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Abstract

The classification of stellar spectra is a fundamental task in stellar astrophysics. Stellar spectra from the Sloan
Digital Sky Survey are applied to standard classification methods, k-nearest neighbors and random forest, to
automatically classify the spectra. Stellar spectra are high dimensional data and the dimensionality is reduced
using astronomical knowledge because classifiers work in low dimensional space. These methods are utilized
to classify the stellar spectra into a complete Morgan Keenan classification (spectral and luminosity) using a
single classifier. The motion of stars (radial velocity) causes machine-learning complications through the
feature matrix when classifying stellar spectra. Due to the nature of stellar classification and radial velocity,
these complications cannot be corrected. However, classifiers utilizing a large set of observed stellar spectra,
which has had astronomical-specific feature selection applied, performed computationally fast with extremely
high accuracy.
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1. Introduction

Stellar classification is a fundamental task in stellar
astrophysics. Traditionally, stellar spectra are classified by
determining the wavelengths of absorption lines using wavelet
transformations, statistical analysis, and using references to the
Morgan Keenan (MK) classification scheme (Morgan et al.
1943) or they are classified by comparing the best fit of the
spectra to that of templates using statistical tests (Duan et al.
2009). The traditional classification schemes require complex
data transformations and analysis to identify the class of a star
based on its spectrum.

The amount of astronomical data and dimensionality of said
data is growing rapidly through more and more ambitious
astronomical surveys. The Sloan Digital Sky Survey (SDSS) is
an example of an ambitious astronomical survey with high-
quantity and dimensional data.

Presently, SDSS is creating the most detailed 3D maps of the
universe ever made, with deep multicolor images of one-third
of the sky, and spectra for more than three million astronomical
objects' (York et al. 2000). The SDSS provides stellar spectra
with observed wavelengths. The following experiments will
classify stars using the SDSS data run 14 optical spectra
data set.

The SDSS and other large astronomical surveys create
challenging problems for a thorough and speedy analysis. As
such, automated classification methods are explored. However,
some classification algorithms are limited to low dimensional
data, making the use of feature selection and feature extraction
essential.

Radial velocity (RV) creates complications for the automated
classification of stellar spectra through the feature matrix. The
automated process for identifying RV and stellar class that the

* Released on 2019 October 17.
! https: //www.sdss.org/

SDSS uses is as follows (Bolton et al. 2012 and SkyServer:
Redshifts, Classifications, and Velocity Dispersionsz).

1. Redshift and classification templates for galaxy, quasar,
and cataclysmic variable (CV) and non-CV star classes
are constructed by performing a rest-frame principal-
component analysis (PCA; Shlens 2014) of training
samples of a known redshift.

2. The combination of redshift and template class that yields
the overall best fit (in terms of lowest reduced chi-
squared) is adopted as the pipeline measurement of the
redshift and classification of the spectrum.

3. The most common warning flag is set to indicate that the
change in reduced chi-squared between the best and next-
best redshift/classification is either less than 0.01 in an
absolute sense, or less than 1% of the best model reduced
chi-squared, which indicates a poorly determined
redshift.

This paper proposes a novel approach to stellar classification
characterized by the following:

1. avoids complex transformation and statistical analysis of
the spectra space using machine learning;

2. uses spectra without RV corrections;

3. and uses astronomical knowledge to perform feature
selection.

Stellar spectra are classified into a complete MK classifica-
tion (spectral and luminosity) using a single classifier method.
Astronomical knowledge is used to reduce the number of flux
measurements. This results in key aspects of the spectra being
preserved for classification which allows for a complete
spectral and luminosity classification to be possible. However,
the work conducted here deals with spectra with RV in the
range of ~+240kms™".

2 https: //www.sdss.org/dr12 /algorithms /redshifts/
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The structure of this paper is as follows. Section 2 describes
the approach to classification. Section 3 describes the
experimental setup and the results. Section 4 provides a
discussion of the results. Finally Section 5 provides the
conclusions.

2. Approach to Classification

In this section, the data preprocessing, machine-learning
classifiers, and feature selection are described.

2.1. Data Preprocessing

The only data preprocessing required for this approach is
flux scaling using Equation (1). If a sample is known to have
missing or corrupt flux measurements around the absorption
lines used for feature selection, then an imputer3 method is
required to fill in missing values. None of the samples in the
data set used in this analysis required an imputer.

ﬁ _fmin
ﬁscae = - s ey
ssealed fmax _fmin

where f; is the ith flux measurement, f.., and f.;, are the
maximum and minimum flux measurements, respectively, and
Ji.scalea 18 the resulting scaled flux.

2.2. Machine Learning and Feature Selection

The classifier methods of k-nearest neighbors (KNN) and
random forest (RF) are used in this approach. KNN classifies
using the k-nearest known samples. More in depth explana-
tions of KNN can be found in Marsland (2015), Ivezic et al.
(2014), and Goldberger et al. (2005). RF classifies using a
forest of decision trees, where each tree votes on the
classification. More in depth explanations of RF can be found
in Marsland (2015), Ivezic et al. (2014), and Breiman (2001).
KNN and RF were chosen because they are widely used in
astronomy (Yi & Pan 2010; Ivezic et al. 2014; Bai et al.
2019), and they work well in low dimensional spaces
(Breiman 2001; Goldberger et al. 2005). RF was also chosen
because it demonstrated good results in earlier work found in
Brice & Andonie (2019).

The difference between the work presented here and the
work of other authors is feature selection. Feature selection is
the act of taking a set of attributes or features and extracting
or transforming the most relevant ones for classification and
to reduce the number of dimensions for the input space for
the classifier model (Bol6n-Canedo et al. 2015). Authors
Bazarghan & Gupta (2008), Sdnchez & Prieto (2013), and Yi &
Pan (2010) do not use feature selection, rather they use the full
range of wavelengths. This causes the input space for the
classifier models to be very large in dimension, which makes
the algorithms slow. Bazarghan & Gupta (2008) rebinned the
SDSS spectra to have the same resolution as the Jacoby
(Jacoby et al. 1984) spectra. One could argue that this is feature
selection because they are converting and reducing the number
of measurements, but a more accurate description would be that
they are simply spectra fitting and not significantly reducing the
number of dimensions. Sdnchez & Prieto (2013) use K means
clustering to classify SDSS stellar spectra and do not reduce the

> An imputer is used to fill in missing values in a feature matrix. Brice &
Andonie (2019) utilize a moving average imputer for missing values in stellar
spectra.

Brice & Andonie

Table 1
Example of the Feature Matrix Using Two Sets of Wavelengths around Two
Absorption Lines

Wavelength: ~ Wavelength: ~ Wavelength: ~ Wavelength:

4095.43 A 4110.55 A 4219.88 A 423545 A
Spectrum 1 Flux Flux Flux Flux
Spectrum 2 Flux Flux Flux Flux

Note. The 34 features result in a 34 column feature matrix.

number of dimensions. Yi & Pan (2010) utilized RF to classify
stellar spectra. The authors also compared RF to neural
networks (multilayer perceptron, MLP).

Authors Xing & Guo (2004), Bazarghan (2008), and Bailer-
Jones et al. (1998) use PCA to reduce the number of flux
measurements, but they maintain the shape and structure of the
overall spectrum. Xing & Guo (2004) also use a wavelet
transformation to reduce noisy flux measurements, but again
they maintain the shape and structure of the spectrum. Others
such as Zhang et al. (2008) normalized the continuum of the
spectra. It is important to note that this does not reduce the
dimensions of the spectra. Bai et al. (2019) uses a color space
rather than spectra to classify stars. The authors use nine color
bands (i.e., g — r, r — i, etc.) as their features. Elting et al.
(2008) also use photometric data instead of spectra to classify
stars. Schierscher & Paunzen (2011) actually reduce the spectra
using a similar approach to the work in this paper by using
absorption lines, but they reduce the dimensions from 2400 to
435, where this paper reduces down to 34, as explained in
Section 3. However, Schierscher & Paunzen (2011) classify
effective temperature ranges and not direct spectral and
luminosity classes.

From an astronomical point of view, spectra contain two
features: flux and wavelength. From a machine-learning point
of view, spectra contain N features, where N is the number of
flux measurements. In earlier work conducted in Brice &
Andonie (2019), standard machine-learning feature selection
methods are used which use a statistical approach to rank
correlation between flux measurements and spectral classes.
Then the K most correlated features (flux measurements) are
taken as the input space to the classifier model. This approach
does not maintain the shape or structure of the spectra. The
work presented in this paper does not use machine-learning
feature selection, rather astronomical knowledge of the
spectra to reduce the number of dimensions in the input
space.

The input space to classifier models is known as a feature
matrix. Each column of the feature matrix is a unique feature/
attribute /dimension of the object to be classified and the rows
are the individual samples. For spectra, these features are the
flux measurements, as seen in Table 1. It is important to note
that the wavelength values are used as the title of the unique
features, not as the features themselves.

The stellar spectra found in the SDSS data set contain on
average 4617 flux measurements or in another terms the input
space has 4617 dimensions. As stated above, feature selection
is used to reduce these dimensions. Standard machine-
learning feature selection methods used in Brice & Andonie
(2019) did not work for these experiments because the
spectral classes overshadow the luminosity classes. This
means that statistical correlation between specific flux



THE ASTRONOMICAL JOURNAL, 158:188 (8pp), 2019 November

Two A1l stars around Hs (4102.89 A) Absorption Line

0.75 ¢ AlV, spec-3586-55181-0036.fits

Allll, spec-3587-55182-0470.fits
0.70 |

0.65 S i
h i S
0.60 NI, 7.8682 ¥

7

- 7.2478 A |

0.55
0.50 ~ .
0.45

0.40

Scaled (Flux [107Y7 ergs /s / cm? [ A])

4096 4098 4100 4102 4104 4106 4108 4110
Wavelength [A]

Figure 1. Example of the same spectral class with different wavelength width
(FWHM) for the same absorption line for different MK classes.

measurements and spectral class is stronger than the same
flux measurement and luminosity class. This is apparent
because the luminosity classes are based on the width of the
absorption lines, which makes it difficult for individual flux
measurements to be correlated to both luminosity and spectral
classes. Therefore, flux measurements around an absorption
line are used rather than the ones that are statistically
correlated.

Since there is not one absorption line that all spectral classes
share, two absorption line regions are used. The two absorption
lines with rest vacuum wavelengths are Hs (4102 A) and Cal
(4227 A). B and A stars have Hs, K and M have Cal, and F and
G have both absorption lines. Spectral classes are separated
because of the intensity of the flux in the regions and
luminosity classes are separated because of the widths of the
absorption line. Figure 1 shows how the width of the
absorption line changes the flux measurements for two A-type
stars. Using these two regions the feature matrix can be built.
The flux measurements from the Hs region and the flux
measurements from the Cal region are combined to create a
single flux array per sample, as seen in Table 1. This feature
selection must also be able to incorporate the shifting of the
spectrum due to RV. Figure 2 shows that with a sufficiently
sized region, RV can be incorporated.

The feature matrix can be represented as an N-dimensional
hypercube. Where each feature is a dimension in this
hypercube. As mentioned before, the wavelengths are used as
dimension labels, where the flux measurement at that
wavelength is the magnitude of the vector in that dimension.
This results in each reduced spectrum being represented as an
N-dimensional point. As the shape and intensity of the flux in
these regions change due to spectral class, the positions of these
reduced spectra change in this N-dimensional hypercube. The
same happens when the width of the absorption line changes
with luminosity class.

A problem arises with the feature matrix because RV
causes the flux measurements to be shifted in wavelength.
This is illustrated in Table 2. As mentioned earlier, each
feature is unique. The problem that RV causes is that it breaks
this feature uniqueness. To overcome this problem, a
sufficient number of samples of the exact same class with
different RV that span the range of realistic RV are required.
This gives the training data set for the classifier model
sufficient samples of spectral and luminosity classes at
different RV. In terms of KNN, this allows for sufficient
neighbors to be nearby when classifying. In terms of RF, this

Brice & Andonie
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Figure 2. Example of how RV is accounted for in the feature selection
window.

forces the splitting threshold of each decision tree’s node to
include spectra with RV.

3. Experiments

In this section, the experimental setup is described and the
results are presented.

3.1. Experimental Setup

The data set used in these experiments comes from
SDSS data run 14, which was collected using the Baryon
Oscillation Spectroscopic  Survey (BOSS) spectrograph4
(Smee et al. 2013). Data run 14 contains a total of 335,844
spectra. Some of the data was rejected because it was not a
spectral class of O, B, A, F, G, K, and M with a subclass
of 0-9 combined with a luminosity class of I, II, III, IV, V, VII,
or that the data was missing a large portion of its spectrum,
similarly to the work done in Brice & Andonie (2019). The
data was also preprocessed by SDSS scientists through the
methods presented by Dawson et al. (2013) and Stoughton
et al. (2002).

The usable data set contains 168,982 stellar spectra and 46 of
the 420 class combinations. It is important to note that this is
real collected data and not simulated data. The spectra are first
preprocessed by scaling the flux to ensure that similar classes
have similar flux measurements using Equation (1).

Then feature selection is performed using Algorithm 1,
where the variable bounds is the number of flux measurements
before and after the absorption line. The variable bounds is set
to 8 to cover the RV range of —552 to 552kms ™' and ensure
that sufficient flux measurements are recorded. This results in a
region of 17 flux measurements around Hs (4102 A) and a
region of 17 flux measurements around the Cal (4227 A)
absorption line, which is combined to form a 34-dimension
feature matrix.

After the feature selection phase, the data set is split into two
subsets for RV: one for RV less than 200 km s~ ' and one for
RV greater than 200 km s~ '. Each subset is again divided into
10 subsets for tenfold cross validation (Kohavi 1995). One
subset from each RV set is taken as testing sets respectively.
The remaining subsets are combined into one training set. Due
to the data set being imbalanced (Figure 3), the training set is
balanced using an undersampling method (Japkowicz 2000;

4 Simplified BOSS spectrograph explanation: https: //www.sdss.org/instruments/

boss_spectrograph/.
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Table 2

Example of the Feature Matrix with Observed AO Spectra
Star Wavelength: Wavelength: Wavelength: Wavelength: Wavelength:
Class 4101.00 A 4101.94 A 4102.89 A 4103.83 A 4104.77 A
AO H;
A0 H;
A0 Hj
A0 H;
A0 Hs

Note. Note for the A0 stars, RV causes the H; absorption line to be modeled with different wavelength features.

randomly removing samples), an oversampling method (ran-
domly duplicating samples using the synthetic minority over-
sampling technique, SMOTE; Chawla et al. 2002), and a
hybrid method (undersampling + oversampling). Then, KNN
and RF classifiers are applied to the training set and tested
using the RV less than 200 km s~ test set and RV greater than

200kms ' test set as well as a combined test set. These steps
are repeated 10 times with different subsets used for testing for
tenfold cross validation. The accuracy, precision, recall, and F1
score (defined below) are averaged over each cross validation.
Misclassification costs for incorrectly classifying a spectrum
are not explored.

Algorithm 1 Flux Feature Selection

: function FEATURE_SELECTION(flux_Arr, wavelength_Arr, absorption_Line)

1

2 bounds = 8 / range of flux measurements before and after the absorption line
3: for 0 < i < flux_Arr_Length do

4: index = Find_Nearest(wavelength_Arr{ 1], absorption_Line)

5 for index — bounds < j < index + bounds do

6 new_flux_Arr[i][j] = flux_Arr[i][ 3]

7: new_wavelength_Arr[i][ ] = wavelength_Arr[i][]]

8 end for

9: end for

10: return new_flux_Arr, new_wavelength_Arr

11: end function

: function FIND_NEAREST(array, value)

1

2 min = oC

3 index = -1

4: for 0 < i < array_Length do

5 if array[i] — value < min then
6 index =1

7 end if

8: end for

9: return index

10: end function
1: procedure MAIN

2: flux Arr_1,wavelength_Arr_1 = Feature_Selection(flux_Arr,

wavelength_ Arr, 4102.89)

flux Arr_2,wavelength_Arr_2 = Feature_Selection( flux_ Arr,

wavelength_Arr, 4227.79)

wavelength Arr = Append(wavelength Arr_1,wavelength Arr_2)

3:

4: flux Arr = Append(flux Arr_ 1, flux Arr_2)
5:

6: end procedure
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Table 3
Tenfold Cross-validation Accuracy for KNN

Accuracy (%) for K Neighbors

Balance Method RV
3.0 5.0 7.0 10.0 15.0 20.0
Undersampled All 52.66 52.31 51.47 50.73 49.63 48.49
<200 km s~ 53.32 52.99 52.17 51.45 50.35 49.23
>200 kms ™ 23.97 22.94 21.18 19.38 17.98 16.67
Hybrid All 93.02 92.63 92.31 91.85 91.26 90.73
<200 kms™" 92.92 92.56 92.26 91.82 91.28 90.77
>200km s~ 97.15 95.62 94.44 92.94 90.54 88.96
Oversampled All 95.48 95.00 94.54 93.98 93.24 92.58
<200 km s~ 95.46 94.99 94.56 94.02 93.32 92.69
>200 kms™ 96.41 95.28 93.91 92.18 89.54 87.78
The experiments are implemented in Python, USing scikit- Distribution of Stellar Classes in Database: Total Instances = 168982

learn (Pedregosa et al. 2011). Due to the size of the data set
(16.7GB, which is larger than the RAM used in these
experiments), the Python NumPy memmap’ (Oliphant 2015)
module was used to read very large arrays from storage rather
than RAM. The experiments are performed on a personal
computer with the following relevant specifications: AMD
Ryzen 7 1800x 16 logical core CPU, 16 GB RAM, and 1 TB
Samsung 860 EVO Solid State Drive.

KNN and RF use the scikit-learn default parameters
(Pedregosa et al. 2011). Precision,® recall,” and F1 score® are
computed using functions implemented by the scikit-learn
sklearn.metrics package (Pedregosa et al. 2011). Feature
selection is implemented using Algorithm 1 in Python and Figure 3. Distribution of classes in the data set. RC = remaining classes of 0

Il
TR O
Lbubol s . 1 0L

Stellar Classes

Number of Instances of each Class

uses the Python multiprocessing package’ for parallelization. instances.

Precision is the measure of how well a predicted class
compares to actual classes. (Marsland 2015). For example, in

) . . Total_TP

the binary class case, precision is the number of samples Recall = 3)
correctly predicted as class 1 divided by the total number of Total TP + Total FN
samples predicted as class 1 (Equation (2)). Recall is the Precision % Recall
measure of how well an actual class compares to predicted b= 2P recision + Recall “)
classes (Marsland 2015). For example, in the binary class case,
recall is the number of samples correctly predicted as class 1 where the true positive (TP) is defined as a prediction of class 1
divided by the total number of samples that are actually class 1 being correctly classified as class 1, false positive (FP) is
(Equation (3)). F1 score is a type of harmonic mean that defined as a prediction of class 1 being incorrectly classified as
Combif}es precision and recall into a Sif}gle metric class 2, and false negative (FN) is defined as a sample of class 1
(Equation (4); Marsland 2015). The closer precision, recall, being incorrectly predicted as class 2. In the multiclass

and F1 score are to 1, the more accurate the model. In terms of
this work, precision, recall, and F1 score are reported as an
average of all the individual precision, recall, and F1 score
measurements associated with each of the 46 classes
respectively. Precision, recall, and F1 score are defined in the
binary class case as follows:

problem, FP is defined as a prediction of class i being
incorrectly classified as class = i and FN is defined as a sample
of class i being incorrectly predicted as class =1i. More
information regarding precision, recall, and F1 score can be
found in Powers (2011).

Total_TP 4. Discussion
Precision = = 2) . . .
Total_TP + Total_FP Tables 3 and 6 show that classification using KNN has

essentially the same accuracy as RF when using hybrid and
oversampling balancing. These tables demonstrate that using

5 Memmap: https://docs.scipy.org/doc/numpy-1.14.0 /reference /generated /

numpy.memmap.html. KNN and RF along side Algorithm 1 for feature selection are
® Precision scikit-learn: https://scikit-learn.org/stable /auto_examples/model_ viable options for the automated classification of stellar spectra
selection /plot_precision_recall.html. because of the high accuracy achieved. Table 3 demonstrates
7 Recall scikit-leam: htps: //scikit-learn.org /stable /modules /generated /sklear. that using three neighbors for KNN classification performs the

metrics.recall_score.htmly#skleamn metrics.recall_score. best for KNN. Table 6 shows that changing the number of trees
F1 Score scikit-learn: https://scikit-learn.org /stable/modules/generated/

sklearn.metrics.f1_score.html#sklearn.metrics.f1_score. used in RF does not significantly change the classification

® Multiprocessing: https://docs.python.org/3.7/library /multiprocessing html# accuracy. TableS.S and 6.Sh0W that oversampling balancing
module-multiprocessing. outperforms hybrid balancing.


https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.memmap.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.memmap.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html#sklearn.metrics.recall_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html#sklearn.metrics.recall_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
https://docs.python.org/3.7/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3.7/library/multiprocessing.html#module-multiprocessing

THE ASTRONOMICAL JOURNAL, 158:188 (8pp), 2019 November

Brice & Andonie

Table 4
Tenfold Cross-validation Precision, Recall, and F1 Score for KNN Using Oversampling
RV K Neighbors
3.0 5.0 7.0 10.0 15.0 20.0
Precision All 0.805493 0.795833 0.789050 0.781626 0.767124 0.756264
<200 km s~ ! 0.803331 0.793968 0.787575 0.780606 0.766780 0.756458
>200kms™! 0.926071 0.897225 0.872481 0.838610 0.793230 0.756975
Recall All 0.835391 0.834499 0.834981 0.835475 0.833052 0.829150
<200 km s~ ! 0.832799 0.831953 0.832601 0.833312 0.831288 0.829150
>200kms™! 0.941410 0.921932 0.905449 0.879239 0.853662 0.959524
F1 Score All 0.811617 0.805477 0.801665 0.796227 0.786297 0.776893
<200 km s ! 0.809250 0.803309 0.799771 0.794651 0.785290 0.776297
>200 km s~ 0.989692 0.985351 0.981322 0.975739 0.967290 0.827752
Paunzen (2011) are able to achieve an 85% match in
Table 5 comparison with the Sloan Extension for Galactic Under-
Tenfold Cross-validation Execution ;[1‘11’1;1%8 for KNN Using Oversampling for standing and Exploration (SEGUE) Stellar Parameter Pipeline
4 using an artificial neural network, but this is not comparable
Time in Seconds for K Neighbors since they did not classify into direct spectral and luminosity
30 50 70 10.0 15.0 20.0 classes. Schierscher & Paunzen (2011) also never addresses the
FE———— 5089 9089 9089 9089 9089 908 fact that their data is imbalanced.

cature sefection ’ ’ ’ ’ ’ : Other authors such as Bazarghan & Gupta (2008), Yi & Pan

Train 6.91 6.91 6.95 6.94 6.88 6.82 .
Test 303 392 341 362 392 419 (2010), and Zhang et al. (2008) do not report metrics that are

Tables 4 and 7 show that the precision and recall is less than
accuracy (Tables 3 and 6). The precision implies on average
that the RF model’s prediction of class i is actually 84.91%
(Table 7) class i. Where recall implies on average, the RF
model predicts 86.63% (Table 7) of the samples that are class i
as class i. It is important to note that the test sets for all RV,
RV < 200kms™ !, and RV > 200kms~ ' metrics are tested
using the same trained model. As seen in these tables, this
approach accurately classifies both RV < 200kms™' and
RV > 200 km s ! However, RV > 200 km s has a higher
accuracy, precision, and recall (Table 7) than RV <
200km s~ '. This could be the result of an imbalance between
low RV and high RV samples and overfitting the model in the
low RV range. Future work will attempt to increase precision
and recall for low RV, which includes balancing the RV range.

Tables 5 and 8 show the execution times for each
experiment. These tables show that KNN performs much faster
than RF. KNN has a faster train time than RF, but RF has a
faster test time than KNN. For both KNN and RF, feature
selection takes approximately the same amount of time, which
is expected since they both use the same feature selection.

This approach takes considerably fewer steps than the one in
Bolton et al. (2012) and produces excellent results. The
execution times and the obtained accuracy demonstrate that, for
a real application of this work, the automated classification of
observed stellar spectra into a complete MK classification using
a single classifier not only achieves a high accuracy but is
also fast.

These experiments yielded an accuracy of 97.16% for RF
(Table 6) using oversampling balancing and 150 decision trees
(Table 6), which is significantly better than Xing & Guo
(2004), who report 81.66% accuracy for just the support vector
machine (SVM) with no data reduction, 93.26% for wave-
let + SVM, and 81.30% for PCA + SVM. Schierscher &

comparable to the work conducted in this paper. Bazarghan &
Gupta (2008) used a probabilistic neural network implemented
in MATLAB and they used a x> value to determine
classification accuracy. They make the assumption that a x>
value of 0.002 or lower is considered classified correctly, then
they achieved a success rate of about 88% in only a few
seconds. Yi & Pan (2010) find that RF performed better than
the MLP with an rms error (RMSE) of 1.04 and 1.36,
respectively. Zhang et al. (2008) separated the classification
into two classifiers. For the spectral classes, the authors used a
nonparameter regression method. For the luminosity classes,
the authors removed or normalized the continuum of the
spectra and used a partial least-squared regression method.
Zhang et al. (2008) used three spectra data sources: Silva &
Cornell (1992), Pickles (1998), and Jacoby et al. (1984). They
achieved a standard deviation of o = 0.7994 for the spectral
classes and o = 0.58159 for the luminosity classes.

As described above in Section 3, these experiments deal with
data collected by a real astronomical survey. As such, when an
astronomical survey points their telescopes into the sky, they
get the samples (classes) that they get. The experiments
presented here deal with a subset of all possible class
combinations. It is important to note that not all possible class
combinations (O, B, A, F, G, K, and M with subclasses of 0-9
combined with I, II, III, IV, V, VII) are common or even found
in nature. Therefore, even though this approach yielded great
results, there cannot be a claim that this approach will
guarantee work for all stellar classes. There is, however, some
theoretical validity to this approach.

Referencing Figure 3, O-type stars are the only spectral class
not found in the data set. Figure 4 shows that O-type stars also
contain the Hy absorption line. Therefore, the missing spectral
and luminosity classes are compatible with this approach
because every spectral major class has at least one absorption
line in the feature selection regions, which allows for the
variation in width for luminosity classes.
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Table 6
Tenfold Cross-validation Accuracy for RF

Accuracy (%) for N Trees

Balance Method RV
10.0 100.0 150.0 200.0 250.0
Undersampled All 52.45 58.13 58.75 59.01 59.09 59.21
<200 km s~ 53.09 58.78 59.39 59.65 59.72 59.83
>200 kms ™ 24.62 29.79 30.85 31.48 31.77 31.91
Hybrid All 93.83 94.44 94.48 94.48 94.50 94.49
<200 kms™" 93.73 94.35 94.38 94.39 94.41 94.41
>200 kms ™ 98.39 98.36 98.36 98.44 98.61 98.41
Oversampled All 96.39 97.05 97.12 97.16 97.15 97.16
<200 km s~ 96.34 97.01 97.09 97.13 97.12 97.12
>200 kms™ 98.49 98.65 98.62 98.62 98.65 98.65

Table 7
Tenfold Cross-validation Precision, Recall, and F1 Score for RF Using Oversampling
RV N Trees
10.0 50.0 100.0 150.0 200.0 250.0
Precision All 0.827606 0.845460 0.849466 0.849149 0.850188 0.850051
<200 km s~ 0.825895 0.844077 0.848296 0.847941 0.848908 0.848765
>200 kms™ 0.968922 0.971134 0.967166 0.968655 0.971852 0.971852
Recall All 0.849646 0.862420 0.866250 0.866379 0.868213 0.868580
<200 km s~ 0.847837 0.861001 0.865014 0.865182 0.866917 0.867305
>200 kms™ 0.973081 0.973082 0.970220 0.972075 0.972433 0.972433
F1 Score All 0.832101 0.847679 0.851134 0.851346 0.852966 0.853006
<200 km s~ 0.830256 0.846204 0.849857 0.850088 0.851616 0.851663
>200km s~ 0.969936 0.970727 0.967720 0.969363 0.970591 0.970591
Table 8
Tenfold Cross-validation Execution Times for RF Using Oversampling for All RV
Time in Seconds for N Trees
10.0 50.0 100.0 150.0 200.0 250.0

Feature Selection 90.89 90.89 90.89 90.89 90.89 90.89
Train 129.23 605.32 1226.75 1857.21 2448.32 2960.94
Test 0.65 291 6.03 9.16 11.99 14.46

5. Conclusion

The results shown in this paper support that accurate
automatic stellar classification can be obtained using astro-
nomical-specific feature selection. Compared to previous work
of other authors, there are four interesting conclusions. They
are as follows.

1. A high level of accuracy can be obtained by considering
only flux measurements at wavelengths near the Hs and
Cal absorption lines.

2. A complete MK classification can be identified using a
single classifier with a high level of accuracy for stars
with small RV (the range of ~4240 km s~ ). However,
for stars with large RV (outside the range of
~+240 km sfl), increasing the value of bounds in
Algorithm 1 should compensate for large RV, but at the

cost of an increase to the computational time because of
the increase in dimensions.

3. Correcting for RV is not necessary because of a sufficient
distribution of samples with different RV.

4. Aside from flux scaling, any additional spectrum
preprocessing after recombining and rebinning the
spectra as presented by Dawson et al. (2013) and
Stoughton et al. (2002) is unnecessary for SDSS stellar
spectra.

Therefore, this new approach for the automatic classification
of stellar spectra is feasible, useful, and accurate. Future work
will be conducted with the concepts of this approach to
automatically classify stars and large redshift objects such as
galaxies and quasars. Future work will also include building the
training set with an equal distribution of RV and experiment
using SMOTE or similar algorithms to build a training set
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Figure 4. Sample of continuum normalized spectra from O—G type stars
(Gray & Corbally 2009). The arrows point to the Hy absorption line.

using a small number of real samples to simulate how this
approach could work for a new spectroscopic survey.
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