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Dr. Szilárd Vajda

Dean of Graduate Studies

ii



ABSTRACT

DATA VISUALIZATION AND CLASSIFICATION

OF ARTIFICIALLY CREATED IMAGES

by

Dmytro Dovhalets

March 2018

Visualization of multidimensional data is a long-standing challenge in machine

learning and knowledge discovery. A problem arises as soon as 4-dimensions are

introduced since we live in a 3-dimensional world. There are methods out there which

can visualize multidimensional data, but loss of information and clutter are still a

problem. General Line Coordinates (GLC) can losslessly project n-dimensional data in 2-

dimensions. A new method is introduced based on GLC called GLC-L. This new method

can do interactive visualization, dimension reduction, and supervised learning. One of the

applications of GLC-L is transformation of vector data into image data.

This novel approach of transforming vector data into images using lossless

visualization introduces a new method for classification of data in vector format. Having

images which are in raster format instead of vector format allows it to be classified with

a Convolutional Neural Network (CNN). Experiments conducted on datasets of different

sizes show that these artificially created images provide useful information for the CNN.

The CNN can classify these artificially created images with competitive results to other

analytic machine learning algorithms for vector data. The artificially created images were

also classified with a Support Vector Machine (SVM) and a Multilayer Preceptron (MLP).
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CHAPTER I

INTRODUCTION

The majority of people work with multidimensional data without even

realizing it. Anyone who has ever used a spreadsheet to enter information has created

multidimensional data. This multidimensional data may contain patterns and valuable

information, but it is not easy to interpret it without extensive data analysis. It is difficult

to extract general rules and information from an Excel sheet with dozens of columns and

hundreds, if not thousands of rows. Data visualization is very powerful and is used by

the masses daily, some examples include Cartesian coordinate systems, histograms, pie

charts, etc. Those visualization tools are very useful and powerful when dealing with 2-D

or 3-D data. However, when the data is of 4 or more dimensions those tools cannot be

used. There are tools out there which can visualize data with 4 or more dimensions, but

clutter and loss of information is still a challenge [1].

Linear General Line Coordinates (GLC-L) project multidimensional data onto

2-D graphs. Having the n-dimensional data projected on to 2-D graphs allows us to see

the high dimensional data. Once the data are visualized they can be used to extract rules

and information. However this can be a hard and tedious task due to the complexity of the

data and abundant amount of information. Such tasks can be automated to better explore

the visualization and the data itself. For classification of data, Dr. Kovalerchuk and I have

implemented an interactive visualization method. This method applies machine learning

to GLC-L in order to separate the data and visualize it [1].

GLC-L is further explored in its potential to transform vector data into images. This

data transform allows vector data to be classified using a Convolutional Neural Network

(CNN).
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General Line Coordinates

General Line Coordinates (GLC) proposed by Kovalerchuk [2] can visualize

multidimensional data losslessly. Lossless visualization presents the data without losing

any information, and the visualization is reversible to the original data. Allowing users

to extract rules and information from specific attributes within the dataset. One of the

methods of GLC is GLC-L; it is a visualization algorithm for a linear function.

FIGURE 1: Visualization of Wisconsin Breast Cancer dataset, which is of 10 dimensions.
Instances from one class are projected above in blue while instances from the other class
are below in red. The visualization is optimized to separate the two classes with GLC-L.

Fig. 1 is visualizing a dataset which has over 600 instances and 10 attributes. It is

essentially an Excel sheet with over 600 rows and 10 columns, where one of the columns

specifies to which class that specific row belongs to. It would be extremely difficult and

nearly impossible to see that the data can be separated between the two classes based on

some rules within the dataset. Not only can GLC-L visualize this dataset, but it does it in

a way which separates the data between the 2 classes.
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GLC-L can be used as a preprocessing step to algorithm selection in machine

learning. Since it visualizes a linear function, it separates data very well, which is linearly

separable. Testing to see if the data is linearly separable can narrow down the number of

algorithms to chose from. If GLC-L can separate the data, then other linear methods will

be able to separate it as well. When the data can’t be separated with GLC-L, it means that

the data are not linearly separable, and it’s best to chose a non linear method to solve the

classification task. This provides information about the dataset and avoids guessing and

checking different types of methods.

The visualization itself provides information about the dataset which is very

difficult to spot in the raw format. With a quick glance it can be seen how the data clusters

in the n-dimensional space. It makes it easy to see if instances from different classes have

unique patterns.

The base GLC-L method was extended to be an interactive, machine learning,

visualization tool. Supervised learning was added to optimize the separation of data

between classes. Dimensionality reduction was implemented for a cleaner visualization

and more optimized classification. Interactivity was incorporated for a more friendly

visualization, which allowed the users to interact with the visualization for a deeper

analysis of the data [1].

Data Transform with GLC-L

GLC-L can be used to transform vector data into images, visualizing one data

instance at a time and saving the visualization as an image. These saved images which

are artificially created by the visualization can later be used for extraction rules from the

dataset. Instead of an Excel sheet with over 600 rows and 10 columns, images are created

with labels corresponding to their class label. Looking at images is much easier than an

3



Excel sheet. Patterns of the line can be spotted by looking at samples from both classes

and generalizing based on those patterns.

Class 2 Class 4 Class 3 Class 3

FIGURE 2: Examples of artificially created images using GLC-L. These examples are
from the Wine Quality Dataset which contains 12 attributes. Labels below each figure
correspond to the class label.

Fig. 2 has examples of numerical data transformed with GLC-L into images. The

original numerical data has 12 attributes with one being the class label. Looking at the

images in Figure 2, visual patterns can be seen. Images from Class 3 have different

patterns in the line than images from Classes 2 and 4. It can also be seen that the line

in the image from Class 2 is much shorter.

Visualizing only one data instance at a time eliminates clutter and provides a

clean visualization. Images can be compared side by side for extraction of rules and

information. This task can also be automated by putting the images through a CNN for

supervised learning. The CNN model can be trained on these images for classification.

Other algorithms such as Support Vector Machines (SVM) [3] and Multilayer

Perceptron (MLP) [4] can be trained for classification. SVM and MLP are capable

of producing competitive results to CNN in image classification tasks [5], [6]. The

artificially created images were put through all three algorithms for classification.

Experimenting with multiple machine learning algorithms provides valuable information

on how these systems handle artificially created images.

4



Motivation and Contribution

Visualizing vector data of high dimension and being able to see it in 2-D allows us

to gain insight of the data and extract information. Extracting information is not an easy

task due to the complexity of the data and an abundant amount of information. Being able

to automate the task of extracting information from the visualizations has inspired us to

use visualization as a data transformation, visualizing the entire dataset one instance at

a time and capturing the visualizations as images, which can be classified by machine

learning algorithms.

The goal of this study is to gain insight if the artificially created images from the

visualization can be used for classification by machine learning algorithms. CNN is

designed for natural images. These artificially created images of lines which are created

by the visualization contain very few informational pixels. The majority of the pixels

are white, representing the background. Having a sparse number of informational pixels

raised many questions. Whether the CNN would be able to generalize was one of the

main questions. Exploration of CNNs and artificial images is yet to be done.

Contribution of this study is filling the gap between n-dimensional data

visualization and automated classification of the visualizations. Transforming data using

a visualization method has yet to be done. This novel approach of creating images from

the visualization allows vector data to be classified with a CNN. The following chapters

contain explanations of the visualization method and the data transformation, along with

the classification experiments and results of the transformed data.
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CHAPTER II

CONVOLUTIONAL NEURAL NETWORK

Large datasets and advances in computing power have made breakthroughs in

machine learning. Convolutional Neural Networks (CNN) [7], which are a category

of Artificial Neural Networks, have gained popularity and reached performance levels

similar to humans at image recognition tasks. CNNs have trainable parameters which

learn to extract features from images and are able to recognize objects with very low error

rates. The architecture of the CNN can be constructed in many different ways to best

accommodate the task at hand. The architecture has an input layer, convolutional layers,

pooling layers, followed by fully connected layers. There can be a few convolutional

layers and pooling layers in the same CNN. The majority of the CNNs which produce

best results have multiple convolutional and pooling layers in their architecture [8].

FIGURE 3: CNN architecture [9].

Convolutional Layers

2-D convolutions are designed for 2-D data format such as images. Using

2-D convolutions lets the network find patterns and relations within the data, using

neighboring pixels to extract useful information. Other machine learning algorithms

6



such as a SVM [3] and MLP [4] get outperformed by a CNN in image recognition tasks

because they do not use relational input.

Convolutional layers extract information from the 2-D input by passing a filter

throughout the 2-D input. The filter size can vary from 2x2 to 11x11 depending on the

architecture of the network and the data itself. The filter is passed through the image

starting at the top left corner and moving along to the right bottom corner. The number

of pixels the filter moves over is referred to as the stride. The stride is set to be greater

than 1 but no larger than the pooling neighborhood [7]. A filter of size 2x2 and stride of

1 can be viewed as a box with the size of 2x2 which is being placed over the image and

shifting over 1 pixel every time it’s applied.

The number of filters which should be applied depends on the complexity of the

data. Images with people in them would require more filters than images with digits in

them. The filter produces feature maps which act as feature detectors. The more feature

detectors the model has the more information it is able to extract. However, more filters

does not directly mean it will perform better. There are other factors in the architecture of

the network which play a huge role in the performance of the final model.

The number of convolutional layers in the network varies on the task at hand.

Networks which have more than a few layers are considered deep networks. Deep

networks have performed very well in image recognitions tasks. For face recognition, a

network with 37 layers achieved an accuracy of 99.13% [8].
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Pooling Layers

Pooling layers, also referred to as sub-sampling or down-sampling, reduce the

feature maps as the input makes its way down the network. There are different types of

pooling. It can be done by taking the sum, average, or max. Max pooling with filters 2x2

means for each of the 2x2 regions only the max value will be taken [10].

FIGURE 4: Example of how pooling is done in a CNN. Pooling can be done several
ways, including by taking the average or max [11].

In Fig. 4, pooling is presented in two different ways, by taking the average

or the max. In this example, 2x2 pooling is applied to a 4x4 input space. The input

space is divided into 4 subparts, and for each of the subparts one value will be used for

representation of the entire subpart. Average pooling is done by adding all of the numbers

in the subpart and dividing it by the number of elements in the subpart. In the original

4x4, the input space of the top left subpart contains 21, 8, 12, and 19. Adding them up

and dividing by 4 results in 15, which can be seen as the number in the left top corner

in the 2x2 space after pooling. Max pooling is done by simply taking the largest value

from the subpart, which is 12 for the top right subpart in Fig. 4. One of the advantages of

pooling is reduction of hidden nodes as the network gets larger and deeper.
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Dropout

Training CNN models with small datasets may lead to over-fitting. This happens

when models perform well on the validation set during training but perform poorly on the

testing set. The testing set is not seen by the model during training and is used to evaluate

the model once it has been trained. Having the model perform well during training but

poorly during testing is due to the model learning the training set instead of generalizing.

To deal with over-fitting, a technique called dropout was introduced [12]. Dropout works

by dropping (ignoring) random nodes of the network at each iteration. By dropping

certain nodes at each iteration, the network is required to learn other features from the

input data. Dropout prevents the nodes in the network from co-adapting and helps with

generalizing [13]. Dropout implementation takes in a decimal value between 0 and 1,

which represents the fraction of nodes which should be ignored during the iteration.

Dropout with the value of 0.5 would be considered harsh, as at each iteration half of the

input nodes would be ignored.

FIGURE 5: Dropout being applied to a neural network [12].

Dropout increases the number of epochs it takes to train a strong model. The trade

off in longer training time to prevent over-fitting is sufficient. Training multiple models

and using them together can also prevent over-fitting. However, training multiple models

requires more time than using dropout during training for only one model [14].

9



CNN Achievements

CNNs outperform other machine learning algorithms in image recognition tasks.

Comparison of the machine learning algorithms on gender classification using front facial

images shows a CNN gets an accuracy of 96.1%, while the second highest accuracy

(produced by a SVM) is 77.4% [6]. A CNN trained on a dataset of 1.2 million images

produced an error rate of 17%, while the next best method got an error rate of 28.2%

[14]. Exploration of CNNs has been a very popular topic. Combining multiple CNNs and

having deeper networks has gained a lot of interest in the machine learning community.

Making deeper networks has shown a significant improvement in classification accuracy

for large image datasets [15].

CNNs have been around for some time now, but have only gained popularity after

large image datasets became available and more computing power was introduced with

the GPUs. Since then, CNNs have become a standard for image recognition tasks and

widely adopted by the machine learning community.
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CHAPTER III

GENERAL LINE COORDINATES

General Line Coordinates (GLC) visualize multidimensional data losslessly. There

is no dimensionality reduction or loss of information during the process of visualization.

The n-dimensional data is projected onto 2-D graphs without losing any information in

the process. One of the methods from GLC is GLC-Linear (GLC-L). The base GLC-L

algorithm was extended to GLC-DRL to do automatic dimensionality reduction. It was

also extended to be interactive GLC-IL and to do automatic optimization for separation

GLC-AL. All of these algorithms are explained in the following subsections of this

chapter, along with comparison of GLC-L with Parallel Coordinates.

Comparison of GLC-L and Parallel Coordinates

Parallel Coordinates can visualize n-dimensional data in 2-D without losing any

information, similar to GLC-L. However, when Parallel Coordinates are used to visualize

large datasets, the visualization gets cluttered due to the abundant amount of information.

Parallel Coordinates visualization has a number of vertical lines (axis)

corresponding to the number of attributes in the dataset. Those axis are presented parallel

to each other. Axis have dashes (marks) on them with values in range corresponding to

the data value themselves. Plotting data samples onto Parallel Coordinates is done by

setting marks on the axis at the location corresponding to the data values and connecting

lines between the marks on the axis. Each instance in the dataset will get one line across

all the axis, connecting each axis at the location of the marks, which are determined by

the data values. The color of the lines is often used to distinguish between instances from

different classes.

11



Parallel Coordinates can be used to extract rules and information from

n-dimensional data in 2-D graphs. The visualization with Parallel Coordinates is easy

to understand when the number of dimensions is not very large and the number of data

samples visualized stays relatively low. As the number of dimensions increases, the

number of axis also increases, squeezing them closely together. Having a large number

of axis makes the visualization very cluttered and makes it difficult to extract rules and

information.

GLC-L visualization produces less clutter by drawing line segments in the

length only corresponded to the data value. Not having an axis drawn with a length to

accommodate for the entire range of data values produces a visualization with much less

clutter.

(a) Parallel Coordinates (b) GLC-L

FIGURE 6: Comparison of Parallel Coordinates and GLC-L on Wisconsin Breast Cancer
dataset. Parallel Coordinates visualizing only 100 instances while GLC-L is visualizing
the entire dataset with 683 instances.

12



Fig. 6 shows visualizations of Wisconsin Breast Cancer dataset with Parallel

Coordinates and GLC-L. Parallel Coordinates visualize 100 instances, while GLC-L

is visualizing the entire data set with 683 instances. GLC-L provides a visualization

with separation of classes, making it easier to see the patterns. Parallel Coordinates

visualization is quite messy making it difficult to use for extraction of rules and useful

information.

Parallel Coordinates, although visualizing nearly 6 times less data instances than

GLC-L, produce a more cluttered visualization of the 2 classes. GLC-L does not have

lines from one class overlap with lines from a different class. The overlapping lines

in GLC-L form a pattern, which can be used to identify instances between different

classes. Parallel Coordinates have lines overlapping from different classes, preventing

the discovery of patterns between classes. Avoiding cluttered visualizations is one of

the main challenges in lossless n-dimensional data visualization. Having a cluttered

visualization defeats the entire purpose of n-dimensional data visualization. Extracting

useful information and rules from a messy visualization is as difficult as it would be to

extract it from an Excel sheet with a large number of rows and columns.

An in-dept study has been conducted by Kovalerchuk, where Parallel Coordinates

are compared with GLC. It concludes that GLC-L provides a less cluttered visualization

among other advantages, such as the ability to separate classes automatically [1], [16].

GLC-L

GLC-L is used to visualize a linear function. Each attribute (x) from the data

instance makes a line segment, and the line segments are stacked one on top of the other.

The length of the line segment is determined by the value of the attribute. A large value
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produces a longer line segment than a smaller value. The angle of the line is based on the

coefficients (C) which are normalized between [-1,1]. Having coefficients :

C = (c1, c2, ..., cn+1),

normalizing C = (c1, c2, ... cn+1) by creating as set of normalized parameters:

K = (k1, k2, ..., kk+1) : ki = ci/cmax,

the equation is the following:

y = k1x1 + k2x2 + k3x3 + ...+ knxn + kn+1xn+1,

where ki = cos(arccos(ki)) and xi is a data attribute at i. Qi = arccos(|ki|) which is

the computed angle. Fig. 7 contains more information.

FIGURE 7: Visualization of 4-D data with GLC-L.The data attributes (X1-X4) are all
positive numbers with the value of 1.Having the same values for all attributes makes all of
the line segments to be equally long. The first angle (Q1) is a negative which turns the line
to the left and the other angles (Q2-Q4) are positive, turning the line to the right [1].
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FIGURE 8: Visualizing 4-D data A = (-1, 1, -1, 1) in two different representations A1 and
A2 with angles labeled (Q1-Q4). The flipped angles below are a representation of how the
line segments will turn if the data value is negative [1].

When the data value is positive and the angle is positive, the line segment turns to

the right. If the data value is positive and angle is negative, then the line segment turns

to the left. And if the data value and the angle is negative, then the line segment turns to

the right. The end point of the last line segment is projected onto the line below. This end

point is then used for classification. An alternative way to visualize GLC-L would be to

go down when the data value is down. However, going up and down creates a messier

visualization. Examples of alternative representations can be seen in Fig. 8.

Algorithm 1 contains the pseudo code for the base GLC-L algorithm. All of the line

segments start to be drawn from the same location. The class labels are excluded from

being a line segment but rather determine the color of the line. In Fig. 1 the class label is

used to determine if the samples are drawn above the median or below. Drawing samples
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Algorithm 1 Pseudo code for GLC-L
1: procedure GLCLINEAR(data, coefficients)
2: numRows← data.size() . Number of data instances
3: numColumns← data[0].size() . Number of attributes
4: for i← 0 to i < numRows do
5: x← 0
6: y ← 0
7: for j ← 0 to j < numColumns do
8: radius← data[i, j]
9: angle← calculateAngle(coefficients[j]) . Coefficient to radians

10: new x← x+ radius ∗ cos(angle)
11: new y ← y + radius ∗ sin(angle)
12: drawLine(x, y, new x, new y) . Draws line segment between 2 points
13: x← new x
14: y ← new y . Update starting position
15: end for
16: end for
17: end procedure

above and below the median also provides a cleaner visualization, opposed to drawing

them in the same space with different colors.

GLC-AL

Automatic search for best coefficients is optimized based on the separation of

classes. The search for the coefficients is done by a random search algorithm. The

random search algorithm tries different sets of coefficients on the training dataset and

the best coefficients are then evaluated on the test dataset. Training and testing sets are

created by splitting the original dataset into 2 sub sets after shuffling.
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Algorithm 2 Pseudo code for GLC-AL
1: procedure COEFFICIENTSSEARCH(data, epochs)
2: n← 0
3: best coefficients← []
4: best accuracy ← 0
5: while n < epochs do . Number of epochs
6: coefficients← random(−1, 1)
7: current accuracy ← 0
8: for i← 0 to i < data.size() do . Number of data instances
9: x← 0

10: for j ← 0 to j < data[0].size() do . Number of attributes
11: radius← data[i, j]
12: angle← calculateAngle(coefficients[j]) . Coefficient to radians
13: new x← x+ radius ∗ cos(angle)
14: x← new x
15: end for
16: end for
17: current accuracy ← evaluateCoefficients() . Calculate accuracy
18: if current accuracy > best accuracy then
19: best coefficients← coefficients
20: best accuracy ← current accuracy
21: end if
22: n← n+ 1
23: end while
24: end procedure

GLC-AL optimizes the coefficients based on the classification accuracy of the

separation. 1-D points, which are the end points from the lines created by GLC-L, are

used for separation of classes. A threshold selected based on best separation of classes is

evaluated with a confusion matrix producing a classification accuracy. During training the

best coefficients are selected and a corresponding threshold separation is found. Using the

selected coefficients during training the test data is projected and evaluated based on the

threshold from training.

Algorithm 2 has the pseudo code for GLC-AL. The algorithm does a random search

to find the best set of coefficients, evaluating which set of coefficients separates the data
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between classes more effectively. The algorithm takes in a dataset and also a number of

epochs, which stands for the number of iterations to do. Having 100 iterations means the

algorithm will try 100 different sets of coefficients and select which ones best separate the

data between classes.

GLC- IL

Several interactive functionalities have been implemented for GLC-IL: moving

the separation threshold, selecting a specific zone for further exploration, and switching

coefficients for a different representation of data. When the separation threshold is

moved, a new confusion matrix is calculated. The trade of in accuracy can be seen as a

result of misclassifying some samples due to the new threshold. In medical data false

positives could be fatal and a trade of in accuracy for less false positives is important.

GLC-AL is run again if a different visualization of the dataset is needed.

Visualizing data with different coefficients provides different perspectives and insights

of the data. The projection of the data can be toggled until a satisfactory visualization

is projected. Being able to select an overlap area of 1-D points for further exploration

can lead to interesting findings. Points which are within the overlap zone are put through

GLC-AL to find a better separation.
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FIGURE 9: Interacting with Wisconsin Breast Cancer dataset. The malignant cases are
drawn in red and benign in blue. In Fig. 9a, two green lines are set interactively to specify
the overlap zone. Fig. 9b has a visual of only projecting the selected overlap zone.

GLC-DRL

Two different dimensionality reduction methods were implemented for GLC-

DRL. The first one is an automated way of reducing dimensionality by removing

attributes which do not contribute to the overall classification of the dataset. The second

one is an interactive method, allowing for a specific dimension to be removed. The

interactive method would remove the selected attribute from the dataset and make a new

visualization excluding the removed attributes.
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FIGURE 10: Dimension reduction and visualization of Wisconsin Breast Cancer dataset.
Showing how the visualization changes when 2 dimensions are removed. 2nd and 7th
dimension is removed, the corresponding angles are highlighted in red.

The automated algorithm for removing dimensions works by keeping track

of the line as it stretches in the x direction. The classifier does not take into account

the y position of the end point but only the x position. The automatic dimensionality

reduction method keeps track of how much on average each dimension contributes to

the overall length of x. A threshold is set manually determining where the cutoff should

be. Dimensions are removed based on the threshold and the average contribution of each

dimension. Dimensions with low contributions get removed.

GLC-L Limitations

GLC-L classifies the 1-D points which are the x locations of the end points from the

projection. When only taking the x location of the last line segment, we disregard a lot of

useful information provided by the visualization. In cases where 1-D points are sufficient

for successfully separating data points from different classes, the disregard of other
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information is not a problem. However, in cases where 1-D points are not sufficient to

separate data from different classes, it makes sense to use other information provided by

the visualization. Experiments were conducted on 1-D points created by the projection to

understand what those 1-D points look like for two different datasets. One of the datasets

is Wisconsin Breast Cancer, where GLC-L is able to separate the data from different

classes very well. The other dataset is the FERET Database [17], where the GLC-L does

not perform well due to the complexity of the data. FERET Database contains labeled

frontal photographs of males and females.

Visualizing these two data sets with GLC-L produces two very different results.

One visualization provides a clear separation of classes, while the other one does not.

The 1-D points from both visualizations were saved to text files for further analysis.

Histograms were created with those 1-D points in order to understand how the data from

different classes overlaps. The 1-D points were normalized by taking the minimum 1-D

point from a dataset and adding it to every other 1-D point in the corresponding dataset.

This resulted in having the minimum 1-D point at 0.

Three different histograms were generated for each dataset. One for each class and

one for the two classes together. The histograms have two axis, “Frequency” and “Bin”.

The “Frequency” corresponds to how many 1-D points are in a certain “Bin,” where “Bin”

is the range of the 1-D points.
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FIGURE 11: 1-D points from the Wisconsin Breast Cancer dataset. Fig. 11a has 1-D
points from class 1 and Fig. 11b has points from class 2.

FIGURE 12: 1-D points from both classes from the Wisconsin Breast Cancer dataset.
Class 1 samples are in blue and Class 2 samples are in orange.

Looking at Fig. 12, it can be seen that the data is easily separated with 1-D points.

A simple rule can be extracted from these 1-D points to successfully separate the two

different classes. 1-D points which are less than 50 belong to Class 1 and points greater

than 50 belong to Class 2. With such a simple rule the data will be classified correctly

with very high accuracy.
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FIGURE 13: 1-D points from the FERET Database. Fig. 13a has 1-d points from class 1
and Fig. 13b has points from class 2.

FIGURE 14: 1-D points from both classes from the FERET Database. Class 1 samples
are in blue and Class 2 samples are in orange.

Fig. 14 contains 1-D points of both classes from the FERET Database. It can be

seen that the 1-D points are not easily separated between the two classes. The separation

of classes does not exist with the 1-D points; the overlap is too great to be able to make

rules for separation.
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Experiments with GLC-L such as these motivated the data transformation

method. GLC-L produces a lossless visualization of n-dimensional data. Discarding the

visualization and only using a 1-D point to represent an entire data instance has a very

large compression rate. Making use of the entire visualization for classification seemed

very promising.
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CHAPTER IV

DATA TRANSFORM

Using GLC-L to visualize only one data instance at a time produces a 2-D graph (an

image) with that specific data instance in it. The process can be repeated for every single

instance in the dataset using the same coefficients (angles for line segments) to transform

the entire dataset. Those artificially created images can be used for extraction of rules and

information from the dataset. Transforming numeric multidimensional datasets into 2-D

graphs (images) provides a unique lossless transformation of data.

The purpose of this study is to see if these artificially created images can be used

by machine learning algorithms such as Support Vector Machine (SVM) [3], Multilayer

Perceptron (MLP) [4], and Convolutional Neural Network (CNN) [7] for classification.

SVM and MLP can be used to train models with data in a format of a vector and a raster

(image). For these two algorithms, image data gets reshaped to a vector format and is

then used for training/testing the model. The CNN is, however, designed specifically for

raster input. It uses adjacent attributes to extract relations from the data, meaning two

neighboring pixels have more relation with each other than a pixel from one corner of the

image has with a pixel from a different corner.

The GLC-L Data Transform is described in this chapter along with experiments and

findings for some of the components of the GLC-L Data Transform system. Experiments

with datasets and their results are presented in a later Chapter.

GLC-L Data Transform

GLC-AL does n number of epochs to find which coefficients best transform the

data for classification. This process is done by choosing a random set of coefficients and
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transforming the data with those coefficients. This means using the same set of randomly

chosen coefficients. Each data instance gets visualized with GLC-L and an image is

created by capturing the visualization. The image captures of the visualizations get their

corresponding labels from the original data. Once the data is transformed and images

are created they are put through a machine learning algorithm for classification. The

images train a model with the training set and the model gets evaluated with the testing

set producing a result, which is the classification accuracy. This process is repeated n

number of times to find the best set of coefficients.

For the process of finding the best coefficients, a training set and a testing set is

needed. And for the purpose of testing the system and the best coefficients, a second

testing set is required. The second testing set is required to properly test the data

transformation system. This data can’t be part of the process for coefficient selection

because it would lead to overfitting. Overfitting means the model learns the training data

and learns how to separate it without generalizing. If the model does not generalize well,

it will not perform well on unseen data since it just learned the training data. For this

purpose the system takes in a dataset, shuffles it, and splits it into two new sets.

The first set (set-1) is 80% of the original dataset, and the second set (set-2) is the

remaining 20% of samples. Refer to Fig. 15 for a visual representation of how the data

gets split into two different sets.

FIGURE 15: Dataset gets shuffled and split into two new sets for the purpose of training
and testing the system.
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FIGURE 16: Diagram of the data transform system. Shows how set-1 and set-2 are used
to train and evaluate the system. ”best coef” stands for best coefficients.

10-fold cross validation [18] is done on set-1 during the search of best coefficients.

10-fold cross validation means that the data gets split equally into 10 subsets. First of the

10 subsets gets chosen to be the testing set, while the other 9 subsets are used for training.

This process is repeated 10 times with changing the testing set every time to the next one,
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while including the previous testing set for training. Doing this results in training and

testing on the entire dataset. The accuracy from each testing subset is recorded and the

overall accuracy is reported as an average of the 10 runs. Set-2 is used to test the system

after the best coefficients are established.

Refer to Fig. 16 for a visual representation of the system diagram. In this system

diagram, a CNN is displayed as the classification algorithm. In place of it, a SVM or

MLP can be used. The initial split of data to set-1 and set-2 is done multiple times to

fully use the entire dataset. The results for the testing set are recorded for each run of the

system and an average is reported as the final classification result.

When the line is being produced for visualization with GLC-L, it is not certain how

far up, left, and right it will reach. This all depends on the number of attributes in the

dataset, the value of each attribute which determines the length of the line segment and

which angles are used. Angles of 90 degrees make the line go more up than angles which

are closer to 0 degrees. Low angles make the line go more left or right depending on the

attribute value. Dimensions of the window in which the line gets drawn are referred to as

the world view coordinates. Those coordinates are different from the size of the image

created. Refer to Fig. 17 for more information about world view coordinates.

FIGURE 17: World view coordinates are 5000x5000, while the image they are converted
in is 100x100.

28



The world view coordinates of the visualization are dynamic for each experiment.

They are set dynamically for each transformation after the coefficients have been chosen.

Having the same world view coordinates for each data instance is crucial in order to

maintain lossless visualization. If each image was to get different world view coordinates

based on how far the line reaches, it would result in loss of information. The world

view coordinates are set by finding the largest word view coordinates for a specific

experiment. This is done by randomly shuffling the training set and taking a subset

of 10%, visualizing the subset with the already chosen coefficients and recoding the

extremes. The extremes are the largest world view coordinates used during the projection

of the subset. Once those extremes are recorded, they are used for the entire dataset for

visualization.

After some preliminary results have shown, a CNN performs better than SVM and

MLP at classifying artificially created images. Further experiments to better understand

the data transform were only conducted using the CNN. The data transform has many

parts which can be optimized , including the architecture of the CNN itself. Optimization

of hyperparameters of a CNN are out of scope for this study. These hyperparameters

include the number of convolutional layers, the number of pooling layers, filter size,

and other parts which make up the architecture of a CNN. Experiments were focused on

how different parts affect the data transformation while evaluating the artificially created

images on the same CNN. The architecture of the CNN used for these experiments can

be found in section CNN Experiments in Chapter Experimental Results. Experiments

were generated to understand how image size of the artificially created images and line

thickness affects classification. Experiments were also done regarding random search

and how increasing the number of epochs for trying different sets of coefficients affects

classification.
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These experiments were all done on the same dataset using the same split for

training, validation, and testing subsets. The split for the subsets was 80% for the training

set, 10% for the validation set, and 10% for the testing set. The Diabetic Rectionopathy

Debrecen [19] dataset was chosen because the classes are balanced, with class 1 having

540 instances and class 2 having 611 instances. This dataset has 18 attributes and is not

easily separable due to the complexity of the data. For experiments with line thickness

and size of the artificially created images, the same coefficients were used for all

experiments. Essentially only 1 epoch was done by the system in search of coefficients.

Thickness of Line in Artificially Created Images

The thickness of the line directly corresponds to how many pixels are being used

in the image created. Having a thin line corresponds to having a small number of pixels

actually being used in the image. Having more pixels used corresponds to having more

information in the image. Experiments were done to test this hypothesis. Three different

experiments were conducted to test different line widths and their effect on classification.

The value t, which is how thick the line is, was the only variable being changed between

experiments. For each experiment, 5 different runs were performed and the average of the

5 runs is reported on the test set.

TABLE 1: Line Thickness Experimental Results

Run # t = 0.1(%) t = 1.0(%) t = 2.0(%)

1 48.24 71.92 71.05
2 72.80 71.92 73.68
3 75,43 70.17 71.05
4 48.24 74.56 72.80
5 71.92 76.31 73.68

Average 63.23 72.97 72.45
Notes: Columns with t values correspond to the t value used for the experiment and the
accuracy it produced on the testing set.
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FIGURE 18: Projection line thickness with different t values. Image 1 ,2, and 3 were
randomly saved from the experiment. The 4th column contains the t value used for each
visualization in the corresponding row.

The first experiment had line thickness at t = 0.1, second experiment with t = 1.0,

and the third experiment with t = 2.0. Examples of how different t values change the line

thickness and the visualization itself can be seen in Fig. 18.

Table 1 contains the results produced from the experiments done to test how the

line thickness affects classification accuracy using a CNN. It can be seen that there is a

dramatic improvement in accuracy going from t = 0.1 to t = 1.0. After that there is not

much gain in classification accuracy going to t = 2.0. These experiments show that the

thicker lines produce higher results, having more information leads to an improvement in

accuracy.

Size of Artificially Created Images

Four different experiments were conducted to see how the size of artificially created

images affects classification accuracy with the CNN. For this set of experiments the size
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Experiments were carried out on the CWU supercomputer, taking advantage of the

GPU clusters for the CNN. The data transformation system was implemented in Python.

For the CNN model, a Python library Keras [22] was used. For the MLP and SVM, a

Python machine learning library scikit-learn was used [23]. The following subsections

contain the experimental results for each of the three machine learning algorithms. The

details of each of the machine learning algorithms used for experiments are provided in

the corresponding subsection.

CNN Experiments

For this set of experiments two different CNN architectures had to be used. CNN

is designed for 2-dimenisional input such as images. CNN was used for classification of

artificially created images. However, in order to use a CNN to classify 1-dimensional data

(a vector), 1-D convolutional neural network was constructed.

Both of the architectures used the same Adam optimizer [24] with the learning rate

set to 0.0001. The network was set to do 1,000 epochs with an early stopping check point.

If the validation accuracy during training is not improved over 100 epochs, the training

would stop.
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The architecture of the CNN used for classification of images is the following:

– Convolutional Layer with 64 output channels, a kernel shape of

2x2, stride of 2x2, and RELU activation [25]

– Convolutional Layer with 64 output channels, a kernel shape of

2x2, stride of 2x2, and RELU activation

– Pooling layer with pooling size of 2x2

– Drop out layer with fraction of input units to drop set to 0.4

– Convolutional Layer with 128 output channels, a kernel shape of

2x2, stride of 2x2, and RELU activation

– Convolutional Layer with 128 output channels, a kernel shape of

2x2, stride of 2x2, and RELU activation

– Pooling layer with pooling size of 2x2

– Drop out layer with fraction of input units to drop set to 0.40

– Fully Connected Layer with 256 output nodes and RELU

activation

– Drop out layer with fraction of input units to drop set to 0.40

– Fully Connected Layer with number of output nodes equal to the

number of classes, with a softmax activation

The original MNIST-Subset was not put through the 1-D CNN because the original

data is an image. Instead, the original images were evaluated with the CNN architecture

used for classification of the artificially created images.
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The architecture of the 1-D CNN which is used to classify vector data is the

following:

– 1-D Convolutional Layer with 64 output channels, filter length of

2, and RELU activation

– Drop out layer with fraction of input units to drop set to 0.4

– Fully Connected Layer with 1024 output nodes and RELU

activation

– Fully Connected Layer with number of output nodes equal to the

number of classes, with a softmax activation

TABLE 4: CNN Result Comparison

Dataset Name CNN-1D (%) Transform+CNN (%)
Swiss Roll 2-D 72.50 97.43
Swiss Roll 3-D 96.18 97.55
Breast Cancer Wisconsin 96.92 97.22
Red Wine 60.65 60.93
White Wine 55.91 60.76
Diabetic Rectionopathy Debrecen 73.75 69.04
MNIST-Subset (Regular CNN) 99.53 92.93

Notes: Comparison of results for raw input data with 1-D CNN and artificially created
images with regular CNN. The table is sorted with respect to number of attributes in the
dataset.

Column 1 in Table 4 has the dataset names, column 2 has the results for the raw

input data with 1-D CNN. Column 3 contains the experimental results of transforming

numerical data with GLC-L and classifying images with a regular CNN. The results for

“1-D CNN” are gathered using 10-fold cross validation, and the results for “Transform +

CNN” are an average of 5 runs using the data transformation system where 10-fold cross

validation is used for training the CNN.
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TABLE 5: Transform+CNN Runs

Run # Swiss 2-D
(%)

Swiss 3-D
(%)

Wisconsin
(%)

Red
(%)

White
(%)

Diabetic
(%)

MNIST
(%)

1 98.12 97.81 97.08 61.87 62.34 66.52 91.33
2 95.93 97.81 97.08 59.68 59.18 68.69 94.00
3 96.87 96.56 98.54 61.87 63.36 70.43 94.16
4 99.37 97.18 96.35 59.06 58.16 72.17 92.00
5 96.87 98.43 97.08 62.18 60.76 67.39 93.16

Average 97.43 97.55 97.22 60.93 60.76 69.04 92.93
Notes: Results for each of the 5 runs with the GLC-L Transform and CNN. The average
results are reported in Table 4. Names of the datasets have been abbreviated.

Table 5 contains the results for each of the 5 runs of the data transformation with

GLC-L and CNN classification of artificially created images. Names of the datasets have

been abbreviated. The average of the 5 runs is reported for comparison in Table 4. The

datasets are arranged left to right with respect to the number of dimensions in the dataset.

Comparison of the results between the 1-D CNN and the GLC-L Transform +

CNN is presented in Table 4. 1-D CNN did not perform well with the Swiss Roll 2-

D dataset with only 72.50% classification accuracy, while the GLC-L transformation

+ CNN did 97.43%. Transformation with GLC-L+ CNN performed slightly better

for Swiss Roll 3-D dataset than the 1-D CNN, getting 97.55% versus 96.18%. 1-D

CNN classification accuracy is slightly lower with the Breast Cancer Wisconsin dataset

than the transformation with GLC-L + CNN. 1-D CNN produced 96.92%, while the

transformation with GLC-L + CNN produced 97.22% classification accuracy for the

Breast Cancer Wisconsin dataset.

Both methods performed poorly with the Red Wine Quality dataset, with 60.65%

with the 1-D CNN and 60.93% with the GLC-L transformation + CNN. White Wine

Quality dataset got higher classification accuracy with the GLC-L transform + CNN

60.76% , while the 1-D CNN got 55.91%. 1-D CNN performed better with the Diabetic
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Rectionopathy Debrecen dataset than the transformation with GLC-L + CNN. 1-D

CNN produces 73.75% classification accuracy, while the GLC-L transformation + CNN

69.04%. MNIST-Subset was evaluated on the regular CNN for both sets of experiments.

Original images were put through the regular CNN and then the artificially created

images with the GLC-L transformation were put through the same CNN. The original

images produce classification accuracy of 99.53%, while the transformed images

produced 92.93%. MNIST-Subset was used to test the data transformation system in

very high dimensions. Even though there is a drop in accuracy, it still shows that the data

transformation with GLC-L produces useful information, even in very high dimensions.

MLP Experiments

For this set of experiments MLP was used as the machine learning algorithm for

classification of the raw and the transformed data. The MLP classifier from scikit-learn

Python library was used with all of the default hyperparameters. The default number of

hidden nodes is 100 and the number of epochs is 200. The default number of epochs is

fairly low compared to the 1000 with the CNN. However, the CNN had an early stopping

checkpoint. The parameter was left default since optimization of the hyperparameters was

not in the scope of this study.
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TABLE 6: MLP Result Comparison

Dataset Name MLP (%) Transform+MLP (%)
Swiss Roll 2-D 97.50 95.87
Swiss Roll 3-D 98.43 63.87
Breast Cancer Wisconsin 94.83 89.36
Red Wine 60.78 46.12
White Wine 53.57 46.03
Diabetic Rectionopathy Debrecen 69.84 53.47
MNIST-Subset 99.10 83.29

Notes: Comparison of results for raw input data with MLP and artificially created images
with MLP. The table is sorted with respect to number of attributes in the dataset.

Column 1 in Table 6 has the dataset names, column 2 has the results for the raw

data with MLP. Column 3 contains the experimental results of transforming numerical

data with GLC-L and classifying images with a MLP. The results for “MLP” are gathered

using 10-fold cross validation, and the results for “Transform + MLP” are an average of

5 runs using the data transformation system where 10-fold cross validation is used for

training the MLP.

TABLE 7: Transform+MLP Runs

Run # Swiss 2-D
(%)

Swiss 3-D
(%)

Wisconsin
(%)

Red
(%)

White
(%)

Diabetic
(%)

MNIST
(%)

1 97.18 74.06 95.72 43.75 47.12 52.17 87.00
2 97.18 78.43 93.43 46.87 46.02 48.26 80.33
3 96.25 36.87 97.81 45.93 46.12 47.39 82.83
4 91.87 36.87 65.69 46.56 45.81 49.56 86.50
5 96.87 90.62 94.16 47.50 45.10 70.00 79.83

Average 95.87 63.37 89.36 46.12 46.03 53.47 83.29
Notes: Results for each of the 5 runs with the GLC-L Transform and MLP. The average
results are reported in Table 5. Names of the datasets have been abbreviated.

Table 7 contains the results for each of the 5 runs of the data transformation with

GLC-L and MLP classification of artificially created images. Names of the datasets have
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been abbreviated. The average of the 5 runs is reported for comparison in Table 6. The

datasets are arranged left to right with respect to the number of dimensions in the dataset.

GLC-L transformation + MLP do not seem to perform well together, producing

results which vary dramatically between different runs. Looking at Table 8 in columns

labeled “Swiss 3-D” and “Wisconsin,” a dramatic difference can be seen between the

runs. “Swiss 3-D” has 2 runs with classification accuracy of 36.87% and one with

90.62%. Such dramatic difference between runs is not normal. I think it is because a

simple MLP classifier is not being able to learn the parse number of active pixels in the

artificially created images.

Comparison of the results between the MLP and the GLC-L transform + MLP

is presented in Table 6. The raw data with MLP performed better than the GLC-L

transformation + MLP with each dataset. Swiss Roll 2-D dataset is the only dataset which

did not have a dramatic decrease in classification accuracy between the two methods.

MLP produced 97.50% while the GLC-L transformation + MLP produced 95.87% .

All the other datasets had a dramatic decrease in classification accuracy with the GLC-

L transformation + MLP.

SVM Experiments

For this set of experiments a SVM was used as the machine learning algorithm for

classification of numerical and transformed data. The SVM classifier from scikit-learn

Python library was used with all of the default hyperparameters. The default kernel is

”rbf”.
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TABLE 8: SVM Result Comparison

Dataset Name SVM (%) Transform+SVM (%)
Swiss Roll 2-D 98.50 96.43
Swiss Roll 3-D 98.25 70.24
Breast Cancer Wisconsin 96.33 95.91
Red Wine 56.66 52.31
White Wine 51.53 44.98
Diabetic Rectionopathy Debrecen 61.25 59.21
MNIST-Subset 98.76 84.79

Notes: Comparison of results for raw input data with SVM and artificially created images
with SVM. The table is sorted with respect to number of attributes in the dataset.

TABLE 9: Transform+SVM Runs

Run # Swiss 2-D
(%)

Swiss 3-D
(%)

Wisconsin
(%)

Red
(%)

White
(%)

Diabetic
(%)

MNIST
(%)

1 97.81 74.68 94.89 50.31 45.40 63.91 86.50
2 95.62 61.87 97.08 53.12 44.50 53.47 86.00
3 97.18 70.00 94.16 48.75 46.12 66.08 84.33
4 97.81 69.68 97.08 56.56 44.38 53.47 82.16
5 93.75 75.00 96.35 52.81 44.50 59.13 85.00

Average 96.43 70.24 95.91 52.31 44.98 59.21 84.79
Notes: Results for each of the 5 runs with the GLC-L Transform and SVM. The average
results are reported in Table 5. Names of the datasets have been abbreviated.

Column 1 in Table 8 has the data set names, column 2 has the results for the

raw input data with SVM. Column 3 contains the experimental results of transforming

numerical data with GLC-L and classifying images with a SVM. The results for “SVM”

are gathered using 10-fold cross validation, and the results for “Transform + SVM” are an

average of 5 runs using the data transformation system where 10-fold cross validation is

used for training the SVM.

Table 9 contains the results for each of the 5 runs of the data transformation with

GLC-L and SVM classification of artificially created images. Names of the datasets have
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been abbreviated. The average of the 5 runs is reported for comparison in Table 8. The

datasets are arranged left to right with respect to the number of dimensions in the dataset.

SVM on the raw data performs better than GLC-L transformation + SVM for all

of the datasets in the experiments. SVM produces 98.50% on the raw Swiss Roll 2-D

dataset, while GLC-L transformation + SVM produces 96.43%. The drop in accuracy

isn’t as significant as the drop between the two methods for the Swiss Roll 3-D dataset.

The raw numerical data with SVM gets 98.25% compared to 70.24% with the GLC-

L transformation + SVM for the Swiss Roll 3-D dataset. Breast Cancer Wisconsin and

Diabetic Rectionopathy Debrecen datasets get similar classification accuracies with both

methods.

Comparison of CNN, MLP and SVM

Table 10 contains comparisons of results between all of the algorithms

described in this chapter: CNN, Transform+CNN, MLP, Transform+MLP, SVM, and

Transform+SVM. The highest accuracy is highlighted for each of the datasets. Three out

of the seven datasets produced highest classification accuracy with GLC-L transformation

+ CNN. MLP produced the highest accuracy for the raw Swiss Roll 3-D dataset and

SVM performed best on the raw Swiss Roll 2-D dataset. 1-D CNN performed best on

the Diabetic Rectionopathy Debrecen dataset, and the regular CNN performed best on the

original MNIST-Subset.
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TABLE 10: CNN, MLP, and SVM Result Comparison

Dataset Name 1-D CNN
(%)

T+CNN
(%)

MLP
(%)

T+MLP
(%)

SVM
(%)

T+SVM
(%)

Swiss 2-D 72.50 97.43 97.50 95.87 98.50 96.43
Swiss 3-D 96.18 97.55 98.43 63.87 98.25 70.24
Wisconsin 96.92 97.22 94.83 89.36 96.33 95.91
Red 60.65 60.93 60.78 46.13 56.66 52.31
White 55.91 60.76 53.57 46.03 51.53 44.98
Diabetic 73.75 69.04 69.84 53.47 61.25 59.21
MNIST(CNN) 99.53 92.93 99.10 83.29 98.76 84.79

Notes: Transform has been abbreviated to “T”. Comparison of results between CNN,
Transform+CNN, MLP, Transform+MLP, SVM, and Transform+SVM. The highest
accuracy for each dataset has been highlighted.
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CHAPTER VI

CONCLUSION

In this thesis, Linear General Line Coordinates (GLC-L) are described along with

their potential. GLC-L can losslessly visualize n-dimensional data on 2-D graphs. An

application of GLC-L as a data transformation method is presented. Results are gathered

with various machine learning algorithms to evaluate the artificially created images

for classification. Datasets in varying number of instances and attributes are used in

the experiments. The method is tested on data up to 484 dimensions, showing that it is

scalable.

Experimental results show that a lossless visualization method for n-dimensional

data can be used as a data transformation method, by visualizing one data sample at a

time with GLC-L and capturing the visualizations as images. No loss of information is

done by the transformation. These artificially created images contain useful information

which can be used for classification of data. Classification of artificially created images

can be automated with a machine learning algorithm such as a CNN, MLP, and SVM.

CNN outperformed the other methods in classifying the artificially created images.

CNN is designed for relational data such as images, which explains why it performed

better than MLP and SVM. Showing that a CNN can correctly classify images with such

sparse number of active pixels is useful for further studies.

Further experiments can be done to improve the classification results of the GLC-L

transformation. The random search for coefficients can be redesigned to a structured

search for finding the optimal angles for the visualization. The architecture of the CNN

can be optimized to better suit the sparse number of active pixels in the artificially created

images. The hyperparameters of the SVM and MLP can also be optimized.
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The ability to classify artificially created images created by a visualization method

with a CNN raises many interesting questions. Perhaps there are other visualization

methods which can be used to transform data and produce better classification accuracy

with machine learning algorithms.
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APPENDIX

DATASETS

In this chapter the datasets used for experiments are explained, along with overview

of the datasets and preprocessing done to them. These datasets vary in number of classes,

number of instances, and number of attributes per instance. A few of these datasets are

from the UCI Machine Learning Repository [26]. Table 11 contains a quick glance at the

datasets.

TABLE 11: Overview of Datasets

Dataset Name Instances Attributes Classes
Swiss Roll 2-D 1600 2 4
Swiss Roll 3-D 1600 3 4
Breast Cancer Wisconsin 683 9 2
Red Wine 1599 11 6
White Wine 4898 11 7
Diabetic Rectionopathy Debrecen 1151 18 2
MNIST-Subset 3000 484 3

Notes: Overview of the datasets used for experiments. Table includes the number of
samples, attributes, and classes in each dataset. The table was organized from lowest to
highest with regards to number of attributes.

Swiss Roll Dataset

This is an artificially created dataset to test various dimensionality reduction

algorithms. This dataset has a total of 1600 instances equally spread out among 4 classes.

There is two subsets of the Swiss Roll Dataset, 2-D and 3-D [27]. The labels column

was joined with the data columns, being added as the 3rd column for 2-D data, and 4th

column for 3-D data. The data comes normalized and no further preprocessing was done

to it.
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2-D Manifold

FIGURE 20: Swiss Roll Dataset 2-D [27]

3-D Manifold

a b

FIGURE 21: Swiss Roll Dataset 3-D, screen shots taken from 3-D visualization on the
dataset website [27].

Swiss Roll 3-D was converted from the 2-D data by mapping (x, y) =

(xcosx, y, xsinx). Fig. 21 contains two screen shots in 3-D, taken from the dataset

website.
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Wisconsin Breast Cancer

Wisconsin Breast Cancer dataset is from the UCI machine learning repository

[26]. The dataset consists of 699 instances with 11 attributes. In the preprocessing

step instances with missing values “?” were removed from the dataset, resulting in 683

instances of which 444 were benign cases and 239 were malignant cases. Patient ids were

also removed from the attributes, resulting in 10 attributes with one being the class label.

The dataset is originally normalized between 1 and 10, no other normalization was done.

FIGURE 22: Wisconsin Breast Cancer dataset. First column contains the patient ids
which were removed in the preprocessing step.

Fig. 22 contains a screen shot of the Wisconsin Breast Cancer dataset. In the first

row a “?” value can be seen in attribute 7. Rows with “?” values were removed from the

dataset in the preprocessing step.

Wine Quality

This dataset is also from the UCI machine learning repository [26]. Wine quality

dataset [28] is composed of two different datasets, red wine and white wine. Red wine

quality subset has 1599 instances and the white wine quality subset has 4898 instances.

Both of the subsets have 11 attributes followed by the class label. Red wine quality has

6 different classes, but it is very unbalanced with most of the instances being only in 2

classes. White wine quality dataset has 7 classes and it is also very unbalanced. Both of

the subsets were normalized between 0 and 1 columnwise.
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Red Wine

FIGURE 23: Red Wine Quality dataset before any preprocessing.

Fig. 23 contains a screen shot of the Red Wine Quality dataset. The data had to be

normalized to the large range in values between different attributes (columns). Attribute

number 6 has values below 1, while attribute number 7 had values larger than 50. Such

range of values would greatly distort the visualization.

White Wine

The While Wine Quality dataset is similar in structure to the Red Wine Quality with

only 2 differences. The first difference is that it has many more instances , 4898 instances

as opposed to 1599 in the Red Wine Quality data. And the other difference being it has an

extra class label.

Diabetic Rectionopathy Debrecen

Diabetic Rectionopathy Debrecen dataset [19] is from the UCI machine learning

repository [26]. This dataset has labels for two different classes, one of the classes

having signs of Diabetic Rectionopathy (DR) and the other one which shows no signs

of DR. This data set has 1151 instances with 18 attributes. The classes are balanced

with 540 instances with no signs of DR and 611 instances with signs of DR. The dataset

was normalized columnwise between 0 and 1. Originally the dataset had 19 attributes,

excluding the label class, but attribute number 19 was removed because it was the result

of binary classification provided from the author.
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FIGURE 24: Diabetic Rectionopathy Debrecen dataset.

Fig. 24 contains a screen shot of the Diabetic Rectionopathy Debrecen dataset

before preprocessing. It can be seen that the data is not normalized with some of the

columns having value range between 0 and 1, while others range between 0 and over 100.

The last two columns contain labels, one being the data label. The other one as a result of

prediction from the experiments gathered by the author of the dataset.

MNIST-Subset

In order to test the data transform method on data of high dimension, a subset

of Modified National Institute of Standards and Technology (MNIST) Database [29]

was used. MNIST Database contains images of digits 0 through 9. The subset consists

of 1000 instances from the digits 0, 1, and 2, totaling 3000 instances altogether. The

original images are 28x28 pixels (784 dimensions). The images are centered with black

padding around them. In the preprocessing step, the padding was removed by cropping

the images to 80% of the original size. After preprocessing, the images were 22x22 (484

dimensions).

FIGURE 25: Images from the MNIST-Subset. One image from each class was randomly
selected. These examples are after cropping has been applied to remove extra black
padding, resulting in 22x22 (484 dimensions).
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