described
earlier. Since the common mode noise is assumed to be the
same over the entire region, the estimated signal is probably
representative of the noise near to the center of mass of the
reference frame sites. Sites farther away from the center of
mass are more likely to suffer from larger noise amplitudes.
In arrays such as the SCIGN the common mode noise could
be calculated on a subregion basis or possibly even on a site

Figure 9. Correlation of time series for north, east, and vertical components for the two global solutions
as a function of station separation in degrees. Individual points are the weighted mean (and its 3s error) of
100 individual correlation estimates. Weighting is based on the number of points in the series used to
calculate the correlation. Solid line is an arbitrary fit to the data that assumes the correlation tends to zero
at large distances and incorporates a break in slope at an unspecified angle.
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by site basis using the observed correlation statistics and
kriging [Journel and Huijbregts, 1978].

5.4. Monuments

[40] An initial motivation behind this work was to assess
the impact of different monuments on the noise in the
continuous GPS time series. To achieve this, many time
series from sites with different monument types are required.
Although the global GPS network has (unfortunately) a large
mix of monuments and siting approaches, we have shown

that the global solutions are dominated by spatially correlated
and latitude-dependent flicker noise. Monument noise in
geodetic data sets is perceived to be a random walk process
[Langbein and Johnson, 1997; Johnson and Agnew, 2000]. If
random walk monument noise is present in such series at
around the 0.4 mm/yr1/2, then the series would have to be
over 30 years long before it is easily detected. The only likely
candidates for assessing monument stability are therefore the
regional networks wheremost of the commonmode noise has
been eliminated. The only regional network that has suffi-
cient sites with sufficient variation in monument type is the
SCIGN array.
[41] A second problem associated with this study is the

definition of noise levels. For white noise it is simple, just
the magnitude of the noise, i.e., the RMS. For flicker noise
(or random walk noise) plus white noise the power law
noise component will over time be the dominating influ-
ence. However, for the regional solutions we see a range
of spectral indices. How then are noise levels conveniently
defined? The ratio of power law noise to white noise was
used by Zhang et al. [1997] as an indicator. The lower the
ratio the better the site was assumed to be. However, this
does not take into account the overall magnitudes of the
noise components. Two sites could have the same ratio,
but one site may have noise amplitudes twice as big as
another site. In this study we use two parameters, the
random walk noise amplitude (b�2) from the white noise
plus random walk solutions and the length of time required
for the rate uncertainty to reach a specific level (in this
case 1 mm/yr) given the parameters derived in section 4.2.
The first parameter is used assuming that the remaining
noise in the regional time series is random walk noise
from monument motion. The second parameter does not
assume the type of power law noise present but at least
gives us a meaningful figure that is often asked of GPS
time series.
[42] We chose to study the SOPAC SCIGN solution since

this had the longest history, the largest number of sites and
the most diverse types of monuments. Out of the 147 sites
we identified eight broad categories of monument type
based on descriptions in the site log files, site photographs,
and communication with relevant agencies. These monu-
ment types include roof/chimney, concrete pier, concrete
slab, metal tripod, Wyatt-designed deep drilled braced
[Wyatt et al., 1989; Bock et al., 1997], steel tower, rock
pin, and oil drilling platform. Note that most of the
monument diversity came from the early pre-SCIGN period,
starting in 1991, thus providing some of the longest con-
tinuous GPS time series available today. The median values
for b�2 and T1mm/yr for each component based on monu-
ment type are given in Table 6. The monument types in
Table 6 have been ranked in increasing order of noise level.
The ranking was performed by summing the individual
ranks from each component and each parameter and then
ranking the sums. In all three components the deep drilled
braced monument appears to be the most stable in the sense
that it contains the least noise. The significance of these
results were tested using a Monte Carlo method and the
Wilcoxon rank sum test [Wilcoxon, 1945]. In the Monte
Carlo test, N samples, where N is the number of sites of a
particular monument type, were drawn randomly from the
actual set of parameters and the median calculated. This was

Figure 10. Correlation of time series for north, east, and
vertical components for the regional solutions as a function
of station separation in degrees. Individual points are the
weighted mean (and its 3s error) of n individual correlation
estimates. Weighting is based on the number of points in the
series used to calculate the correlation. Solid line is an
arbitrary fit to the data that assumes the correlation tends to
zero at large distances and incorporates a break in slope at
an unspecified angle, and n is 100 for JPL SCIGN_2.0.0
and SOPAC SCIGN, 50 for USGS SCIGN, and 25 for the
rest.
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repeated 1000 times. From this the probability of obtaining
a median lower than that estimated for each monument was
calculated. The null hypothesis was that all monument types
were of equal stability, i.e., should have the same overall
median and probability distribution. The deep drill braced
monument shows a zero probability that the median value is
low by chance except for the east component of the b�2

value, which is still only a 1.4% chance (Table 6). For the
monument types in the bottom half of the rankings we see
very high probabilities (often over 95% chance) that a lower

value can be achieved by chance. Therefore the probability
of obtaining a higher median by chance for these monument
types is low.
[43] The Wilcoxon rank sum [Wilcoxon, 1945] is used to

test the significance of the null hypothesis that the pop-
ulations generating two pairs of data (monument types) are
identical. The alternative hypothesis is that the medians of
the two populations deviate by a nonzero amount. The
only monument type to stand out from this test is the deep
drill braced monument (Table 7), where 50% of the tests

Table 6. Median Random Walk Noise Amplitude b�2 and Median Time T for the Velocity Uncertainty to Reach 1 mm/yr for Eight

Different Monument Typesa

Monument Type Number of Monuments

North East Up

b�2, mm/yr1/2 MC Test, % b�2, mm/yr1/2 MC Test, % b�2, mm/yr1/2 MC Test, %

Deep Braced 96 1.6 0.0 1.6 1.4 4.2 0.0
Roof/Chimney 11 2.0 61.0 2.0 72.2 5.2 45.7
Metal Tripod 11 2.2 71.1 2.5 86.2 7.3 91.7
Rock Pin 8 2.7 89.9 2.3 80.0 7.1 86.8
Steel Tower 10 2.4 81.2 3.1 97.1 7.8 95.3
Concrete Slab 4 3.3 93.6 2.0 57.9 10.0 95.5
Concrete Pier 6 4.4 99.9 3.3 97.3 15.2 100.0
Oil Platform 1 13.3 96.6 3.9 85.1 14.0 90.9

Monument Type Number of Monuments

North East Up

T, years MC Test, % T, years MC Test, % T, years MC Test, %

Deep Braced 96 0.6 0.0 0.6 0.0 1.3 0.0
Roof/Chimney 11 1.0 83.9 0.8 55.5 3.3 97.9
Metal Tripod 11 0.9 69.2 0.9 73.6 2.4 82.0
Rock Pin 8 1.2 90.2 0.8 64.9 3.0 92.1
Steel Tower 10 1.0 87.3 1.4 97.4 3.0 94.2
Concrete Slab 4 1.2 73.2 0.9 65.5 4.4 91.3
Concrete Pier 6 1.6 92.7 1.1 79.3 6.4 99.5
Oil Platform 1 2.1 92.5 1.2 70.0 5.9 87.0

aMonuments have been ranked according to these results from most stable (top) to least stable (bottom). Also included are the results of the Monte Carlo
test on the probability that the estimated median could be caused by chance.

Table 7. Results of the Wilcoxon Rank Sum Test to Assess the Probability of Monument Types Having a Different Median Noise Levela

North Deep Braced Roof-Chimney Metal Tripod Rock Pin Steel Tower Concrete Slab Concrete Pier Oil Platform

Deep Braced 1.0 15.1 8.5 32.0 13.0 17.2 25.3
Roof/Chimney 2.5 9.4 84.0 57.3 85.1 80.7 66.7
Metal Tripod 7.4 87.0 35.1 48.1 17.7 88.4 33.3
Rock Pin 4.9 90.4 44.2 57.3 100.0 95.0 66.7
Steel Tower 21.6 77.8 77.8 94.4 53.9 71.3 36.4
Concrete Slab 4.4 41.2 22.6 36.8 36.6 100.0 40.0
Concrete Pier 1.2 21.6 21.6 18.1 21.4 60.9 100.0
Oil Platform 9.3 16.7 16.7 22.2 18.2 40.0 57.1

East Deep Braced Roof-Chimney Metal Tripod Rock Pin Steel Tower Concrete Slab Concrete Pier Oil Platform

Deep Braced 21.4 15.7 8.3 22.2 17.0 45.5 41.1
Roof/Chimney 27.2 45.0 60.0 48.1 41.2 96.1 50.0
Metal Tripod 9.2 71.8 84.0 67.3 94.9 96.1 66.7
Rock Pin 10.7 54.5 100.0 89.7 57.0 66.2 88.9
Steel Tower 14.1 62.2 88.8 76.2 94.5 87.5 90.9
Concrete Slab 37.9 85.1 85.1 93.3 100.0 76.2 80.0
Concrete Pier 16.8 40.4 66.0 75.5 71.3 91.4 100.0
Oil Platform 16.3 33.3 66.7 66.7 36.4 80.0 100.0

Vertical Deep Braced Roof-Chimney Metal Tripod Rock Pin Steel Tower Concrete Slab Concrete Pier Oil Platform

Deep Braced 0.1 0.2 1.5 0.8 1.6 1.3 17.5
Roof/Chimney 21.1 9.4 49.2 67.3 57.1 96.1 33.3
Metal Tripod 0.2 9.4 35.1 43.9 13.9 66.0 33.3
Rock Pin 4.3 35.1 65.7 96.5 57.0 75.5 44.4
Steel Tower 0.2 7.8 83.3 57.3 37.4 100.0 36.4
Concrete Slab 0.9 7.8 48.9 21.4 63.5 100.0 80.0
Concrete Pier 0.0 0.7 3.6 4.3 7.3 47.6 100.0
Oil Platform 12.4 33.3 50.0 44.4 18.2 40.0 100.0

aValues are in percentages; a low percentage indicates a high probability that the monument pairs have different medians. Top half of each part indicates
the results based on the time to reach 1 mm/yr, and the bottom half indicates the results based on b�2.
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indicate a lower than 10% probability that the medians are
identical and the remainder are all below 50%. None of
the other monument types are conclusively different from
one another.
[44] There are obviously factors that could influence

our observation that the deep drilled braced monuments
produce the lowest noise amplitudes. These monuments
only became pervasive after the initiation of the SCIGN
project in 1996. Therefore the older sites had a larger mix
of monuments and may suffer from increased noise
(Figure 7) as a result of measurements extending further
back in time. Residual common mode noise may also be
a factor; sites nearer to the center of mass of the network
are more likely to have lower remaining common mode
noise. The positioning of monument type within the array
is, however, random and so should have little influence.
Each site has a particular local environment and geology
that could also have an influence on noise levels. Finally,
different sites are subject to varying amounts of disrup-
tion leading to the addition of noise due to offsets
[Williams, 2003b]. These factors are again unlikely to
be strongly correlated with monument type and should
not influence the results. Further evidence for the lower
noise amplitudes for the deep drilled braced monument
comes from the BARGEN project, which consists almost
exclusively of this monument type. All sites have a
similar environment and a similar time span, and changes
have been kept to a minimum. The median values for the
north, east, and up components of the random walk
amplitude are 1.0, 1.0, and 5.6 mm/yr1/2, respectively,
and the median times to reach 1 mm/yr are 0.5, 0.4, and
1.6 years. These values are better for the horizontal
amplitude and slightly worse for the vertical amplitude
than the results for the same monument in the SCIGN
array, therefore supporting the idea that these monuments
can help to increase stability. Bearing in mind the
possible above influences, the evidence does appear to
point to an increased stability at sites with the deep
drilled braced monuments compared to the other monu-
ment types. It is also of interest that the sites situated on
buildings should be ranked second in this test as intui-
tively we would have suspected these sites to be one of
the worst. On the contrary, we would have suspected that
concrete piers would have performed better, which was
not the case since this type of monument ranked only
better than an oil platform.

6. Discussion

[45] This study as well as previous work indicate that
significant colored noise is ubiquitous in continuous GPS
time series and any derived parameters and their uncertain-
ties should take this into account.
[46] The MLE approach produces velocity and error

estimates that are ‘‘most likely’’ in a well-defined statistical
sense. Although some model for the time-dependent noise
(in this work, power law noise) must be, to some extent,
predefined, this is clearly preferable to the usual assumption
that the noise is uncorrelated. Although the wrong assump-
tion of the type of colored noise may give somewhat overly
conservative uncertainties for the derived parameters, it is
preferable to be 10% conservative than 500% optimistic

[Mao et al., 1999]. Furthermore, the MLE method is not
susceptible to finding colored noise when there is none as
shown above and by Langbein and Johnson [1997].
[47] Davis et al. [2003] claim that the MLE approach

produces velocity error estimates that may be overly
conservative for many sites. In the BARGEN network,
Davis et al. [2003] used their ‘‘conservative’’ ‘‘whole
error’’ method, which is equivalent to the reduced chi-
square test, to determine velocity uncertainties of
0.23 mm/yr for the Northern Basin and Range (NBAR)
subnetwork and 0.15 mm/yr for the Yucca Mountain
cluster. From the SOPAC BARGEN solution we obtain
average horizontal velocity uncertainties of 0.16 mm/yr
for both subnetworks using the estimated spectral index
analysis. The difference between the two approaches is
that the MLE method calculates the uncertainty on a per
site basis. In addition, model error is not being mixed
with data error, local environments need not be the same,
and also the length of time series need not be similar at
all sites. The ‘‘whole error’’ method is simply a heuristic
approach to the problem of time-correlated noise and
does little to answer the two fundamental questions asked
by Davis et al. [2003]: Are GPS velocities limited by one
or more error source and if so what are those sources?.
The MLE analysis presented above, hopefully, goes
someway to answering these questions.
[48] The temporally correlated noise that dominates the

global time series can be adequately described as flicker
noise. It is spatially correlated and has a clear latitude
dependence. Although the amplitude of the flicker noise
has decreased in time since the first CGPS sites began
producing data, it is still the dominant colored noise process
in the global position time series.
[49] An issue related to the noise in the global time

series is, what happens to the rate uncertainties when sites
are correlated in space? Two basic strategies are
employed when estimating site velocities. One is to form
time series for each site from the daily solutions and then
to estimate parameters from the series on a site-by-site
basis. This has the advantage of being able to estimate
the time-correlated noise present in the series as seen in
this paper and the disadvantage of neglecting the daily
spatial correlations. The other strategy is to estimate all
the parameters simultaneously in some form of sequential
least squares. In this approach the full covariance matrix
from each day is used. If we assume that the time and
space correlations are orthogonal and that the amounts of
noise in the time series are similar, then it turns out that
the spatial correlation between two time series propagates
directly into the correlation between the parameters. The
covariance of each parameter is the same as if the time
series had been treated separately. This means essentially
that the time series can be treated individually and the
between-site correlations can be added after into a co-
variance matrix of site velocities. Alternatively, the spatial
correlations can be accounted for in the sequential least
squares to get the velocity correlations and then the
velocity covariances estimated from an MLE solution to
the time series. The above strategies are still good
approximations even when the above assumptions are
mildly violated, for example, if the two time series have
slightly different ratios of flicker noise to white noise
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amplitudes or if the daily spatial correlations between
sites vary with time.

7. Conclusions

[50] Continuous GPS position time series from a total of
414 individual sites have been analyzed in order to assess
their noise characteristics. The time series for these sites
come from nine different GPS solutions, which can be
broadly categorized into global and regional solutions.
The regional solutions have had some form of spatially
correlated signal removed from the time series in an attempt
to improve the signal-to-noise ratio. The criterion for using
a site was simply that it had to have more than 500 daily
position estimates. The average length of time series was
1256 points and the maximum length was 3722 (over
10 years). Some sites appeared in more than one solution
leading to the analysis of 954 individual time series. The
maximum number of solutions in which a site appeared was
five, all of which belonged to the SCIGN array in southern
California. The following are the main conclusions:
[51] 1. In a global GPS solution, where no attempt has

been made to reduce the spatially correlated noise, the MLE
analysis indicates that a combination of white noise and
flicker noise is an appropriate stochastic model for all three
coordinate components. There is probably no advantage in
estimating the spectral index along with the noise ampli-
tudes considering the extra computational burden this
entails.
[52] 2. The white noise amplitudes in the global solutions

show a significant latitude dependence with a maximum at
the equator. The flicker noise amplitudes also appear to
show a latitude dependence, although not as convincingly as
the white noise. For both noise components a Southern
Hemisphere bias is apparent. Southern Hemisphere sites are
noisier by about 1–2 mm of white noise and 2–4 mm/yr1/4

of flicker noise.
[53] 3. There has been a significant reduction in the noise

amplitudes in GPS solutions since the first continuous GPS
sites began in the early 1990s. This, and the hemisphere
bias, suggests that the spatially correlated noise is partly
related to the reference frame and orbits. As the number of
sites available for the global reference frame stabilization
has increased, the noise related to it has reduced. Although
the equatorial noise bulge is suggestive of a tropospheric or
ionospheric origin, it may still be a feature of the reference
frame via some form of error propagation.
[54] 4. In the regional GPS solutions the noise is sub-

stantially lower than in the global solutions. The actual
reduction in noise depends on the areal extent, between-site
distances, and number and quality of sites used to reduce the
common mode noise. The larger the areal extent and
baseline distances the less ‘‘common’’ a single common
mode signal (or Helmert transformation) will be and there-
fore the amount removed from each individual time series
will be less. The more sites used, the more representative
the signal is of the regional common mode and therefore the
more likely the noise is reduced.
[55] 5. Compared to the global solutions, there may be

more reason to estimate the spectral index along with
the noise amplitudes in the MLE algorithm. At different
sites and networks, different noise sources may dominate

including, for example, residual common mode noise (white
noise plus flicker noise), monument instabilities (random
walk noise), and localized deformation due to changes in
groundwater (unknown power law noise plus annually
repeating signals).
[56] 6. It is clear from Figures 2 and 4 and Table 4 that

there are differences in noise content in the time series at a
site between different analysis centers and different analysis
strategies. For example, the white noise content in the JPL
global solution is about double that in the SOPAC global
solution. The flicker noise content is also larger.
[57] 7. From analysis of the SOPAC SCIGN solution the

Wyatt-designed deep drilled braced monument is found to
be more stable than other types of monuments, resulting in
reduced noise in GPS position time series. Analyses of
longer time series are required to confirm this result.
However, it is premature to abandon this type of monument
for the sake of less expensive solutions, in particular, with
concrete pillars that performed poorly in this study.
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