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ABSTRACT 

 

EFFECTS OF WILDFIRES ON RATTLESNAKE (CROTALUS OREGANUS) 

GROWTH AND MOVEMENT IN WASHINGTON STATE 

by 

Joseph Chase 

November 2017 

 

 Fire is a dominant force in the Pacific Northwest that shapes ecosystems and 

influences wildlife, yet little is known of its effects on local predators. Northern Pacific 

rattlesnakes (Crotalus oreganus) comprise an excellent model to investigate how fire 

may influence wildlife because they are important predators that contribute to controlling 

prey populations, but are also unable to readily escape from wildfires. We developed a 

novel technique to assess growth rates of rattlesnakes by using digital photography to 

analyze differences in widths of their rattle segments laid down over time. We compared 

growth rates of rattlesnakes in habitats that were affected by recent fires with those 

inhabiting areas unaffected by recent fires. The snakes from the Methow Valley region, 

in dens affected by the Carlton Complex wildfire of 2014, showed no difference in 

growth rates before as compared to after the fire, which may be because those snakes 

have not had sufficient time to respond to potential changes in their prey populations 

brought about by fire. Methow snake populations from dens affected by fire, however, 

showed a size structure that was significantly skewed toward smaller individuals than 

those in dens outside the wildfire area. Snakes that were tracked using radio telemetry in 

different burned areas did not show any avoidance of burned habitat during the tracking 
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period. 
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CHAPTER I  

LITERATURE REVIEW 

The Northern Pacific rattlesnake (Crotalus oreganus) has an extensive range from 

Mexico into British Columbia and is one of the most abundant and important predators in 

dry forest and shrub steppe ecosystems of Central Washington (Fitch, 1949; Klauber, 

1972).  Molecular systematics has assigned what was once Crotalus viridis oreganus to 

the separate species of Crotalus oreganus (Ashton and de Queiroz, 2011; Davis et al., 

2016).  

Snakes occupying temperate habitats, such as the Northern Pacific rattlesnake, 

must be able to cope with the regular periods of freezing temperatures. As reptiles, they 

are ectotherms, so they need heat gathered from the environment rather than internal 

metabolism, as occurs in mammals. Washington State rattlesnakes communally den 

underground in hibernacula and may remain there for six months, using particular 

characteristics of slope, aspect, and distance from other hibernacula for selecting these 

overwintering den sites (Gienger and Beck, 2011). In British Columbia, rattlesnakes 

move into hibernacula (ingress) from September to October, and egress (move away from 

dens) from late March to April (Hobbs, 2007). During the remaining months of the year, 

the “active season”, snakes forage and reproduce. The earlier part of the season is used 

for reproduction, as it was observed that ovulation occurred from mid-May to mid-June 

in Northern Idaho populations of rattlesnakes (Diller and Wallace, 1984). During the 

reproductive season males move more in search of females, but during the feeding season 

both sexes demonstrate similar movement (Putman et al., 2013), the exception being that 

gravid females tend to remain closer to the den site and move less during the active 
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season (Gomez et al., 2015). Site fidelity is important for these snakes, as they return to 

the same den year after year. This was shown through attempted translocations of 

rattlesnakes in British Columbia, where 12 out of 14 snakes that were translocated 

returned to the area they were captured and traveled further on average (Brown et al., 

2009).  

Since Northern Pacific rattlesnakes in Washington occupy dens, there may be 

patterns of habitat and resource use that are unique to each den. In British Columbia, the 

movement patterns were specific to each den, showing different habitat use during the 

active season for each den (Gomez, 2007). Northern Pacific rattlesnakes had a diet 

consisting of about 90% rodents and fed predominantly from June to August in British 

Columbia (Macartney, 1989). Northern Pacific rattlesnakes in California given 

supplemental hydration had boosted both body condition and reproductive success 

(Capehart et al., 2016). Also, in diamond-backed rattlesnakes (Crotalus atrox), the 

amount of food consumed by the snakes positively correlated to growth, and it was the 

size of the animal, rather than the age, that determined reproductive maturity (Taylor and 

Denardo, 2005). For C. oreganus body condition (length and weight) was more similar 

within dens, and animals that were in closer proximity to humans and associated 

disturbance tended to be smaller and had lower body condition (Jenkins et al., 2009; 

Lomas et al., 2015). These lines of evidence suggest that rattlesnakes, including the 

Northern Pacific rattlesnake, are driven by resource limitations, habitat suitability, and 

human disturbance that influence individual and den-level success. 

 For Northern Pacific rattlesnakes and their relatives, the distinguishing feature is 

the rattle. These keratin structures are segmented, and a new segment is added to the 
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rattle every time the rattlesnake sheds its skin. The exposed segments are composed of 

lobes that, powered by the shaker muscle during rattling, strike against each other rapidly, 

to create a buzzing noise (Klauber, 1972). Young and Brown (1995) described the rattle 

as a multi-dimensional oscillator, where the frequency of sound produced is derived by 

the proximal (basal) rattle segment.  

Shedding is an important, regular occurrence in all snakes. Snakes tend to be more 

vulnerable to predation when they are shedding, partly because clouding of the ocular 

scales which cover the snakes’ eyes. In Washington, C. oreganus are social during these 

times and used aggregated shed sites near/in basalt outcrops, different from the den, as a 

conspicuous and safe place to shed (Loughran et al., 2015). When rattlesnakes are born, 

they have a pre-button segment that is shed days after birth and replaced with the first 

permanent segment called the button. As they shed, they add another segment to the 

proximal end of the rattle, forming a string of rattles (Klauber, 1972).  Early observations 

of rattlesnakes in Kansas gave insight into these features, including that strings of rattles 

tended to get longer with bigger snakes and that correlated strongly with the age of the 

animal (Fitch, 1985). Research has also shown a strong correlation between the width of 

the basal rattle segment and the snout to vent length (SVL) of the snake (Beaupre et al., 

1998; Wittenberg and Beaupre, 2014; Beck et al., 2014; Geroso, 2014). Thus, the rattle is 

an important, quantitative record of how the individual snake has changed in size through 

time. Large-scale natural events like wildfires may cause population level changes in 

growth that can be tracked by looking at individual rattles. 

In Washington, the increase in number and size of wildfires has been of growing 

concern (Littell et al., 2010; Rogers et al., 2011). Current studies into the direct, 
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immediate effects of wildfire in similar communities have been conducted in the deserts 

of the southwestern United States. These studies found that animal mortality and 

alteration of vegetation cover were the largest effects of the wildfires on the community 

(Esque et al., 2003; Rochester et al., 2010). Since rattlesnakes are predators, the 

cascading effects of vegetation and small mammal prey populations would be important 

in understanding how fires influence their environment and food base. In Washington, the 

Northern Pacific rattlesnake predominantly occupies shrub steppe habitat, which has an 

entangled history of fire and fire suppression.  

Cycles of fire suppression have resulted in more shade-tolerant species occurring 

in the northwestern US, as well as homogenization of the landscape (Hessburg and Agee, 

2003). However, fire also had an effect of homogenizing the soil surface texture for years 

following fire in New Mexico (White, 2011). Homogenization could influence the habitat 

suitability for small mammals, which in turn may influence suitability for snakes.  

In Washington State, effects of fire on the vegetation were shown to be inversely 

related to elevation; as elevation increased there was a loss in vegetative cover, species 

richness, and seedling density (Dodson and Peterson, 2010). Although higher elevations 

had lower richness attributed to the fire, they were more resilient to change in 

composition; however, lower elevations, where rattlesnakes occur, changed from 

primarily seeding species to weedy, early-successional species two years after a small 

controlled burn (Davies et al., 2012). In these lower elevation areas, the dominant 

vegetation is sagebrush (Artemisia spp.), a study in Oregon has shown that sagebrush 

may increase productivity for two years after a fire (Davies et al., 2007) This indicates 

that for the sagebrush species, there may be increased resources available to them after a 
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fire. The resilience to change in the post-fire landscape for sagebrush in Wyoming was 

enough that livestock grazing didn’t impact herbaceous plant community recovery, it had 

only resulted in less seed production (Bates et al., 2009). Alternatively, the dominant 

shrub in the Methow region is bitterbrush (Purshia tridentata), which responds a little 

differently to fire. A study from Central Oregon found that regrowth of bitterbrush 

occurred quickly after the first fire, however when subject to yearly repeated burns had a 

lower recovery and recruitment rate (Busse and Riegel, 2009). Cheatgrass (Bromus 

tectorum) is an invasive species that has been increasing in presence in Washington State, 

and can affect the landscapes more than fire alone. The success of cheatgrass in Nevada 

was evident two years after a fire; it was also responsible for negatively affecting the soil 

water content, water potential, and biomass of native species in their proximity (Melgoza 

et al., 1990). Invasive species have adverse effects for other shrub steppe plants, for 

example, sagebrush in Wyoming had poor efficiency after a fire in systems dominated by 

invasive plants (Taylor et al., 2013). Sagebrush steppe habitat is typically able to rebound 

from a single fire well as these studies have shown, however the introduction of invasive 

species by human activity is adding another facet that these communities haven’t had 

time to cope with.  

Habitat influences the snakes directly, but also indirectly through their prey. The 

main prey for Northern Pacific rattlesnakes in British Columbia are small mammals 

including voles (Microtus spp.), deer mice (Peromyscus maniculatus), northern pocket 

gophers (Thomomys talpoides), and red squirrels (Tamiasciurus hudsonicus) (Macartney, 

1989). Little research has been done in Washington on the effects of fires on these small 

mammals; however, research in other areas can provide insight. In California, prescribed 
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burns did not affect small mammal abundance, and some species actually increased after 

the fire (Amacher et al., 2007). Timing of the prescribed fires in another California study 

revealed that there was no difference in early and late season fires on both deer mouse 

and lodgepole chipmunk populations (Monroe and Converse, 2006). Through a meta-

analysis of small mammal response to small-scale burns in the southwestern US, similar 

results were found, i.e. little evidence of negative effects in the short-term after low 

intensity fires (Kalies et al., 2010). These studies all suggest that mammalian populations 

have adapted to recent fire conditions, however some of these studies also acknowledge 

the need for both long-term and larger spatial scale studies to better understand the 

situation (Amacher et al., 2007; Kalies et al, 2010).  

 Studies on larger spatial scale effects of fires on Northern Pacific rattlesnakes are 

also needed, as there are no published studies on the effects of wildfire on C. oreganus. 

The few studies of fire effects on other reptile species give some insight into the potential 

direct and indirect effects that could be expected. For reptile populations affected by fire 

in Australia, the biggest change was in the assemblage of reptiles, where some species 

were only present before the fire (Abom and Schwarzkopf, 2016).  Indirect effects of 

fires can influence habitat use; in Australia, habitat specialist snakes (desert death adder, 

Acanthophis pyrrhus, and monk snake, Parasuta monachus) were more likely to avoid 

burned habitat (McDonald et al., 2012). Yet, in massasauga rattlesnakes (Sistrurus 

catenatus), another habitat specialist, movement, home range size, and habitat use were 

not influenced by a low intensity prescribed fire (Cross et al., 2015). The Orsini’s viper 

(Vipera ursinii) did show a difference in pre- and post-fire survival within the French 

Alps after a prescribed fire (Lyet et al., 2009). For species already under pressure, like the 
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ridge-nosed rattlesnake (Crotalus willardi obscurus), climate change is restricting the 

upper elevation with increased wildfire risk and lower elevations with higher drought; 

these combined factors lead to high risk for extinction (Davies et al., 2015). Results from 

such studies suggest variable snake responses to fire or disturbance. However, when one 

considers studies similar in scale and intensity to the bigger wildfires in Washington State 

(~1000km
2
), only the specialist snakes studied in Australia (~1400km

2
), which showed a 

preference for unburned areas, is comparable (McDonald et al., 2012). The situation in 

Washington provides a valuable opportunity to more effectively draw conclusions about 

potential effects.   

The Washington wildfires relevant to this study occurred in mid-summer, during 

the active season of the snakes, April-October, when they were likely foraging for 

mammalian prey (Macartney 1989; Wallace and Diller 1990). During these times, the 

rattlesnakes would mostly be dispersed from the dens and in areas that were exposed to 

the fire. Unlike other predators in the area, like hawks, coyotes, and cougars, snakes 

cannot move quickly to escape the fire. Through tracking rattlesnakes, one can assess the 

habitat they prefer and whether they avoid the burned habitat, which would indicate a 

behavioral response to these fires. Any of these changes in the predators may have 

cascading effects on the rest of the ecosystem; such effects have been shown across many 

ecosystems (Estes and Palmisano, 1974; Ripple and Beschta, 2004). Thus, these 

rattlesnakes represent a vital indicator of the ecosystem and the factors affecting them 

may be amplified onto both lower and higher trophic levels, and indicate effects on the 

broader ecosystem’s health. 
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CHAPTER II  

ARTICLE 

 

ABSTRACT 

 Fire is a dominant force in the Pacific Northwest that shapes ecosystems and 

influences wildlife, however little is known of its effects on local predators. Northern 

Pacific rattlesnakes (Crotalus oreganus) are important predators in the area that influence 

prey populations and are, in turn, prey to some raptors, yet are also unable to readily 

escape from wildfires. These snakes thus comprise an excellent model to investigate how 

fire may influence wildlife.  To determine whether the snakes were affected by the fire, 

the growth rates of rattlesnakes were measured in habitats that were affected by recent 

fires and compared with those in areas unaffected by recent fires. The snakes measured in 

the Methow region, affected by the Carlton Complex wildfire of 2014, showed no 

difference in growth rates with nearby populations unaffected by fire, possibly a result of 

snakes having insufficient time to respond to potential changes in their prey populations 

brought about by fire. Snake populations from dens affected by fire, however, showed a 

size structure that was significantly skewed toward smaller individuals than those outside 

the wildfire area. Snakes that were tracked in different burned areas using radio telemetry 

did not show any avoidance of burned habitat during the tracking period. Rattlesnakes in 

habitats affected by less recent fires, like the Taylor Bridge fire of 2012, may be more 

likely to show a growth response to wildfire. From this experiment a technique was 

developed to assess growth rates of rattlesnakes by analyzing the widths of their rattle 

segments over time using digital photography. The technique developed resulted in 

quicker rattle measurements to reduce handling time of the animal as well as providing a 
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permanent record to monitor over time. 

 

INTRODUCTION 

 Understanding how organisms grow through time is a way to observe the effects 

of a change in the environment. Monitoring growth usually requires immense time 

commitments. However, there are some cases where growth records are preserved by the 

organism. Annual growth rings on trees are one of the well-known examples, where 

seasonal differences in growth are visible in trunk horizontal cross sections (Studhalter, 

1956). These features allow for historic size and growth to be immediately available for 

measurement, and thus can be very useful ecological metrics. For terrestrial animals, 

there are few examples of these features; however, one comes from an unexpected place, 

namely in the rattle of the rattlesnake. The rattlesnake makes an ideal study organism to 

better understand how large events, like wildfires in Washington State or elsewhere, may 

change trajectories in growth and be an indicator of the surrounding areas' health. 

Although rattlesnakes are given a bad reputation, there are many reasons that 

these animals can provide an abundance of information. For Washington State, the only 

native rattlesnake species is the Northern Pacific rattlesnake (C. oreganus). This snake 

however, has populations far outside of Washington State, with an extensive range from 

southern California into British Columbia (Klauber, 1972). As a predator, snakes 

represent a factor in maintaining small mammal populations, and comprise a component 

in trophic structure stability (Ripple and Beschta, 2004; Bestion et al., 2015). However, 

unlike many other predators, they are unable to escape an oncoming fire quickly and may 

only move approximately 2 km away from their den (Klauber, 1972; Gomez, 2007). The 
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large numbers of snakes congregating in dens during winter time may be a useful 

mechanism for thermoregulation (Graves and Duvall, 1987) or driven by a lack of 

adequate refuges in the area (Hobbs, 2007), and ultimately is an effective way for 

increasing sampling success since they all emerge around the same time in spring. 

 As the Pacific Northwest is seeing more frequent and intense wildfires during the 

summer months (Littell et al., 2010; Rogers et al., 2011), we need to understand these 

effects on local fauna. The persistence of increasing regional droughts, further adds to the 

possibility that these fires will be a recurring issue (Perry et al., 2011). These recent, 

large-scale events may bring dramatic change to the landscape but they also provide an 

opportunity to address key questions regarding the long term effects of the fires on 

wildlife. Obvious direct effects are still visible as blackened scars on the landscape, but 

how the wildlife rebounded after the incident is largely unknown. Using the rattlesnake as 

the focal species, and the rattle segment width as a growth indicator, information can be 

extracted about possible long- and short-term consequences of these fires on snake 

growth.  

 Wildfire’s influence on rattlesnake growth is most likely mediated through its 

effect on their prey populations. The main food sources for C. oreganus are small 

mammals, lizards and birds (Macartney, 1989). Other studies have provided insight into 

how prey populations may be affected by wildfire. In Victoria, Australia, where 3500 

km
2 

burned, two small mammal species in the area of a fire occurred at one third the 

density of nearby unburned sites one year after the fire (Banks et al., 2011). However, in 

a smaller Chihuahuan Desert grassland fire, where 0.2 km
2
 burned, canopy cover was 

markedly reduced, yet neither rodent abundance nor species richness was altered 
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(Killgore et al., 2009). These contrasting results were apparent through a meta-analysis of 

response to fire in United States fire-prone forests, where there were mixed rodent 

response to fire (Fontaine and Kennedy, 2012). When smaller, less intense fires were 

studied there was often a benefit to biodiversity in the burned area following the fire. 

However, in the larger, high-severity fires the rodents had a negative response and 

experienced a loss in biodiversity. The avian responses to the prescribed fires and 

wildfires in the United States forests were predominantly positive with both small and 

large scale fires (Fontaine and Kennedy, 2012). Given the size and severity of the Carlton 

Complex fire, the Australia study (Banks et al., 2011) is most comparable, and would 

indicate there might be a loss of rodents in the area. Since rodents accounted for around 

90% of the Northern Pacific rattlesnake diet (Macartney, 1989), a severe reduction in 

food would likely cause growth in the snakes to be negatively affected after the fire. 

Western yellow-bellied racer (Coluber constrictor mormon) abundance was not different 

in burned and unburned sites in California (Thompson et al., 2013). This would suggest 

snakes may be more tolerant to the direct effects of the fire. If the rattlesnakes are 

influenced less by the fire than are the rodent populations, intraspecific competition for 

resources among snakes would be stronger and snakes could thereby experience negative 

growth.  

 Each string of rattles contains a record of growth and thus provides a unique 

opportunity to examine how wildfire may influence growth rates in an important 

predator. Every time these animals shed they create a new rattle segment, the basal (most 

proximal) segment of a string of rattle segments. As adults, Northern Pacific rattlesnakes 

shed once per year, thus adding one new rattle segment per year (young may do so two or 
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more times a year in their first two years, Fitch, 1949; Diller and Wallace 2002). The 

width of that basal rattle segment is strongly correlated with the snout-to-vent length of 

the snake (Beaupre et al., 1998; Beck et al., 2014; Geroso, 2014; Wittenberg and 

Beaupre, 2014). Each year when they shed, individuals add one new segment to their 

string of rattles. Therefore, an adult string of rattles reflects changes in growth at yearly 

intervals, and thus contains a record of the snakes' size through time (Beck et al., 2014). 

In this study, digital photography was used to capture a record of the strings of rattles and 

associated growth rates of rattlesnakes.  

A second, complementary approach to understanding potential effects of wildfire 

on snakes is to observe behavior. Previous research has shown that Australian desert 

death adders (Acanthophis pyrrhus) and monk snakes (Parasuta monashus) avoided 

habitats that were previously burned (McDonald et al., 2012), whereas massasasaugas 

(Sistrurus catenatus) in Michigan, U.S. showed no avoidance of burned habitats in a 

prescribed fire (Cross et al., 2015). As rattlesnakes, Crotalus oreganus and massasaugas 

(S. catenatus) may show similar behaviors and exhibit no preferential avoidance of 

burned habitat. However, to date, no study has explored such effects on Northern Pacific 

rattlesnakes, or snakes in general in the Pacific Northwest. Two locations with known 

rattlesnake dens, the Swauk and Frenchman Coulee, in Central Washington were burned 

in recent years. Both of these areas, even several years after the fire, still have charred 

remnants of trees and vegetation blackened from the fire, which present opportunities to 

explore whether burned habitat features are avoided by wildlife.  

 The following study was conducted to investigate growth and movement 

responses of rattlesnakes to wildfire. For growth, rattles provided the key information that 
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was used to test whether wildfires influence growth rates of snakes within and outside the 

wildfire area, using the Carlton Complex as the focal area. The driving hypothesis being 

that there is an effect on individual rattlesnake growth in response to wildfires. Because 

growth is mediated through prey populations, and wildfire may reduce prey abundance, 

rattlesnakes might experience reduced growth after the fire. For movement, snakes were 

radio-tracked to determine whether they avoid habitat that was previously burned, using 

both the Taylor Bridge and George fires as focal areas. The main hypothesis is that 

snakes will avoid habitat that was previously burned. As these snakes are likely to return 

to the den it would be expected that a noticeable change in their previous foraging habitat 

may cause the snakes to search nearby for more suitable unburned habitat. 

 

STUDY SITES 

 There were three study sites used for this investigation, the Methow, Frenchman 

Coulee, and Swauk areas of Washington State (Figure 1), each of which have 

experienced recent fires and have Northern Pacific rattlesnake dens in the vicinity. In 

order to answer the two research questions, the sites were used to collect two different 

sets of data for the different analyses. The Methow area was utilized to measure and 

compare growth rates of snakes from dens within fires to those outside the fire area, this 

round of data collection occurred first. The Frenchman Coulee and Swauk areas then 

were used for tracking individual snakes to observe habitat selection in a burned 

landscape.  
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Figure 1: Washington state physical map (Carport, 2012) with the study sites indicated; A. 

Carlton Complex fire in the Methow Valley, B. Taylor Bridge fire in the Swauk, C. George fire 

in the Frenchman Coulee.  

 

The three study sites have several ecological properties that are shared. All of 

these areas are predominantly sagebrush steppe habitats with hills covered by big 

sagebrush (Artemisia tridentata), wild buckwheat (Eriogonum spp), bitterbrush (Purshia 

tridentata) and grasses, the most common of which is bluebunch wheatgrass 

(Pseudoroegneria spicata). The Northern Pacific rattlesnake dens were usually found on 

talus slopes with predominantly southern and eastern facing exposures (Gienger and 

Beck, 2011). Site differences and properties are discussed below. 
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The Methow Valley in late July of 2014 was the location of the largest wildfire to 

occur in Washington State recently, the Carlton Complex fire, which burned an area of 

1000 km
2
 (250,000 acres) in northern Washington (USFS, 2014).  Previous work in the 

area had been conducted on rattlesnakes and many den locations are known (Figure 2; J. 

Rohrer, pers.comm.; Geroso, 2014). Five dens were sampled, three from within the 

wildfire area and two outside its perimeter. The dens occupied by rattlesnakes were found 

from 760-910m elevation (2500-3000ft). For 2016, the total liquid content (TLC) of 

precipitation was 40.5cm (15.9in; NOAA, 2016). The Methow River and Chewuch River 

run north to south in the valley. The area is a shrub-steppe habitat containing both local 

and invasive ground cover, as well as forests dominated by ponderosa pine (Pinus 

ponderosa).  

Since this fire was the most recent to occur and covered the largest area, there 

were several observations about how the wildfire had influenced the landscape, both for 

individual snakes and the population at large. Individual snakes provided evidence for the 

effects of fire on the animals' physical exterior. Burns, which did not noticeably affect the 

snakes' behavior, were found on multiple snakes, both on the bodies and rattles of the 

animals (Figure 3). The landscape level changes from the fire are clearly visible from 

these dens, as trees, shrubs, and grass alike were charred and destroyed (Figure 4). Recent 

rains at the dens had left some snakes in the fire dens coated in dirt, from their head to the 

rattle, snakes’ behavior was unnoticeably different as well (Figure 5). None of these lines 

of evidence were found on snakes or at dens outside of the wildfire area, and indicate 

potential changes that were not directly measured but should be noted. 
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Figure 2: Carlton Complex fire situation map (USFS, 2014) outlining the 

extent of the 2014 fires in the Methow Valley. The four dots indicate all but 

one of the dens sampled in the area. They were each given a name to identify 

them, from top to bottom: Gunn Ranch, Cougar, Pipestone, and Finley. 

Uphill is the only den not visible, and was north of the Gunn Ranch den. 
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Figure 3: Presence of external scarring on individuals, both on the body and the rattle. 

 

 

Figure 4: View of the scorched landscape from the den rock in Finley Canyon. 
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Figure 5: Several snakes from the Pipestone den, located within the fire area, 

showed evidence of having been coated in mud. 

 

In August of 2012, the Taylor Bridge fire burned a total of 95 km
2
 or 23,500 acres 

(USFS, 2012), including Swauk Creek canyon, which harbors several known rattlesnake 

dens. The Swauk den, affected by the fire (Figure 6), was at 580m elevation (1900ft) and 

was situated at the mouth of a canyon with southern exposure. The den was a talus slope 

with scattered large rocks (1m or larger), and surrounding shrub steppe habitat. TLC of 

precipitation in 2016 was 25cm (10in; NOAA, 2016). Swauk Creek, a perennial stream 

approximately 50m south of the den, is the main water source. 
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Figure 6: Taylor Bridge fire map (USFS, 2012), indicating the extent of the 2012 fire. The dot 

indicates the den used in this study. 

 

 In 2015, upper Frenchman's Coulee was burned during the George fire on July 

20
th

, burning approximately 2 km
2
 (500 acres). The area contains two known dens in an 

area of shrub steppe habitat bordered by basalt outcrops and cliffs that surround most of 

the site, adjacent to an interstate highway (Figure 7). Dens were at approximately 350m 

elevation (1150ft), and the TLC of precipitation was 27cm (10.5in; NOAA, 2016). The 

foraging area is mostly a flat steppe with an arcing network of wetlands extending along 

the southern and eastern borders of the expanse. Prior to the fire, sagebrush (big sage, A. 

tridentata and stiff sage A. rigida) and wild buckwheat (Eriogonum spp.) comprised the 

dominant vegetation. The open areas were carpeted with invasive cheatgrass (Bromus  
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tectorum), with trees, mostly Russian olive (Elaeagnus angustifolia), occurring along the 

wetlands. 

 

 

Figure 7: Frenchman Coulee area terrain map (Google Maps, 2017) 

showing the areas that were likely barriers to the snakes as they were 

not utilized by the animal in the study. The two dots indicate known den 

locations in the area, the lower-left den was the focus of this study. The 

George fire burned the shrub steppe area between the two dens. 

 

METHODS 

Growth Measurements 

 The growth hypothesis data was collected entirely from the Methow area. We 

sampled rattlesnakes in the Methow Valley from late April until early June, 2016 as the 

rattlesnakes dispersed from their winter dens to the summer foraging areas. By sampling 

before dispersal, the width of the basal rattle would more likely represent the previous 
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year’s growth, showing potential changes that occurred as a result of the wildfire in 2014. 

However, the exact foraging patterns were unknown for this population, but this is the 

most likely scenario given previous research (Wallace and Diller, 2001; Gomez et al., 

2015). Three dens were sampled within the wildfire area, and two dens were sampled that 

were not affected by the wildfire for use as a base of comparison. Dens were frequently 

sampled during the morning as snakes would all emerge around the same time. 

From within wildfire areas 37 snakes were measured and 48 snakes were 

measured from outside the wildfire area. Snakes were coaxed into clear plastic restraining 

tubes for safe handling (Antonio, 2014), and then SVL (snout-to-vent length, to the 

nearest centimeter), tail length, and sex were recorded for each snake. The strong 

correlation between the width of the basal rattle segment and the SVL of the snake 

(Figure 8; Beaupre et al., 1998; Wittenberg and Beaupre, 2014; Beck et al., 2014) makes 

the width of the basal rattle an important measure for looking at growth in the study. The 

basal rattle segment width was then carefully measured in millimeters using digital 

calipers. The remaining rattle segment sizes were measured from a standardized digital 

photograph taken of the rattle. This was accomplished by creating a stand to hold the 

camera connected to a base for the rattle to be placed upon (Figure 9). With this design, 

the rattle of each tubed snake was placed flat onto the center of the base beneath the 

camera, where a high contrasting background was used to preserve the outline of the 

rattle. The photograph taken of each rattle was stored and recorded for future analysis 

(Figure 10). The photography method used here was an effort to reduce handling time for 

the snakes and increase the precision in measuring the remaining rattle segments. The 

alternative to measuring the segments would rely upon caliper measurements, which are 
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done using human vision and touch to precisely take the width of each segment, the 

human error associated with this can be high and can be avoided using this digital 

approach. Additionally, the older rattle segments become worn and fragile over time 

which may result in segments breaking off or cracking, making them difficult to 

accurately or precisely measure. To ensure no individuals were sampled twice, a 

reference photograph of each snake was also taken of the dorsal patterns, which are 

unique to individuals (Klauber, 1972). Also, ventral scales were clipped in a unique 

sequence to assign an identification number to each snake for future recognition of 

marked individuals (Spellerberg, 1977). After processing, usually within one hour, each 

rattlesnake was released at its capture location. 

Figure 8: Studies have shown a strong correlation between the 

basal rattle segment width and body length, which holds true for 

all sizes of snakes (Beck et al., 2014). 
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Figure 9: Camera stand setup made to ensure all images were taken at the 

same distance and angle to allow for accurate measurements, using a 

black and white target for contrast to maintain the outline of the rattle.  

 

 

Figure 10: The raw image of the rattle, used for analysis. The file can be 

kept as a permanent record. 
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   Radio Telemetry 

 Radio telemetry was used to track 3 adult male snakes from June 20 to October 

10. This time frame captured much of the animals' active season which is typically April 

to October for other C. oreganus (Wallace and Diller, 2001). Adult males were chosen 

since they have larger ranges and more consistent movement (Gomez et al., 2015). Two 

of the snakes were gathered from the Swauk den affected by the Taylor Bridge fire; the 

other was from Frenchman Coulee area affected by the George fire. The tracked snakes 

were surgically implanted with radio transmitters (Holohil Systems SI-2T 11g); one 

snake from each site also had an i-button datalogger implanted which recorded body 

temperature at hourly intervals following methodology of Taylor et al (2004). Animals 

were anesthetized with isoflurane and had radio transmitters surgically implanted 

following the techniques of Beck (1995, 1996) and our IACUC protocol no. A011405.  

Snakes were monitored for a 24 hour period after the surgery to ensure proper recovery, 

and then released at their collection sites. The animals were each tracked a dozen times 

and GPS location was recorded for each new observed location, and the presence or 

absence of burned vegetation was noted.  

Data Processing and Analyses 

The program ImageJ was used to extract rattle segment sizes from the digital 

photos, and measure the width of each rattle segment to the nearest pixel. The measured 

basal rattle segment of each snake, in mm, was divided by the pixel value from ImageJ to 

generate the scaling factor for that snake. This factor was then multiplied by the pixel size 

for each of the remaining rattle segments to convert them from pixels to millimeters. The 

process was repeated for every snake to determine the remaining unknown rattle segment 
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widths. This technique also allowed for rattle segments that were slightly broken to be 

more accurately measured since they retain the outline in the photo; broken rattle 

segments tend to flex when being measured with calipers, thus giving unreliable 

estimates.   

Since the growth of the snake was the measurement of interest, the rattle segments 

within each rattle were compared to adjacent segments to assess annual growth rate. This 

was done by finding the difference in size between each pair of consecutive segments to 

identify differences in growth (Figure 11). With this, if two rattle segments next to each 

other were the same size, then it would be assumed that the snake had experienced no 

growth. To go even further, if the segment that was formed the year before was larger 

than the current this would indicate that the snake had experienced a net loss of biomass 

during that year or negative growth. Positive yearly growth would be expected for an 

animal unless there is resource scarcity, resource allocation to reproduction, or other 

issues afflicting the individual. For rattlesnakes, this would appear as a rattle that tapers 

from the basal rattle towards the button (Figure 11, right). For this investigation, the 

difference between the basal rattle and adjacent rattle was used for indicating growth 

rates during 2015, which coincided with the year following the Carlton Complex wildfire. 

The growth rate in the year following the fire was compared between those snakes in 

dens that were burned during the fire and those that were spared from it. 
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Figure 11:  These two animals show different patterns in growth. The right 

shows a regular taper indicating consistent yearly growth. The image on the 

left, measured in April 2016, is from a snake located in the area of the Taylor 

Bridge Fire of 2012, and the rattle segments following those years were 

reduced in size and misshapen, a potential indicator that the wildfire 

negatively affected this animal. The difference in widths between two 

adjacent rattle segments represents the growth in the year leading to the rattle 

being formed, for this study the 2015 growth was the year of interest.   

 

After all the rattle segment images were converted to mm, I used RStudio for the 

quantitative analyses conducted on snake size and growth data. To determine whether 

growth rates differed significantly between the years when rattlesnakes were subjected to 

wildfire in comparison with the years where wildfires did not occur, two tests were 

conducted. First a Generalized Linear Mixed Model (GLMM) was fitted to the data in 

order to test the strength of the association between growth and wildfire presence. The 

final model was Growth ~ SVL + Fire + Sex + (1|Den), with Growth being the 2015 
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growth, SVL to take into account the animals’ size, Fire was the category of interest and 

was either fire affected or not, Sex was included to see if sexual dimorphism was a factor, 

and Den was used as a random effect. Second, an Analysis of Covariance (ANCOVA) 

was conducted to see if there was a significant relationship between wildfire and growth, 

with body size as a covariate. The final models were Growth ~ SVL + Fire and Growth ~ 

SVL * Fire, which looked at the interaction between the snake’s size and fire presence on 

the growth of the individuals.  

To explore potential differences in the size structure (SVL) of groups of snakes 

inhabiting dens affected by wildfire as opposed to those that were not affected, a 

Kolmogorov-Smirnov “goodness of fit” test was used (Massey, 1951). Lastly, growth 

trajectories of all snakes that had complete rattles (i.e. having an intact terminal button), 

were plotted to explore any differences in growth curves over several years between fire 

(n=24) and non-fire (n=15) snakes. Potential differences were tested with a repeated 

measures Analysis of Variance (ANOVA).  

 

RESULTS 

Growth 

A total of 85 adult snakes were measured in the Methow area from 20 April to 21 

July 2016, 58 (68%) of which were male and 27 (32%) female. 37 snakes (44% of the 

sample) came from within the wildfire area and 48 snakes (56%) came from outside the 

habitat affected by fire. Growth after the wildfire appeared to be similar between fire and 

non-fire sites for the snakes in each group, confirmed using an ANCOVA (F=0.58, 

P=0.45; Figure 12). A generalized linear mixed model also demonstrated that there was 

no significant association between growth and wildfire presence (t=-1.70, critical=12.7).  
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Growth curves of snakes in wildfire areas did not differ significantly from those 

inhabiting dens unaffected by the fire (Figure 13). However, the size structures between 

the groups were different, with a mean SVL of 56 cm for fire-affected snakes and 66 cm 

for non-fire snakes (Figure 14).  This difference was significant following the 

Kolmogorov-Smirnov test (D= 0.355, P=0.01). 

 

Figure 12: Comparison of rattlesnake growth in fire vs non fire areas.  
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Figure 13: Lifetime growth curves from snakes collected during the 2016 field 

season with an intact button. Dots are means; horizontal lines depict standard error.  

 

 

Figure 14: Size distribution of snakes in areas affected by fire and those in areas not 

affected by fire. The mean SVL for snakes from fire dens was 56 cm and for non-fire 

dens was 66 cm.  
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Movement 

Three adult male snakes were radio-tracked to observe summer habitat selection 

in the Frenchman Coulee and Swauk burned areas. Snakes were released for tracking at 

their original capture sites on June 20 and made their way back to the dens in early 

October where they remained until spring.  

The one snake tracked at Frenchman's Coulee was found under burned vegetation 

during 8 of 10 relocations and did not demonstrate any avoidance of burned habitat. The 

snake was found away from wetlands during the summer, in brush covered areas that had 

strong scorch patterns and trees, predominantly Russian olive (Elaeagnus angustifolia), 

that were likely killed from the fire. Total seasonal movement was 1877m, with ingress 

back to the den occurring from September 9 to October 10, adding approximately 1240m 

to the snake's movement with only 2 additional relocations (Figure 15). Total movement 

during the foraging period (June 20 to September 9) was 638m after 8 relocations, 

encompassing an area of approximately 200m by 80m, 1.6 ha, (Figure 16).  
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Figure 15: Seasonal movement of the Frenchman Coulee snake from June 20 to 

October 3, 2016 (Google Maps, 2017). Location A is the foraging area (Figure 16), B 

is the first movement toward the den on September 24, and C is the den location, 

which was reached by October 3.       
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Figure 16: Foraging area of the Frenchman Coulee snake from June 20 to September 

9, 2016 (Google Maps, 2017). White dots indicate location and number is the 

progression of movement, snake was found at 1 and moved towards the den after 8. 

The blue shaded region is the area that has fire damage still present on the woody 

vegetation and encompassed the entire foraging area. 

 

Tracking at the Swauk area (n=2) during the active season only resulted in one of 

the snakes moving (approximately 20m) then returning to the original location, the other 

snake seemingly remained in the same spot until they made the ingress into the den. 

Throughout the summer the animals were tracked a dozen times and the habitat that they 

remained on was the same talus rocky slope in which they were originally captured. The 

slope had little remaining evidence of the fire that had come through the area, although 

the nearby riparian vegetation (cottonwood, Populus spp.) had been burned by the fire. 

By the end of the active season both snakes had returned to the hibernacula on the slope. 

However, neither had left the talus slope area that surrounded the den site in the dozen 
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times that the animals were checked throughout the summer and fall (Figure 17). 

 

Figure 17: Swauk snake summer activity area. White 

circles represent where snakes were found. The red circle 

indicates the main talus slope of the den area, the white 

dot within the den is the initial capture site for both 

snakes tracked. 

 

DISCUSSION 

 Since there was no significant difference in growth rates of the rattlesnakes, it 

may be that these ectothermic animals are able to persist in the post-wildfire landscape 

with minimal harm. This could mean that even if the prey population had been reduced as 

result of fire, the rattlesnake population was able to survive long enough for the prey 
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population to rebound to pre-fire levels. In contrast to the rodent prey, the metabolic rate 

of a snake is much lower, and, as such, could withstand a longer period of unfavorable 

conditions. Another possibility is that the prey populations may not have been affected by 

the fire, as other studies have found (Monroe and Converse, 2006; Amacher et al., 2007; 

Kalies et al., 2010). If there was minimal direct mortality on rodent populations, it would 

be expected that the snakes that survived would be able to rebound quickly as well.  

Alternatively, if these snakes are affected by the wildfire, it may not be evident 

immediately and there could be a lagging effect. The foraging habits of this population 

were not directly known, so individuals may have been able to successfully find food 

before the fire had started on July 14, 2014. With successful foraging they could survive 

for a longer period without experiencing loss of biomass. However, after the fire, the prey 

base might have changed, as was discovered in the wildfire study in Victoria, Australia, 

where two small mammal species within the fire were one-third the density compared to 

nearby unburned sites a year after the fire (Banks et al., 2011). Since mammals can 

account for 90% of the snakes’ diet (Macartney, 1989), a severe change in prey 

availability could negatively affect foraging success for the snakes after the fire. These 

factors would indicate that if more time was given we might see effects of fire on growth. 

In order to support or refute these conclusions more data gathered from snakes affected 

by the Taylor Bridge fire of 2012 or future sampling of the Carlton complex snakes could 

identify if there is a potential delay in wildfire effect on growth.  

 From the analysis, snakes using dens in wildfires had a different population size 

structure than the adjacent snake populations in non-fire affected dens. This presents the 

possibility of a potential direct effect of the wildfire, in that larger individuals are selected 
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out of the population. Since rattlesnakes have limited movement, outrunning the fire 

would not be plausible, instead finding a refugium would be necessary. Larger snakes 

may have more difficulty finding a suitable place to safely escape the fire. During the 

time of the fire, mid-July, these snakes would have been dispersed from the dens and 

foraging in the adjacent land. In the foraging area some boulder outcrops were available 

to the snakes for refugia; however the dominant feature was shrub-steppe habitat, low-

lying shrubs and grasses. The fire had fully burned the shrubs and grasses, leaving the 

landscape charred and barren (Figure 4). Further evidence from burn scars found on 

snakes from within the wildfire area indicates that some individuals were exposed to the 

flames (Figure 3). These limited places for safety could leave the larger animals more 

directly exposed to the fire in this region. 

  Tracking the snakes’ use of habitat revealed unexpected results in regard to 

behavior and possible interactions with the post-wildfire landscape. The Frenchman 

Coulee tracked individual exhibited relatively normal adult male movement from the den, 

traveling approximately a kilometer from the den site. The snake was also choosing 

shelter and hunting locations directly beneath burned vegetation, including during the 

time of year when wildfires tend to be most prevalent. Similar to other snake studies, this 

would suggest that there is little avoidance of burned habitat (Cross et al., 2015). 

Although other studies have found contrasting results (McDonald et al., 2012), this 

indicates that more research needs to be conducted on the movement behavior of these 

animals as they interact with these altered landscapes. A larger sample size of radio-

tracked individuals from a single den would give more specific insight into how 

individuals in a similar setting react. 



 

 

45 

 The more unexpected result was in the Swauk snakes which did not leave their 

den area for the foraging season. In other dens, and from other studies (Wallace and 

Diller, 2001; Gomez, 2007; Hobbs, 2007; Putman et al., 2014), the normal behavior for 

full grown adult males, like the animals tracked, is to remain at the den after emerging for 

about a month and then disperse to their foraging habitat (Fitch, 1949; Klauber, 1972; 

Macartney, 1989). While the direct reason behind the snakes remaining at the den is 

unknown, the surrounding habitat gave possible explanations, as populations in British 

Columbia had similar movement, remaining closer to dens in grassland habitat (Gomez et 

al., 2015). The most obvious landscape feature in this study site was Swauk Creek, less 

than 50m from the den, which flows year round. This constant flow is an ideal water 

resource for the surrounding flora and fauna, including the snakes, and could potentially 

increase the prey population available to the snakes through the increased primary 

productivity. With higher food abundance there would be less pressure to travel away 

from the den and risk unnecessary exposure to predation. This may be plausible as there 

were several other snakes, up to 20 individuals, also found at the den throughout the 

season. This would also mean that snakes may have been at the den at the time of the fire, 

and the rocky slopes would act as good refugia from the fire and a possible way to avoid 

the surrounding burned habitat.   

 This study was the first of its kind to look at possible wildfire effects on local 

predators in the Pacific Northwest. Although there was no indication of reduced growth 

rates immediately after the fire, more time may be needed to see these effects. However, 

the use of digital photography, as was performed here, can act as a new tool for future 

ecological studies using the rattle to explore historic patterns of growth in populations 
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with more precision and efficiency.  
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