
Central Washington University Central Washington University 

ScholarWorks@CWU ScholarWorks@CWU 

All Faculty Scholarship for the College of the 
Sciences College of the Sciences 

7-18-2003 

Chemical characterization of ambient aerosol collected during the Chemical characterization of ambient aerosol collected during the 

northeast monsoon season over the Arabian Sea: Labile-Fe(II) and northeast monsoon season over the Arabian Sea: Labile-Fe(II) and 

other trace metals other trace metals 

Anne M. Johansen 
Central Washington University 

Michael R. Hoffmann 
California Institute of Technology 

Follow this and additional works at: https://digitalcommons.cwu.edu/cotsfac 

 Part of the Atmospheric Sciences Commons, and the Oceanography Commons 

Recommended Citation Recommended Citation 
Johansen, A. M. (2003). Chemical characterization of ambient aerosol collected during the northeast 
monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals. Journal of Geophysical 
Research, 108(D14). https://doi.org/10.1029/2002jd003280 

This Article is brought to you for free and open access by the College of the Sciences at ScholarWorks@CWU. It 
has been accepted for inclusion in All Faculty Scholarship for the College of the Sciences by an authorized 
administrator of ScholarWorks@CWU. For more information, please contact scholarworks@cwu.edu. 

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cotsfac
https://digitalcommons.cwu.edu/cots
https://digitalcommons.cwu.edu/cotsfac?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/191?utm_source=digitalcommons.cwu.edu%2Fcotsfac%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@cwu.edu


Chemical characterization of ambient aerosol collected during the

northeast monsoon season over the Arabian Sea: Labile-Fe(II) and

other trace metals

Anne M. Johansen
Department of Chemistry, Central Washington University, Ellensburg, Washington, USA

Michael R. Hoffmann
Environmental Science and Engineering, California Institute of Technology, Pasadena, California, USA

Received 3 December 2002; revised 26 February 2003; accepted 24 March 2003; published 18 July 2003.

[1] Ambient aerosol samples were collected over the Arabian Sea during the month of
March of 1997, aboard the German R/V Sonne, as part of the German Joint Global
Ocean Flux Study (JGOFS) project. This is the third study in a series of analogous
measurements taken over the Arabian Sea during different seasons of the monsoon.
Dichotomous high-volume collector samples were analyzed for ferrous iron immediately
after collection, while trace metals, anions, and cations were determined upon return
to the laboratory. The main crustal component was geochemically well represented by
the average crustal composition and amounted to 5.94 ± 3.08 mg m�3. An additional
crustal constituent of clay-like character, rich in water-soluble Ca and Mg, was seen
in the fine fraction in air masses of Arabian origin. Total ferrous iron concentrations
varied from 3.9 to 17.2 ng m�3 and averaged 9.8 ± 3.4 ng m�3, with 87.2% of Fe(II)
present in the fine aerosol fraction. Fe(II) concentrations accounted for on average
1.3 ± 0.5% of the total Fe. While ferrous iron in the coarse fraction appeared to be
correlated with the main crustal component, the fine Fe(II) fraction exhibited a more
complex behavior. The anthropogenic contribution to the aerosol, as traced by Pb, Zn,
and some anions and cations, was found to be considerably larger, especially during the
first 10 days of this cruise, than in previously collected samples from the inter-monsoon
and southwest monsoon of 1995. INDEX TERMS: 0305 Atmospheric Composition and Structure:

Aerosols and particles (0345, 4801); 0365 Atmospheric Composition and Structure: Troposphere—

composition and chemistry; 4801 Oceanography: Biological and Chemical: Aerosols (0305); 4805

Oceanography: Biological and Chemical: Biogeochemical cycles (1615); 4875 Oceanography: Biological and

Chemical: Trace elements; KEYWORDS: ferrous iron, trace metals, aerosol particles, Indian Ocean

Citation: Johansen, A. M., and M. R. Hoffmann, Chemical characterization of ambient aerosol collected during the northeast

monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals, J. Geophys. Res., 108(D14), 4408,

doi:10.1029/2002JD003280, 2003.

1. Introduction

[2] The present study is part of a larger set of field
observations collected over the Arabian Sea to determine
the chemical composition of atmospheric aerosol particles
during different seasons of the monsoon [Johansen et al.,
1999; Siefert et al., 1999].
[3] The northern Indian Ocean is subject to a strong

biannual reversal pattern in the low-level winds associated
with the Indian monsoon [Ackerman and Cox, 1989; Find-
later, 1969, 1971; Middleton, 1986a, 1986b]. The monsoon
flow pattern, which is largely driven by the heat gradient
between the Indian subcontinent and the ocean, is typified by
southwest winds during the Northern Hemisphere summer

and northeast winds during the Northern Hemisphere winter.
The inter-monsoon is classified as the period between the
northeast and the southwest monsoons when no predominant
wind pattern exists. Two previous studies of the southwest
monsoon and inter-monsoon showed that the direction of the
airflow over the Arabian Sea affects both the abundance and
composition of the aerosols [Johansen et al., 1999; Siefert et
al., 1999]. These studies found that during the southwest
monsoon the air is mainly marine derived, originating from
the southwestern Indian Ocean, while during the inter-mon-
soon the air masses contain a consider-able amount of crustal
and anthropogenic material originating mainly from the
Arabian Peninsula and other parts of the Middle East. The
present study used measurements of trace metals to study
the hypothesis that anthropogenic influences on aerosol
composition will be enhanced during the northeast mon-
soon, when air masses originating from the Indian subcon-
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tinent are advected over the Arabian Sea. Furthermore, the
aerosol matrix’s effect on iron speciation will be investigated
in comparison to our findings from the southwest monsoon
and inter-monsoon.
[4] A number of investigators [Ansmann et al., 2000;

Jayaraman et al., 1998; Lelieveld et al., 2001; Moorthy et
al., 1999, 2001, 1998, 1997; Rao et al., 2001; Rao and
Devara, 2001; Satheesh and Krishna Moorthy, 1997;
Satheesh et al., 1998; Venkataraman et al., 2002, 2001]
have studied the optical characteristics and size distribu-
tions of aerosols over the Indian Ocean during the north-
east monsoon in several Indian Ocean Experiments
(INDOEX) between 1996 and 1999. The above studies
found that the average aerosol optical depth for the visible
wavelength region was as high as 0.5 near the western
coast of India, and in the range of 0.2–0.4 over the
Arabian Sea, and 0.1 and less over the Indian Ocean.
For comparison, the aerosol optical depth reported for the
Atlantic Ocean ranged from 0.04 to 0.25 [Hoppel et al.,
1990].
[5] Previous measurements of trace chemical species

from the Indian Ocean have confirmed the large spatial
and seasonal variabilities. Savoie et al. [1987] sampled
nitrate, NSS-sulfate and mineral aerosol during the north-
east monsoon and spring inter-monsoon of 1979 and found
a strong gradient in the concentrations of the measured
species, decreasing toward the south. Along the same line,
Chester et al. [1991] reported that mineral dust concen-
trations decreased from a range of 15–20 mg m�3 in the
north to a range of 0.01–0.25 mg m�3 below 35�S in the
far Southern Ocean. In an earlier study, Chester et al.
[1985] concluded that the close correspondence between
the clay mineralogies of the sediments and dusts in the
northern Arabian Sea provided strong evidence for the
dominance of the atmospheric pathway for deposition of
land-derived material to the sediment surface. Rhoads et
al. [1997] studied the chemical composition of the tropo-
sphere over the Indian Ocean during the monsoonal
transition, from March to April 1995. They found that in
crossing the ITCZ from south to north, anthropogenic
gaseous and particulate matter increased by a factor of 4
due to direct transport of anthropogenic emissions over the
Indian Ocean. In 1995, during the U.S. JGOFS project,
Tindale and Pease [1999] found varying dust concentra-
tions from 0.3 to 180 mg m�3 throughout the year, while
during INDOEX 1999 (January to March 1999) the
average dry mass concentration in the atmosphere was
�27 mg m�3 [Lelieveld et al., 2001].
[6] The present study in conjunction with our previous

observations, which were made in 1995 [Johansen et al.,
1999; Siefert et al., 1999], clarify some aspects of the
large seasonal differences that exist in the chemistry of
the atmosphere over the Arabian Sea. We are primarily
interested in the abundance and speciation of Fe as it is
thought to be the limiting nutrient for phytoplankton
growth in many regions of the open oceans [Cooper et
al., 1996; Kolber et al., 1994; Martin et al., 1994;
Martin and Fitzwater, 1988; Paerl et al., 1994; Price
et al., 1994]. As these organisms in turn modulate the
biogeochemical cycling of carbon, nitrogen, and sulfur
gases between the oceans and the atmosphere, the
availability of their micronutrient supply is directly

impacting the rates of ocean-atmospheric gas exchange,
which are fundamental players in greenhouse warming.
Fe(II) is far more soluble than Fe(III), and therefore
believed to be more bioavailable. Thus the relative
partitioning of aerosol iron between Fe(II) and Fe(III)
is a core piece of information needed to make quantita-
tive estimates on the impact of increased iron supply to
the open ocean. Reviews by Wells et al. [1995] and
Jickells and Spokes [2001] state that the physico-chem-
ical forms of iron in seawater are not yet well known.
Thus, identifying the mechanisms which control the speci-
ation of iron in the atmosphere, which is an important
pathway for metals to enter the oceans, would aid our
understanding of water column speciation. Detailed reviews
on iron speciation in the atmosphere of marine environ-
ments were provided by Johansen et al. [2000] and Siefert
et al. [1999]. To our knowledge, the observations of ferrous
iron, presented by Siefert et al. [1999] and in the present
paper, are the first measurements of their kind for aerosol
over the Arabian Sea.

2. Experimental

2.1. Sampling Location and Period

[7] Atmospheric aerosol samples were collected over the
Arabian Sea during the month of March of 1997. Sampling
took place on board the German Research Vessel Sonne,
which sailed as part of the German Joint Global Ocean Flux
Study (JGOFS) project. The cruise track, from Cochin/India
to Muscat/Oman, is delineated in the air mass back trajec-
tory plots in Figure 1. Back-trajectory calculations were
obtained from the German Weather Service in Hamburg,
Germany, based on their isentropic Global-Modell (GME)
with a resolution of 190 km [Deutscher Wetter Dienst,
1988; Kottmeier and Fay, 1998]. In order to get a sense
of the vertical motion of the atmosphere, each plot traces
five different trajectories which correspond to different
initial pressures (i.e., elevations) at the initial position.
The highest trajectory, at 850 hPa, represents an altitude
of about 1.5 km. The first part of the cruise was predomi-
nated by northeasterly winds, as expected; however, later in
the cruise, wind patterns changed such that the typical air
mass originated over the Saudi Arabian peninsula and the
Middle East, much like conditions encountered during the
inter-monsoon of 1995 [Johansen et al., 1999; Siefert et al.,
1999].

2.2. Aerosol Collection

[8] Ambient aerosol samples were collected with two
different collectors. A high-volume dichotomous virtual
impactor (HVDVI) was used for the collection of trace
metals in two discrete size fractions (Dp,50 = 3.0 mm)
[Johansen et al., 1999, 2000; Siefert et al., 1999], whereby
particles of diameter <3.0 mm will presently be defined as
the fine particles and particles >3.0 mm in diameter will be
denoted as the large particles. The HVDVI collector was
constructed with polycarbonate using nylon screws in order
to minimize trace metal contamination. The total flow rate
was determined to 335 ± 15 l min�1. The fine and coarse
sample fractions were collected on two acid-cleaned 90-mm
diameter Teflon filters (Gelman Zefluor, 1-mm pore size).
Total elemental composition, Fe(II) concentrations, and
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anion and cation abundances were determined for both fine
and coarse filter samples.
[9] Two low-volume collectors, which were operated at

flow rates of 27 l min�1, were used for collection of
total aerosol mass. Inverted high-density polyethylene
bottles (2 L) served as rain shields for the Nucleopore
polycarbonate 47-mm-diameter filter holders, which were
loaded with acid-cleaned Gelman Zefluor filters (1 mm
pore size).

[10] The aerosol collectors and lab equipment were acid
cleaned before use by following procedures similar to
those outlined by Patterson and Settle [1976] employing
ultra-pure acids from Seastar Chemicals (Sidney, B.C.,
Canada) and 18.2 M�-cm Milli-Q UV water. After Fe(II)
analysis, the remainder of the filters were stored in acid-
cleaned polystyrene petri dishes taped shut with Teflon
tape, placed inside two plastic bags inside of a plastic
container, and stored in a refrigerator during the cruise.

Figure 1. Five-day air mass back trajectory calculations at five different final elevations (based on
pressure) above sea level for (a) March 2, 1997; (b) March 5, 1997; (c) March 8, 1997; (d) March 12,
1997; (e) March 18, 1997; (f ) March 20, 1997; (g) March 23, 1997; and (h) March 27, 1997.
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After the cruise, the filters were sent back to Caltech (via
air-freight, on dry ice) and stored in a freezer until
analysis.
[11] A sector sampling system (by Campbell Scientific)

controlled the operation of all collector pumps, thereby
stopping collection of the aerosol collectors simultaneously
when wind speed or wind direction were out of the defined
sector. The data logger (CR10, Campbell Scientific) was
programmed to shut the pumps off when the wind speed
was �0.2 m s�1 and when the relative wind direction was
more than ±60� off of the bow of the ship. In general,

collected samples represent daily averages, but due to the
ship’s cruise track, actual sampling duration may vary
slightly.

2.3. Chemical Analyses

2.3.1. Fe(II) Analysis Performed on Board the Ship
[12] Labile Fe(II) in both particle fractions was deter-

mined by sequential extraction. These measurements were
initiated immediately (within 1 hour) after sample collection
in order to minimize the oxidation of Fe(II) to Fe(III).
Extraction and quantification procedures are described in

Figure 1. (continued)
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detail by Siefert et al. [1999]. Three labile fractions of Fe(II)
were determined in each size fraction. The first portion of
Fe(II) was released into a 4.2 pH formate buffer after 30 min
of leaching; this portion is denoted as aqueous-Fe(II)
(Fe(II)aq). Thereafter, ferrozine was added to the leaching
solution containing the filter, and an absorption reading was
made after 5 min. The additional Fe(II) released during this
step is the 5-min-ferrozine-Fe(II) (Fe(II)5minFZ). The last
absorption reading was taken after the ferrozine was in
contact with the aerosol for 22 hours (22-hour-ferrozine-
Fe(II) (Fe(II)22hrFZ)). The total of all three Fe(II) fractions
determined in the sequential fashion is defined as total-22-
hour-Fe(II) (Fe(II)total,22hourFZ). However, owing to the
increased potential bias introduced by ferrozine which can
reduce Fe(III) over time, it appears more accurate to define a
labile Fe(II) fraction that is composed of the first two
extractable portions only, thus excluding the 22-hour read-
ing. This total-5-min-FZ-Fe(II) (Fe(II)total,5minFZ) will be
used when discussing the amount of Fe(II) leached out of
the aerosol material. Although the Fe(II)22hrFZ fraction may
be biased, it will be discussed briefly because of the very
distinct patterns exhibited between the two size fractions.
Sample IO97-27 was not analyzed for Fe(II) due to early
dismantling of laboratory equipment on the ship.
2.3.2. Elemental Analysis
[13] Elemental analysis of 32 elements (Na, Mg, Al, K,

Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo,
Ru, Cd, Sn, Sb, Cs, Ba, La, Ce, Sm, Eu, Hf, Pb, and Th)
was performed on the high-volume filters with an HP 4500
Inductively Coupled Mass Spectrometer (ICP-MS). The
filter digestion technique was presented by Siefert et al.
[1999] and includes overnight shaking of a filter section in
equal amounts of concentrated HNO3 and HF (from Seastar
Chemicals Inc.) at 50�C, and subsequent evaporation to
dryness in N2 atmosphere followed by redissolution in
concentrated HNO3 and dilution with water.
2.3.3. Ion Analysis
[14] For the ion analyses, a small section of the high-

volume filter was first wetted with approximately 0.1 mL
ethanol, then extracted overnight in 10 mL MQ water.
Anions were separated and quantified with a Dionex Bio
LC Ion Chromatograph (IC) using an IonPac AS11 separa-
tor column and the corresponding AG11 guard column.
Organic and inorganic anions were eluted with a gradient
pump and a combination of four eluents (5 mM NaOH, 100
mM NaOH, 100% MeOH, MQ H2O) whereby the NaOH
concentration was ramped from an initial 0.45 mM to a final
34.25 mM. The quantified anions included methanesulfo-
nate (MSA), chloride, nitrate, and sulfate. Fluoride, acetate,
glycolate, formate, nitrite, bromide, and oxalate were pres-
ent at very low concentrations that were near the
corresponding detection limits. Owing to problems with
the IC, three samples were not run correctly (fine IO97-08,
fine IO97-18, and coarse IO97-19). The missing data are
clearly indicated in the plots, and the samples are removed
from the data set when performing statistical analyses.
[15] Cations were separated and quantified isocratically

with a DX 500 Ion Chromatograph (IC) with IonPac CS12/
CG12 analytical and guard columns and a 20-mM MSA
eluent. Sodium, ammonium, potassium, magnesium, and
calcium concentrations were determined. Except for NSS-
SO4

2�, MSA, Na+, Mg2+, K+, and Ca2+, which are included

in the principal component analysis, ions will be discussed
in a separate study.

3. Results and Discussion

3.1. Air Mass Origins and Characteristics

[16] Air mass back trajectories for a number of samples
are plotted in Figure 1. The beginning of the cruise was
characterized by air masses that originate from the Indian
subcontinent. The different air circulation patterns observed
during this period are depicted in Figures 1a, 1b, and 1c,
which are representative of the group of samples from IO97-
01 to IO97-10. Trajectories in sample IO97-11 (not shown)
appear to be transitional between the first and the second
group of samples, the latter of which includes samples IO97-
12 through IO97-27. The distinguishing characteristic in
trajectory pattern between the two groups is the main source
of the air masses. As observed in Figures 1d, 1e, 1f, 1g,
and 1h, the air masses were swept around in a clockwise
manner from the Saudi Arabian peninsula, thus most
likely transporting mineral dust from the arid regions of
Saudi Arabia to the middle of the Arabian Sea from an
apparently northeasterly direction at the collection point.
Thus the wind direction observed on board the ship would
have erroneously suggested air mass origins in India and
Pakistan. Since air mass origins during this second group
of samples are similar to those expected during the inter-
monsoon [Johansen et al., 1999; Siefert et al., 1999], it is
appropriate to report average data from both groups of
samples when discussing distinctions between the differ-
ent monsoon seasons.
[17] Within the second group of samples, air masses vary

considerably in their relative transport speeds. Samples
IO97-11 through IO97-15 and IO97-20 through IO97-26
(Figures 1d, 1f, and 1g) are representative of air masses that
have traveled from the Saudi Arabian peninsula over
considerable distances in a relatively short period of time
and are, therefore, expected to carry relatively more crustal
material compared to air masses sampled in samples IO97-
16 through IO97-19 (Figure 1e) and sample IO97-27
(Figure 1h), during which wind speeds were lower.

3.2. Chemical Makeup of Aerosol

[18] Of the 33 elements detected by ICP-MS, the con-
centrations for elements As, Ru, Cd, Cs, and Sb were
found to be below their detection limits and are, therefore,
excluded from further discussion. Furthermore, principal
component (PC) analyses [Johansen et al., 2000; Siefert et
al., 1999] have shown high background concentrations for
Cr, Ni, Cu, Mo, and Sn that seem to be attributable to
artifacts introduced by the filter material and/or the acids
used for the elemental extraction.
[19] Average values for the remaining 22 elements in the

coarse and fine fractions for the two groups of atmospheric
conditions are listed in Table 1. In order to examine the
similarities among these elements and to investigate Fe(II),
a PC analysis was performed on 11 of the trace metals in
addition to Fe(II) and some anions and cations. The results
are presented in Table 2. Four samples (IO97-08, IO97-18,
IO97-19, and IO97-27) had to be excluded in this analysis
because of miscellaneous data gaps in the anions and Fe(II)
concentrations (vide supra).
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[20] The first eight components of this analysis carry
eigenvalues larger than 1 and account for a cumulative
variance of 90.3% of the data set. The variance described by
each component appears across the top of the table.
[21] The first component, which is representative of a

crustal source, has relatively ‘‘large’’ (i.e., values close to 1)
values for typical crustal material tracers, such as Al and Sc
(as well as Ti, Ba, La, Ce, Sm, Eu, and Th, not shown). No
other known sources exist for these elements, therefore,
they can be used reliably as indicators of crustal material.
Some of the other elements (K, V, Mn, and Fe) that can be
associated with gas-to-particle reactions of anthropogenic
pollutants from combustion sources may still display crustal
characteristics in the coarse fraction since gas-to-particle
reactions result in fine particles. Concentrations for the
crustal tracer Al are plotted as a function of sample ID in
Figure 2a. For comparison, the factor scores for the crustal
component (PC 1) are plotted in Figure 3a. As expected, the
two variables trace each other closely.

[22] The second component in the PC analysis reflects an
anthropogenic source, typified by Pb and Zn in both size
fractions (and Ge and Se, not shown) as well as K in the
fine fraction. While Pb and Zn reach the atmosphere
through burning of fossil fuel and smelting operations,
respectively, K is a product of biomass burning and waste
incinerators [Andreae, 1983; Echalar et al., 1995; Fishman
et al., 1999]. Figure 2b presents the coarse and fine Pb
concentrations in stacked bars as a function of sample ID.
The plots for Pb, Zn, and K (latter two not shown) are all
similar, and as expected for anthropogenic tracers, their
concentrations are larger in the fine fraction as compared to
the coarse fraction. The geometric mean for the relative
abundance of Pb in the fine fraction is 89 ± 3%, for Zn it is
80 ± 8%, and for K it is 67 ± 16%. Factor scores for PC 2
in Figure 3a carry the same fingerprint as Pb. Consistent
with our observations of the air mass back trajectories, PC 2
is predominant in samples of group 1, which are charac-
teristic of the northeast monsoon. Lead and zinc concen-

Table 1. Average, Minimum, and Maximum Atmospheric Trace Metal Concentrations in Coarse and Fine

Aerosol for Group 1 and Group 2 Samplesa

Element

Group 1 (IO97_01-IO97_10) Group 2 (IO97_11-IO97_27)

Average ± SD Min. Max. Average ± SD Min. Max.

Na-coarse, mg m�3 0.39 ± 0.14 0.20 0.61 0.49 ± 0.24 0.14 0.88
Na-fine, mg m�3 0.21 ± 0.05 0.13 0.29 0.26 ± 0.13 0.09 0.61
Mg-coarse, mg m�3 0.13 ± 0.06 0.07 0.23 0.16 ± 0.09 0.06 0.38
Mg-fine, mg m�3 0.07 ± 0.02 0.05 0.11 0.10 ± 0.04 0.06 0.21
Al-coarse, mg m�3 0.32 ± 0.13 0.16 0.56 0.30 ± 0.24 0.08 0.93
Al-fine, mg m�3 0.15 ± 0.03 0.10 0.21 0.21 ± 0.09 0.11 0.04
K-coarse, mg m�3 0.05 ± 0.04 0.01 0.15 0.10 ± 0.09 0.02 0.35
K-fine, mg m�3 0.19 ± 0.06 0.09 0.30 0.15 ± 0.09 0.04 0.38
Ca-coarse, mg m�3 0.31 ± 0.17 0.13 0.60 0.38 ± 0.19 0.13 0.74
Ca-fine, mg m�3 0.12 ± 0.04 0.08 0.20 0.17 ± 0.9 0.09 0.39
Sc-coarse 0.083 ± 0.036 0.038 0.142 0.070 ± 0.058 0.022 0.230
Sc-fine 0.039 ± 0.007 0.027 0.053 0.047 ± 0.017 0.027 0.094
Ti-coarse 25.99 ± 10.90 13.57 45.14 24.02 ± 16.42 5.90 64.80
Ti-fine 11.85 ± 1.98 8.21 14.74 16.82 ± 6.83 10.04 32.39
V-coarse 0.73 ± 0.30 0.36 1.25 0.69 ± 0.48 0.18 1.92
V-fine 1.18 ± 0.16 0.86 1.38 1.19 ± 0.42 0.50 1.98
Mn-coarse 6.48 ± 2.57 3.70 10.37 5.09 ± 2.55 1.43 10.52
Mn-fine 4.69 ± 1.22 3.34 6.38 5.26 ± 2.28 2.29 9.40
Fe-coarse, mg m�3 0.39 ± 0.20 0.19 0.89 0.31 ± 0.17 0.08 0.70
Fe-fine, mg m�3 0.33 ± 0.13 0.17 0.53 0.41 ± 0.25 0.15 0.89
Zn-coarse 1.95 ± 0.44 1.29 2.63 0.99 ± 0.49 0.30 1.83
Zn-fine 9.72 ± 3.68 5.56 17.32 3.98 ± 2.15 1.55 9.16
Ga-coarse 0.14 ± 0.05 0.07 0.24 0.12 ± 0.07 0.03 0.28
Ga-fine 0.08 ± 0.01 0.06 0.10 0.09 ± 0.03 0.05 0.17
Ge-coarse 0.027 ± 0.008 0.027 0.039 0.021 ± 0.010 0.007 0.045
Ge-fine 0.045 ± 0.013 0.026 0.066 0.032 ± 0.010 0.017 0.050
Se-coarse 0.081 ± 0.030 0.036 0.137 0.069 ± 0.036 0.036 0.142
Se-fine 0.306 ± 0.094 0.214 0.514 0.257 ± 0.100 0.113 0.490
Ba-coarse 2.19 ± 0.81 1.12 3.64 1.64 ± 0.89 0.47 3.56
Ba-fine 1.01 ± 0.16 0.66 1.29 1.18 ± 0.42 0.62 2.27
La-coarse 0.17 ± 0.06 0.08 0.27 0.14 ± 0.10 0.04 0.40
La-fine 0.09 ± 0.1 0.06 0.11 0.11 ± 0.04 0.06 0.23
Ce-coarse 0.36 ± 0.14 0.18 0.59 0.33 ± 0.23 0.08 0.89
Ce-fine 0.18 ± 0.03 0.12 0.24 0.24 ± 0.10 0.13 0.48
Sm-coarse 0.031 ± 0.012 0.015 0.049 0.026 ± 0.017 0.008 0.067
Sm-fine 0.015 ± 0.003 0.009 0.019 0.018 ± 0.006 0.011 0.033
Eu-coarse 0.0078 ± 0.0028 0.0045 0.0123 0.0056 ± 0.0035 0.0018 0.0149
Eu-fine 0.0034 ± 0.0004 0.0028 0.0041 0.0043 ± 0.0013 0.0027 0.0069
Hf-coarse 0.020 ± 0.008 0.010 0.033 0.022 ± 0.010 0.010 0.039
Hf-fine 0.011 ± 0.003 0.008 0.016 0.021 ± 0.009 0.009 0.041
Pb-coarse 0.80 ± 0.18 0.52 1.09 0.39 ± 0.18 0.02 0.65
Pb-fine 6.78 ± 1.82 4.67 10.46 3.52 ± 1.70 1.32 6.88
Th-coarse 0.052 ± 0.020 0.023 0.088 0.047 ± 0.39 0.012 0.149
Th-fine 0.024 ± 0.004 0.015 0.032 0.031 ± 0.014 0.016 0.071

aConcentrations in ng m�3 unless otherwise noted.
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trations increase by factors of 2.2 and 2.3, respectively,
between samples of group 1 and 2.
[23] The third component (PC 3) represents another

crustal source, rich in Ca and Mg. Upon inspection of its
factor scores in Figure 3b, it is evident that this crustal
component becomes of importance during the latter part of
samples in the second group, especially in samples IO97-20
and IO97-24. Air mass back trajectories in Figure 1 indicate
that these air masses were transported with relatively greater
wind speeds from the Saudi Arabian Peninsula and as far as
northeastern Africa. The apparently distinct chemical sig-
natures between the two crustal components may also be a
function of aerosol particle size and the different chemical
transformations occurring during transport. Owing to the
large correlation of PC 3 with the water soluble fractions of
Ca and Mg (Ca2+ and Mg2+ in Table 2), it is likely that this
crustal component carries a gypsum, calcite, and/or lime-
stone fraction, all of which are typical constituents of clay
minerals. A clay mineralogical study of the aerosol material
over the Arabian Sea [Chester et al., 1985] revealed that

illite is the dominant clay mineral. Illite was also observed
to be the predominant clay mineral in most sediments from
the northern Arabian Sea [Goldberg and Griffin, 1970].
[24] The fourth principal component (PC 4) is represen-

tative of the sea salt, and its factor scores are plotted in
Figure 3b. Water-soluble Na (Na+, in Table 2) is used as
the primary sea-salt tracer; however, Na, as plotted in
Figure 2d, can potentially include a crustal source because
it was determined by ICP-MS on a section of acid leached
filter material. Within the analytical errors of our techni-
ques, however, the crustal Na was negligible. The sea-salt
component usually correlates well with the wind speed due
to the increased wave action on the water surface, which
leads to sea-salt aerosol formation; however, due to the
relatively low wind speeds encountered during the present
cruise, this correlation is only weak.
[25] PC 5 and PC 6 will be discussed below in conjunction

with iron speciation. Fe and Mn in the fine fractions correlate
with each other in PC 7. The source of fine Fe and Mn could
arise from local incinerators or even from our research

Table 2. Varimax Rotated Principal Component Matrixa

Element\Component
1 Crustal
(24.6%)

2 Anthrop.
(19.4%)

3 Crustal High
in Ca and Mg

(14.2%)
4 Sea Salt
(11.3%)

5 Fe(II)-fine
(6.2%)

6 MSA,
NSS-SO4

2—

coarse (5.8%)

7 Fe,
Mn-fine
(4.8%)

8
(3.9%)

Na-coarse 0.263 �0.025 0.096 (0.913) �0.111 �0.140 �0.132 0.029
Na-fine 0.192 0.181 0.390 (0.648) �0.277 0.219 �0.079 0.306
Mg-coarse (0.894) �0.246 0.158 0.245 0.058 0.042 0.131 �0.035
Mg-fine 0.433 �0.197 (0.786) 0.077 �0.048 0.230 0.119 0.250
Al-coarse (0.962) �0.002 �0.016 0.069 0.140 0.090 0.143 �0.008
Al-fine (0.661) �0.206 (0.528) �0.086 �0.022 0.206 0.152 0.367
K-coarse (0.866) �0.201 0.141 0.257 0.212 0.093 0.140 0.138
K-fine 0.219 (0.835) �0.012 0.148 0.187 0.047 0.003 0.348
Ca-coarse (0.704) �0.202 0.469 0.160 0.009 �0.027 0.124 �0.336
Ca-fine 0.076 �0.080 (0.958) 0.069 �0.073 0.128 0.134 0.036
Sc-coarse (0.945) 0.018 �0.098 0.055 0.079 0.098 0.161 �0.090
Sc-fine (0.595) �0.137 0.462 �0.370 �0.114 0.247 0.066 0.200
V-coarse (0.938) 0.068 0.079 0.167 0.204 0.121 0.096 �0.002
V-fine 0.373 0.411 0.059 0.040 0.441 0.229 0.173 0.408
Mn-coarse (0.875) 0.259 0.105 0.059 0.103 0.038 �0.244 �0.064
Mn-fine 0.276 0.092 0.459 �0.129 0.205 0.225 (0.714) 0.068
Fe-coarse (0.758) 0.129 0.073 �0.036 0.070 �0.028 �0.344 0.027
Fe-fine 0.167 �0.074 0.347 �0.194 0.216 0.194 (0.786) �0.037
Zn-coarse 0.410 (0.650) �0.212 0.038 0.214 0.154 �0.190 �0.152
Zn-fine �0.079 (0.933) �0.188 �0.016 �0.024 0.100 0.004 �0.021
Pb-coarse 0.318 (0.794) �0.098 0.082 0.174 �0.077 �0.190 �0.231
Pb-fine �0.039 (0.962) 0.015 0.087 �0.080 0.054 �0.020 �0.061
FeII-coarsetotal,22hrsFZ (0.604) (0.562) 0.164 0.180 �0.113 0.269 0.171 �0.158
FeII-finetotal,22hrsFZ 0.311 0.313 0.383 �0.111 (0.706) 0.205 0.131 �0.012
FeII-coarsetotal,5minFZ (0.772) 0.245 0.171 0.020 �0.215 0.283 �0.026 0.232
FeII-finetotal,5minFZ 0.209 0.339 �0.002 �0.206 (0.797) 0.169 0.209 �0.053
Na+-coarse 0.005 0.045 0.011 (0.963) �0.037 0.002 0.074 �0.130
Na+-fine 0.029 0.186 0.251 (0.673) 0.224 0.119 �0.297 0.068
Mg2+-coarse 0.456 0.053 0.074 (0.820) �0.024 0.185 �0.033 0.020
Mg2+-fine 0.109 �0.019 (0.622) 0.437 (0.547) 0.057 �0.041 0.130
K+-coarse �0.027 (0.671) �0.168 (0.638) �0.196 0.047 0.078 0.076
K+-fine �0.211 (0.856) �0.158 0.009 0.315 �0.172 �0.051 0.141
NSS-K+-coarse �0.038 (0.822) �0.220 0.203 �0.224 0.060 0.052 0.178
NSS-K+-fine �0.216 (0.852) �0.178 �0.040 0.304 �0.185 �0.032 0.138
Ca2+-coarse (0.663) �0.246 0.463 0.190 0.017 0.370 0.154 �0.199
Ca2+-fine 0.071 �0.212 (0.935) 0.147 0.151 0.021 0.098 �0.037
NSS-Ca2+-coarse (0.668) �0.249 0.466 0.149 0.019 0.373 0.153 �0.194
NSS-Ca2+-fine 0.070 �0.230 (0.934) 0.099 0.138 0.009 0.124 �0.043
NSS-SO4

2-coarse 0.227 0.202 0.239 0.058 0.148 (0.773) 0.222 �0.197
NSS-SO4

2-fine �0.269 (0.832) �0.044 �0.097 0.269 �0.094 0.059 �0.291
MSA-coarse 0.299 �0.144 0.139 0.075 0.168 (0.823) 0.062 0.155
MSA-fine 0.314 0.245 �0.333 0.316 0.201 0.253 �0.353 �0.348
Wind speed �0.461 0.096 0.188 (0.418) 0.066 �0.248 �0.065 (0.536)

aVariance is given in parentheses in each heading. Rotation converged in nine iterations. Data set includes 23 samples. All components have eigenvalues
>1 and account for a cumulative variance of 90.3%.
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vessel’s smoke stack. The same elements were observed to
be enriched during a previous cruise on the R/V Meteor
[Siefert et al., 1999]. Since both these vessels use diesel fuel
and electric power generators to propel the ship, V was not
expected to be seen in the ship’s plume [Hopke, 1985].
However, Fe and Mn during theMeteor cruise were enriched
in collected samples when the sampling sector system was
malfunctioning. Thus there is a slight chance that although
the sector sampling system was working well during the
whole present cruise, minute amounts of the ship’s plume
may have reached the sampling setup during the ship’s
maneuvers. Fe concentrations are plotted in Figure 2e. The
eighth component was retained in Table 2 but does not have
any physical meaning other than that it seems to be slightly
representative of the wind speed.
[26] As with the inter-monsoon samples collected in 1995

[Johansen et al., 1999], the crustal average according to

Taylor and McLennan [1985] appears to adequately repre-
sent the sampled mineral dust; however, an additional
crustal Ca source seems present in all the samples. On the
basis of the crustal average and the observed Al concen-
trations, the mineral dust concentrations averaged 5.7 ±
1.7 mg m�3 (67.8% in the coarse fraction) during the first
group of samples and 6.1 ± 3.6 mg m�3 (58.4% in the coarse
fraction) for the second group of samples. These two
average crustal masses do not prove to be statistically
different, thus indicating that the crustal component during
the northeast monsoon and inter-monsoon may be of
comparable magnitude. During the inter-monsoon of
1995, Johansen et al. [1999] observed a very similar crustal
average of 5.85 ± 4.24 mg m�3, while during the southwest
monsoon, concentrations were considerably lower, 0.66 ±
0.43 mg m�3. Rhoads et al. [1997] found very similar values
of 6.2 ± 4.4 mg m�3 during the months of March and April

Figure 2. Coarse and fine fraction trace metal concentrations versus sample ID. for (a) Al, (b) Pb, (c) Ca,
(d) Na, and (e) Fe.
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of 1995. Chester et al. [1991] reported mineral dust con-
centrations decreasing from 15–20 mg m�3 in the north to
0.01–0.25 mg m�3 below 35�S in the far Southern Ocean.
Pease et al. [1998] obtained mineral dust concentrations of
40 mg m�3 during the northeast monsoon of 1995, while
Savoie et al. [1987] measured dust concentrations of only
1.01 ± 0.81 mg m�3 during the northeast monsoon of 1979.

3.3. Fe and Fe(II)

[27] The PC analysis in Table 2 shows that coarse Fe
seems to be of crustal origin (PC 1), while most of the fine
Fe, which is comparable in magnitude to the mass in the
coarse Fe, correlates with fine Mn (PC 7) for which the
source is not obvious. On the basis of enrichment factor
analysis (not shown), fine iron is on average 2.4 times the
value expected from the crustal contribution, whereby there
is no statistical difference between the group 1 and group 2
samples.

[28] Ferrous iron in the coarse fraction seems to be crustal
derived (PC 1), while ferrous iron in the fine fraction (PC 5)
does not correlate with any component but itself. The
implications are that Fe(II) in the fine fraction must be
regulated by either one or more unknown parameters in
addition to a combination of the existing parameters.
Assuming that the concentrations of all other pH modulating
constituents in the aerosol particle remain unchanged, the
biological NSS-SO4

2� contribution should lead to an acidi-
fication of the aerosol. However, from this study it is not
clear that the biogenically derived NSS-SO4

2� acidity influ-
ences the concentration of Fe(II), as proposed by Zhuang et
al. [1992] and indicated by Johansen et al. [2000].
[29] The three extracted Fe(II) portions for both coarse

and fine fractions are presented in stacked bar plots in
Figures 4a and 4b, respectively. Superimposed, in dashed

Figure 3. Factor scores for (a) the first three and (b) the
second three principal components extracted in the principal
component analysis in Table 2.

Figure 4. Fe(II) concentrations versus sample ID.
(a) Fe(II) in the coarse fraction, (b) Fe(II) in the fine
fraction, and (c) total Fe(II) released after 5 min in ferrozine
(see text for details).
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lines, are the corresponding Fe concentrations determined
by ICP-MS.
[30] Although, as mentioned earlier, there is an increased

possibility of ferrozine reacting with Fe during the 22-hour
extraction experiment, it is peculiar that the coarse and fine
fractions exhibit widely different behaviors with regard to
the amount of Fe(II) released in the three consecutive
extraction steps. In the coarse fraction the Fe(II)22hrFZ (white
columns in Figure 4a) comprised 80% of all released Fe(II)
while the Fe(II)5minFZ and Fe(II)aq made up �10% each. In
the fine fraction all components of labile Fe(II) were equal in
magnitude within the experimental uncertainty. This result
may be a function of the surface area of the particles, the
mineralogical composition of the phases present, and/or the
presence of species which may reduce Fe(III) to Fe(II) over
the course of the 22-hour extraction experiment.
[31] Coarse- and fine-Fe(II)total,5minFZ are plotted in

Figure 4c in stacked bars, together with the total Fe concen-
tration. No statistical difference could be detected between
the group 1 and group 2 Fe(II) data. Figure 4c shows that
most (87.2 ± 6.1%) of the Fe(II)total,5minFZ, which averages
9.76 ± 3.37 ng m�3, is present in the fine fraction. Compared
to the total Fe as determined by ICP-MS, the combined
coarse and fine Fe(II)total,5minFZ account for only 1.3 ± 0.5%
(geometric mean), ranging from 0.7 to 2.9%. The average
coarse-Fe(II)total,5minFZ concentration of 1.16 ± 0.55 ng m�3

amounts to 0.3 ± 0.1% (geometric mean) of the coarse Fe,
whereby the fine-Fe(II)total,5minFZ concentration of 8.60 ±
3.29 ng m�3, amounts to 2.4 ± 1.2% (geometric mean) of the
fine Fe. As mentioned earlier, note that total Fe is almost
evenly distributed between the fine (52.8%) and the coarse
(47.2%) fractions.
[32] Compared to previous observations reported by our

group, the present samples show relative Fe(II) abundances
that are slightly larger. During the inter-monsoon of 1995
[Siefert et al., 1999] an average of 0.3% of the total Fe was
observed as Fe(II), whereby the actual combined coarse and
fine Fe(II)total,5minFZ amounted to 5.2 ± 4.4 ng m�3. During
the Atlantic Ocean cruise [Johansen et al., 2000], the
measured Fe(II)total,5minFZ concentrations averaged 3.14 ±
1.35 ng m�3, which accounted for 0.5 ± 0.4% of the total
Fe. Thus the Fe(II)total,5minFZ concentrations reported here
are larger by a factor of 1.9 and 3.1, respectively, compared
to those we previously reported. This observation may be
indicative of the anthropogenic constituent playing an
indirect but pronounced role in the speciation of iron.
[33] Few studies exist on Fe(II) concentrations measured

over remote oceanic regions. Zhu et al. [1993, 1997]
reported similar concentrations to those found in the present
study, while Zhuang et al. [1992] measured relative Fe(II)
values that were considerably larger (15%, corrected value
[see Zhu et al., 1993]) in Barbados. However, these large
discrepancies may be due to different sample handling and
more vigorous experimental extraction procedures.

4. Conclusions

[34] Air masses sampled during the month of March of
1997 over the Arabian Sea contain aerosols that vary in their
mineralogical characteristics. This is expected, since March
is considered to be a transitional period between the tail end
of the northeast monsoon and inter-monsoon seasons. The

mineral aerosol appears to be a composite from several arid
and semiarid regions surrounding the Arabian Sea. On the
basis of air mass back trajectories the Thar desert and
deserts of the Saudi Arabian peninsula are the most likely
mineral dust sources. PC analyses reveal two distinct crustal
components. The predominant crustal source represents
5.94 ± 3.08 mg m�3 of soil material, while the second
minor component is enriched in water-soluble Ca2+ and
Mg2+ species, possibly as a form of clay.
[35] All samples carry a strong anthropogenic signature

reflected in the large enrichments in anthropogenic tracers
such as Pb, Zn, fine K, NSS-K+, and NSS-SO4

2�. The
anthropogenic contribution is especially pronounced in the
first 10 samples, which exhibit air mass back trajectories
that indicate a northeastern origin, from the Indian sub-
continent.
[36] Iron in the coarse fraction appears to be of a crustal

origin, while the fine fraction Fe correlates with the fine
fraction Mn of an unknown component. Ferrous iron con-
centrations in the coarse fraction correlate with the coarse
crustal Fe; however, in the fine fraction, no such simple
relationship is observed. Fine plus coarse Fe(II)total,5minFZ

averages 9.76 ± 3.37 mg m�3, which represents 1.3 ± 0.5%
of the total Fe. These values are the largest observed by our
group as compared to measurements taken during other
seasons over the Arabian Sea [Siefert et al., 1999] and over
the Atlantic Ocean [Johansen et al., 2000]. While total Fe is
almost evenly distributed between fine and coarse fractions,
87.2 ± 6.1% of the Fe(II)total,5minFZ is present in the fine
fraction. Furthermore, on the basis of the relative amounts
of Fe(II) released in the sequential extraction procedure, it
appears as if the Fe(II) in the fine fraction is more labile.

[37] Acknowledgments. The authors wish to thank Meinrat O.
Andreae and Hermann W. Bange of the Max Planck Institute of Biogeo-
chemistry in Mainz, Germany, for assistance with the cruise, which was
sponsored by the German Joint Global Ocean Flux Study (JGOFS) project.
Appreciation is also extended to the helpful crew of the R/V Sonne.
Research support was provided by the National Science Foundation and
by the Environmental Now Foundation. Their support is greatly appreci-
ated. This paper was abstracted in part from the Ph.D. thesis of A. M.
Johansen, California Institute of Technology.

References
Ackerman, A. S., and S. K. Cox, Surface weather observations of atmo-
spheric dust over the southwest summer monsoon region, Meteorol.
Atmos. Phys., 41, 19–34, 1989.

Andreae, M. O., Soot carbon and excess fine potassium: Long-range trans-
port of combustion-derived aerosols, Science, 220, 1148–1151, 1983.

Ansmann, A., D. Althausen, U. Wandinger, K. Franke, D. Muller,
F. Wagner, and J. Heintzenberg, Vertical profiling of the Indian aerosol
plume with six-wavelength lidar during INDOEX: A first case study,
Geophys. Res. Lett., 27(7), 963–966, 2000.

Chester, R., E. J. Sharples, and G. S. Sanders, The concentrations of parti-
culate aluminum and clay minerals in aerosols from the northern Arabian
Sea, J. Sediment. Petrol., 55(1), 37–41, 1985.

Chester, R., A. S. Berry, and K. J. T. Murphy, The distributions of parti-
culate atmospheric trace metals and mineral aerosols over the Indian
Ocean, Mar. Chem., 34, 261–290, 1991.

Cooper, D. J., A. J. Watson, and P. D. Nightingale, Large decrease in ocean-
surface CO2 fugacity in response to in situ iron fertilization, Nature, 383,
511–514, 1996.

Deutscher Wetter Dienst, Global-Modell (GME), Hamburg, Germany,
1988.

Echalar, F., A. Gaudichet, H. Cachier, and P. Artaxo, Aerosol emissions by
tropical forest and savanna biomass burning: Characteristic trace ele-
ments and fluxes, Geophys. Res. Lett., 22(22), 3039–3042, 1995.

Findlater, J., A major low-level air current near the Indian Ocean during the
northern summer, Q.J.R. Meteorol. Soc., 95, 362–380, 1969.

ACH 5 - 10 JOHANSEN AND HOFFMANN: TRACE METALS IN ARABIAN SEA AMBIENT AEROSOL



Findlater, J., Mean monthly airflow at low levels over the western Indian
Ocean, Geophys. Mem. London, 115(26), 1–53, 1971.

Fishman, N. S., C. A. Rice, G. N. Breit, and R. D. Johnson, Sulfur-bearing
coatings in fly ash from a coal-fired power plant: Composition, origin,
and influence on ash alteration, Fuel, 78, 187–196, 1999.

Goldberg, E. D., and J. J. Griffin, The sediments of the northern Indian
Ocean, Deep Sea Res., 17, 513–537, 1970.

Hopke, P. K., Appendix: Selected Source Profiles, in Receptor Modeling in
Environmental Chemistry, pp. 267–314, John Wiley, New York, 1985.

Hoppel, W. A., J. W. Fitzgerald, G. M. Frick, R. E. Larson, and E. J. Mack,
Aerosol size distributions and optical properties found in the marine
boundary layer over the Atlantic Ocean, J. Geophys. Res., 95, 3659–
3686, 1990.

Jayaraman, A., D. Lubin, S. Ramachandran, V. Ramanathan, E. Wood-
bridge, W. D. Collins, and K. S. Zalpuri, Direct observations of aerosol
radiative forcing over the tropical Indian Ocean during the January–Feb-
ruary 1996 pre-INDOEX, J. Geophys. Res., 103, 13,827–13,836, 1998.

Jickells, T. D., and L. J. Spokes, Atmospheric iron inputs to the oceans, in
The Biogeochemistry of Iron in Seawater, edited by D. R. Turner and
K. A. Hunter, pp. 86–121, John Wiley, New York, 2001.

Johansen, A. M., R. L. Siefert, and M. R. Hoffmann, Chemical character-
ization of ambient aerosol collected during the southwest-monsoon and
inter-monsoon seasons over the Arabian Sea: Anions and cations,
J. Geophys. Res., 104, 26,325–26,347, 1999.

Johansen, A. M., R. L. Siefert, and M. R. Hoffmann, Chemical composition
of aerosols collected over the tropical North Atlantic Ocean, J. Geophys.
Res., 105, 15,277–15,312, 2000.

Kolber, Z. S., R. T. Barber, K. H. Coale, S. E. Fitzwater, R. M. Greene, K. S.
Johnson, S. Lindley, and P. G. Falkowski, Iron limitation of phytoplank-
ton photosynthesis in the equatorial Pacific Ocean, Nature, 371, 145–
149, 1994.

Kottmeier, C., and B. Fay, Trajectories in the Antarctic lower troposphere,
J. Geophys. Res., 103, 10,947–10,959, 1998.

Lelieveld, J., et al., The Indian Ocean Experiment: Widespread air pollution
from South and Southeast Asia, Science, 291, 1031–1036, 2001.

Martin, J. H., and S. F. Fitzwater, Iron deficiency limits phytoplankton
growth in the north-east Pacific subarctic, Nature, 331, 341–342, 1988.

Martin, J. H., et al., Testing the iron hypothesis in ecosystems of the
equatorial Pacific Ocean, Nature, 371, 123–129, 1994.

Middleton, N. J., Dust storms in the Middle East, J. Arid Environ., 10, 83–
96, 1986a.

Middleton, N. J., A geography of dust storms in south-west Asia, J. Cli-
matol., 6, 183–196, 1986b.

Moorthy, K. K., S. K. Satheesh, and K. B. V. Murthy, Investigations of
marine aerosols over the tropical Indian Ocean, J. Geophys. Res., 102,
18,827–18,842, 1997.

Moorthy, K. K., S. K. Satheesh, and B. V. K. Murthy, Characteristics of
spectral optical depth and size distributions of aerosols over tropical
oceanic regions, J. Atmos. Solar Terr. Phys., 60, 981–992, 1998.

Moorthy, K., P. Pillai, A. Saha, and K. Niranjan, Aerosol size characteristics
over the Arabian Sea and Indian Ocean: Extensive sub-micron aerosol
loading in the Northern Hemisphere, Curr. Sci., 76, 961–967, 1999.

Moorthy, K., A. Saha, and K. Niranjan, Spatial variation of aerosol spectral
optical depth and columnar water vapour content over the Arabian Sea and
Indian Ocean during the IFP of INDOEX, Curr. Sci., 80, 145–150, 2001.

Paerl, H. W., L. E. Prufert-Bebout, and C. Guo, Iron-stimulated N2 fixation
and growth on natural and cultured populations of the planktonic marine
cyanobacteria Trichodesmium spp., Appl. Environ. Microbiol., 60(3),
1044–1047, 1994.

Patterson, C. C., and D. M. Settle, The reduction of orders of magnitude
errors in lead analysis of biological materials and natural waters by evalu-

ating and controlling the extent and sources of industrial lead contamina-
tion introduced during sampling, collecting, handling and analysis, NBS
Spec. Publ. U.S., 422, 321–351, 1976.

Pease, P. P., V. P. Tchakerian, and N. W. Tindale, Aerosols over the Arabian
Sea: Geochemistry and source areas for aeolian desert dust, J. Arid
Environ., 39, 477–496, 1998.

Price, N. M., B. A. Ahner, and F. M. M. Morel, The equatorial Pacific
Ocean: Grazer-controlled phytoplankton populations in an iron-limited
ecosystem, Limnol. Oceanogr., 39(3), 520–534, 1994.

Rao, P., G. Momin, P. Safai, K. Ali, M. Naik, and A. Pillai, Aerosol and
trace gas studies at Pune during INDOEX IFP-99, Curr. Sci., 80, 105–
109, 2001.

Rao, Y., and P. Devara, Characterization of aerosols over Indian Ocean and
Arabian Sea during INDOEX IFP-99, Curr. Sci., 80, 120–122, 2001.

Rhoads, K. P., P. Kelley, R. R. Dickerson, T. P. Carsey, M. Farmer, D. L.
Savoie, and J. M. Prospero, Composition of the troposphere over the
Indian Ocean during the monsoonal transition, J. Geophys. Res., 102,
18,981–18,995, 1997.

Satheesh, S. K., and K. Krishna Moorthy, Aerosol characteristics over
coastal regions of the Arabian Sea, Tellus, Ser. B, 49, 417–428, 1997.

Satheesh, S. K., K. K. Moorthy, and B. V. Murthy, Spatial gradients in
aerosol characteristics over the Arabian Sea and Indian Ocean, J. Geo-
phys. Res., 103, 26,183–26,192, 1998.

Savoie, D. L., J. M. Prospero, and R. T. Nees, Nitrate, non-sea-salt sulfate,
and mineral aerosol over the northwestern Indian Ocean, J. Geophys.
Res., 92, 933–942, 1987.

Siefert, R. L., A. M. Johansen, and M. R. Hoffmann, Chemical character-
ization of ambient aerosol collected during the southwest and intermon-
soon seasons over the Arabian Sea: Labile-Fe(II) and other trace metals,
J. Geophys. Res., 104, 3511–3526, 1999.

Taylor, S. R., and S. M. McLennan, The Continental Crust: Its Composition
and Evolution, Blackwell Sci., Malden, Mass., 1985.

Tindale, N. W., and P. P. Pease, Aerosols over the Arabian Sea: Atmo-
spheric transport pathways and concentrations of dust and sea salt, Deep
Sea Res., Part II, 46, 1577–1595, 1999.

Venkataraman, C., P. Sinha, and S. Bammi, Sulphate aerosol size distribu-
tions at Mumbai, India, during the INDOEX-FFP [1998], Atmos. Environ.,
35(15), 2647–2655, 2001.

Venkataraman, C., C. Reddy, S. Josson, and M. Reddy, Aerosol size and
chemical characteristics at Mumbai, India, during the INDOEX-IFP
[1999], Atmos. Environ., 36(12), 1979–1997, 2002.

Wells, M. L., N. M. Price, and K. W. Bruland, Iron chemistry in seawater
and its relationship to phytoplankton: A workshop report, Mar. Chem.,
48, 157–182, 1995.

Zhu, X., J. M. Prospero, D. L. Svoie, F. J. Millero, R. G. Zika, and E. S.
Saltzman, Photoreduction of iron(III) in marine mineral aerosol solutions,
J. Geophys. Res., 98, 9039–9046, 1993.

Zhu, X. R., J. M. Prospero, and F. J. Millero, Diel variability of soluble
Fe(II) and soluble total Fe in North African dust in the trade winds at
Barbados, J. Geophys. Res., 102, 21,297–21,305, 1997.

Zhuang, G., Z. Yi, R. A. Duce, and P. R. Brown, Link between iron and
sulphur cycles suggested by detection of Fe(II) in remote marine aerosols,
Nature, 355, 537–539, 1992.

�����������������������
A. M. Johansen, Department of Chemistry, Central Washington

University, 400 East 8th Avenue, Ellensburg, WA 98926, USA. ( johansea@
cwu.edu)
M. R. Hoffmann, Environmental Science and Engineering, California

Institute of Technology, Keck 138-78, Pasadena, CA 91125, USA. (mrh@
caltech.edu)

JOHANSEN AND HOFFMANN: TRACE METALS IN ARABIAN SEA AMBIENT AEROSOL ACH 5 - 11


	Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals
	Recommended Citation

	Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: Labile-Fe(II) and other trace metals

