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ABSTRACT 

Fine atmospheric particulate matter (PM2.5) emitted during the combustion of fossil and 

biomass fuels is known to adversely affect human health.  While the underlying mechanisms are 

thought to be driven by the generation of reactive oxygen species (ROS), specific particle 

characteristics responsible for this detrimental effect are not well understood.  In this research, 

the quantitative determination of the biologically relevant antioxidant, glutathione (GSH), was 

optimized for use as an indicator of oxidative stress to shed light on relevant particle 

characteristics. This was accomplished via fluorescent spectroscopy for GSH determination by 

way of reaction with o-phthalaldehyde (OPA), a fluorescent marker.  Physicochemical properties 

of particles were studied using Scanning Electron Microscopy (SEM), laser particle size 

analyzer, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Thermal Gravimetric 

Analysis (TGA) to determine particle morphology, aqueous particle surface area and diameter, 

trace metal content, and volatile organic content, respectively.  These physical and chemical 

properties were correlated with the oxidative capacity of particles in reaction with GSH. Results 

show that the fluorometric analysis of GSH is relatively simple to employ to study particle 

toxicity and that different particles display unique oxidative capacity, which cannot be directly 

correlated to any one of the measured parameters. The pseudo first order rate constant, k’, for 

heat-treated samples was correlated to total transition metals and the loss of mass after heat 

treatment to 700 ˚C with an R2 value of 0.708. It is thought that elemental carbon (EC) drives 

particle toxicity. This research contributes to the analytical determination of particle toxicity and 

helps increase our understanding of the mechanisms that control their adverse effects.     
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

Fine particulate matter (PM2.5) are particles < 2.5 µm in diameter generated from the 

combustion of fossil or biomass fuels. PM2.5 contains a variety of substances such as organics, 

inorganics, sulfites, and dust. Toxicity of PM2.5 has been well studied in recent years as particles 

have been found to have a negative impact on human and environmental health (Bell et al., 2009; 

Jacobson et al., 2010). Determination of what causes PM2.5 to be toxic has led to studies 

focusing on a major component of PM, carbon nanoparticles (CNP) which also contain soot 

(Cho et al., 2005; McWhinney et al., 2013; Ristovski et al., 2012). CNP are linked carbonaceous 

particles that are nanometer in size and generally spherical in shape. Anthropogenic activities 

associated with energy consumption such as home heating and transportation are the primary 

sources of soot production (Grahame et al., 2014). While health effects such as cardiovascular, 

respiratory, and pulmonary diseases have been linked to CNP particles, the detailed mechanisms 

and particle characteristics that cause cellular damage are still widely unknown (Bell et al., 2009; 

Niranjan et al., 2017). 

Many studies have focused on diesel PM when looking at exposure in relation to health 

impacts due to the contribution that diesel traffic has on air quality. Diesel vehicles are used for 

94% of goods being transported across the United States and are estimated to use approximately 

4 million barrels of diesel as a daily average (Sharma et al., 2012). Studies conducted to quantify 

soot emissions from diesel vehicles in different locations have shown that diesel emissions in the 

U.S. amount to 637,167 thousand tons annually (EPA, 2002; Liggio et al., 2012).  
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While a large body of evidence from epidemiological studies have established the overall 

negative impact of PM inhalation on respiratory, cardiovascular, and pulmonary health more 

information is sought on the chemical and physical properties of particles that drive particulate 

toxicity (Bell et al., 2009; Brook et al., 2010; Niranjan et al., 2017; Penn et al., 2005; Sharma et 

al., 2012; Verma et al., 2014). To accomplish this, cellular and acellular methods have been 

developed that range in degree of complexity. Motivation for acellular methods that allow for a 

measure of the oxidative capacity of soots in a simplified acellular system lies in the high-

throughput potential and in the fact that complex biological response mechanisms are absent.  It 

is thought that CNP particles are responsible for cellular damage by undergoing redox chemistry 

where reactive oxygen species (ROS) are generated. ROS include superoxide radical (·O2-), 

hydrogen peroxide (H2O2), hydroperoxyl radical (HO2·), and hydroxyl radical (·OH) 

(Glausauer and Chandel, 2013). Equations 1 through 5 show how the various ROS species are 

transformed and related.  

O2                     ∙O2-        Eqn. 1 

∙O2-                      H2O2                                   Eqn. 2 

H2O2                      ∙OH +  OH-      Eqn. 3 

∙OH + OH-                     2 H2O        Eqn. 4 

O2                                  H2O2       Eqn. 5 

The equations above indicate the half-cell potential for ROS at a pH of 7 (Wood, 1988). 

ROS can be transformed by electron transfer, with some transformations being more 

energetically favorable (Wood, 1988). It is important to understand that while the production of 

H2O from O2 is more energetically favorable than the production of H2O2, the production of 

H2O requires a transfer of four electrons and the production of H2O2 requires a transfer of only 

two electrons. Therefore, H2O2 is produced in more abundance than H2O from O2. ROS are 

e- 

e- + 2H+ 

e- 

e- + 2H+ 

2e- + 2H+ 

-0.33 V 

+0.281 V 

+0.89 V 

+0.38 V 

+2.32 V 
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known to cause cellular damage and stress by oxidation of antioxidants responsible for cellular 

health (Glausauer and Chandel, 2013; McWhinney et al., 2013; Verma et al., 2014). 

To investigate the role of CNP as an oxidative agent, the dithiotreitol (DTT) assay is a 

widely used method to measure the oxidative capacity that particles have on a reducing agent, 

DTT in this case (Cho et al., 2005; McWhinney et al., 2013; Tuet et al., 2017; Verma et at., 

2014). The DTT assay depends on the reaction of particles oxidizing the thiol group on DTT, 

which then goes on to react with Ellman’s reagent (5,5-dithio-bis-2-nitrobenzoic acid, DTNB), 

generating  5-thio-2-nitrobenzoic acid (TNB). TNB can be detected via UV-Vis spectroscopy 

with a maximum absorbance at 412 nm at pH 8.0 (Cho et al., 2005).  

In the present study, a biologically 

relevant antioxidant, glutathione (GSH), was 

chosen as an alternate reducing agent to study 

the oxidative capacity of surrogate soot 

particles. GSH is responsible for cellular 

health and maintenance by converting 

peroxides to water (Watson et al., 2002). 

Three amino acids (glutamate, cysteine, and 

glycine) make up the thiol-containing 

tripeptide (Figure 1) (Galant et al., 2009; 

Millis et al., 1988). GSH is the most abundant antioxidant in cells with concentrations of about 

100 µM on average (Galant et al., 2009).  

As in the DTT assay, GSH is determined in the presence of PM to assess oxidative 

capacity. The method of fluorescence spectroscopy detection is based on GSH reacting with o-

Figure 1. Chemical structure of GSH, a tripeptide antioxidant 
responsible for maintaining cellular health. 

Figure 2. Chemical structure of GSSG. 
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phthalaldehyde (OPA) to form a GSH-OPA adduct that fluoresces with an excitation wavelength 

of 340 nm and an emission wavelength of 420 nm (Cohn and Lyle, 1966; Hissin and Hilf, 1976; 

Roušar et al., 2012). When GSH is oxidized, it can form a disulfide bond with another oxidized 

GSH molecule to form glutathione disulfide (GSSG) (Figure 2). To the best of our knowledge, 

GSH determination with OPA via fluorescence spectroscopy to determine oxidative capacity has 

not been used on PM. 

GSH was chosen as the antioxidant of interest due to its abundance in the cells. DTT on 

the other hand is not present in cells, nor is it representative of a cellular redox environment. 

DTT has a reduction potential of -330 mV at a pH of 7 while GSH/GSSG has a reduction 

potential of -264 mV at a pH of 7.4, which is more closely representative of a cellular 

environment (Watson et al., 2002). A healthy cell has a reduction potential of -250 mV with a 

GSH to GSSG ratio of 100:1, while a damaged cell has a ratio of 1:100 of GSH to GSSG and a 

half cell potential of -170 mV (Figure 3) (Schafer et al., 2001; Watson et al., 2002). Therefore, 

GSH in its reduced form is representative of a healthy cell and as GSH is oxidized and converted 

to GSSG, it represents a damaged cell reaching apoptosis. 

Figure 3. Cellular Damage indicated by the reduction potential and ratio of GSH to GSSG for a healthy cell, 
damaged cell, and apoptotic cell. (adapted from Watson et al., 2002). 
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In the present study (i) a GSH method was optimized for determining oxidative capacity 

of PM and (ii) a number of CNP were characterized physico-chemically and tested with the GSH 

assay.   By choosing a variety of soot particles with distinct morphologies, surface areas, particle 

sizes, trace metal and organic content, and microstructures the goal was to shed light on particle 

characteristics that drive particle toxicity based on oxidative potential.  Results from this study 

will help scientists understand the detailed mechanisms or particle reactions and inform policy 

makers on what type of emissions are particularly harmful to public health.  Toxicity of soot 

samples has been associated with their nanometer size, allowing them to reach far into the lungs 

and penetrate membranes, while providing an excess of surface area sites for reactions to occur 

at. Thus, determining surface area within the aqueous system and not in a dry environment is 

essential.  This was achieved using a laser particle size analyzer. Further morphological and 

elemental characterization of particles were investigated with scanning electron microscope 

(SEM) and electron dispersive detection (EDS).  Transition metals such as iron and copper are 

thought to act as catalysts in the reaction of soot with a nucleophile to produce ROS through 

Fenton chemistry. The Fenton reaction (Eqn. 6) describes the generation of ROS via the 

oxidation of Fe(II) by hydrogen peroxide (Buda et al., 2003).  

Fe2+ + H2O2  Fe3+ + •OH + OH-     Eqn. 6 

Trace metal content was determined for CNP samples with inductively coupled plasma mass 

spectrometry (ICP-MS).  

The majority of CNP material is made up of elemental carbon (EC) and organic carbon 

(OC), which are directly emitted through anthropogenic activities and generated in the 

atmosphere through gas-to-particle conversion in reaction with oxidative species. OC may 

contain polycyclic aromatic hydrocarbons (PAHs) and quinones (Samara et al., 2014). EC is 
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derived directly from biomass and fossil fuel burning and is often used interchangeably with soot 

(Long et al., 2013).  Here, we approximate OC in CNP samples by use of thermal gravimetric 

analysis (TGA), where samples are heated while recording the loss of mass over time. This gives 

an understanding of relative amounts of volatile OC and residual EC contents.  
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CHAPTER II 

FLUOROMETRIC GLUTATHIONE ASSAY FOR PARTICULATE MATTER  

OXIDATIVE CAPACITY DETERMINATION 

ABSTRACT 

Fine atmospheric particulate matter (PM2.5) emitted during the combustion of fossil and biomass 

fuels is known to adversely affect human health.  While the underlying mechanisms are thought 

to be driven by the generation of reactive oxygen species (ROS), specific particle characteristics 

responsible for this detrimental effect are not well understood.  In this research, the quantitative 

determination of the biologically relevant antioxidant glutathione (GSH) was optimized for use 

as an indicator of particle oxidative capacity to shed light on relevant particle characteristics. 

This was accomplished by reacting GSH with the fluorescent marker o-phthalaldehyde (OPA) in 

phosphate buffered saline solution (PBS, pH 7.4). The signal detection and quantitation limits 

were determined to be 0.032 µM GSH and 0.49 µM GSH, respectively. Depletion of GSH 

followed first order kinetics during the 60-90 minute experiments with an average 4.2%RSD. This 

allowed for the determination of pseudo first order rate constants that displayed high variability 

across samples with different physicochemical properties. This method provides an acellular 

assay to quantitate the oxidative capacity of particles in a biologically relevant medium, thus can 

be used to improve understanding of particulate toxicity. 

INTRODUCTION 

Anthropogenic activities associated with energy production such as transportation and home-

heating are the main sources of fine ambient particulate matter (PM2.5) that adversely affect 

respiratory and cardiovascular health as well as the environment and global climate (Bell et al., 

2009; Bond et al., 2005; Jacobson et al., 2010; Niranjan et al., 2017). Particle toxicity has been 
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associated with the generation of reactive oxygen species (ROS), which include the superoxide 

radical (·O2-), hydrogen peroxide (H2O2), hydroperoxyl radical (HO2·), and hydroxyl radical 

(·OH), whereby the production of these ROS seems to depend on specific particle characteristics, 

such as their small size, surface functional groups, as well as their organic, trace metal and 

elemental carbon contents (Achilleos et al., 2017; Atkinson et al., 2015; Brook et al., 2010; 

Garcia-Fernandez et al., 2014; Simkhovich et al., 2008).  While much of this insight has been 

generated through expansive toxicity and epidemiological studies, there is a clear need for 

simple, acelluar assays that aid in determining a relative capacity of particle induced toxicity 

(Grahame et al., 2014; Ristovski et al., 2012; Xiong et al., 2017). The current most widely used 

such assay relies on the oxidation of dithiothreitol (DTT) and detection with UV-Vis 

spectrometry (Cho et al., 2005; McWhinney et al., 2013; Charrier et al., 2012).  Other assays 

have included the use of biological antioxidants, such as ascorbate (Ayres et al., 2008; Fang et 

al, 2016). Here, we have optimized the fluorometric detection of glutathione (GSH), a thiol-

containing tripeptide which plays a central role in the defense against cellular oxidative damage 

and in signaling pathways.  A number of compelling reasons argue for its use to increase our 

understanding of the mechanisms that drive particle toxicity.  First, GSH is a biologically 

relevant antioxidant that acts as a reducing agent partaking in the maintenance of cellular health 

such as converting peroxides to water (Watson et al., 2002).  GSH is present in the cellular 

system at average concentrations of 100 µM, which is significantly higher than that of other 

antioxidants such as ascorbate and nicotinamide adenine dinucleotide phosphate (NADPH); and 

absolute and relative concentrations of GSH and its oxidized glutathione disulfide (GSSG) are 

generally used to assess cell functionality and oxidative stress (Hissin and Hilf, 1976; Schafer et 

al., 2001).  By way of an example, at 100 µM total GSH concentration, a GSH:GSSG ratio of 
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100:1 is representative of a redox potential of -264 mV 

which is typical of a healthy cell.  On the other hand, a 

GSH:GSSG ratio of 1:100 would have a redox potential 

of -150 mV as seen in an apoptotic cell  (Schafer et al., 

2001; Watson et al., 2002).  For visualization, in Figure 

4, the various redox pairs are arranged in increasing 

order of their reduction potentials relative to the 

standard hydrogen electrode (SHE) in pH 7 or 7.4 

medium. DTT and NADPH, with reduction potentials of 

-330 mV and -400 mV, respectively, are 

positioned above the indicated cellular range, 

thus implying that even in a healthy cell, these 

two compounds would tend to be oxidized 

(Watson et al., 2002; W.W. Cleland, 1964).  In 

fact, NADPH effectively helps keep cellular 

GSH reduced (Schafer et al., 2001).  Ascorbate 

on the other hand, with a reduction potential of -

66 mV indicates that it remains reduced even in 

an apoptotic cell (Borsook et al., 1933).  Thus, 

to determine oxidative capacity of particles in the 

absence of the rest of the cellular system, reaction with 

GSH seems to be the most representative indicator. Finally, in terms of method sensitivity and 

specificity, fluorescence spectroscopy is more sensitive than the more regularly used UV-Vis 

Figure 4. Standard Reduction Potentials 
relative to the standard hydrogen electrode 
(SHE) for redox pairs at a pH of 7 or 7.4. 

Figure 5. Reaction scheme of GSH reacting with 
OPA yielding a fluorescent GSH-OPA adduct that 
can be detected with an excitation of 340 nm and 
emission of 420 nm. 
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absorbance spectroscopy for the determination of some of the other antioxidants, including DTT; 

and the fluorescent reagent o-phthalaldehyde (OPA) is stable and works by binding in a 1:1 ratio  

specifically towards thiol amine pairs in that are in proximity, as shown in Figure 5 (Hissin and 

Hilf, 1976). After oxidation to GSSG, the binding site becomes unavailable for OPA, and 

therefore does not interfere with detection. While GSH analysis with this fluorescent marker is 

widely used by biochemists to asses and image redox potential within a cell, it has not been 

applied for the study of acellular particle oxidative properties as described here (Hiroi et al., 

2005; Kandar et al., 2013; Krzyżanowski et al., 2014).  OPA has also been used in the 

determination of trace ammonium concentration in seawater by adding sulfite to the OPA 

reagent before reaction with the sample (Hu et al., 2014). Testing of the optimized method was 

performed on NIST Diesel PM, GfG, and XE2 soot samples as well as silica particles for a 

control.   

EXPERIMENTAL SECTION 

Reagents and Equipment 

 GSH was obtained as L-glutathione ≥ 98% from Sigma Aldrich and OPA from Tokyo 

Chemical Industry, Co. A 10.0 mM stock solution of GSH was prepared daily in 1x phosphate 

buffered saline solution (PBS) by diluting a pH 7.4 10x PBS stock buffer (55.34 g NaCl, 1.5 g 

KH2PO4, and 9 g Na2HPO4 in 500 mL 18.2 Megohm-cm water). A 1.0% (w/v) OPA solution 

was made daily by adding 0.10 g of OPA into 10.0 mL MeOH, resulting in a stock solution of 

74.6 mM OPA. All experiments were carried out at room temperature within a few hours of 

solution preparation.  Test particles consisted of NIST Diesel PM 2975 (NIST), Palas GfG 

(GfG), Printex XE2B (XE2), and SiO2 (silica). The NIST sample was obtained from National 

Institute of Standards and Technology, XE2 from Orion, silica from Sigma-Aldrich (Silica Gel, 
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TCL high-purity grade without binder), and GfG was generated with a Palas GfG 1000 

instrument through spark-discharge between two graphite rods under argon gas.  XE2 and GfG 

are used as surrogate for soot particles and in conjunction with the NIST soot samples denoted as 

CNPs. Samples were filtered with 0.2 µm Watson™ Puradisc™ 25 mm syringe filters before 

analysis in a 1-cm quartz cuvette on the FluoroMax4 fluorometer from Jobin Yvon.   

RESULTS AND DISCUSSION 

Selection of Optimal Excitation and Emission Wavelengths and Reaction Time 

The absorption 

spectrum of a 100.0 

µM GSH (in 1x 

PBS) in Figure 6a 

shows that OPA 

bound to GSH has 

two close maxima at 

340 and 355 nm that 

are absent in the 

OPA (in 1x PBS) 

reactant solution.  

Since the 

fluorescence 

emission signal 

maximum at 420 

nm, as seen in Figure 6b, 
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was 4% higher 

using the excitation 

wavelength of 340 

nm compared to 355 

nm, 340 nm was 

chosen throughout 

the study (Figure 

6b).  These findings 

are consistent with literature values (Hissin and Hilf, 1976; Cohn and Lyle, 1966; Roušar et al., 

2012). Timing of the reaction of OPA with GSH was studied via UV-Vis absorbance and is 

shown in Figure 7. Absorbance reached a maximum after ten minutes and remained stable 

throughout the end of the measurement period of 80 minutes. This stability in fluorescence signal 

of the GSH-OPA adduct lends itself useful for batch analyses. 

Calibration Curve and Detection Limits 

 A representative calibration 

curve with standard solution 

concentrations of up to 100.0 µM 

GSH is shown in Figure 8. The 

relatively lower signal of the 250.0 

µM GSH standard is due to 

secondary absorption and is thus 

not included in the calibration 

curve.  Calibration standards vary 

y = -79.7x2 + 22408x + 11461
R² = 1.0
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Figure 8. Calibration curve of GSH (0-100 µM) with OPA on the FluoroMax4. 
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with an average relative standard deviation (RSD) of 4% RSD from day to day.  Using standard 

techniques, the signal detection and quantitation limits were determined to be 0.032 and 0.49 µM 

GSH, respectively.  

PM Oxidative Potential Experiment 

To measure the oxidative potential of PM, the concentration of GSH was determined as a 

function of time in suspensions of 100 µg PM (mL 100.0 µM GSH)-1.  This was accomplished 

by adding 0.0120 g of PM and 3 drops of methanol to 118.8 mL of 1x PBS in an amber vial 

containing a stir rod.  Before addition of 1.20 mL of 10.0 mM GSH (in 1x PBS), to make a final 

concentration of 100.0 µM GSH, the solution was sonicated for 2 minutes and then stirred on a 

stir plate on medium speed for 25 minutes.  These parameters were determined and proved to 

ensure relatively stable particle dispersions for the duration of the experiment.  An identically 

prepared control solution of GSH in 1x PBS without particles was run in parallel. Immediately 

after addition of GSH, and at set time intervals thereafter, a 3.0 mL aliquot was removed from 

the solution, pipetted directly into a syringe with a 0.2 µm Watson™ Puradisc™ 25 mm syringe 

filter tip and pushed through the filter directly into an amber vial containing 150.0 µL of 

1.0%(w/v) OPA prepared in MeOH, resulting in a 3.7 mM OPA concentration.  The vial was 
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capped, the solution was mixed through inversion and the sample was left to react for ten 

minutes before analysis on the fluorometer in a 1-cm quartz cuvette.  Fluorescence photons in 

counts per second (CPS) were recorded at the emission wavelength of 420 nm and excitation at 

340 nm, with slit widths set to 1 nm. CPS were converted to µm GSH using the calibration 

curve. Average concentrations of three replicate runs with one standard deviation error bars are 

shown in Figure 9 for the silica and three CNP samples.  Respective single control runs are 

shown in dashed lines.  CNPs seemed to oxidize GSH to significantly varying degrees, with XE2 

displaying the highest and NIST the lowest reactive.  GSH concentrations in the silica control 

and the controls without particles remained essentially unchanged over the course of the 90-

minute experiment.   

Results show high reproducibility between replicate runs with an average RSD of 4.2%.  

Any potential interfering species that affect the OPA marker directly would stem from a soluble 

Figure 9. GSH exposed to untreated particles. Concentration of GSH over time of exposure to various samples (solid lines) 
as well as their respective controls (dashed lines). If error bars are not visible, it is due to the size of the data point symbol. 
Controls were only analyzed in one replicate for each sample. 
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ammonium and sulfite/thiol pair, with the one at the lowest concentration controlling the 

magnitude of enhanced fluorescent signal.  Typical ammonium concentrations range from 1 to 

10% by PM mass depending on size fraction and sampling location (Tsai et al., 2012; Yang et 

al., 2011).  This would translate into a potential concentration of about 50-500 µM ammonium in 

this experimental setup.  This would show as a false positive signal only in the co-presence of 

reduced sulfur (Benson and Hare, 1975). Since sulfite and thiols are absent from PM, this 

interference is unlikely in the current system (EPA, 2012). 

A plot of ln[GSH] vs. time in for each of the CNPs reveal pseudo first order reactions 

with respect to GSH, forming linear relationships with R2 values for CNP experiments ranging 

from 0.76 to 1.0 (Figure 10). The control does not exhibit first order decomposition, and has 

therefore been left out of the kinetics plot.   

Figure 10. First order kinetics plots for GfG and XE2 reacting with GSH over a period of ninety minutes, displaying 
first order kinetics with respect to GSH.  
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The pseudo first order rate law indicates that the GSH oxidation occurs by first order 

mechnism(s) and that for the duration of the experiment there is an effective constant 

concentration of the oxidizing component in the CNPs (Eqn. 1).  

Rate = k’[GSH]1   Eqn. 1  

Slower reacting PM (e.g. NIST) for which GSH was not consumed within 90-minutes continued 

to show first order reaction rates through the end of the 3-hour experiment.  

 This indicates that GSH is likely consumed in one oxidation process driven by PM rather 

than by two independent processes. Such as has been suggested for instance in reaction with a 

primary oxidant or a secondarily produced ROS (Ayres et al., 2008).  If the reaction were driven 

by secondarily produced ROS that depended on GSH as an electron donor, the reaction rate 

would not be first order.  In addition, the pseudo first order reaction rate suggests that the 

carbonaceous matter component that leads to the oxidation of GSH remains constant throughout 

the experiment. This 

allows for the 

determination of a 

pseudo first order rate 

constant that is 

independent of GSH concentrations and that can be used for comparative purposes in the study 

of the reactivity of PM in the context of cellular toxicity. Pseudo first order rate constants (k’), 

were determined from the absolute value of the least squares fits of ln [GSH] vs. time. All 

replicate measurements were included for a given sample (Table 1). Half lives (t1/2= ln 2/k’) for 

GSH in the presence of the various black carbons and silica as well as in the controls are 

summarized in Table 1.  

Table 1. Kinetic rate constants (k’) and half-lives (t1/2) for samples reacting with GSH 
(GfG, NIST, XE2) and their R2 value for linear fit. 

Sample ID k’ (min-1) S.D.  R2 t1/2 (hr) S.D. 

GfG 0.0180 0.0008 1.0 0.64 0.03 

XE2 0.0417 0.0009 1.0 0.277 0.006 

NIST 0.0006 0.0001 0.76 18 3 
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CONCLUSION  

A relatively simple fluorometric GSH assay was optimized for studying the oxidative 

potential of PM in PBS with an emphasis on CNPs, including diesel soot. The reaction of GSH 

with OPA is specific in this system, with signal detection and quantitation limits of 0.032 and 

0.49 µM GSH, respectively.  The dynamic calibration range extended to 100 µM GSH, which 

was the maximum GSH concentration added to PM slurries.  Highly reproducible triplicate runs 

of all PM samples resulted in pseudo first order reaction rates with respect to GSH consumption 

with average relative standard deviations of 4.2%RSD. This method provides a simple assay to 

gather robust complementary information that can help shed light on the particle characteristics 

that lead to the oxidation of the GSH, a key player in cellular health.     
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CHAPTER III 

OXIDATIVE CAPACITY AND PHYSICOCHEMICAL  

PROPERTIES OF SOOT PARTICLES 

ABSTRACT 

Carbon nanoparticles (CNP), a component of atmospheric fine particulate matter (PM2.5) 

emitted during the combustion of fossil and biomass fuels are known to adversely affect human 

health.  While mechanisms by which CNPs cause damage to cells are thought to be driven by the 

generation of reactive oxygen species (ROS), specific particle characteristics responsible for the 

detrimental effect are not well understood.  In this research project, seven different CNPs, 

ranging from standard soot to graphene, were investigated in biologically relevant medium to 

shed light on chemical mechanisms that lead to depletion of the biologically relevant antioxidant, 

glutathione (GSH). Physicochemical properties of CNP particles were studied to determine 

morphology, surface area, particle diameter, trace metal concentration, and volatile organic 

carbon content. Results show that with the exception for one high-metal content CNP, particle 

reactivity did not correlate clearly with any one specific particle characteristic.  However, heat 

treating CNPs up to 700 oC in N2, which removes volatile organic molecules, led to increased 

reactivity across the board. The exposed carbonaceous material is more reactive toward GSH 

oxidation, indicating inhibition of reactivity by volatile organic substances. These results have 

significant implications to describe what physical and chemical properties may drive particle 

toxicity. 
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INTRODUCTION 

Carbon nanoparticles (CNP), a component of ambient fine particulate matter (PM2.5) and 

in particular soot, consists of linked nanometer sized carbonaceous spheres that stem primarily 

from the incomplete combustion of organic matter such as fossil and biomass fuels. CNP has 

been associated with adverse health effects by affecting respiratory and cardiovascular systems; 

as well as with negative impacts on global climate by absorbing solar radiation, and influencing 

clouds, snow, and ice melt (Bell et al., 2009; Bond et al., 2005; Jacobson et al., 2010; Niranjan 

et al., 2017). CNP consist of a combination of elemental carbon (EC), organic carbon (OC), and 

various trace metals. EC, OC, and transition metals have been associated with the toxicity of soot 

particles. Polycyclic aromatic compounds (PAHs) have also been found to have a positive 

correlation with particle reactivity. However, in a number of studies, OC has also been found to 

have negative association with toxicity of particles in some studies (Long et al., 2013; Niranjan 

et al., 2017; Rappazzo et al., 2015). Transition metals, iron and copper in particular, as well as 

quinones, including anthraquinone, are thought to act as catalysts in the production of reactive 

oxygen species (ROS) that cause oxidative stress and ultimately leads to cell death (Faiola et al., 

2011). ROS include superoxide radical (•O2-), hydrogen peroxide (H2O2), hydroperoxyl radical 

(HO2•), and hydroxyl radical (•OH). In addition, recent studies have shown that the EC content 

of PM may play a major role in the toxicity of soot particles (Bell et al., 2009; Cho et al., 2005; 

Peng et al., 2009). The interaction of the various particle characteristics with cellular 

antioxidants and ROS remain elusive, however. Here we have chosen to utilize glutathione 

(GSH), a biologically relevant antioxidant to assess the oxidative potential of PM in a well-

characterized system containing several different CNPs. 
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Seven different CNPs, with highly varying particle characteristics, were chosen to further 

our understanding of the mechanisms that control biological oxidative properties.  These 

particles included one standard diesel soot, three manufactured carbon blacks (CB), one model 

soot generated in lab through spark discharge (GfG), and two EC endmembers, graphite and 

graphene.  Samples were also heat-treated in N2 atmosphere to further investigate the role of 

volatile organic carbon reactivity. Six different types of CNP containing model particles, and 

their heat-treated counterparts, were tested for oxidative GSH capacity. All particles were 

physicochemically characterized for aqueous surface area and morphology, total and soluble 

trace metal composition, and volatile organic carbon content. 

Toxicity of soot samples has been associated with their nanometer size, allowing them to 

reach far into the lungs and penetrate membranes, and provide copious surface area for reactions 

to occur. Thus, determining particle size and surface area within the aqueous system, and not 

only in a dry environment, is essential.  This was achieved using a laser particle size analyzer. 

Further morphological characterization of particles was performed with scanning electron 

microscope (SEM). In addition, elemental characterization was accomplished with electron 

dispersive detection (EDS) and inductively coupled plasma mass spectrometry (ICP-MS).  

Elemental characterization is important because transition metals such as iron and copper are 

thought to act as catalysts in the reaction of soot with a nucleophile to produce ROS through 

Fenton chemistry. The Fenton reaction (Eqn. 7) describes the generation of ROS via the 

oxidation of Fe(II) by hydrogen peroxide (Buda et al., 2003).  

Fe2+(aq) + H2O2 (aq)  Fe3+ (aq) + •OH (aq) + OH- (aq)  Eqn. 7 

OC may contain PAHs and quinones (Samara et al., 2014). EC is derived directly from 

biomass and fossil fuel burning and is often used interchangeably with soot (Long et al., 2013). 
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The bulk material of CNPs is made up of elemental carbon (EC) and organic carbon (OC), both 

of which have been implicated in particle toxicity, EC by providing electrons to O2, forming 

ROS, and OC due to toxic PAHs and quinones. Here, we qualitatively determine OC in CNP 

samples by use of thermal gravimetric analysis (TGA), where samples are heated while 

recording the loss of mass over time. This gives an understanding of relative amounts of volatile 

OC and residual EC contents.  

In this study, physicochemical properties of a variety of CNP are investigated and 

correlated with the oxidative capacity of CNP toward GSH to shed light on the detailed 

mechanisms behind particle toxicity.  

MATERIALS AND METHODS 

Particulate Matter (PM) 

PM consisted mainly of CNPs, including NIST Diesel PM 2975 (NIST), Palas GfG 

(GfG), Printex XE2B (XE2), Flammruss 101 (F101), Printex 90 (P90), graphite (GRI), and 

graphene (GRE). SiO2 (silica) was used as a control. The NIST Diesel PM sample was obtained 

from the National Institute of Standards and Technology (NIST); XE2, P90 and F101 from 

Orion; and graphite and graphene from Alfa Aesar. Silica was from Sigma-Aldrich (Silica Gel, 

TCL high-purity grade without binder). GfG was generated with a Palas GfG 1000 instrument 

through spark-discharge between two graphite rods under argon gas. XE2, P90, GfG, and F101 

act as surrogates for soot particles. Graphite and graphene are included as end points for structure 

and purity.  
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Particle Oxidative Potential 

The oxidative capacity of particles was determined by way of the oxidation of GSH 

following procedures in Troth and Johansen (2018). In brief, PM slurries of 100 µg per mL of 

phosphate buffered saline (PBS, pH 7.4) were spiked with 10 mM GSH in PBS to make a final 

concentration of 100 µM GSH. After inversion, a 3-mL aliquot of solution was immediately 

extracted by pipette and filtered with 0.2 µm Watson™ Puradisc™ 25 mm syringe filters, then 

reacted with 150 µL 1.0%(w/v) o-phthalaldehyde (OPA) for at least ten minutes at room 

temperature before analysis in a 1-cm quartz cuvette on a fluorometer (Jobin Yvon FluoroMax4). 

The excitation wavelength was 340 nm and the emission wavelength was 420 nm with slit 

widths of 1 nm. Collection and analysis of sample aliquots was then repeated at set time intervals 

for a total of up to three hours. Samples were analyzed both untreated and after heat-treating at 

700 °C in a furnace (MTI OTF-1200x) under N2 gas. All experiments were performed in 

triplicate alongside a GSH control in the absence of CNP. Psuedo first order rate constants (k’) 

were used to determine the half-life (t1/2 = ln2/k) of GSH in the presence of CNP (Troth and 

Johansen, 2018). 

Aqueous Surface Area 

 The surface area of particles during reaction with GSH was determined with a laser 

particle size analyzer (Malvern Mastersizer 3000). The reaction was carried out analogous to the 

fluorometric GSH assay with particles in PBS and GSH spiked in to a final concentration of 100 

µM. It was established that sonication of the CNP and PBS slurry for two minutes followed by 

stirring for 25 minutes resulted in relatively stable suspensions for the duration of the 
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experiments.  Average surface areas and standard deviations throughout the experimental time 

frame were recorded and provide an estimate of variate in surface area.  

Morphology and Elemental Analysis 

 CNP samples were imaged on a scanning electron microscope (SEM, FEI Quanta FEG 

250) to observe their morphologies. Untreated samples were imaged using concentric backscatter 

(CBS) and secondary electron hybrid imaging. Heat-treated samples were imaged using 

secondary electron imaging. The accelerating voltage was 5.0 kV. Samples were analyzed with 

an energy-dispersive (EDS) detector on the SEM for elemental analysis with an accelerating 

voltage of 20.0 kV.  

Trace Metal Content 

 Total and soluble trace metal content of CNP samples were determined with ICP-MS 

(Agilent 8900 ICP-QQQ). Digestion was performed with 0.10 mg mL-1 of each CNP sample in a 

solution of 75% acetone and 25% 1 N nitric acid following procedures in Herner et al. (2006). 

For soluble trace metals, samples were leached as in the oxidative potential determination 

methods, filtered, and acidified to 1% HNO3 before analysis on ICP-MS.  

Volatile Organic Carbon Content 

 Investigation of volatile organic carbon content was completed by thermal gravimetric 

analysis (TGA, Netzsch STA 449 F5). Samples were heated under N2 with a ramping rate of 5 

˚C/min up to 850 ˚C, then held at a constant temperature for 20-minutes, followed by the 

temperature ramped down at 5 ˚C/min.  
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Graphene and Carbon Microstructure 

 The graphite-like microstructure and their defects were studied via Raman 

microspectroscopy (ReniShaw InVia Raman Microscope). Samples were analyzed following 

methods published elsewhere (Ess et al., 2016; Ferreria et al., 2010; Gaffney et al., 2015; 

Sadezky et al., 2005). The instrument was equipped with a Leica DMIRBE inverted optical 

microscope and a charge couple device (CCD) detector. In brief, samples were analyzed with a 

laser excitation source at 514 nm at approximately 0.1 mW through a 50x Leica inverted optical 

microscope and the Raman scattered light from the sample was collected by the same objective 

and analyzed through the inVia Spectrometer, and focused on a CCD camera.  

RESULTS AND DISCUSSION  

Oxidative Capacity of Particles 

 Oxidative capacity as determined with the GSH assay show that reactivity was greatest 

for untreated XE2, P90, and graphene (GRE), while graphite (GRI) was the least reactive (Figure 

11a).  Heat-treatment of samples (700 ºC, N2) generally increased reactivity toward GSH, 

frequently consuming nearly all of the antioxidant in 60-minutes (Figure 11b), in particular for 

the soot generated from a diesel forklift (NIST).  

 Evaluation of the kinetics of the reaction of CNP with GSH revealed first order reaction 

rates with regard to GSH, as seen by the linear least-squares-fits of ln[GSH] vs. time plots in 

Figure 12 (Eqn. 8). Pseudo first order reaction rate constants (k’, min-1) and standard deviations 

were determined for each sample from the slopes through all replicate measures.   

Rate = k’[GSH]      Eqn. 8 
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The pseudo first order rate constants with their standard deviations and R2 values for the linear 

regression lines are summarized in Table 2. Generally, R2 values range from 0.62 to 1.0 for 

untreated CNPs and 0.69 to 0.99 for heat-treated CNPs. Exceptions are untreated F101 with an 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 10 20 30 40 50 60 70 80 90 100

[G
SH

] (
µM

)

Time (min)

Control

F101

NIST

P90

GfG

XE2

GRE

GRI

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

[G
SH

] (
µM

)

Time (min)

Control

Silica

F101

NIST

P90

GfG

XE2

GRE

GRI

Figure 11. GSH exposed to (A) untreated particles and (B) heat-treated particles for 90 and 60-minutes. Error bars 
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R2 value of 0.43, and heat-treated graphite with an R2 value of 0.01. GSH consumption by a first 

order reaction is indicative of (i) a surplus of active sites on the CNP surfaces and (ii) the 
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Figure 12. First order kinetics plots for (A) untreated and (B) heat-treated particles in the reaction with 
GSH. *R2 value for GRI indicates forced first order fit. 
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presence of one reaction mechanism (Troth and Johansen, 2018). The control and silica, and 

graphite samples showed zeroth order kinetics with no significant change in GSH concentration 

over time, however for comparative purposes, a first order fit was forced to the graphite data to 

retain information about its slow reactivity. An R2 value of 0.01 indicates the poor fit, however, 

calculation of k’ and its standard deviation resulted in a k’ value of 0.00102 with %RSD equal to 

8.8% for untreated graphite. 

Table 2. Pseudo first order rate constants and half-lives for GSH oxidation in the presence of PM.  
 

  Heat-treated  

Sample ID k’ (min-1) S.D. R2 t1/2 (hr) S.D. k’ (min-1) S.D. R2 t1/2 (hr) S.D. 

F101 0.0025 0.0007 0.43 5 1 0.0102 0.0008 0.93 1.13 0.09 

NIST 0.0006 0.0001 0.62 18 3 0.048 0.002 0.99 0.238 0.008 

P90 0.037 0.001 0.99 0.315 0.008 0.044 0.003 0.93 0.27 0.02 

GfG 0.0180 0.0008 0.97 0.64 0.03 0.05 0.01 0.69 0.21 0.04 

XE2 0.0417 0.0009 1.0 0.277 0.006 0.061 0.006 0.87 0.19 0.02 

GRE 0.0174 0.0009 0.97 0.67 0.03 0.043 0.002 0.97 0.27 0.01 

GRI* 0.00102 0.00009 0.88 11 1 0.0002 0.0007 0.01 48 142 

*GRI did not follow first order kinetics, but was calculated in this way for comparison, causing a large S.D. 

Figure 13. Rate constants for untreated and heat-treated particles from pseudo first order consumption of GSH. 
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Half-lives were determined by t1/2 = ln 2/k’ and are listed in Table 2. For visualization of 

the impact of heat-treatment on particle reactivity, pseudo first order rate constants for all 

samples are graphed in Figure 13.  The magnitude of k’ varies across samples with varying 

physical and chemical properties and significant 

difference is observed between rate constants for 

untreated samples and their heat-treated 

counterparts, with the exception of graphite.  

 Surface Area and Morphology 

 Surface areas of CNP samples in GSH 

containing PBS were determined under analogous 

conditions as in the fluorometer GSH assay. 

Average specific aqueous surface area and standard deviations for each sample are listed in 

Table 3 and shows significant variation. Standard deviations of surface areas are representative 

of the change over a 50-minute time period. This variation does not seem to affect particle 

reactivity towards GSH, however, as the surface area over time during the reaction between 

CNPs and GSH was not found to correlate with k’ values, indicating that surface area does not 

play a major role in these experiments. 

Morphologies were qualitatively compared through SEM imaging for each CNP both 

before and after heat treatment (Appendix A). Some samples are distinct while some have 

similar features. For instance, all combustion-derived particles, i.e. F101, XE2, NIST, and P90 

appear as spherical linked aggregates. The relative diameter of spheres decrease in size from 

F101 having approximately 350-450 nm to approximately 50 nm in the order listed. Gfg appears 

as large chunks of graphite, which may be due to the production by spark between two graphite 

Sample ID Specific Surface 
Area (m2/kg) 

S.D. 

F101 9 x102 5 x102 

NIST 5.9 x102 0.2 x102 

P90 2.6 x102 0.1 x102 

GfG 2.0 x103 0.7 x102 

XE2 6 x103 1 x102 

GRE 7 x102 2 x102 

GRI 3 x102 1 x102 

Silica 7.3 x102 N/A 

Table 3. Specific surface areas of samples during 
their reaction with GSH for 50-minutes, 
determined on the Malvern Mastersizer 3000. 
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rods. Graphite is unique in that the particles are composed of sheets of graphite with a variety of 

lengths from 1 to 5 nm with rigid edges. Graphene appears as a disarray of sheets ≤1 nm in size. 

Heat treatment does not seem to result in visible morphological changes. Images for untreated 

and heat-treated samples may appear slightly varied as they were analyzed in two separate 

batches with two different imaging techniques at distinct magnifications. 

Trace Metal Content 

 Trace metals such as iron, copper, and manganese can act as catalysts in redox reactions 

of PM with antioxidants (Brook et al., 2010). For this reason, total and soluble trace metal 

content of the CNP particles was determined via acid digestion and leachates in PBS, 

respectively. The determination of total trace metals by ICP-MS acid digestion agreed with 

elemental analysis completed on the SEM with the EDS detector (Appendix B).  XE2 is a 

Figure 14. Overlaid EDS spectra for XE2 at a decreased maximum y-axis for comparison of all elements 
excluding carbon, whereas carbon generates a large peak as it is in the most abundance of the sample. 
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conductive CNP to which metals 

are intentionally added. XE2 was 

found to have vanadium, iron, 

sulfur, iron, and nickel by 

elemental analysis, which agreed 

with ICP-MS acid digestion data 

(Figure 14). Vanadium is produced 

from a source of heavy fuel 

combustion. Relative amounts of 

elements in CNP samples can be 

determined by the obtained EDS spectra, where it is clear there is a large abundance of carbon, 

also containing other trace elements. 

In terms of soluble trace metals, a significant portion, e.g. 50% for Fe, comes from the 

background itself.  For total metals analyzed via strong acid digestion, Figure 15 shows a 

positive correlation between transition metal content (Ti through Zn) and the surface area of 

particles. This indicates that trace metals are adsorbed to the surface of the CNP particles, where 

they may be able to participate in redox cycling, and thus affect GSH oxidation.  

 Volatile Organic Carbon Content  

Thermal gravimetric analysis (TGA) was carried out to study the mass lost from CNP 

while being heated to 850 ºC under N2 in order to characterize the contribution of volatile 

organic molecules. Profiles in Figure 16 show the mass percent of samples as they are heated. 

Samples have unique profiles, where some show a gradual, near-linear decrease in mass and 

others display sudden decreases in mass percent, in particular at 600 ºC. Temperature profiles are 

Figure 15. Sum of Total Trace Metals vs Surface Area. Transition 
metals Ti-Zn were included in the sum of the trace metals as they may 
participate in redox activity. 
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partitioned into three phases following standard protocol (Bredin et al., 2011). In phase I, from 

0-100 ºC, highly volatile molecules, including H2O and low molecular weight organic 

compounds, are evaporated from CNP samples. Phase II ranges from 100-450 ºC, where medium 

volatile molecules are lost. These may include organic molecules such hydro/polycyclic aromatic  

hydrocarbons (PAHs), and their respective 

quinones, which have been tied to the 

reactivity of PM and soot (Antiñolo et al., 2015). 

Average PAH boiling points are around 340 ºC, 

with anthroquinone evaporates at 380 ºC, 

naphthalene, anthracene, and benz(a)anthracene at 

218 ºC, 340 ºC, and 438 ºC, respectively. Phase III 

includes the remaining range up to 850 ºC. Possible higher molecular weight molecules could 

 
Mass Loss (Δm, ºC) 

Sample ID 100-25 450-100 700-450 
F101 2.8% 2.3% 3.4% 
NIST 6.0% 9.6% 11 % 
P90 3.3% 4.4% 20% 
GfG 15% 14 % 30% 
XE2 1.9% 3.5% 8.8% 
GRE 3.9% 3.1% 7.0% 
GRI 4.3% 0.58% 4.4% 

Figure 16. Mass percent of CNP samples as the temperature increases to 850 °C.  

Table 4. Mass loss (Δm) of CNP at increasing 
temperatures, where 100-25 C represents Phase 
I, 450-100 C represents Phase II, and 700-450 C 
represents phase III. 
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evaporate early in this range, such as benzopyrene, which evaporates at 495 ºC. At higher 

temperatures, such as 700 ºC, pyrolysis of soot is expected (Bredin et al., 2011). 

Plotting the loss of mass (Δm) 

for each sample at 100, 450, and 700 

ºC gives insight into the chemical 

composition of these samples (Figure 

18). It can be seen that the blue sector 

of each line shows relative amounts of 

highly volatile molecules, where GfG 

has the greatest amount of material lost 

in only this region compared to 

other samples. Next, NIST has the 

largest component of low and 

medium volatile substances. This is 

significant as NIST reactivity 

increases the most significantly 

following heat treatment. The 

impact of PAHs on PM toxicity has 

been thought to enhance particle reactivity; however, recent studies are finding that PAHs are not 

significant, and that rather elemental carbon (EC) correlates with particle toxicity (Bell et al., 

2009; Cho et al., 2005; Peng et al., 2009). Our data supports these findings, as seen in Figure 17. 

There is a correlation between the change in pseudo first order rate constant after heat treatment 

and the loss of PAHs (Phase II mass loss).  

Figure 17. Correlation between mass loss during Phase II and the 
change in rate constant, k', after heat treatment. 

0% 10% 20% 30% 40% 50% 60% 70%

F101

NIST

P90

GfG

XE2

GRE

GRI

Mass Loss

100 C

450 C

700 C

Figure 18. CNP mass loss at increasing temperatures. 

R² = 0.64

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0% 2% 4% 6% 8% 10% 12% 14% 16%
Δk

' 

Mass Loss During Phase II (Δm450-100)



37 
 

Heat treatment of samples may also alter the microstructure and hybridization of C-C 

bonding, increasing elemental carbon-like structure with sp2 hybridization. Graphene has been 

shown to have high transport of electrons due to sp2 hybridization and arrangement of 

monolayers (Ferreira et al., 2010). This would allow for the transfer of electrons in a redox 

reaction to occur with less energy required, making it a more favorable reaction, and would 

explain the observed increase in reactivity for CNPs. The EC component may be a driving force 

behind the toxicity of CNP particles to be investigated. Hybridization of carbon-carbon bonds 

have potential to influence the reactivity of particles and can be investigated by Raman 

microspectroscopy (Müller and Schögl, 2006). 

Multilinear regression analysis was performed on the data set and found no significant 

correlation between transition metals and reactivity, or surface area and reactivity, but surface 

area and transition metals did have a correlation, as is supported by Figure 15. Fe and Cu are the 

transition metals that are most likely to participate in redox reactions through Fenton chemistry, 

but were not found to have a direct correlation between the sum of Fe and Cu in samples and 

their respective rate constants. While this does not eliminate the possibility of transition metals 

assisting in redox reactions, it cannot be proven as the driving force behind particle toxicity or 

oxidative capacity. When performing multilinear regression analysis, it was found that the 

pseudo first order rate constant, k’, for heat-treated samples could be modeled with the mass loss 

after being heated to 700 ˚C and the sum of transition metals (Ti-Zn) as co-variables. This model 

had an R2 value of 0.708. After standardizing the coefficients for these two variables, it was 

determined that both the sum of transition metals and the mass lost after being heat-treated has 

approximately equal contribution to the rate constant (Table 5). Other models were tested and 

sensitivity testing was performed. The model in Table 5 and Figure 19 describe the given data set 
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best with the largest R2 value, and smallest constant. Having a large constant indicates that the 

model is missing a parameter to describe the data set. Therefore, optimizing for the largest R2 

and smallest constant provides the most accurate model.  

Table 5. Correlation for multilinear regression analysis model describing k' for heat-treated samples. 
 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 95.0% Confidence 
Interval for B  

B Std. 
Error 

Beta 
  

Lower 
Bound 

Upper 
Bound 

(Constant) 0.012386 0.010303 
 

1.202154 0.295603 -0.01622 0.040992 

700 C 0.09533 0.045396 0.568214 2.099969 0.103657 -0.03071 0.22137 
Transition 

Metals 
7.36E-06 3.41E-06 0.583863 2.157802 0.097128 -2.1E-06 1.68E-05 
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39 
 

The standardized coefficients and constant create an equation to predict values (Eqn. 9). 

k’H,calc = 0.09533 [Δm700-450] + 7.36x10-6 [Transition Metals (Ti-Zn)] + 0.0123 Eqn. 9 

Calculated k’H,calc values can be compared to experimental k’H  values in Figure 19, 

where the components determined by the model are represented in stacked lines, summing up to 

k’H,calc. The experimental k’ values and their standard deviations are represented by black 

symbols. It can be observed the graphite is not well represented by this model, as it is the only 

sample that had a decrease in its rate constant. However, when graphite is removed, the R2 value 

of the model decreases. The constant (gray) is high and is affecting the representation of 

samples, indicating that another variable needs to be considered. The appropriate variable to 

include in the model is likely the elemental carbon (EC) component, and could change the 

discrepancy in graphene’s calculated versus experimental pseudo first order rate constants as 

well as the underestimation of graphene and NIST samples.   

CONCLUSION 

 Oxidative capacity for one standard diesel sample and six other surrogate CNP samples 

was determined by GSH consumption and showed that soot with varying physicochemical 

properties have unique oxidative potentials, as described by their pseudo first order rate 

constants. Physical and chemical properties were correlated with rate constants for consumption 

of GSH by CNP. Surface area correlated with the pseudo first order rate constant for untreated 

samples with an R2 value of 0.622, but after removal of sample XE2 from the correlation plot, it 

was found there is no correlation between surface area and k’. It was found that trace metals may 

play a significant role when present at high concentrations, and that midsize organic molecules 

with boiling points up to 450 ˚C may be inhibiting PM reactivity. The combination of these 
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physical and chemical properties may be responsible for overall reactivity, as was described by 

the multilinear analysis regression model.  EC and its structure seems to be the driving force 

behind particle toxicity. This is to be further investigated and correlated with the current data set 

in future work.  

 Future work will further investigate the role of iron and copper in particle toxicity toward 

the biologically relevant antioxidant, GSH. Detection of ROS species may also be investigated as 

further proof of an oxidation pathway for consumption of GSH by CNP. Investigation of CNP 

samples by Raman microspectroscopy before and after heat-treatment will be completed in 

future work to determine the change in microstructure and correlation between the EC 

component and pseudo first order rate constants.  
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CHAPTER V 

CONCLUSION 

 A relatively simple fluorometric GSH assay was optimized for studying the 

oxidative potential of PM in PBS with an emphasis on carbonaceous nanoparticles, including 

diesel soot. However, this method is transferrable to PM2.5 analysis. The reaction of GSH with 

OPA is specific in this system, with signal detection and quantitation limits of 0.032 and 0.49 

µM GSH, respectively.  The dynamic calibration range extended to 100 µM GSH, which was the 

maximum GSH concentration added to PM slurries.  Highly reproducible triplicate runs of all 

PM samples resulted in pseudo first order reaction rates with respect to GSH consumption. This 

method provides a simple assay to gather robust complementary information that can help shed 

light on the particle characteristics that lead to the oxidation of the GSH, a key player in cellular 

health. 

Oxidative capacity for one standard diesel sample and six other surrogate CNP samples 

was determined by GSH consumption and showed that soot with varying physicochemical 

properties have unique oxidative potentials, as described by their pseudo first order rate 

constants. Physical and chemical properties were correlated with rate constants for consumption 

of GSH by CNP and it was found that there is no direct correlation between pseudo first order 

rate constants and any one physicochemical property. Consumption rates of GSH increased 

significantly after CNP samples were heat-treated at 700 ºC under N2. TGA analysis provided 

insight on chemical composition of soot particles and leads to further investigation of the 

microstructures of particles to determine their elemental carbon (EC) make-up by Raman 

microspectroscopy. Multilinear regression analysis modeled pseudo first order rate constant, k’, 

after heat-treatment with both the sum of total transition metals (Ti-Zn) and the loss in mass after 
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heat treating to 700 ˚C as variables, resulting in an R2 value of 0.708. This confirms that the  

PAHs present inhibit the reactivity of CNP toward GSH and that EC may be the driving force 

behind particle toxicity. This is to be further investigated by Raman microspectroscopy to study 

the change in microstructure after heat-treatment and then correlated with the current data set. 

Ultimately, the understanding of particle toxicity was contributed to by the findings of this work 

as research continues to uncover what drives CNP toxicity.     
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APPENDIX A – MORPHOLOGIES 

 

Figure 21 Graphite untreated (top) and heat-treated (bottom) 
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Figure 22 XE2 untreated (top) and heat-treated (bottom) 
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Figure 23 GfG untreated (left) and heat-treated (right) 
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Figure 24 NIST untreated (top) and heat-treated (bottom) 
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Figure 25 Graphene untreated (top) and heat-treated (bottom) 
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Figure 26 P90 untreated (top) and heat-treated (bottom) 
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Figure 27 F101 untreated (top) and heat-treated (bottom) 
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APPENDIX B – ELEMENTAL ANALYSIS 

The following EDS spectra determine elements present in CNP samples. All samples show a dominating 

carbon peak, as expected. A few samples show trace metals consistent with ICP-MS findings, such as 

vanadium in XE2. Each set of spectra are labeled by a header with the sample ID. 

F101 

 

  



54 
 

NIST 

 

 

 

 

 



55 
 

GfG 

 

 

 

 

  



56 
 

XE2 

 

 

 

 

 

 



57 
 

P90 

 

 

 

 

 

 



58 
 

Graphite 

 

 

 

 

 



59 
 

Graphene 

 

 


	Determination of the Oxidative Capacity of Soot Toward GSH and Characterization of Soot Physicochemical Properties
	Recommended Citation

	Troth_Thesis_Title Page
	Troth_Thesis_Approval Signature Page
	Troth_Thesis_Abstract and Table of Contents
	Troth_Thesis_Intro and Lit Review_2018_4_30
	Troth_Thesis_CHAPTER II Page 7
	Troth_Thesis_Methods_Paper_2018_rev4_AJ_KT
	CHAPTER II
	FLUOROMETRIC GLUTATHIONE ASSAY FOR PARTICULATE MATTER
	OXIDATIVE CAPACITY DETERMINATION
	ABSTRACT
	Fine atmospheric particulate matter (PMR2.5R) emitted during the combustion of fossil and biomass fuels is known to adversely affect human health.  While the underlying mechanisms are thought to be driven by the generation of reactive oxygen species (...
	INTRODUCTION
	EXPERIMENTAL SECTION
	Reagents and Equipment
	RESULTS AND DISCUSSION
	Selection of Optimal Excitation and Emission Wavelengths and Reaction Time
	The absorption spectrum of a 100.0 µM GSH (in 1x PBS) in Figure 6a shows that OPA bound to GSH has two close maxima at 340 and 355 nm that are absent in the OPA (in 1x PBS) reactant solution.  Since the fluorescence emission signal maximum at 420 nm, ...
	Calibration Curve and Detection Limits
	A representative calibration curve with standard solution concentrations of up to 100.0 µM GSH is shown in Figure 8. The relatively lower signal of the 250.0 µM GSH standard is due to secondary absorption and is thus not included in the calibration c...
	PM Oxidative Potential Experiment
	To measure the oxidative potential of PM, the concentration of GSH was determined as a function of time in suspensions of 100 µg PM (mL 100.0 µM GSH)P-1P.  This was accomplished by adding 0.0120 g of PM and 3 drops of methanol to 118.8 mL of 1x PBS in...
	Results show high reproducibility between replicate runs with an average RSD of 4.2%.  Any potential interfering species that affect the OPA marker directly would stem from a soluble ammonium and sulfite/thiol pair, with the one at the lowest concentr...
	A plot of ln[GSH] vs. time in for each of the CNPs reveal pseudo first order reactions with respect to GSH, forming linear relationships with RP2P values for CNP experiments ranging from 0.76 to 1.0 (Figure 10). The control does not exhibit first orde...
	This indicates that GSH is likely consumed in one oxidation process driven by PM rather than by two independent processes. Such as has been suggested for instance in reaction with a primary oxidant or a secondarily produced ROS (Ayres et al., 2008). ...
	CONCLUSION

	Troth_Thesis_CHAPTER III Page 21
	Troth_Thesis_Soot's Oxidative Capacity and Physicochemical Properties
	Troth_Thesis_Conclusion_2018
	Troth_Thesis_APPENDICES

