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ABSTRACT 

 
 

ASSESSING THE USE OF TSUNAMI SIMULATIONS AS A TOOL TO PREDICT 

SOURCE MAGNITUDES AND LOCATIONS OF PALEOEARTHQUAKES IN 

CHILE 

by 

 

Rebeca Isabel Becerra 

 June 2018 

A long-term goal of paleotsunami studies is the ability to predict paleoearthquake 

parameters based on tsunami deposits found on land. Chile provides an exemplary 

location for testing methods of making these predictions because the historical record 

includes 41 major earthquakes as far back as 1562 AD, and there are many known 

paleotsunami deposits throughout the region. Using these records as a comparison tool, I 

evaluated simulated tsunami wave heights and inundation extent with the tsunami model 

GeoClaw for nine hypothetical tsunamigenic large earthquakes (Mw 8.6, 8.8, and 9.0) in 

south-central Chile with epicenters at -35.1º, -38.8º, and -42.9º. As expected, increasing 

earthquake magnitude produced larger tsunami wave heights, more sites with tsunami 

inundation, greater inundation extent, larger seafloor deformation, and generally earlier 

arrival times. Simulations showed tsunamis from Mw 9.0 earthquakes can inundate 

coastal plains from nearfield sources, but not exclusively as Mw 8.6 and Mw 8.8 scenarios 

can produce wave heights over 5 m at some sites. To infer earthquake properties, I 

analyzed sites to determine where differences between wave heights from variable 

earthquake magnitudes and source locations were magnified, defined as promising sites. 

At these promising sites, 60% of them showed tsunami wave heights averaging ≥0.5 m 
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between simulations, which is a substantial number of sites in the 1,000-km stretch of 

coast off south-central Chile. The number of sites sensitive to magnitude and/or source 

location amounted to more than half of the total, proving tangibility considering the 

quality of bathymetry available. These nine earthquakes showed that more extensive 

comparisons of possible paleoearthquake parameters with on-land observations is a 

promising approach to defining characteristics of historical and prehistoric events. 
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CHAPTER I 

INTRODUCTION  

 The coastal communities of Chile have one of the world’s highest probabilities of 

being struck by earthquakes and tsunamis (Cisternas et al., 2005; Okal, 2009; Arias et al., 

2017). In the 21st century alone, 79 earthquakes of Mw ≥7.0 have occurred in Chile 

(National Geophysical Data Center/World Data Service (NGDC/WDS, 2018b), including 

the largest (Mw 9.5) earthquake in recorded history in southern Chile in 1960 (Kanamori, 

1977; Barrientos and Ward, 1990; Cisternas et al., 2005; Moreno et al., 2009; Arias et al., 

2017). The 1960 earthquake ruptured 1,000 km, which triggered a destructive tsunami 

with waves up to 15 m (Kanamori, 1977; Heaton and Hartzell, 1987; Cisternas et al., 

2005). This earthquake and tsunami killed more than 2,000 people, affected about 2 

million people, and caused economic losses of more than 550 million dollars (Arias et al., 

2017). The 1575 earthquake closely resembles the 1960 earthquake in damaging effects 

and size; implying earthquakes of this magnitude have happened before in the past and 

are likely to occur again in the future. An earthquake of this size in the future could be 

even more destructive as Chile’s population grows.  

Since earthquakes and/or tsunamis frequently affect the coasts of Chile (Lay and 

Kanamori, 1981; Moreno et al., 2010; Ely et al., 2014; NGDC/WDS, 2018b), they are 

excellent case studies for simulating tsunamis. Tsunami simulations are useful for making 

modern day assessments of hazards on the coast (Titov and Gonzalez, 1997; Synolakis et 

al., 2008; Imamura, 2009; Liu, 2009), and one way to improve today’s earthquake and 
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tsunami hazard assessments along Chile’s coast is to include information from 

paleotsunami deposit datasets. 

The basis of paleotsunami research is primarily the identification, mapping, and 

dating of tsunami deposits found in coastal areas (Pinegina and Bourgeois, 2001; Rhodes 

et al., 2006; Ely et al., 2014). However, compared to modern post-tsunami surveys, where 

water inundation (or latitudinal extent of water inland; Satake, 2005), runup (the vertical 

measurement of water height above sea level at maximum inundation; Satake, 2005), and 

flow depth are easily made (Satake, 2005), similar detailed measurements do not exist for 

tsunamis occurring prior to the historical record (Cisternas et al., 2005; Bertrand et al., 

2008; Bilek, 2009). However, because paleotsunami deposits provide long-term 

chronologies and recurrence of earthquakes (Pinegina and Bourgeois, 2001; MacInnes et 

al., 2010; Peterson et al., 2011), information on the extent and size of an earthquake 

(Nanayama et al., 2003), reconstructions on prehistoric inundation distance (Fujiwara et 

al., 1999; Bondevik et al., 2005; Scheffers et al., 2008), and runup heights (Peterson et 

al., 2011), they are essential in improving hazard assessments. 

Since earthquakes contribute to the formation of tsunamis, the two are directly 

linked (Okal, 2009), thus, tsunami deposits are a good proxy for large earthquake activity 

(Pinegina and Bourgeois, 2001; Jankaew et al., 2008; Monecke et al., 2008; Goff et al., 

2010). Paleotsunami deposits retain details of the earthquake’s size and extent, and their 

distribution from inundation and runup estimates can inform us about rupture 

characteristics of an earthquake such as magnitude and slip (Imamura, 2009; Liu, 2009). 
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By understanding where large earthquakes are more likely to occur from paleotsunami 

studies, communities along a particular stretch of coast can begin to plan accordingly in 

case a big tsunami event does occur. 

Because GPS and seismologic instrumentation did not exist prior to the industrial 

revolution, the prehistoric earthquake record lacks details of rupture source parameters. 

For this reason, the specifics of past giant megathrust earthquakes have remained 

unknown for south-central Chile. However, recent studies show that geologic evidence of 

a tsunami can help constrain the latitudinal extent of the “near field” (the coastal zone 

parallel to the zone of rupture; MacInnes et al., 2010) in north-south trending coastlines, 

and potentially source rupture parameters (Geist, 2002; Martin et al., 2008; McCloskey et 

al., 2008; Goda et al., 2014; Mori et al., 2017).  

In particular, studies show that tsunami-deposit distribution can help determine 

earthquake magnitude distribution (Martin et al., 2008; Satake et al., 2008; MacInnes et 

al., 2010), and tsunami runup in the near field is sensitive to earthquake slip distribution 

(Geist, 2002; Hirata et al., 2003; Okal and Synolakis, 2004; Satake et al., 2008; Borrero 

et al., 2009). Correlating paleotsunami deposits and their distribution at sites along a 

coast can give estimates on the size of the tsunami, indicated by the location and 

elevation of interpreted tsunami deposits (Pinegina and Bourgeois, 2001), and therefore 

help resolve the earthquake magnitude and possibly slip distribution. Thus, by studying 

tsunami records, we can learn more about the rupture specifics of historical and 

prehistoric earthquakes (Martin et al., 2008; Satake et al., 2008). These tsunami records 
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include tsunami height, survey maps of tsunami inundation, and the distribution of 

tsunami deposits (MacInnes et al., 2010) that act as a catalog of information that I need to 

complete this project.  

 

Objectives 

The overall purpose of this project is to determine if unknown rupture parameters 

(i.e., magnitude and source location) from past megathrust earthquakes along the coast of 

Chile can be predicted with tsunami simulations guided by on-land observations (i.e., 

paleotsunami deposits or historic written records). Previous extensive field studies in 

Chile by many other paleoseismologists over several field seasons has allowed me to 

collect a dataset of the paleotsunami deposits associated with tsunamigenic earthquakes 

(Lomnitz, 2004; Cisternas et al., 2005; Nelson et al., 2009; Fujii and Satake, 2013; Ely et 

al., 2014; Moernaut et al., 2014; Dura et al., 2015; Garrett et al., 2015; Nentwig et al., 

2015; Hong et al., 2016; L. Ely, pers. comm., 2017). To determine whether tsunami 

simulations are capable of matching these observations, I investigated the sensitivities of 

tsunami effects (e.g., wave heights and inundation) generated from nine hypothetical 

tsunamigenic large earthquakes in south-central Chile (35-43°S) that cover the diversity 

of characteristics from actual past events. The nine earthquake scenarios represent three 

different magnitude megathrust earthquakes at a northern, central, and southern location. 

The goals of this research are twofold: evaluate the methodology of comparing 

paleotsunami and historical databases to tsunami simulations and develop a proposed list 
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of promising sites for future study of paleotsunamis. By evaluating the methodology, I 

aim to determine the practicality of predicting earthquake rupture specifics just from on-

land evidence, especially if information from written records such as co-seismic 

displacement or the size of the tsunami, supplements paleotsunami deposits. The idea of 

matching on-land historical observations and geologic evidence of tsunamis to tsunami 

simulations to investigate the details of paleoearthquake rupture processes is an actively 

developing area of paleoseismology research (c.f. Martin et al., 2008; MacInnes et al., 

2010; Fujii and Satake, 2013; Mori et al., 2017). 

In addition to evaluating the practicality of this method, by analyzing my 

simulations, I identify locations on the coast that filter and/or amplify earthquakes from 

variable rupture sizes and source locations by magnifying differences in tsunami 

inundation and runup values. The purpose of this part of my evaluation is to recognize 

unstudied sites with a high potential for distinguishing past tsunamis within the modeling 

region. Future research of paleotsunamis at these hypothetically “promising” locations 

would therefore have the potential to contribute greater amounts of information to the 

paleoseismology of Chile than studies elsewhere.  
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CHAPTER II 

BACKGROUND 

Regional Geologic Setting 

As part of a 5,000-km subduction system, Chile is located where the Nazca plate 

subducts to the northeast at an oblique <10° angle beneath the South American plate with 

a convergence rate that varies from 0.08 m/yr in the north to 0.065 m/yr in the south 

(Demetz et al., 2010; Dura et al., 2015; Omira et al., 2016;). Tsunamis have occurred 

frequently following great (Mw >8) magnitude earthquakes along the Chilean coast 

(Figure 1; Lomnitz, 2004; Bilek, 2009; Omira et al., 2016). The Chilean triple junction 

(46.5°S, 75.5°W) lies on the southern portion of the subduction zone, where the Nazca 

and South American plates converge at 0.07 m per year (Angermann et al., 1999).  

Significant strain accumulation along the offshore subduction zone results in 

megathrust earthquakes with a recurrence interval of one earthquake per 100-200 years or 

shorter on any given segment of the Chilean margin (Lay and Kanamori, 1981; Moreno 

et al., 2010; Ely et al., 2014). The average historic recurrence interval based on written 

records falls within this range at ~one per 128 years (Garrett et al., 2015), with 

stratigraphic evidence showing longer average intervals interpreted for some segments 

(Cisternas et al., 2005; Garrett et al., 2015).  
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Figure 1: Overview map of most of the South American subduction zone (dark line) with 

epicenters of significant earthquakes (triangles) from the 20th and 21st centuries and their 

magnitudes. Locations from Bilek (2009). Background image from an ArcGIS Online 

Basemap. 

 

The south-central region of Chile (35-43°S) is divided into two sections: the 2010 

Maule segment (33.5-37.5°S) and the 1960 Valdivia segment (37.5-46°S; Figure 2; 

Moreno et al., 2010; Moreno et al., 2011) that often rupture separately. The mechanical 

behavior of the south-central Chile subduction zone reveals that the updip zone near 

thetrench is the characteristic location of megathrust rupture (Lay et al., 2010; Ide et al., 

2011; Vigny et al., 2011). 
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Figure 2: Map showing locations of paleotsunami deposit field sites and towns noted in 

historic documents within south-central Chile. The 2010 Maule rupture and 1960 

Valdivia rupture areas, defined by aftershocks, are outlined within the modeling area 

(Plafker and Savage, 1970); note the overlapping rupture areas between the 2010 and 

1960 earthquakes between Mocha Island and Santa Maria Island. 

 



9 
 
 

Past Earthquakes 

Historical records of great Chilean earthquakes extend to the 1500s (Lomnitz, 

1970, 2004; Cisternas et al., 2005, 2012; Carvajal et al., 2017). Notable tsunamigenic 

earthquakes in the 20th and 21st centuries that ruptured between Lima, Peru and Chiloe 

Island, Chile (12-43°S) include 1906, 1922, 1928, 1942, 1943, 1960, 1966, 1974, 1985, 

1995, 1996, 2001, 2007, 2010, 2014, and 2015 (Figure 1; Cisternas et al., 2005; Bilek, 

2009; Ely et al., 2014). The earthquakes or tsunamis in south-central Chile’s history that 

were either instrumentally recorded or noted in historical accounts include those from the 

1575, 1737, 1835, 1837, 1960, and 2010 earthquakes. All except the 1737 earthquake left 

sand deposits in coastal stratigraphy. Each of these earthquakes and tsunamis will be 

discussed in further detail below.  

Most data prior to the 1960 earthquake is limited to eyewitness written accounts 

from Chileans and Spanish conquistadors, or estimations from modern studies (i.e., fault 

rupture locations). Written records for the 1575 (~Mw 8.0-8.5), 1737 (~Mw 7.5), and 1837 

(Mw 8.0) earthquakes are available publically (Lockridge, 1985), and include descriptions 

of earthquake shaking, infrastructure damage, tsunamis, and coastal land-level changes 

(Lomnitz, 2004; Cisternas et al., 2005). Pre-instrumental magnitude estimates rely 

heavily on comparisons of written descriptions with known events (Lomnitz, 2004).  

 The 27 February 2010 Chile earthquake (Mw 8.8) occurred offshore the Maule 

region, some 360 km southwest of Santiago (Delouis et al., 2010; Lorito et al., 2011; 

Fujii and Satake, 2013; Moernaut et al., 2014; Figure 2). The ensuing tsunami caused 
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severe damage along adjacent coasts, with reported maximum wave heights of more than 

10 m at many sites between Constitucion and the Arauco Peninsula (Lorito et al., 2011). 

The earthquake and tsunami claimed more than 500 lives (Lorito et al., 2011), the 

earthquake ruptured ~500 km of the subduction zone (Vigny et al., 2011), and estimates 

of maximum slip go as high as 22 m (Fujii and Satake, 2013). Subsidence occurred 

mainly in the central valley, although scientists measured up to 0.06 m of subsidence at 

the coast 15 km south of Constitucion (Vigny et al., 2011). 

The 22 May 1960 mainshock earthquake (Mw 9.5) occurred off the coast of 

southern Chile in the Valdivia segment (between 37.5°S and 46°S; Figure 2) and was the 

largest earthquake instrumentally recorded (Kanamori, 1977). The 1960 mainshock was 

third in a sequence of major earthquakes (Mw 7.5 on May 21, and Mw 7.8 on May 22) 

within a 33-hour period (Barrientos and Ward, 1990). The mainshock ruptured nearly 

1000 km beginning near Lumaco (38°S, 74°W) in the north and ended near the Taitao 

Peninsula (46°S) at the Chilean triple junction (Plafker and Savage, 1970). The 

earthquake caused coastal uplift as large as 5 m and 2 m subsidence (Plafker and Savage, 

1970, 1972), and near field tsunami run-up heights of 10–20 m (Siever et al., 1963; 

Wright and Mella, 1963; Plafker and Savage, 1970). The slip, which averaged 20-30 m 

over the length of the rupture (Plafker and Savage, 1970; Cifuentes, 1989) and up to 40 m 

locally (Barrientos and Ward, 1990; Moreno et al., 2009), expended about 350 years’ 

worth of plate motion (Cisternas et al., 2005). From historical accounts of damage, the 
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1960 slip area had ruptured at least partially only 123 years before, in 1837, and also at 

earlier intervals of 100 and 158 years, in 1737 and 1575 (Lomnitz, 1970).  

 The 20 February 1835 earthquake (Ms ≈ 8-8.5) was one of the more widely 

documented Chilean historical earthquakes, described by Charles Darwin in his Voyage 

of the Beagle (Darwin, 1851; Lomnitz, 2004). Darwin felt the earthquake on land near 

Valdivia (Darwin, 1851), and he described Concepcion as the source area of the 

mainshock (Campos et al., 2002). With an estimated rupture length of 350 km (Vigny et 

al., 2011), there was no reported damage in Valdivia, but locals reported total destruction 

at both Concepcion and Quiriquina Island, which uplifted 2 m.  

The 7 November 1837 earthquake (Ms ≈ 8) damaged towns along the central third 

of the Valdivia segment and caused coastal uplift and inland subsidence, seaward and 

landward respectively, of the hinge line (the down-dip limit of rupture and the neutral 

line of vertical deformation of the upper plate; Bodin and Klinger, 1986; Vigny et al., 

2011) along the southern half of Valdivia (Cisternas et al., 2005, 2017). The epicenter of 

the earthquake was located between Valdivia and Castro (Lomnitz, 2004). Note that pre-

instrumental earthquake archives are incomplete, especially for the 1837 earthquake, and 

earthquake parameters were likely created from uncertain intensity and epicenter 

estimations (Moernaut et al., 2007). The associated tsunami amplitude waves, cresting 6-

m high in Hawaii (Lander and Lockridge, 1989), suggests that the 1837 earthquake 

released almost 70% of the magnitude of the 1960 mainshock (Abe, 1979). The 
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earthquake caused up to 2-m uplift on Lemus Island and the initiation of many landslides 

in the entire coastal region (Lomnitz, 2004).  

The 24 December 1737 earthquake (Ms ≈ 7.5) in Valdivia, known only from 

secondary sources, damaged the few remaining Spanish settlements south of Concepcion, 

spanning the length of Valdivia to Chiloe (Cisternas et al., 2005). The earthquake lacked 

a reported tsunami, even though tsunamis from central Chile in 1730 and 1751 were 

noted locally (Lockridge, 1985) and in Japan (Ninomiya, 1960; Watanabe, 1998).  

 The reported effects from the 16 December 1575 earthquake (Ms ≈ 8-8.5) most 

nearly resembled those from 1960 (Cisternas et al., 2005). Conquistadors, at forts limited 

to the northern half of the 1960 rupture area, wrote of persistent marine inundation near 

Imperial, Valdivia and Castro that implies widespread tectonic subsidence. They also 

described a devastating tsunami near Valdivia (Cisternas et al., 2005), and observed in 

the north as far as Concepcion (Lomnitz, 2004). 

 

Site-Specific Records of Tsunamis in South-Central Chile 

 The paleotsunami deposits studied over many years in Chile provide additional 

information about each of the past subduction-zone events in the region. Unraveling the 

details of earthquakes and tsunamis requires a dense array of data. Within the region of 

south-central Chile, there are a total of 12 historical sites and 25 paleotsunami locations 

that I have compiled into a database (Table 1). The six earthquakes in the dataset include 

those that took place in 1575, 1737, 1835, 1837, 1960, and 2010, respectively.  
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Table 1: Site coordinates of locations that either preserve past tsunami deposits or have a 

historical written record of an earthquake/tsunami (Note: the 1960 and 2010 tsunami 

deposits are modern events and not considered paleotsunami deposits). 

 

Latitude 

 

longitude 

data type earthquake 

year (if 

known) 

nearest  

town 

 

reference 

-35.108160 -72.200040 Tsunami deposit 1960 La Trinchera Ruiz, 2016; Morton 

et al., 2011 

-35.304260 -72.400280 Tsunami deposit 1960 Constitucion Ruiz, 2016; Morton 

et al., 2011 

-36.54677 -72.935408 Tsunami deposit 2010 Dichato L. Ely, pers. comm., 

2017; Yasuda et al., 

2010 

-36.558750 -72.957020 Tsunami deposits 1835, 2010 Coliumo Ruiz, 2016 

-36.738746 -72.993555 Historical account 1960, 2010 Concepcion/ 

Talcahuano 

Cisternas et al., 2005; 

Dura et al., 2015; 

Udias et al., 2012; 

Ely et al., 2014; 

Dura, et al., 2017; 

Carvajal et al., 2017 

-36.745843 -73.020407 Tsunami deposit 2010 Andalien L. Ely, pers. comm., 

2017; Garrett et al., 

2013 

-36.790226 -73.038492 Historical accounts 1575, 1835, 

1960, 2010 

Penco Dura et al., 2017; 

Garrett et al., 2013 

-37.023677 -73.547261 Historical account 1835 Santa Maria Wesson et al., 2015; 

Melnick et al., 2006 

-37.195912 -73.564125 Tsunami deposit 2010 Llico L. Ely, pers. comm., 

2017; Lario et al., 

2016 

-37.226992 -73.440106 Tsunami deposit 2010 Tubul Ruiz, 2016; Lario et 

al., 2016 

-37.806580 -72.704227 Historical account 1575, 1960 Angol Cisternas et al., 2005 

-38.250503 -73.485413 Both  1835, 1960, 

2010 

Quidico Hong et al 2016; 

Dura et al., 2017 

-38.341936 -73.495381 Both  1575, 1960, 

2010 

Tirua Cisternas et al., 2017; 

Ely et al., 2014; 

Nentwig et al., 2015; 

Garrett et al., 2013; 

Dura, et al., 2017 

-38.414942 -73.888563 Tsunami deposit 2010 Mocha Island Bahlburg and Spiske, 

2015 

-38.783204 -73.400013 Both  1575, 1960 Puerto Saavedra Atwater et al., 2013; 

Dura et al., 2017; 

Wright and Mella, 

1963 

-39.214094 -73.203979 Tsunami deposit 1960, 2010  Nueva Tolten  T. Dura, pers. comm., 

2017; E. Garrett, 

pers. comm., 2017 

-39.299618 -73.220975 Tsunami deposit 1960, 2010 Tolten Viejo 

North & South 

T. Dura, pers. comm., 

2017; E. Garrett, 

pers. comm., 2017 
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Table 1 (Continued): Site coordinates of locations that either preserve past tsunami 

deposits or have a historical written record of an earthquake/tsunami (Note: the 1960 and 

2010 tsunami deposits are modern events and not considered paleotsunami deposits). 

 

Latitude 

 

longitude 

data type earthquake 

year (if 

known) 

nearest  

town 

 

reference 

-39.357892 -73.190059 Tsunami deposit  1960 Rio Queule, S 

of Maitenco 

T. Dura, pers. comm., 

2017; E. Garrett, 

pers. comm., 2017 

-39.437605 -73.200573 Tsunami deposit 1960 Missisipi, Rio 

Lingue 

A. Nelson, pers. 

comm., 2017; J. 

Bourgeois, pers. 

comm. 

-39.860929 -73.322706 Both  1575, 1837, 

1960 

Valdivia Cisternas et al., 2005; 

Garrett et al., 2015; 

Dura et al., 2017; 

Nelson et al., 2009 

-39.950000 -73.570000 Tsunami deposit 1960 Chaihuin M. Cisternas, pers. 

comm., 2017 

-40.532894 -73.699730 Tsunami deposit 1960 Pucatrihue M. Cisternas, pers. 

comm., 2017 

-41.620103 -73.580401 Both 1575, 1837, 

1960 

Maullin  Cisternas et al., 2005; 

Atwater et al., 2013 

-41.642147 -73.635156 Tsunami deposit  Caulle Cisternas et al., 2017; 

Atwater et al., 2013 

-41.851796 -73.998253 Tsunami deposits 1575, 1960, 

2010 

Chucalen Garrett et al., 2015 & 

2013; 

Dura et al., 2017 

-41.862544 -73.828445 Historical accounts 1837, 1960 Ancud Cisternas et al., 2005 

-41.899533 -73.993450 Both 1575 Chiloe Island Garrett 2015; 

Kempf et al., 2017; 

Dura et al., 2017; 

Lomnitz, 2004 

-41.925507 -74.005138 Tsunami deposits 1575, 1837, 

1960 

Cocotue on Isla 

Chiloe 

Cisternas et al., 2017; 

Dura et al., 2017 

-42.042103 -74.023712 Tsunami deposit  Chepu T. Dura, pers. comm., 

2017; E. Garrett, 

pers. comm., 2017 

 

-42.479688 -73.762401 Historical accounts 1575, 1837, 

1960 

Castro Cisternas et al., 2005; 

Dura et al., 2017 

-42.596550 -74.120778 Tsunami deposits 1575, 1837, 

1960 

Lake Huelde 
Kempf, 2017 

 

Historical Accounts 

 The data types recorded from historical accounts of earthquakes and tsunamis 

include a rich catalog of earthquake shaking, infrastructure damage, tsunamis, and coastal 



15 
 
 

land-level changes (Cisternas et al., 2005; Figure 3; Table 1). Historic accounts that 

include rupture magnitude, latitudinal rupture extent, vertical and horizontal deformation 

on the coast, and areal extent inundated by tsunamis are not well constrained because 

they are estimated from aftershock sequences and written observations (Carvajal et al., 

2017). The twelve locations on the south-central Chile coast with records of past events 

include Maullin, Tirua, Concepcion, Angol, Puerto Saavedra, Quidico, Penco, Valdivia, 

Castro, Chiloe Island, Ancud, and Santa Maria (Table 1; Figure 2). 

 

Figure 3: Historical accounts of past earthquakes modified from Dura et al. (2017) 

summarizing the written historical records and paleoseismic evidence of great ruptures 

along the Valdivia and Maule portions of the subduction zone. Eight of my twelve 

historical sites circled in blue, and the four unmapped sites are Santa Maria, Penco, 

Angol, and Ancud (from north to south) and circled in orange. 
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Paleotsunami Deposits 

Paleotsunami deposits studied over decades in Chile provide supplemental 

information to historical accounts. The three-dimensional distribution of tsunami sand 

sheets provides information on a deposit’s height above sea level, landward extent and 

taper, and regional continuity (Cisternas et al., 2005; Rhodes et al., 2006; Table 1). 

Mapping the extent of paleotsunami layers throughout a site is possible due to correlating 

buried soils among different cores or trenches (Kelsey et al., 2002). In low-lying marshes, 

paleotsunami deposits are preserved as abrupt changes between buried soil and sand in 

the stratigraphy (Kelsey et al., 2002). Paleotsunami deposits are dated radiometrically 

either using standard radiocarbon analysis of bulk peat from below the tsunami sand 

contacts or accelerator mass spectrometry (AMS) analysis of small leaf, twig, or organic 

rip-up fragments from within the tsunami sand layer (Peterson et al., 2011). 

 Paleotsunami sites are useful markers of the size of the associated earthquake 

(Jaffe and Gelfenbaum, 2002) and many of these sites in Chile record abrupt coseismic or 

interseismic changes in the land-level (Dura et al., 2017). Buried soils correspond to 

sudden upward or downward movement in the stratigraphic record (Kelsey et al., 2002). 

Coupled with contact abruptness at the top of the buried soil, this is a qualitative indicator 

of the suddenness of submergence of a soil (Nelson et al., 1996). Paleotsunami deposits 

have been shown to reveal the extent of tsunami inundation inland (Jaffe and 

Gelfenbaum, 2002; Smith et al., 2007), the water velocity (Jaffe and Gelfenbaum, 2007), 
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the source location of an associated earthquake (Szczucinski, 2012), and earthquake 

recurrence intervals (Goto et al., 2011).  

 Twelve locations in my tsunami deposit catalog record pre-1960 paleotsunamis, 

including Maullin, Tirua, Puerto Saavedra, Quidico, Valdivia, Chucalen, Chepu, 

Cocotue, Chiloe Island, Caulle, Lake Huelde, and Coliumo (some of the sites with pre-

1960 tsunami deposits also have 1960 or 2010 deposits; Table 1; Figure 2). Thirteen 

additional sites record only recent deposits from the 1960 and/or 2010 tsunami: Tolten 

Viejo North and South, Mocha Island, Nueva Tolten, Queule, Missisipi, La Trinchera, 

Constitucion, Tubul, Andalien, Llico, Dichato, Chaihuin, and Pucatrihue (Table 1; Figure 

2). 
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CHAPTER III 

TSUNAMI MODELING METHODS 

Introduction to GeoClaw 

 The tsunami modeling software I used is GeoClaw, a finite-difference model 

based on nonlinear shallow-water equations, which calculates tsunami inundation onto 

coastal areas (Mandli et al., 2016; Clawpack Development Team, 2017). GeoClaw is an 

open-source software (http://www.clawpack.org/geoclaw) approved by the US National 

Tsunami Hazard Mitigation Program for predicting tsunami arrival times and runup 

heights (Gonzalez et al., 2011). GeoClaw is unique in using adaptive mesh refinement, 

which increases the modeling resolution near the tsunami wave as it travels across 

bathymetry and inundates topography (Berger and LeVeque, 1998; LeVeque et al., 

2011). Nonlinear shallow water equations are one of the commonly accepted 

approximations for calculating tsunami propagation and inundation (George and 

LeVeque, 2006). 

GeoClaw uses Cartesian grid cells, and the code approximates and updates cell 

averages of the water depth and radial momentum in each time step (LeVeque, 2002). 

This method exactly conserves mass and momentum in regions where the bathymetry is 

horizontal and uninterrupted. In regions with a slope, mass and momentum are conserved 

using piecewise functions (LeVeque et al., 2011). GeoClaw handles inundation by setting 

the water depth in each grid cell to zero for dry land and positive for wet cells, and allows 

the state to change in each time step (LeVeque et al., 2011). GeoClaw requires two types 
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of input data; the bathymetry of the ocean and coastal regions combined with onshore 

topography, and seafloor motion (either static or kinematic seafloor deformation) 

initiating the tsunami (LeVeque et al., 2011). 

 

Model Input Data: Bathymetry and Topography 

 Combined bathymetry and topography for coastal Chile is currently publically 

available in three datasets. These include:  

1. The General Bathymetric Chart of the Oceans (GEBCO) 2014 30-second 

resolution raster seamless topography and bathymetry dataset (Intergovernmental 

Oceanographic Commission et al., 2014). 

2. The Scripps Institution of Oceanography Shuttle Radar Topography Mission 

(SRTM+) 2009 30-second resolution global topography and bathymetry 

distributed by the National Geospatial-Intelligence Agency (NGA; Becker et al., 

2009). One of the ways Scripps gathers their bathymetric grids is from the Marine 

Geophysical Trackline data (NGDC/WDS, 2017), which provides unique depth 

constraints for many near shore areas including Asia, Africa, and South America 

(Becker et al., 2009).  

3. The Estimated Seafloor Topography (ETOPO1) 30-second global relief model of 

Earth’s surface that integrates land topography and the ocean bathymetry built 

from global and regional datasets distributed by the National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental 
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Information (formerly the National Geophysical Data Center; Amante and Eakins, 

2009).  

I decided to use the GEBCO bathymetry dataset in this study because the 

continental shelf appeared more credible than in the other two datasets. I inspected each 

dataset by plotting them at their native 30-second resolution. Plots of the three datasets 

(Figure 4) showed a homogeneous continental shelf for the GEBCO dataset, whereas the 

Scripps dataset included mounds and depressions, and the ETOPO dataset contained 

many small depressions. The GEBCO dataset best represented the continental shelf when 

compared to real bathymetric maps of the Chilean shelf (Figure 5). 
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Figure 4: Three different sources of bathymetric data (GEBCO, Scripps, and ETOPO) 

with 30-second resolution at two different locations along the central Chilean coast. 

GEBCO appears more credible than Scripps or ETOPO (see text, section Model input 

data, and Figure 5). Bathymetry from Amante and Eakins (2009), Becker et al. (2009), 

and Intergovernmental Oceanographic Commission et al. (2014) respectively. 
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Figure 5: Real-world continental shelf morphology off the coast of south-central Chile 

modified from Volker et al. (2012) to compare to Figure 4. 5A (Concepcion area) is north 

of 5B (Lebu area). Locations for comparison are within the black boxes labeled 4A and 

4B. The data used to create these maps is currently unavailable for model input. 

 

The GEBCO bathymetry likely best represents the Chile continental shelf because 

the Chilean Navy Oceanographic and Hydrographic service provided updated grids from 

Electronic Navigation Charts (ENCs) off the coast of Chile (Weatherall et al., 2015; 

“Improving GEBCO’s bathymetric grids in shallower water areas,” 

https://www.gebco.net/data_and_products/gridded_bathymetry_data/shallow_water_bath

ymetry/). This data set included over 81,000 soundings and the seafloor surface was 

created in Generic Mapping Tools (GMT) in combination with other Chilean trackline 

survey data (18°S to 55°S; 77°W to 67°W; Weatherall et al., 2015).  
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Model Input Data: Fault Source Scenarios 

 GeoClaw requires input data to calculate the seafloor deformation initiating the 

tsunami. GeoClaw uses the standard Okada (1985) equations of deformation of a 

homogenous half-space to calculate the seafloor deformation from rectangular subfaults. 

GeoClaw assumes an instantaneous deformation of the seafloor translated directly to the 

water surface (Borrero et al., 2015). I created nine earthquake scenarios: Mw 8.6, 8.8, and 

9.0 at a northern, central, and southern location, using uniform slip along a single 

subfault. The Mw 8.6, 8.8, and 9.0 earthquakes represent megathrust events similar to 

recent past events in rupture area. The strike, dip, and depth of the subduction zone 

interface is defined by the Slab 1.0 model (Hayes et al., 2012). Rake was considered a 

standard 90º for a megathrust event (Gusman et al., 2014; Hayes et al., 2014). Subfault 

location is defined by the longitude, latitude, and depth of the center of the up-dip edge of 

the subfault. Slip and along-strike segment length and width is dependent on the 

earthquake magnitude. See Table 2 for the compiled inputs for all nine scenarios. 
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Table 2: Rupture input for nine earthquake scenarios along the Chile coast. 

 

I used previous work and historical records to define the boundaries between the 

northern, central, and southern modeling sites. The boundary of south-central Chile is 

noted as 38-41°S from published documents (Veblen et al., 1981; Martin et al., 1999; 

Munoz et al., 2000; Ely et al., 2014); defined by the general location of the onland central 

valley. However, I extended the computational domain for my models to lie between 35-

43°S (from La Trinchera to southern Chiloe Island). I also extended the subfaults north of 

the Arauco Peninsula because that region was a site of earthquake rupture overlap from 

the 1960 Mw 9.5 and the 2010 Mw 8.8 earthquakes (Bilek, 2009; Melnick et al., 2012). I 

also extended my subfaults farther to the south because I wanted my modeling domain to 

reach the paleotsunami deposit sites at Maullin, Caulle, Chucalen, Cocotue, Chepu, and 

Lake Huelde, and the historical sites at Ancud and Castro. I subdivided the south-central 

Scenario 

name 

strike 

(deg) 

length 

(km) 

width 

(km) 

depth 

(m) 

slip 

(m) 

rake 

(deg) 

dip 

(deg) 

longitude 

(subfault 

top 

center) 

latitude 

(subfault 

top 

center) 

Mw 8.6N 9.5 400 110 7.7 5 90 18 -73.69335 -35.10032 

Mw 8.6C 3.1 400 110 7.6 5 90 18 -74.88442 -38.83812 

Mw 8.6S 5.3 400 110 6.8 5 90 18 -75.47577 -42.90477 

Mw 8.8N 9.5 500 120 7.7 8 90 18 -73.69335 -35.10032 

Mw 8.8C 3.1 500 120 7.6 8 90 18 -74.88442 -38.83812 

Mw 8.8S 5.3 500 120 6.8 8 90 18 -75.47577 -42.90477 

Mw 9.0N 9.5 600 130 7.7 12 90 20 -73.69335 -35.10032 

Mw 9.0C 3.1 600 130 7.6 12 90 20 -74.88442 -38.83812 

Mw 9.0S 5.3 600 130 6.8 12 90 20 -75.47577 -42.90477 
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region into three equally spaced parts: the northern (35-37.2°S), central (37.3-40.1°S), 

and southern (40.2-43°S) sections (Figure 6). 

 

Figure 6: Modeling domain from La Trinchera to Chiloe Island, divided into 3 sections: 

the northern, central, and southern portions. Towns are marked as a point of reference. 

 



26 
 
 

Previously published work in Chile on recent earthquakes, such as 1960, 2010, 

and 2015, provides examples of realistic fault length, width, and average slip scenarios 

(c.f. Delouis, et al., 2010; Vigny et al., 2011; Fujii and Satake, 2013; Moernaut et al., 

2014; Li et al., 2016; Omira et al., 2016), which I used to define the length/width/slip of 

my earthquake scenarios. Using tsunami waveform data from the Mw 9.5 1960 

earthquake, Fujii and Satake (2013) and Moernaut et al. (2014) calculated a rupture 

length of at least 900 km, 13-25 m estimated slip near the trench, and 140-150 km width. 

Studies of the smaller Mw 8.8 2010 Maule earthquake indicate length estimates of 400-

500 km along strike (Fujii and Satake, 2013; Moernaut et al., 2014; Omira et al., 2016), 

rupture width around 120 km-180 km (Delouis, et al., 2010; Vigny et al., 2011; Fujii and 

Satake, 2013; Omira et al., 2016), and the slip within the hypocentral area of 4-10 m 

(Delouis, et al., 2010; Vigny et al., 2011; Fujii and Satake, 2013). The Mw 8.3 2015 

Illapel earthquake had a rupture length greater than 200 km (An et al., 2014; Li et al., 

2016; Omira et al., 2016), a rupture width of 160 km (An et al., 2014; Omira et al., 2016), 

and a slip of ~3 m (An et al., 2014; Li et al., 2016; Omira et al., 2016). Geophysicists 

studying these great earthquakes in Chile incorporated tsunami observations (Delouis, et 

al., 2010; Vigny et al., 2011; Fujii and Satake, 2013; An et al., 2014; Omira et al., 2016), 

into their finite-fault inversion determinations to improve accuracy of their slip model.  

Using the known length, width, and slip of real events on the Chilean subduction 

zone as a foundation, I selected length, width, and slip values to best represent the Mw 

8.6, 8.8, and 9.0 hypothetical earthquakes. For the Mw 8.8 rupture scenarios, I chose a 
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length of 500 km, width of 120 km, and a slip of 8 m (Table 2) to closely agree with the 

Mw 8.8 2010 Maule rupture dimensions. Because neither of my Mw 8.6 and 9.0 

earthquake scenarios matched recent events, I used the published rupture dimensions for 

the Mw 9.5 1960 earthquake to help guide my dimensions for a hypothetical Mw 9.0 

earthquake, and the Mw 8.3 2015 earthquake to help guide my dimensions for a 

hypothetical Mw 8.6 earthquake.  

I scaled down the length and width of the Mw 9.5 earthquake dimensions using a 

similar length to width scaling ratio (roughly 5:1 in this case) and chose a smaller slip 

based on the moment magnitude and scalar seismic moment equations (Fowler, 1990; 

Kanamori, 1978):  

• 𝑀𝑤 =
2

3
 𝑙𝑜𝑔10(𝑀0) − 10.7 

• 𝑀0 =  𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑢𝑝𝑡𝑢𝑟𝑒 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑖𝑝 × 𝑠ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (4 ×

1010 𝑁 𝑚−2)1. 

The Mw 9.0 rupture dimensions I calculated were a length of 600 km, width of 130 km, 

and a slip of 12 m (Table 2). The equation for these inputs gave an earthquake of the size 

Mw = 9.01. Ultimately, the scaling ratio is 4:1 for my Mw 9.0 rupture, thus the Mw 9.5 

rupture should be longer than my Mw 9.0 rupture, but roughly having similar widths.  

Earthquake width is confined by the maximum width of the seismogenic zone, 

calculated as 150 km for northern Chile (Comte et al., 1994; Haberland et al., 2009). I 

                                                           
1Shear modulus taken from Gusman et al. (2014). 
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calculated the maximum possible width of any earthquake rupture for south-central Chile 

as 145 km using the following equation (Zakharova et al., 2013): 

 Width = seismogenic depth average / sin (average dip angle). 

The seismogenic depth average is 45 km (Tichelaar and Ruff, 1991) and the average dip, 

extracted from the Slab 1.0 model for my modeling space, is 18°.  

Because the published data on the rupture dimensions for the Mw 8.3 2015 

earthquake should be smaller than those of my hypothetical Mw 8.6 dimensions, I chose a 

slightly wider and longer rupture using a length to width scaling ratio similar to the Mw 

8.3 (roughly 2:1 in this case) and larger slip. The inputs I ultimately chose for the Mw 8.6 

rupture dimensions had a length of 400 km, width of 110 km, and a slip of 5 m (Table 2).  

Because I have known rupture parameters for all 3 of my Mw 8.6, 8.8, and 9.0 

earthquakes constructed from past events, I am able to constrain rupture lengths and 

widths for hypothetical Mw 8.5, 8.7, 8.9, and 9.1, etc. earthquakes. Each increase in Mw 

by 0.1 was an increase in 50 km in length, and 5 km in width when I assembled all 

parameters consecutively (Table 3). 

Table 3: My defined earthquake parameters based on actual past events. Bold values are 

the rupture scenarios I used in this study. 
Mw length (km) width (km) 

8.5 350 105 

8.6 400 110 

8.7 450 115 

8.8 500 120 

8.9 550 125 

9.0 600 130 

9.1 650 135 
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CHAPTER IV 

SITE ASSESSMENT METHODS 

Tide Gauge Analysis 

To compare simulations with onshore data or with each other, I used synthetic 

tide gauges to record waveform data from each model run. I created 99 tide gauges near 

the shoreline and evenly distributed them throughout the northern, central, and southern 

modeling boundaries, including paleotsunami and historical site locations (Figure 7; 

Table 4). Analysis of the synthetic tide gauge waveforms enables calculation of arrival 

times of the tsunami at the tide gauge and wave height highs and lows, and the maximum 

wave heights allows for projection of tsunami inundation onshore. Although GeoClaw 

calculates inundation, the resolution of the bathymetry used is not detailed enough for 

reliable results (e.g., Tang et al. (2009) says 1/3 arc-second, or 10-m, resolution is best 

for modeling wave runup and inundation). Comparing maximum wave heights at the 

shoreline to higher resolution (15 m) topography in Google Earth was deemed a more 

comparable projection of whether a coast would flood for the 99 tide gauge sites. In 

particular, I took a profile of the beach from Google Earth perpendicular to the gauge and 

compared the maximum wave height to the shoreline elevation. Low-lying beaches 

versus cliffs make a huge difference on inundation. Note this method does not consider 

how far the tsunami inundates onshore. See my Results section for situations where I 

used higher resolution topography in inundation simulations.  
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Figure 7: Distribution of 99 tide gauges by region; 33 tide gauges in each. Tide gauges 

are located <1 km offshore at <10-m water depth. 
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Table 4: Locations of my 99 tide gauges placed offshore of Chile’s coast. The dataset 

consists of locations that have tsunami deposits and/or written historical accounts of past 

earthquakes/tsunamis. A blank dataset indicates no record of tsunami deposits or 

historical accounts at that site.  
Tide 

gauge # 

lon lat dataset notes  

1 -72.205074 -35.102322 Tsunami deposit La Trinchera 

2 -72.221655 -35.119193 
 

Matancilla Shores I 

3 -72.250258 -35.137590 
 

Matancilla Shores II 

4 -72.344311 -35.187172 
 

La Lechuza 

5 -72.393178 -35.223807 
 

Matancilla shores 

6 -72.424995 -35.315883 Tsunami deposit Constitucion I 

7 -72.505974 -35.397130 
 

San Antonio 

8 -72.508367 -35.469572 
 

Los Pellines 

9 -72.542174 -35.500718 
 

Los Pellines 

10 -72.617293 -35.549960 
 

Loanco 

11 -72.634567 -35.634621 
 

Laguna Reloca (Empedrado) 

12 -72.611066 -35.658897 
 

Laguna Reloca (Empedrado) 

13 -72.597427 -35.689170 
 

Laguna Reloca (Empedrado) 

14 -72.705478 -35.910505 
 

Chevelle 

15 -72.812781 -36.144073 
 

Colmuya 

16 -72.849311 -36.327536 
 

Rio Itata 

17 -72.878722 -36.402668 
 

Rio Itata 

18 -72.888802 -36.422054 
 

Rio Itata 

19 -72.936529 -36.503590 Tsunami deposit Coliumo 

20 -72.995646 -36.727037 Historical account Penco 

21 -73.163499 -36.846262 Historical account Concepcion 

22 -73.270702 -37.220920 
 

El Paraiso 

23 -73.640175 -37.178959 
 

Yani Dunes at Locobe 

24 -73.637956 -37.391833 
 

Yani Dunes at Locobe 

25 -73.604598 -37.468789 
 

North of Quidico 

26 -73.608663 -37.798000 Historical account Angol 

27 -73.540263 -37.898538 
 

Playa Llancao 

28 -73.480821 -38.011591 
 

West of Guape 

29 -73.477270 -38.229607 Both Quidico I 

30 -73.918785 -38.433394 Historical account Mocha Island 

31 -73.426751 -38.785320 Both Puerto Saavedra 
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Table 4 (Continued): Locations of my 99 tide gauges placed offshore of Chile’s coast. 

The dataset consists of locations that have tsunami deposits and/or written historical 

accounts of past earthquakes/tsunamis. A blank dataset indicates no record of tsunami 

deposits or historical accounts at that site.  
Tide 

gauge # 

lon Lat dataset notes  

32 -73.252472 -39.235947 Tsunami deposit Tolten abandoned meander 

33 -73.236882 -39.282046 Tsunami deposit Nique Norter 

34 -73.275059 -39.515168 
 

South of Maiquiahue 

35 -73.420704 -39.826019 Both Valdivia 

36 -73.668284 -40.136939 
 

North of Hueicolla 

37 -73.755605 -40.281145 
 

El Farellon 

38 -73.848107 -41.483584 
 

Los Muermos 

39 -73.806839 -41.544346 
 

top of archipelago and north shores 

40 -73.734149 -41.580752 
 

top of archipelago and north shores 

41 -73.698227 -41.617690 Both Maullin inland tsunami sand 

42 -73.709798 -41.607454 Tsunami deposit Caulle 

43 -73.976269 -41.789558 
 

North of Guabun (top of 

archipelago) 

44 -73.819166 -41.857379 Historical account Ancud 

45 -74.059594 -41.862508 Tsunami deposit Chucalen 

46 -74.029881 -41.905463 Tsunami deposit Cocotue on Isla Chiloe 

47 -74.046731 -42.025874 
 

North of Chepu 

48 -74.048317 -42.060020 Tsunami deposit Chepu 

49 -74.160056 -42.219651 
 

Penguins 

50 -74.159853 -42.555899 
 

South of Huentemo 

51 -74.143862 -42.677466 
 

North of Rahue I 

52 -74.146359 -42.677000 
 

Rahue II 

53 -74.162424 -42.695099 
 

Playa Rio Catiao 

54 -74.196800 -42.862732 
 

Paso Huencho 

55 -72.211204 -35.109678 
 

Los Rabanos 

56 -72.291025 -35.152635 
 

Matancilla/Cuchi 

57 -72.641472 -35.626250 
 

South of Loanco 

58 -72.877568 -36.390076 
 

South of Mocha Island 

59 -73.009698 -36.735227 Tsunami deposit Andalien 

60 -73.536995 -38.328062 
 

Tirua 

61 -73.240193 -39.281829 
 

West of Puraloco 

62 -73.695780 -41.618597 
 

West of Maullin 
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Table 4 (Continued): Locations of my 99 tide gauges placed offshore of Chile’s coast. 

The dataset consists of locations that have tsunami deposits and/or written historical 

accounts of past earthquakes/tsunamis. A blank dataset indicates no record of tsunami 

deposits or historical accounts at that site.  
Tide 

gauge # 

lon Lat dataset notes  

63 -72.940842 -36.537509 Tsunami deposit Dichato 

64 -73.231968 -39.358523 Tsunami deposit Queule 

65 -73.246352 -39.427001 Tsunami deposit Missisipi 

66 -74.126936 -42.634988 Tsunami deposit Lake Huelde/Cucao 

67 -72.425000 -35.304347 Tsunami deposit  Constitucion II 

68 -73.427520 -37.234248 Tsunami deposit Tubul 

69 -73.536340 -37.194142 Tsunami deposit Llico 

70 -73.550815 -37.016655 Historical account Santa Maria 

71 -73.595580 -39.943859 Tsunami deposit Chaihuin 

72 -73.743268 -40.535364 Tsunami deposit Pucatrihue 

73 -73.678826 -37.301608 
 

Cerro La Gloria 

74 -73.656497 -37.583719 
 

Lebu 

75 -73.664810 -37.715658 
 

West of Santa Rosa + Pelahuenco 

76 -73.461696 -38.084088 
 

West of Lago Lleulleu 

77 -73.461237 -38.164123 Tsunami deposit  Quidico II 

78 -73.539431 -38.395718 
 

Bio 

79 -73.517210 -38.537099 
 

La Peuca 

80 -73.50226 -38.639643 
 

West of Champulli 

81 -73.470454 -38.717915 
 

Northern Puerto Saavedra 

82 -73.349301 -38.957609 
 

Huente 

83 -73.303089 -39.081303 
 

Chelle 

84 -73.286596 -39.127511 
 

Reduccion Porma 

85 -73.270188 -39.18095 Tsunami deposit Nueva Tolten 

86 -73.381214 -39.68138 
 

Cerro Oncol 

87 -73.688072 -39.97955 
 

Huiro 

88 -73.77335 -40.404205 
 

North of Playa Diaz 

89 -73.784423 -40.496665 
 

Playa El Manzano 

90 -73.756409 -40.587047 
 

Bahia Mansa 

91 -73.795497 -40.627618 
 

Tril tril 

92 -73.854036 -40.763667 
 

Caleta condor 

93 -73.883587 -40.830565 
 

North of Manquemapu 
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Table 4 (Continued): Locations of my 99 tide gauges placed offshore of Chile’s coast. 

The dataset consists of locations that have tsunami deposits and/or written historical 

accounts of past earthquakes/tsunamis. A blank dataset indicates no record of tsunami 

deposits or historical accounts at that site.  
Tide 

gauge # 

lon Lat dataset notes  

94 -73.921037 -40.946712 
 

South of Guayusca 

95 -73.872441 -41.290668 
 

Rio Llico 

96 -74.061677 -42.131677 
 

Parque Ahuenco 

97 -74.159417 -42.310498 
 

Abtao 

98 -74.200971 -42.471316 
 

Playa Rio Anay 

99 -74.181006 -42.758174 
 

Campihuapi 

 

Promising Sites 

One of the ultimate goals in this project is to identify the most promising sites on 

Chile’s coast useful for future studies on paleotsunami modeling in this area. The 

definition of a promising site is a location onshore that magnifies differences between 

wave heights of tsunamis and therefore filters the earthquake magnitude and/or source 

location. I started with numerical analysis to narrow down possible promising sites, and 

then qualitatively assessed the individual sites to choose the best sites. 

 My numerical analysis used the maximum wave heights for all nine simulated 

tsunamis at each of my 99 synthetic tide gauges. At each tide gauge location, I calculated 

the minimum difference between all nine simulations with the following equation, and 

repeated for all 99 tide gauge sites: 

𝜀 = min[(|ℎ𝑖 − ℎ1|), (|ℎ𝑖 − ℎ2|), … , (|ℎ𝑖 − ℎ9|)] for ℎ𝑖 ≠ ℎ1, ℎ𝑖 ≠ ℎ2, etc., 

where 𝜀 is the minimum spacing of tsunami wave heights between all nine simulations, 

min[(a),(b),…,(z)] is the minimum value out of the following list of variables, ℎ𝑖 is the 



35 
 
 

maximum wave height for earthquake i, and ℎ1−9 is the maximum wave height for 

simulations 1-9. The variables ℎ𝑖 and ℎ1−9 come from wave heights of the following nine 

simulations: Mw 8.6N, 8.6C, 8.6S, 8.8N, 8.8C, 8.8S, 9.0N, 9.0C, or 9.0S (Table 2), and 

the equation does not allow duplicates to cancel out each other. 

I then averaged all nine tsunami values for minimum spacing between wave 

heights (𝜀) to get a numerical value representing the average minimum difference 

perceivable between each tsunami wave, and extended these averages for all 99-tide 

gauge sites. I used the assumption that an average of 0.50 m or greater is necessary for 

wave height variability in the historical and paleotsunami record to be perceived onland. 

As such, tide gauges where the average minimum difference was <0.50 m were 

considered not promising. To verify 0.50 m with paleotsunami records, maximum 

tsunami wave heights are recorded to the nearest 0.1 m, so a difference in 0.50 m 

between wave heights would be observed onland and recorded as such.    

I also applied this method to arrival times, or the time at the beginning of a 

tsunami wave, and assumed 5 minutes as the minimum difference for tsunami wave 

arrivals. I could not verify 5 minutes in the paleotsunami record, but I could with modern 

examples knowing that arrival times are comparable to the distance of the earthquake 

source location (Fujii et al., 2011). To verify 5 minutes, I used the following fluid 

dynamics equation for wave dispersion: 

𝑐 = √𝑔 × ℎ, 
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where c is the phase velocity of the traveling tsunami wave, g is the acceleration due to 

gravity, and h is the average water depth from the earthquake source to my tide gauge 

location. A travel time of 5 minutes coincided with the distance of my source locations.  

Averaging the minimum difference in wave heights is the best method for 

evaluating differences in tsunami effects because the difference allows expression of the 

highest and lowest wave heights. Just averaging the wave heights as a start would not 

best illustrate the sites that magnify wave height differences. I did not take the minimum 

values for both steps because if the lowest wave height was 0 m from the nine 

simulations, wave heights greater than zero would not be expressed. Finally, I chose not 

to use the following standard deviation equation: 

Standard deviation =  √[
(∑ (𝑥𝑖−𝑥̄)2𝑛

𝑖=1 )

𝑛−1
], 

where 𝑛 is the number of data points, 𝑥̄ is the mean of 𝑥𝑖, and 𝑥𝑖 is each of the values in 

the data set. Although standard deviation calculates the “spread” of a dataset, the first 

step takes the mean of the tsunami wave heights, then subtracts the mean from all nine 

data points as a second step, which is not the best way to represent magnification of wave 

height differences at each site. However, the standard deviation equation shows the same 

group of possible promising sites as my equation (but in a different order). 

After I established a list of statistically promising sites, I qualitatively analyzed 

these locations to determine whether the site was likely to contain preserved tsunami 

deposits. I used the following factors to aid in my evaluation of a promising site in 

decreasing order of importance: the site is already in my list of known paleotsunami or 
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historical site database, the topography was low-lying, flat and open, or the site has a 

town or neighboring city. If the site did not have known paleotsunami deposits there or 

historical documentation of past earthquakes or tsunamis, I used Google Earth to assess 

whether the coastal topography was capable of being inundated by a tsunami, such as 

being a coastal marsh, coastal inlet or embayment, or a river outlet. 

Once I established my final list of promising sites, I evaluated whether the 

topography allowed tsunami inundation at river banks (if the site had nearby river 

outlets), at the beach, and/or past the berm. This is an important analysis because even if 

the site filtered tsunamis by size or location, and had flat lying topography, water still 

must flood the coastal plain for a deposit to be left in the geological record. If the 

maximum wave height from the tide gauges surpassed the elevation of the berm, I 

assumed inundation would take place past the berm and termed this “heavy inundation” 

that goes beyond just shoreline inundation. This method does not account for the location 

of the inundation limit. If an area has no berm or is mostly flat, heavy inundation will 

take place if the maximum wave height exceeds the highest elevation in the area.  

 

High-Resolution Data 

The 30-arcsecond resolution of bathymetry and topography used in GeoClaw is 

not detailed enough to model the dynamics of inundation. 1/3-arcsecond (~10 m) 

resolution is ideal for simulating wave runup and inundation (Tang et al., 2009), so I 

aimed to make additional high-resolution simulations. I acquired 5-m and 12-m 



38 
 
 

resolution digital surface models at 6 total sites (independent from my analysis of 

promising sites): Andalien, Lenga, Puerto Saavedra, Queule, Quidico, and Tirua (Figure 

8). Within ArcGIS, I merged these high-resolution topography files with the existing 

GEBCO dataset, thereby improving the resolution of the GEBCO file. With these new 

bathymetry/topography, I created grids for high-resolution inundation simulations at all 6 

coverage areas and two additional subgrids, because Puerto Saavedra and Queule are too 

large to calculate inundation at the highest resolution over the whole site. At both of these 

locations, I divided into 2 sites. The resulting raster resolution for these sites was 0.40” 

(~12 m per grid cell) for both Lenga and Andalien, 0.28” (~9 m) for a small part of 

Queule, 0.61” (~19 m) for the entire Queule site, 0.23” (~7 m) for Quidico, 0.31” (~10 

m) for Tirua, 0.40” (~12 m) for a small part of Puerto Saavedra, and 3.05” (~94 m) for 

the entire Puerto Saavedra site.  
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Figure 8: The location of six sites with high-resolution topography (orange lettering). 

Puerto Saavedra and Queule were subdivided into two boxes, 1 at high-resolution over a 

small area, and 2 at lower resolution but covering the extent of the available topography. 

 

GeoClaw used these rasters to create maximum inundation maps at these 

locations, marking the extent of the highest waves, and mapping the maximum wave 

heights. Once GeoClaw created these high-resolution topography/bathymetry inundation 

maps, I used them in accordance with maximum wave heights from my tide gauges on 



40 
 
 

the lower 30” resolution topography/bathymetry to further assess tsunami inundation. For 

sites where only 30” topography/bathymetry was available, I relied solely on my 

assessments in Google Earth.  
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CHAPTER V 

RESULTS 

Seafloor Deformation from Earthquake Scenarios 

My earthquake input parameters resulted in wider seafloor deformation for larger 

width earthquakes. For example, the Mw 8.6 earthquakes, 110-km wide, had a 

deformation width of 190 km, the Mw 8.8 earthquakes, 120-km wide, had a deformation 

width of 210-240 km, and the Mw 9.0 earthquakes, 130-km wide, had a deformation 

width of 270-280 km (Table 5). The width of deformation defines the wavelength of the 

tsunami and larger rupture width, with the same amount of slip, creates larger moment 

release.  

Table 5: Deformation of the seafloor from each rupture scenario including the width, 

location of the hinge line, and maximum and minimum seafloor change. Average 

distance was calculated with the measuring tool in ArcGIS. 
Rupture 

scenario 

width of 

deformation 

(km) 

hinge line location average distance 

from hingeline to 

shoreline (km) 

highest 

uplift 

(m) 

lowest 

subsidence 

(m) 

86N 190 half onshore/offshore 41 1.5 -0.8 

86C 190 offshore, except for 

the Arauco Penin. 

37 1.5 -0.8 

86S 190 offshore 10 1.5 -0.8 

88N 210 half onshore/offshore 22 2.4 -1.2 

88C 220 mostly offshore, 

except for the Arauco 

Penin. 

28 2.4 -1.2 

88S 240 mostly onshore, 

except for above and 

below Chiloe 

12 2.4 -1.2 

90N 270 half onshore/offshore 26 3.9 -1.7 

90C 280 half onshore/offshore 19 3.8 -1.7 

90S 280 mostly onshore, 

except for above and 

below Chiloe 

11 3.8 -1.7 
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The Okada (1985) solution for seafloor deformation from my nine earthquake 

scenarios resulted in both coseismic uplift and subsidence (Figure 9). Between all three 

northern, central, and southern source locations, larger earthquakes produced larger 

values of uplift and subsidence (Tables 6-8). However, coastal sites had uplift and 

subsidence values that varied due to location. Of the three Mw 8.6 ruptures, coastal 

deformation was 0.7-m average subsidence, except 0.3-m uplift at Concepcion (Figure 9). 

The Mw 8.8 ruptures produced 1.2-m uplift on average at Dichato, Concepcion, and the 

Arauco Peninsula (Figure 9), with the central and southern rupture’s hinge lines (the 

boundary between subsidence and uplift) close to the coast for this earthquake, resulting 

in little land-level change south of Valdivia (Figure 9). The central and southern Mw 9.0 

ruptures produced 0.6-m uplift on average at Tirua, Cocotue, and Lake Huelde, but the 

northern rupture produced 3.2-m uplift on the Arauco Peninsula and the central rupture 

produced 1.7-m subsidence north of Valdivia (Figure 9). Overall, the Mw 9.0 rupture 

resulted in greater values of subsidence than the Mw 8.8 or 8.6 ruptures, and produced 

higher uplift between Dichato and Quidico than the smaller ruptures (Figure 9). 
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Figure 9: Seafloor deformation for the Mw 8.6 (A), Mw 8.8 (B), and Mw 9.0 (C) 

earthquakes calculated in GeoClaw with place names mentioned in text. Blue box is the 

section of coast I analyzed. Image from ArcGIS. 
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Table 6: Uplift and subsidence for the northern scenarios. 
Tide 

gauge  

land-level change (m) 

  Mw 8.6N Mw 8.8N Mw 9.0N 

1 -0.6 -1.3 -1.7 

55 -0.6 -1.3 -1.7 

2 -0.6 -1.3 -1.7 

3 -0.7 -1.2 -1.2 

56 -0.7 -1.2 -1.2 

4  -0.7 -1.3 -1.3 

5 -0.8 -1.0 -0.7 

67 -0.8 -1.1 -0.8 

6 -0.7 -1.1 -0.2 

7 -0.7 -0.7 -0.4 

8 -0.8 -0.8 -0.4 

9 -0.8 -0.8 -0.4 

10 -0.5 -0.3 0.4 

57 -0.6 -0.4 0.2 

11 -0.6 -0.4 0.2 

12 -0.6 -0.5 0 

13 -0.6 -0.5 0 

14 -0.6 -0.1 0.5 

15 -0.2 0.2 1 

16 -0.3 0 0.7 

58 0 0.4 1.3 

17 0 0.4 1.3 

18 0 0.4 1.3 

19 -0.1 0.3 1.1 

63 -0.1 0.3 1.1 

20 0.1 0.7 1.5 

59 0.1 0.7 1.5 

21 0.6 1.4 2.5 

70 0.1 2.0 3.3 

23 -0.1 1.7 3.4 

69 -0.1 1.6 3.5 

22 -0.1 1.2 2.6 

68  -0.1 1.4 3.0 
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Table 7: Uplift and subsidence for the central scenarios. 
Tide 

gauge  

land-level change (m) 

  Mw 8.6C Mw 8.8C Mw 9.0C 

73 -0.2 0.8 1.7 

24 -0.2 0.1 0.9 

25 -0.3 0 0.9 

74 -0.3 0 0.8 

75 -0.4 0.6 0.7 

26 -0.4 0 0.7 

27 -0.7 -0.7 -0.2 

28 -0.7 -0.8 -0.3 

76 -0.8 -1.2 -1.0 

77 -0.8 -1.2 -1.1 

29  -0.8 -0.8 -0.4 

60 -0.8 -0.9 -0.4  

78 -0.8 -0.9 -0.5 

30 0.6 1.2 2.2 

79 -0.8 -1.0 -0.6 

80 -0.8 -1.0 -0.7 

81 -0.8 -1.0 -0.7 

31 -0.8 -1.3 -1.3 

82 -0.6 -1.2 -1.7 

83 -0.6 -1.2 -1.7 

84 -0.5 -1.2 -1.7 

85   -0.5 -1.2 -1.7 

32 -0.5 -1.0 -1.7 

61 -0.5 -1.0 -1.7 

33 -0.5 -1.0 -1.7 

64 -0.5 -1.0 -1.7 

65 -0.5 -1.0 -1.7 

34 -0.4 -1.1 -1.7 

86 -0.5 -1.3 -1.6 

35 -0.6 -1.2 -1.6 

71 -0.7 -0.9 -0.5 

87 -0.7 -0.4 0.2 

36 -0.7 -0.5 0.1 
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Table 8: Uplift and subsidence for the southern scenarios. 
Tide 

gauge  

land-level change (m) 

 
Mw 8.6S Mw 8.8S Mw 9.0S 

37 -0.1 -0.1 0 

88 -0.1 -0.2 0 

89 -0.1 -0.3 0 

72 -0.1 -0.3 -0.6 

90 -0.1 -0.3 0 

91 -0.1 -0.3 0 

92 -0.1 -0.2 0.5 

93 -0.1 -0.2 0.5 

94 -0.2 -0.3 0.3 

95 -0.5 -0.6 0 

38 -0.7 -1.1 -0.9 

39 -0.7 -1.1 -0.1 

40 -0.7 -1.2 -1.5 

42 -0.6 -1.2 -1.5 

41 -0.6 -1.2 -1.5 

62 -0.6 -1.2 -1.5 

43 -0.6 -0.5 0.2 

44 -0.7 -1.2 -1.2 

45 -0.3 0.1 0.8 

46 -0.6 -0.5 0.1 

47 -0.7 -0.6 0 

48 -0.7 -0.6 -0.1 

96 -0.4 -0.1 0.6 

49 -0.1 0.3 1.2 

97 -0.1 0.3 1.1 

98 -0.3 0.2 1 

50 -0.3 0.1 0.9 

66 -0.6 -0.5 0.1 

52 -0.6 -0.6 0 

51 -0.6 -0.6 0 

53 -0.3 0 0.8 

99 -0.4 0 0.8 

54 -0.4 0 0.6 
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At maximum, the western-most location of the hinge line separating uplifted areas 

from subsided regions was 80 km from the shoreline in the Mw 8.6 rupture scenario 

(Table 5). Earthquakes with wider ruptures produced a hinge line more eastward (Figure 

9). The Mw 8.6 earthquake produced a hinge line between Colmuya and Concepcion for 

the northern earthquake, between the Arauco Peninsula and Angol for the central 

earthquake, and south of Campihuapi for the southern earthquake (Figure 9). The Mw 8.8 

earthquake produced a hinge line farther northeast for both the northern (between Loanco 

and Concepcion) and southern (between Cocotue and Lake Huelde) earthquakes 

compared to the Mw 8.6 earthquake, with no change for the central earthquake (Figure 9). 

The Mw 9.0 earthquake produced a hinge line farther southeast for the southern 

earthquake (Figure 9) compared to the Mw 8.8 earthquake, but the northern and central 

earthquakes produced no change in hinge line location.  

 Coseismic subsidence and uplift values from all nine scenarios can be compared 

to field data for all locations where we have paleoseismic or historical records (Tables 6-

8). The northern Mw 8.8 earthquake rupture extent and seismic moment are equivalent to 

the 2010 Maule earthquake (Delouis et al., 2010; Fujii and Satake, 2013; Moernaut et al., 

2014; Omira et al., 2016). Observations for land-level change during the 2010 Maule 

earthquake reported up to 2.5-m uplift in the Arauco Peninsula (37.1º S-37.7º S; Farias et 

al., 2010) and 2.4-3 m of uplift on Isla Santa Maria (Wesson et al., 2015). For the 

comparable Mw 8.8 northern rupture scenario, the Arauco Peninsula uplifted at slightly 

smaller values: 1.4-m at Tubul, 2.0-m at the uppermost tip of Punta Lavapie (Tubul and 
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Punta Lavapie are on the Arauco Peninsula), and 2.0-m on Isla Santa Maria (Figure 10). 

Therefore, uplift is ~20% less, but relatively similar. As such, I conclude that the 2010 

tsunami observations can be compared to my simulated Mw 8.8 northern wave heights.  

 

 

Figure 10: Box A- Coseismic land-level change for a northern Mw 8.8 rupture showing uplift at 

Santa Maria, Punta Lavapie, and Tubul. Box B- Coseismic land-level change for a central Mw 8.8 

rupture showing uplift at Punta Lavapie, subsidence at Tubul, and neither uplift nor subsidence at 

Santa Maria. Color scale (right inset) is in meters. 
 

Fault parameter differences, especially slip and rupture width, explain the small 

disagreement between simulated and observed land-level change values. Rupture for the 

2010 earthquake had a width of 150 km and slip concentrations of 13-25 m (Delouis et 

al., 2010; Fujii and Satake, 2013; Moernaut et al., 2014), while the northern Mw 8.8 

scenario’s width and slip were smaller at 120 km for width and 12-m uniform slip (Table 

2). The magnitude of the slip is an important factor because it reflects strain release and 
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increases coseismic surface displacement (Wang, 2007; Leonard et al., 2010). The width 

of the coseismic rupture zone is also an important factor, especially the downdip extent, 

because it affects the coseismic vertical displacement in two ways (Wang et al., 2003; 

Leonard et al., 2010). First, the downdip limit of full rupture is shifted landward (Leonard 

et al., 2010). Second, the rupture width increases the maximum magnitude of vertical 

deformation (Leonard et al., 2010). 

The combined central and south Mw 9.0 earthquake scenarios are equivalent in 

rupture area and seismic moment to the Mw 9.5 1960 Valdivia earthquake (Fujii and 

Satake, 2013; Moernaut et al., 2014). The rupture length for the Mw 9.5 1960 earthquake 

was at least 900 km (Fujii and Satake, 2013; Moernaut et al., 2014) spanning from the 

uppermost point of my Mw 9.0 central rupture scenario and lowermost point of my Mw 

9.0 southern rupture scenario (Figure 9; Figure 3). The 1960 Valdivia earthquake caused 

1-2 m of subsidence in Angol (Cisternas et al., 2005), and my Mw 9.0 central scenario at 

Angol created a similar subsidence of 1.6-m (Figure 9). The 1960 earthquake cause 2.7-m 

subsidence at Valdivia (Barrientos and Ward, 1990), where my Mw 9.0 southern scenario 

caused 1.6-m subsidence. The reason the 2010 earthquake caused uplift and the 1960 

earthquake caused subsidence may be due to slip extending farther landward and to 

greater depths for the 2010 rupture than the 1960 rupture (Ely et al., 2014). Therefore, I 

conclude that the 1960 tsunami observations can be compared to my simulated Mw 9.0 

central and southern wave heights. 
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Comparison of All Earthquake Scenarios at Simulated Tide Gauges 

Wave heights and arrival times at latitudinally distributed tide gauges provide a 

regional summary of simulated tsunami variations between scenarios (Figure 11-12). 

Wave heights showed a roughly similar trend between all nine simulations, with wave 

heights from southern earthquakes being lowest in the northern section and wave heights 

from northern earthquakes being lowest in the southern section (Figure 11), as expected. 

Arrival times also showed a predictable trend, with shorter arrival times from northern 

earthquakes, and longer arrival times from southern earthquakes in the north, for example 

(Figure 12). Nearfield earthquakes and the Mw 9.0 earthquakes all produced higher wave 

heights at any given tide gauge as a general trend (Figure 11). As noted above, the Mw 

9.0 earthquakes produced generally higher wave heights (Figure 11) and earlier arrival 

times (Figure 12). The Mw 9.0 earthquakes had hinge lines closer to the shore and more 

inland, which also was observed during the 1960 earthquake (Metois et al., 2014), and 

might explain the Mw 9.0 scenario wave heights and early arrival times in the nearshore. 

Locations that exemplify expected variation in maximum wave heights, those 

with distributions with the largest nearfield earthquake producing the highest wave 

heights to the smallest distant earthquake scenarios producing the smallest, along the 

coast include Constitucion, Chevelle, Rio Itata, West of Champulli, Puerto Saavedra, 

North of Hueicolla, and Parque Ahuenco (Figure 11). These sites are all at nearfield 

locations without complex coastal geomorphology, helping explain their expected wave 

height differences. 
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Figure 11: Variation in wave heights from tide gauges along the coast. Boxes A and B are 

a full graph when placed side-by-side. Mw 8.6 earthquakes are blue, Mw 8.8 earthquakes 

are yellow, and Mw 9.0 earthquakes are red. Solid lines are northern earthquakes, dotted 

lines are central earthquakes, and dashed lines are southern earthquakes. Outliers 

discussed in the text are circled. Mw 8.8 and 9.0 “overlap” indicates the latitudinal extent 

that these earthquake ruptures overlap. Refer to Figure 9 for full illustration of earthquake 

ruptures. Labels are place names of interest in the text. 
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Figure 12: Variation in arrival time at tide gauges along the coast. I removed tide gauges 

where arrival times could not be determined. Yellow lines are northern earthquakes, blue 

lines are central earthquakes, and green lines are southern earthquakes. Outliers discussed 

in the text are circled. Mw 8.8 and 9.0 “overlap” indicates the latitudinal extent that these 

earthquake ruptures overlap. Refer to Figure 9 for full illustration of earthquake rupture. 

Labels are place names of interest in the text. 

 

Simulated tsunami wave heights or arrival times along the coast that distinctly 

differ from the overall trend are defined as outliers. Notable outliers from Figure 11 are 

mostly concentrated in the north-central region (mainly because of complex topography 

and shoreline directionality around the Arauco Peninsula). Outliers in wave heights, 

identified in Figure 11 are at Dichato, Santa Maria, West of Guape, Quidico, Cerro 
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Oncol, and Guabun. A notable outlier from the variation in arrival times along the coast 

is at Cerro La Gloria (Figure 12).   

 

Promising Sites for Magnifying Differences in Tsunami Effects 

My numerical analysis of simulated tide gauges resulted in 60% (59/99) of sites 

having ≥0.5-m mean spacing between wave heights from all nine scenarios (Table 9). 

Waveforms from 5 sites were spaced ≥5.0 minutes on average between arrival times 

(Table 10). Out of the 5 sites from arrival time data, 1 site (Campihuapi) was spaced >10 

min apart and 4 sites were spaced between 5 and 10 min apart.  

With these 60 (59 from wave heights and 1 from arrival times) statistically 

promising sites, I determined that 22 of those sites had a low-lying marsh and/or flat and 

open coastal topography that fit a generic model for sites where tsunami inundation is 

possible to occur and leave tsunami deposits. Out of these final promising sites, all are 

highly susceptible to flooding (having flat topography, marshy areas nearby, and/or no 

berm). All Mw 8.6, 8.8, and 9.0 scenarios at these sites would cause tsunami inundation 

and leave detectable tsunami deposits past the berm based on analysis of beach 

topography (Appendix A). Of these final promising sites, 21 are from wave height data 

and 1 is from arrival time data (Table 11). These sites are good places to look for past 

records of paleoearthquakes to determine their size and location. 
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Table 9: The average spacing of maximum wave heights from quantitative analysis. 
Dataset (if 

existing) 

tide gauge average spacing of 

maximum wave heights (m) 

name 

 
55 1.27 Los Rabanos 

 
2 1.26 Matancilla Shores 

 
3 1.16 Matancilla Shores 

Paleotsunami 1 1.14 La Trinchera 
 

80 1.00 West of Champulli 

Paleotsunami 6 0.88 Constitucion 
 

24 0.87 Yani Dunes at Locobe 

Historical 70 0.84 Santa Maria 
 

56 0.83 Matancilla Shores/Cuchi 
 

14 0.83 Chevelle 

Both 57 0.82 offshore of Tirua 

Paleotsunami 64 0.81 Queule 
 

22 0.79 El Paraiso 
 

96 0.77 Parque Ahuenco 

Both 35 0.76 Valdivia 
 

11 0.76 Laguna Reloca (Empedrado) 

Paleotsunami 67 0.75 Constitucion 

Paleotsunami 85 0.73 Nueva Tolten 
 

8 0.73 Los Pellines 
 

83 0.71 Chelle 
 

34 0.71 South of Maquillahue 

Paleotsunami 65 0.70 Missisipi 
 

4 0.70 La Lechuza 

Paleotsunami 66 0.69 Lake Huelde 
 

12 0.68 Laguna Reloca (Empedrado) 

Both 31 0.67 Puerto Saavedra 
 

23 0.66 Yani Dunes at Locobe 
 

84 0.65 Reduccion Porma 
 

82 0.65 Huente 
 

58 0.65 S of Mocha Island 
 

13 0.64 Laguna Reloca (Empedrado) 

Paleotsunami 27 0.62 N of Quidico 
 

18 0.62 Rio Itata 

Paleotsunami 71 0.61 Chaihuin 
 

50 0.61 South of Huentemo 
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Table 9 (Continued): The average spacing of maximum wave heights from quantitative 

analysis. 
Dataset (if 

existing) 

tide gauge average spacing of 

maximum wave heights (m) 

name 

 
28 0.61 Quidico 

 
10 0.61 Loanco 

Paleotsunami 48 0.60 Chepu 
 

9 0.59 Los Pellines 
 

81 0.57 Northern Puerto Saavedra 

Both 29 0.57 Tirua 
 

86 0.56 Cerro Oncol 
 

76 0.56 West of Lago Lleulleu 

Paleotsunami 72 0.56 Pucatrihue 
 

51 0.56 North of Rahue 
 

43 0.56 North of Guabun (top of 

archipelago)  
38 0.56 Los Muermos 

 
36 0.56 North of Hueicolla 

Paleotsunami 68 0.55 Tubul 
 

17 0.55 Rio Itata 
 

5 0.55 Matancilla Shores 
 

97 0.54 Abtao 
 

52 0.54 Rahue 
 

7 0.54 San Antonio 

Paleotsunami 33 0.53 Nique Norter 
 

25 0.53 North of Quidico 
 

94 0.52 South of Guayusca 
 

61 0.51 West of Puraloco 
 

54 0.51 Paso Huencho 

 

Table 10: The average spacing of arrival times from quantitative analysis. 
Dataset tide 

gauge 

average arrival time 

spacing (mins) 

name 

 
99 16.62 Campihuapi 

 
54 7.55 Paso Huencho 

 
60 6.44 Tirua 

 
2 5.40 Matancilla Shores 

Paleotsunami 6 5.25 Constitucion 
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Table 11: List of the 22 promising sites from qualitative analysis sorted largest to 

smallest by spacing.  
Tide 

gauge 
lat lon name analysis average 

minimum 

spacing (m or 

min)1 

60 -38.328062 -73.537000 Tirua* Arrival Times 6.44 

55 -35.109678 -72.211204 Los Rabanos Wave Height 1.27 

6 -35.315883 -72.424995 Constitucion* Both 0.88 m 

64 -39.358523 -73.231968 Queule* Wave Height 0.81 

85 -39.180950 -73.270188 Nueva Tolten* Wave Height 0.73 

34 -39.515168 -73.275059 S of Maiquillahue Wave Height 0.71 

83 -39.081303 -73.303089 Chelle Wave Height 0.71 

65 -39.427001 -73.246352 Missisipi* Wave Height 0.7 

66 -42.634988 -74.126936 Lake 

Huelde/Cucao* 

Wave Height 0.69 

31 -38.785320 -73.426751 Puerto Saavedra* Wave Height 0.67 

84 -39.127511 -73.286596 Reduccion Porma Wave Height 0.65 

27 -37.898538 -73.540263 Playa Llancao Wave Height 0.62 

28 -38.011591 -73.480821 W of Guape Wave Height 0.61 

71 -39.943859 -73.595580 Chaihuin* Wave Height 0.61 

48 -42.060020 -74.048317 Chepu* Wave Height 0.6 

29 -38.229607 -73.477270 Quidico* Wave Height 0.57 

81 -38.717915 -73.470454 N Saavedra* Wave Height 0.57 

76 -38.084088 -73.461696 W of Lago 

Lleulleu 

Wave Height 0.56 

72 -40.535364 -73.743268 Pucatrihue* Wave Height 0.56 

68 -37.234248 -73.427520 Tubul* Wave Height 0.55 

61 -39.281829 -73.240193 W of Puraloco Wave Height 0.51 

54 -42.862732 -74.196800 Paso Huencho Both 0.51 m 

*The site is in the tsunami deposit database. 
1Depending on analysis, the unit is either in meters or minutes. 

 

Once I established my final 22 promising sites, 13 of them (59%) are tsunami 

deposit sites (two of which are also historical sites) and 9 are not (Table 11). These 

promising sites are highly susceptible to preserving deposits, which is likely due to their 

location and topography. The directionality of Tirua, Constitucion, Queule, Nueva 
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Tolten, Missisipi, Lake Huelde, Puerto Saavedra, Chepu, Quidico, and Pucatrihue are 

west-facing shores, yet are able to filter and magnify differences in tsunami effects. 

Chaihuin and Tubul are north-facing shores that are successful at distinguishing northern 

earthquakes from central and southern ones, as expected. 

The 5 sites from arrival times that were spaced ≥5.0 minutes on average were 

Campihuapi, Paso Huencho, Tirua, Matancilla Shores, and Constitucion (Table 10). Paso 

Huencho is a promising site and Constitucion is a promising and tsunami deposit site. 

The locations and directionality of these sites make them capable of magnifying 

differences in arrival times. Campihuapi, a north-facing shoreline located in the south-

central portion of the archipelago, is a unique site in that its mean spacing of all 9 arrival 

times was ~17 minutes. This is also one of the southernmost sites and located in the 

nearfield of the southern scenario, explaining why variation in arrival times are as low as 

2 minutes and as high as 190 minutes. The mean spacing between arrival times at Paso 

Huencho, the southernmost site located on a straight stretch of coast, was ~8 minutes, 

with a range of 0.02 – 80 minutes. The range of arrival times at Paso Huencho can be 

explained by its proximity to the southern rupture. As expected, the north-facing 

Campihuapi got the tsunami wave sooner than Paso Huencho. As a general rule of thumb, 

tsunami waves from the north arrive at north facing coasts earlier than at coasts that are 

not north facing (and vice versa for southern waves arriving at south-facing shores). 
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At Tirua, the mean spacing between arrival times was ~6 minutes (Table 10), with 

an arrival time range of 6-65 minutes. Tirua is a northwest-facing shore, making Tirua a 

site that easily differentiates northern arrival times from central and southern scenarios.  

The mean spacing between arrival times at both Matancilla and Constitucion was 

~5 minutes. Both are northern locations within close proximity to the northern rupture, so 

differentiating northern arrival times is possible. Central scenario tsunami arrival times 

would be second to distinguish, because of the protection of the Arauco peninsula 

delaying the arrival of a central scenario tsunami. 

 

High-Resolution Inundation Maps 

Eight inundation map areas built from high-resolution topography allow for 

detailed calculation of tsunami runups and inundation from my earthquake scenarios 

(Figure 13-16). Out of the previously discussed list of promising sites (Table 11), 4 of 

them have high-resolution inundation topography. These include Queule (both 1 and 2 

versions), Quidico, Tirua, and Puerto Saavedra (both 1 and 2 versions; Figure 14-16). 

Most tsunamis flooded previously studied tsunami deposit locations, with the exception 

of the Mw 8.6 central scenario at Queule 2 (Figure 14), Andalien (Figure 13), and Tirua 

(Figure 15). Paleotsunami site locations are also often in maximum flooding zones (see 

Figure 14-15). 
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Figure 13: Tsunami inundation maps of Andalien and Lenga, Chile from central 

earthquakes on 0.40” topographic grids. The purple dots at the Andalien and Lenga sites 

mark the location of a tsunami deposit from L. Ely, pers. comm. (2017). The Lenga site 

has no record of a 2010 or 1960 tsunami, and my inundation map shows inundation from 

a Mw 9.0 earthquake. In 1960 it is likely inundation occurred behind the beach berm, but 

left no sand deposits (L. Ely, pers. comm., 2018). 
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Figure 14: Inundation maps of Queule, Chile from central earthquakes. The purple dot 

marks the location of a 1960 tsunami deposit, L. Ely, pers. comm. (2017). The resolution 

on Queule 2 is 0.61” and Queule 1 is 0.28." The 1960 deposit was in many places 

throughout this site (L. Ely, pers. comm., 2018). 
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Figure 15: Inundation maps of Quidico (0.23” resolution) and Tirua (0.31” resolution), 

Chile from central earthquakes. The purple dots mark the locations of paleotsunami 

deposits and the 2010 tsunami deposit (Garrett et al., 2013; Ely et al., 2014; Nentwig et 

al., 2015; Hong et al., 2016; Cisternas et al., 2017; Dura et al., 2017). 
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Figure 16: Inundation maps of Puerto Saavedra, Chile from central earthquakes. The 

purple dot marks the location of a paleotsunami deposit and the 1960 tsunami deposit 

from Wright and Mella (1963). The resolution on Saavedra 2 is 3.05” and Saavedra 1 is 

0.40." 
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All inundation maps showed an increasing trend in tsunami wave heights and 

inundation extent with increasing earthquake magnitudes, as expected. For example, at 

Andalien (Figure 13), the inundation limit of the nearfield (central) earthquake was near 

the shoreline for the Mw 8.6 scenario, 0.5 km inland for the Mw 8.8 scenario, and an 

additional 0.2 km inland for the Mw 9.0 scenario. 

Although Andalien is a north-facing bay, the Mw 8.8 scenario affected Andalien 

and not Lenga, a northwest-facing bay. The sensitivity of Andalien may be explained by 

the low-lying topography of the Andalien River that allows tsunami waves to propagate 

more inland than Lenga for the Mw 8.8 scenario (Figure 13). Because the topography of 

Lenga is not low-lying (the shore has a 10-m berm), this explains why a scarce 

paleotsunami deposit record exists here.  

At Queule (Figure 14), Quidico (Figure 15), Tirua (Figure 15), and Puerto 

Saavedra (Figure 16), the Mw 8.6 scenarios inundates the Queule River, Quidico River, 

and Puerto Saavedra because they all have low-lying topography, which also explains 

why these locations are paleotsunami deposit sites.  

 

Comparing Tsunami Wave Heights with Published Data 

 All 99 simulated wave heights are comparable with published 2010 and 1960 

wave heights since my maximum inundation data is in approximately the same location 

as the 2010 and 1960 observations. The published maximum wave heights for the 2010 

Maule and 1960 Valdivia tsunami extends between 35.4°S and 40°S (Figure 17-18). 
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Simulated wave heights for the Mw 8.8 northern scenario underestimated the published 

2010 Maule wave heights at many locations, although some overlap exists at Concepcion 

(36.8°S), on the Arauco Peninsula (37.2°S), Quidico (38.2°S), and Puerto Saavedra 

(38.8° S). Sites with higher runup in 2010 (Figure 17), in particular Constitucion 

(35.4°S), Chevelle (35.9°S), Dichato (36.5°S), Tome (36.6°S), Concepcion (36.8°S), 

Locobe (37.3°S), and La Peuca (38.5°S), are underestimated in the range of 5-20 m. 

 

 

Figure 17: The published maximum wave heights for the 2010 Maule earthquake 

(NGDC/WDS, 2018a; orange dots) compared to the simulated maximum wave heights 

for a uniform slip Mw 8.8 northern scenario (blue dots) shows the underestimation of 

simulated wave heights. The amount of slip on the subduction zone perpendicular to each 

tide gauge (green text) is from the published slip distribution of the 2010 Maule 

earthquake from Pollitz et al (2011). The Mw 8.8 northern earthquake has a uniform 5 m 

slip everywhere from -35°S to -43°S. 
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Figure 18: The published maximum wave heights for the 1960 Valdivia earthquake 

(NGDC/WDS, 2018a; orange dots) compared to the simulated maximum wave heights 

for a Mw 9.0 central scenario (blue dots). 

 

Agreement between the 1960 Valdivia tsunami observations and the Mw 9.0 

central scenario wave heights were relatively good (Figure 18). Data for 1960 is sparse; 

however, only at three sites did simulated wave heights deviate from observations (Figure 

18): at Santa Maria (-37.02°S), the simulation was a few meters too high, 15 m too low at 

Mocha Island (-38.37°S), and a few meters too low at Missisipi (-39.43°S). I did not 

compare the 1960 Valdivia tsunami observations to the Mw 9.0 southern scenario because 

my central rupture extended as far south as reported observations for the 1960 tsunami 

(NGDC/WDS, 2018a). 
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 CHAPTER VI 

DISCUSSION 

Outliers in Tsunami Wave Height and Arrival Time Distribution along the Coast 

Notable outliers from my simulated wave heights along the coast are at Dichato, 

Santa Maria, West of Guape, Quidico, Cerro Oncol, and Guabun (Figure 11). At Dichato, 

tsunamis from all three northern ruptures were locally enhanced, as was the central Mw 

9.0 (and slightly the central Mw 8.8); Dichato is in the nearfield for all of these scenarios 

as well. Dichato is a north-facing bay that is open to direct propagation from tsunamis 

generated by earthquakes with rupture to the north, whereas tsunamis propagating from 

central or southern earthquakes are obstructed by a peninsula on the west side of the bay.  

Maximum wave heights in Santa Maria (an island 30-km west of the mainland 

coast of Chile) appear surprising in that the Mw 9.0 northern scenario is smaller than the 

Mw 9.0 central and Mw 8.8 central scenarios. However, just to the south in Tubul and the 

Yani Dunes both the northern and central scenarios were highest (Figure 11). The gauge 

at Santa Maria is in the zone of earthquake overlap between the Mw 9.0 central and 

northern rupture scenarios, thus is in the nearfield of both events, so I expected the wave 

heights to be similar (such is the case in Tubul). One explanation for the Santa Maria tide 

gauge is that it is on the western shore of Santa Maria Island, so wave heights from a 

northern scenario would dissipate once the tsunami hits the northern part of the Santa 

Maria shore and traveled to the western shore. However, the tide gauge on the western 
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shore of Santa Maria Island is in the direct path of tsunami waves from the central 

scenarios. 

West of Guape wave heights for the Mw 9.0 northern scenario were anomalously 

low while at nearby Quidico they were anomalously high compared to the background 

trend of the southward decreasing heights of this scenario (Figure 11). Both tide gauges 

at West of Guape and Quidico are in the nearfield of the central scenarios, so I expected 

both locations to be highest for the Mw 9.0 central scenario. Wave heights for the Mw 9.0 

northern scenario at West of Guape were low because the tide gauge is protected from 

northern waves by the Arauco Peninsula (Figure 19). At Quidico, wave heights for the 

Mw 9.0 northern scenario were so high because (1) the gauge is not protected by the 

Arauco Peninsula to the north, (2) the site is north-facing, and (3) Quidico sticks out to 

the west relative to its northern shores (Figure 19).  

At Cerro Oncol, which is in the nearfield of the central segment, the Mw 9.0 

southern scenario produces 1-m higher wave heights than the Mw 9.0 central scenario 

(Figure 11). The peninsula north of Cerro Oncol, Pillin, might be obstructing tsunami 

waves from the central nearfield, but does not obstruct a southern tsunami. Guabun, 

located in the southern nearfield, is similar in that the Mw 9.0 central scenario produces 

>1m-higher wave heights than the Mw 9.0 southern scenario (Figure 11). The top of the 

archipelago acts as a barrier for tsunamis waves from the south, but is easily accessible 

for waves coming from the Mw 9.0 central scenario. 
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Figure 19: Quidico sticks out to the west relative to its northern shores, whereas West of 

Guape is protected from a northern scenario by the Arauco Peninsula. Google Earth 

Image. 
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There are few outliers in arrival times because many tsunami arrival times could 

not be determined (due to bathymetric resolution error) and were removed; only the 

remaining data points appear in Figure 12. However, one outlier from the variation in 

arrival times along the coast is at Cerro La Gloria (Figure 12), in the northern and central 

nearfield. Tsunami arrival times at Cerro La Gloria are later for the central scenario than 

the northern scenario. One possible explanation is the shoreline directly south of Cerro La 

Gloria contains three south-facing bays and the Yani Dunes at Locobe that might delay a 

tsunami wave from a southern direction (i.e., from a central scenario; Figure 20).  

 
Figure 20: The shoreline directly south of Cerro La Gloria (green dot is the tide gauge) 

contains three south-facing bays (numbered) and the Yani Dunes that could delay a 

central tsunami wave at Cerro La Gloria. Google Earth Image. 
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Comparing the 2010 and 1960 Recent Events with Simulated Scenarios 

Comparing recent events with my tsunami simulations is an important validation 

tool for assessing how close my hypothetical scenarios are to real-world situations. 

Although the rupture area and magnitude of the combined Mw 9.0 southern and central 

scenarios are only a Mw 9.0, their land level change data showed a close match to the Mw 

9.5 1960 Valdivia earthquake. Observations for the 1960 Valdivia tsunami wave heights 

and the Mw 9.0 central scenario agree with each other well, except at the following three 

sites (Figure 18): Santa Maria (-37.02°S), Mocha Island (-38.37°S), and Missisipi (-

39.43°). However, the Mocha Island and Santa Maria sites should not be considered in 

the comparison, because these observations were not made at exactly the same longitude 

as my maximum inundation data. For example, there are two different wave height 

observations at -38.37°S, 25 m-high waves on Mocha Island and 11-m waves on 

mainland Chile near Tirua (Figure 18). Although both locations share the same latitude as 

my maximum inundation data, my wave heights were calculated on mainland Chile near 

Tirua, not on Mocha Island. Similarly, the Santa Maria wave height (-37.02°S) was 

observed on the island, but my simulation measured on the mainland. Therefore, these 

sites can be disregarded. My simulated wave height at Missisipi is 3 m too low and is in 

the same location as the observed wave heights, so this site can be noted as an outlier. It 

is possible the 1960 tsunami at Missisipi produced greater wave heights than my Mw 9.0 

central scenario, being generated by a larger earthquake at a coastal river inlet where 

wave amplification could factor in.  
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The rupture area and magnitude of the Mw 8.8 northern scenario is similar to the 

Mw 8.8 2010 Maule earthquake, and coastal land-level change between observations of 

2010 Maule and the seafloor deformation for my scenario showed less than 20% 

difference. Comparing the 2010 Maule tsunami wave heights with my simulations of a 

Mw 8.8 northern scenario shows similar values at Concepcion (36.8°S), on the Arauco 

Peninsula (37.2°S), Quidico (38.2°S), and Puerto Saavedra (38.8°S; Figure 17). However, 

at Constitucion (35.4°S), Chevelle (35.9°S), Dichato (36.5°S), Tome (36.6°S), 

Concepcion (36.8°S), Locobe (37.3°S), and La Peuca (38.5°S), simulated wave heights 

are much smaller than published observations (compare maximum 9-m simulated wave 

heights vs. 28 m observed at Constitucion; Figure 17). As a first-order interpretation, the 

low-resolution bathymetry does not resolve bathymetric features at a smaller scale than 

30 arcseconds that affect shoaling of a tsunami (Tang et al., 2009; Pan et al., 2010). 

Resolutions ~100 times finer (1/3 arcsecond) are recommended for onshore modeling of 

runup and inundation (Tang et al., 2009). However, this interpretation cannot be verified 

without better bathymetric data at the sites in question.  

Shelf resonance (the entrapment and amplification of wave energy over the wide 

continental shelf and slope; Yamazaki and Cheung, 2011) and resulting edge waves (the 

refraction of waves into multiple directions when tsunami waves amplify in relatively 

shallower water; Yamazaki and Cheung, 2011) are thought to have been created at 

Constitucion and the bay of Concepcion for the 2010 Maule tsunami resulting in an 

amplification of wave heights (Figure 17; Yamazaki and Cheung, 2011) and these 
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particular locations having the highest maximum wave heights. If edge waves were not 

created, especially if the low-resolution of the bathymetry does not allow resonance to 

occur, GeoClaw would underestimate the amplified wave heights.  

A final effect of the low-resolution bathymetry in comparing the 2010 Maule 

tsunami to the Mw 8.8 northern scenario is problems capturing runup effects around 

embayments and peninsulas (i.e., the Dichato embayment, the Tome embayment, the 

Corral embayment, the Arauco Peninsula, the Concepcion peninsula, and the southern 

Valdivia Province peninsula), which make up most of the points on the coast with low 

and high runup in the same region (Figure 17). The role of bay and shelf resonance 

during tsunami propagation has been investigated at different locations for several events 

(Bellotti et al., 2012; Yamazaki and Cheung, 2011; Roeber et al., 2010; Horrillo et al., 

2008). Propagating tsunamis tend to excite and amplify natural frequencies of bays, 

leading to higher runup in these coastal areas (Bellotti et al., 2012). 

In addition to bathymetry contributing to differences between tsunami 

observations and the simulation (Figure 17), the 2010 Maule earthquake ruptured with a 

complex slip distribution of slip over 110 seconds (Delouis et al., 2010), while the Mw 

8.8 northern scenario ruptured with uniform slip instantaneously. The location of 

maximum 28 m wave heights at Constitucion was trench-perpendicular to the estimated 

location of maximum slip (18 m; Pollitz et al., 2011). Locations farther south, Chevelle, 

Dichato, Tome, Concepcion, etc., with significantly higher wave heights than the Mw 8.8 

scenario displayed trench-perpendicular slip values that roughly corresponded to runup. 
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For example, slip was 10 m at Chevelle (with a maximum wave height of 14 m), 7.5 m at 

Dichato (with a maximum wave height of 15 m), 6 m at Concepcion (with a maximum 

wave height of 7 m), and 7 m at Locobe (with a maximum wave height of 13 m; Pollitz et 

al., 2011). In comparison, the Mw 8.8 northern scenario slip was 5 m, extending to -43°S, 

roughly the average wave height value for that section of the coast (Figure 17).  

By making a comparison between wave heights from simulated scenarios and the 

2010 wave heights, there is a similar trend between both, where outliers are explained by 

either the low resolution bathymetry used or the complex slip distribution of the 2010 

Maule tsunami. Figure 17 is a great visual indicator of how close my hypothetical 

scenarios are to real-world events. Although most of the outliers in the 2010 published 

wave heights can be explained by slip distribution, there is an overall trend in the Mw 8.8 

northern scenario that shows wave height values decreasing to the south where the 

highest waves are located in the areas with the largest slip (Figure 17). My scenarios 

coincide with the general trend of tsunami effects (i.e., runup), therefore tsunami models 

are a useful and powerful tool for matching paleotsunami deposits and historical accounts 

of past earthquakes to source magnitudes and locations of paleoearthquakes in Chile. 

  

Northern and Central Sites Are More Sensitive to the Earthquake Source 

Location/Magnitude than Southern Sites 

To infer pre-instrumental earthquake properties, further investigation from 

simulated wave height spacing from the 99 tide gauges (33 in each region) is necessary to 
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understand which sites are more sensitive to source location or the magnitude of the 

earthquake. In the northern region, there are 25 of 33 sites (76% of all sites in the north) 

with spacing ≥0.5 m between all simulations, and 22 of 33 sites (67%) in the central 

region with spacing ≥0.5 m. However, there are only 12 of 33 sites (36%) with spacing 

≥0.5 m (Figure 21) in the southern modeling region. The northern and central regions 

therefore have better filtering capabilities between tsunamis from earthquakes of differing 

magnitudes and from different source locations than those of the southern region.  

Looking at only Mw 8.8 and Mw 9.0 earthquakes (data suggests the Mw 8.6 

typically are too small to leave extensive deposits) 72 of the 99 gauges (73%) have an 

average spacing of ≥0.5 m between northern, central, and southern earthquakes, showing 

a sensitivity to earthquake location, regardless of magnitude (Figure 22). The northern 

section had 27 of 33 (82%) sensitive sites, the central section had 28 of 33 (85%) 

sensitive sites, and the southern section had 17 of 33 (52%) sensitive sites. One possible 

explanation for the southern section having less promising sites than the central or 

northern sections is that the bathymetry off the southern continental slope might be 

different from that of the northern and central continental slopes, which can heavily 

influence tsunami wave interaction.  
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Figure 21: Locations of tide gauges that are determined to be sensitive to earthquake 

magnitude (grey dots; red dots are non-promising sites). The northern section had 25 

sensitive sites, the central section had 22 sensitive sites, and the southern section had 12 

sensitive sites, making a total of 59 sites. I did not include sites from arrival time data 

because they overlapped with the statistically promising sites from wave height data. 

These 59 grey dots also make up my statistically (but not final) promising sites. 
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Figure 22: Locations of tide gauges that are determined to be sensitive to earthquake 

location, regardless of magnitude (orange dots; red dots are non-promising sites). For this 

analysis average minimum spacing for only Mw 8.8 and Mw 9.0 scenarios were used. The 

northern section had 27 sensitive sites, the central section had 28 sensitive sites, and the 

southern section had 17 sites, making a total of 72 sites. 
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The bathymetry of the continental slope is likely the reason the northern and 

central sections are more sensitive to earthquake magnitude and source location than the 

southern section. In general, the interaction of tsunami waves with bathymetric 

irregularities (i.e., aseismic ridges and seamounts) on the continental slope results in 

increased amplitudes and reduced wavelengths as the wave shoals (Horsburgh et al., 

2008). The southern continental shelf is wider, has more ridges (Kelleher and McCann, 

1976) and is prone to more wave resonance phenomena due to the refractive effects of 

the bathymetry (Bellotti et al., 2012). Wave reflection and energy dissipation is the 

energetic result from wave interference due to slope irregularities (i.e., the Chile Ridge at 

-40°S; Figure 23) and the trapping of long waves such as tsunamis in the south 

(Horsburgh et al., 2008; Bellotti et al., 2012), leading to smaller and therefore more 

similar wave heights between scenarios.  

Maximum wave heights from all my scenarios reached 6-7 m in the south and ~7-

10 m in the north (Figure 11). This wave height difference could be explained by 

bathymetric irregularities from the continental slope. Since bathymetric irregularities 

control the dissipation of tsunami waves (Horsburgh et al., 2008; Bellotti et al., 2012), I 

inspected the locations of Chilean continental slope irregularities in ArcGIS. Smooth 

continental slopes, defined as having smooth seafloor morphology, are generally 

concentrated in the northern region (-35° to -39°S; Figure 23) and rough slopes are 

concentrated in the south-central region (-39° to -42°S; Figure 23). At -42°S, the slope is 

smooth, but the two peaks pointed out in Figure 23 are high enough in the profile to trap 
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long waves.  In comparison, there are fewer promising sites between -39° and -42°S than 

-35° to -39°S. Notice the flat continental slope at 43°S (Figure 23), which correlates with 

a cluster of 5 promising sites in the south (Figure 23). 

 

 

Figure 23: Profiles of the Chilean continental slope constructed from ArcGIS. “Smooth” 

and “rough” slope designations are based on the profile shape and its morphology visible 

in Google Earth. White lines are the length of the profile. Widths were measured in 

ArcGIS using the online basemap. The grey dots are my 59 statistically promising sites, 

and the red dots are non-promising sites. At -42°S, the slope is gentle, but the two peaks 

are high enough in the profile to trap long waves. 
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Will My Method Work to Distinguish Paleoearthquake Properties from 

Paleotsunami Deposits?  

 Assessing maximum wave heights from my nine simulations at tsunami deposit 

and historical site locations is important for preliminary interpretations of distinguishing 

paleotsunami rupture location and magnitudes. At each site along the coast in the 

database, I can use the data presented in Figure 11 to calculate which of my nine 

simulated tsunamis could leave a deposit at paleotsunami locations, because the elevation 

of the backshore and coastal plain is obtainable in Google Earth. Many of the nine 

scenarios would be expected to leave a deposit at most of the paleotsunami deposit sites 

in the database; at 23 of 25 sites in the tsunami deposit database the backshore and 

coastal plain was at lower elevation than maximum tsunami waves from one or more 

simulations (Table 12). Two sites (Angol and Ancud) could not have tsunami deposits 

from any of my simulations because the maximum tsunami waves were not high enough 

to overtop the backshore and inundate the coastal plain. 
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Table 12: Location-specific potential for leaving tsunami deposits (highlighted orange) 

for each of the nine scenarios. Underlined places mark sites where high-resolution 

inundation maps were used for analysis rather than Google Earth. 
 Name known 

record 

absence of 

evidence* 

lat (°S) Mw 

8.6

N 

Mw 

8.6

C 

Mw 

8.6

S 

Mw 

8.8

N 

Mw 

8.8

C 

Mw 

8.8

S 

Mw 

9.0

N 

Mw 

9.0

C 

Mw 

9.0

S 

N
o

rt
h

er
n

 s
ec

ti
o

n
 

La 

Trinchera 

1960  -35.102 
 

x x   
 

x   
 

x 

Constitu-

cion 

1960  -35.316 
 

x x 
 

x x 
  

x 

Coliumo 1835, 

2010 

 -36.504 x x x 
  

x 
  

x 

Dichato 2010  -36.538 x x x 
 

x x 
  

x 

Penco 1575, 

1835, 

1960, 

2010 

1737, 

1837 

-36.727 x x x 
 

x x 
  

x 

Andalien 2010  -36.735 
 

x x 
  

x 
  

x 

Concepci-

on/Talca-

huano 

1960, 

2010 

 -36.846 x x x x x x 
  

x 

Santa 

Maria 

1835  -37.017 x x x x x x x 
 

x 

Llico 2010  -37.194 x x x x x x 
  

x 

Tubul 2010  -37.234 x x x   
 

x   
 

x 

C
en

tr
a

l 
se

ct
io

n
 

Quidico 1835, 

1960, 

2010 

1575, 

1737, 

1837 

-38.230 x  x   x     x 

Tirua 1575, 

1960, 

2010 

1835, 

1737 

-38.328 x  x x  x   x 

Mocha 

Island 

2010 1835 -38.433 x  x x  x   x 

Puerto 

Saavedra 

1575, 

1960 

 -38.785 x   x x   x       

Queule ????, 

1960 

 -39.359 x   x x   x x   x 

Missisipi 1960  -39.427 x  x x  x x    

Valdivia 1575, 

1837, 

1960 

1835, 

2010 

-39.826 x  x x  x x    

Chaihuin 1960  -39.944 x x x x x x x   x 

S
o

u
th

er
n

 

se
ct

io
n

 

Pucatrihue 1960  -40.535 x x x x   x x     

Maullin  1575, 

1837, 

1960 

1835, 

2010 

-41.618 x x x x x x x x   
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Table 12 (Continued): Location-specific potential for leaving tsunami deposits 

(highlighted orange) for each of the nine scenarios. Underlined places mark sites where 

high-resolution inundation maps were used for analysis rather than Google Earth. 
 Name known 

record 

absence of 

evidence* 

lat (°S) Mw 

8.6

N 

Mw 

8.6

C 

Mw 

8.6

S 

Mw 

8.8

N 

Mw 

8.8

C 

Mw 

8.8

S 

Mw 

9.0

N 

Mw 

9.0

C 

Mw 

9.0

S 

Ancud 1837, 

1960 

 -41.857 x x x x x x x x x 

Chucalen 1575, 

1960, 

2010 

 -41.863 x x x x x x x x 
 

Cocotue 1575, 

1837, 

1960 

 -41.905 x x x x x x x 
  

Lake 

Huelde 

1575, 

1837, 

1960 

1835, 

2010 

-42.635 x x 
 

x x 
 

x 
 

  

*for historical sites: records of an earthquake but no tsunami dated; for deposit sites: well-

studied sites with no dates from earthquake 
???? There is a deposit here (undated) older than 1960. 

 

Interpreting paleoearthquake rupture locations and magnitudes from tsunami 

deposits can help refine today’s knowledge of rupture extent from past events. Looking at 

sites in the database of tsunami deposits and historical accounts, specific rupture location 

and magnitudes can be calculated based on where tsunamis for the 1575, 1737, 1835, 

1837, 1960, and 2010 earthquakes were and were not recorded (Table 12). For example, 

we know the rupture area solution for the 1960 earthquake was the combined area of Mw 

9.0 central and southern scenarios, with the total slip amount underestimated (see end of 

my Results section). If we analyze the combined simulations of all scenarios (Table 12), 

we could come to the same solution: central Mw 9.0 scenarios show deposition possible 

between La Trinchera and Pucatrihue and southern Mw 9.0 scenarios show 1960 

deposition between Pucatrihue and Lake Huelde. However, at sites inundated by the 2010 

tsunami, simulations do not compare well with 2010 observations, because inundation 

from a northern Mw 9.0 matches better than the known solution of a northern Mw 8.8 
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scenario. See section “Comparing the 2010 and 1960 recent events with simulated 

scenarios” for discussion of why the Mw 8.8 scenarios have a poor match with the 

observations.  

Simulations strongly suggest a tsunami from a Mw 9.0 earthquake in the southern 

region is relatively consistent with the 1575 tsunami observations. However, Quidico, a 

north facing shore in the northern nearfield, does not have the 1575 tsunami deposit, but 

Penco, farther north, does have a record of a tsunami. This implies possibly that the 1575 

northern rupture boundary extends farther north than the Mw 9.0 southern scenario in 

order for tsunami waves to inundate at Penco but presumably not at Quidico. However, 

Penco (in Concepcion Bay) is a site where my simulation consistently underestimates 

wave heights (see 1835 example below), so moving the boundary might not be necessary. 

For the 1737 earthquake, which lacked a tsunami, simulations suggest that the 

earthquake was smaller than a Mw 8.6 if a central, smaller than a Mw 8.8 if a northern, or 

as big as a Mw 9.0 if a southern earthquake. Otherwise, a deposit or historical observation 

would likely have been noted in Penco, Quidico, or Tirua.  

At 2 of the 3 sites inundated by the 1835 tsunami, the northern Mw 8.8 scenario 

could leave deposits, while at the same time would not inundate sites with an absence of 

evidence of that event (Table 12). The site not inundated by the northern Mw 8.8 scenario 

is Concepcion Bay. However, both the 2010 and 1835 tsunamis were observed to be 13-

m high in Concepcion Bay (Lomnitz, 1970; NGDC/WDS, 2018a). As discussed earlier, 

bathymetric resolution issues underestimate inundation and wave heights at embayments. 
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If we predict the reasons the northern Mw 8.8 scenario was not large enough in 

Concepcion Bay to recreate the 2010 observations are the same for the 1835 case, then a 

solution of a northern Mw 8.8 scenario for the 1835 event is likely robust.  

The best solution for the 1837 event is a Mw 9.0 earthquake lying between the 

central and southern rupture areas. There are 4 well-studied sites inundated by the 1837 

tsunami: Valdivia, Maullin, Cocotue, and Lake Huelde, and 2 sites with suspected 

evidence of no inundation (Table 12). Both central and southern Mw 9.0 scenarios are 

possible, but neither are ideal because Lake Huelde is in favor of a southern scenario 

while Valdivia is in favor of a central scenario (Table 12). Therefore, the northern 

boundary of this earthquake is likely in between my central and southern regions. Future 

modeling of new scenarios can test this hypothesis.  

The estimated magnitudes for past earthquakes are as follows: ~Mw 8.0-8.5 for 

the 1575 earthquake, ~Ms 8-8.5 for the 1835 earthquake, and Mw 8.0 for the 1837 

earthquake (Lomnitz, 2004; Cisternas et al., 2005). Overall, my work suggests that these 

magnitudes need to be revised (if uniform slip is assumed), and not only the source 

rupture extent.  

 

Sources of Error  

Sources of error associated with modeling on low-resolution bathymetry and 

topography have previously been discussed in this thesis; however, additional sources of 

error associated with the earthquake source scenario also exist. Slip on my subfault 
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planes translated to the tsunami waveform requires many assumptions. In my method, 

slip produced seafloor deformation using the Okada (1985) formulation, which was 

directly translated to the initial tsunami input. Uniform displacement over a finite 

rectangular subfault leads to a deformed surface when inserted in a homogeneous elastic 

half space (Mandli et al., 2016). However, this is only an approximation since the actual 

seafloor in rarely flat, and the actual earth is not a homogeneous isotropic elastic material 

as assumed in this model (Mandli et al., 2016). As a result, the deformation of the 

seafloor is oversimplified. However, because these approaches are standard practice 

(Mandli et al., 2016) and assume simplicity, it is acceptable for first-order interpretation.  

The widths used for the southern rupture scenarios using a length to width scaling 

(4:1) are potentially problematic, as illustrated by ongoing controversial discussions on 

whether the Chilean seismogenic zone narrows to the south (Cande et al., 1987; Wang et 

al., 2007). I did not take into consideration the possibility that the seismogenic zone in 

southern Chile might not be the same width as the northern rupture. For very large 

earthquakes, the scale of earthquake-stress drop must be reconciled somehow with the 

finite width of the seismogenic zone (Mai and Beroza, 2000). Once large earthquakes 

reach a certain size, their continued growth is constrained in width (Mai and Beroza, 

2000): the seismogenic zone is limited in extent by the surface and by the brittle-ductile 

transition at depth (Scholz, 1982). If I considered a relatively narrow seismogenic zone to 

the south but maintained the same magnitude, my slip, and therefore seafloor deformation 

and associated tsunami in the south would be slightly larger. 
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CHAPTER VII 

CONCLUSIONS 

The 1960 earthquake in Chile ruptured at least 900 km, which triggered a 

destructive tsunami with waves up to 15 m (Kanamori, 1977; Heaton and Hartzell, 1987; 

Cisternas et al., 2005). An earthquake of this size in the future could be even more 

destructive as Chile’s population continues to grow. Paleoseismological studies show that 

earthquakes and tsunamis affect Chilean coastal communities approximately every 

century (Lay and Kanamori, 1981; Moreno et al., 2010; Ely et al., 2014). By 

understanding where large earthquakes are more likely to occur from paleotsunami 

studies, these communities can better plan for future events. 

Previous extensive field studies in Chile over several field seasons has allowed 

me to collect a dataset of tsunami deposits and historical accounts associated with south-

central (35-43°S) Chilean tsunamigenic earthquakes (Lomnitz, 2004; Cisternas et al., 

2005; Nelson et al., 2009; Fujii and Satake, 2013; Ely et al., 2014; Moernaut et al., 2014; 

Dura et al., 2015; Garrett et al., 2015; Nentwig et al., 2015; Hong et al., 2016). The 

overall purpose of this project was to determine if unknown rupture parameters (i.e., 

magnitude and source location) from past megathrust earthquakes along the coast of 

Chile can be predicted with tsunami simulations guided by on-land observations (i.e., 

tsunami deposits or historic written records). To determine whether tsunami simulations 

are capable of matching these observations, I investigated the sensitivities of tsunami 

effects (e.g., wave heights and inundation) generated from nine hypothetical 
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tsunamigenic large earthquakes in south-central Chile that cover the diversity of 

characteristics from actual past events. The goals of this research are twofold: evaluate 

the methodology of comparing the tsunami deposit and historical account database to 

tsunami simulations and develop a proposed list of promising sites for future study of 

paleotsunamis. These promising sites identify locations on the coast that filter and/or 

amplify earthquakes from variable rupture sizes and source locations by magnifying 

differences in tsunami inundation and runup values. 

 I created nine earthquake scenarios using the tsunami model GeoClaw: Mw 8.6, 

8.8, and 9.0 at a northern, central, and southern location. I based their rupture parameters 

(i.e., length, width, and slip) off recent earthquakes in Chile that had similar magnitudes: 

the 2010 Mw 8.8 Maule earthquake, the 2015 Mw 8.3 Illapel earthquake, and the 1960 Mw 

9.5 Valdivia earthquake. To compare simulations with onshore data and with each other, 

I used synthetic tide gauges to record waveform data from each model run. I created 99 

tide gauges near the shoreline and evenly distributed them throughout the northern, 

central, and southern modeling boundaries, including tsunami deposit and historical site 

locations. Analysis of the synthetic tide gauge waveforms enables calculation of arrival 

times of the tsunami at the tide gauge and wave height highs and lows, and the maximum 

wave heights allows for projection of tsunami inundation onshore. 

After quantitatively and qualitatively assessing sites from tide gauge data, I ended 

up with 22 promising sites, or locations onshore that magnify differences between 

tsunami wave heights/arrival times, and therefore filters the earthquake magnitude and/or 
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source location. These sites are good places to look for past records to determine 

paleoearthquake size and location. I made additional high-resolution simulations at 

Andalien, Lenga, Puerto Saavedra, Queule, Quidico, and Tirua that show maximum 

inundation at each site because the 30-arcsecond resolution of bathymetry and 

topography used in GeoClaw is not detailed enough to model the dynamics of inundation. 

As expected, increasing earthquake magnitude produced larger tsunami wave 

heights, more sites with tsunami inundation, farther inundation extent, higher seafloor 

deformation, generally earlier arrival times and greater values of subsidence and uplift. 

Simulations showed tsunamis from Mw 9.0 earthquakes can inundate coastal plains from 

nearfield sources, but not exclusively as Mw 8.6 and Mw 8.8 earthquake tsunamis can 

produce wave heights over 5 m at some sites. At my promising sites, at least one of the 

three earthquake epicenter locations can be ruled out as a possible source area. Refer to 

Appendix B for the tide gauge waveforms at all promising sites.  

My earthquake input parameters resulted in both uplift and subsidence, which 

varied due to location and wider seafloor deformation for larger width earthquakes. The 

northern Mw 8.8 earthquake rupture extent and seismic moment are equivalent to the 

2010 earthquake. However, simulated wave heights are smaller than observed wave 

heights in 2010 likely because of (1) the complex 2010 Maule rupture slip distribution 

and (2) shelf resonance and edge waves amplifying the wave heights at Constitucion and 

Concepcion. The central and south Mw 9.0 earthquake is equivalent to the 1960 

earthquake in terms of rupture area and seismic moment (Fujii and Satake, 2013; 
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Moernaut et al., 2014). Between my simulated Mw 9.0 central wave heights and the wave 

heights that exist from 1960, there is mostly overlap with few exceptions.  

Wave heights showed a similar trend between all nine simulations, with wave 

heights from southern earthquakes being lowest in the northern section and wave heights 

from northern earthquakes being lowest in the southern section, as expected. Arrival 

times also showed a predictable trend, with shorter arrival times from northern 

earthquakes in the north, and longer arrival times from southern earthquakes in the north, 

for example.  

 Northern and central sites are more sensitive to the earthquake source location 

and/or magnitude. The bathymetry on the continental shelf might be the reason the 

southern section is not as sensitive to earthquake magnitude as the northern and central 

sections. The energetic consequence resulting from wave interference due to slope 

irregularities in the southern region are wave reflection and energy dissipation 

(Horsburgh et al., 2008; Bellotti et al., 2012), resulting in lower and therefore more 

similar wave heights between scenarios in the south. 

 Looking at sites within the database of tsunami deposits and historical accounts, 

specific rupture location and magnitudes are likely to preserve in the tsunami record for 

the 1575, 1737, 1835, 1837, 1960, and 2010 earthquakes. Data strongly suggests a 

tsunami from a Mw 9.0 earthquake in the southern region is relatively consistent with the 

1575 tsunami observations. Because Quidico, a north-facing shore in the northern 

nearfield, does not have the 1575 deposit, but Penco does have a record of a tsunami, it is 
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likely the 1575 northern rupture boundary extends farther north than the Mw 9.0 southern 

scenario. At sites inundated by the 1835 tsunami, a northern Mw 8.8 scenario is the best 

solution, while a Mw 9.0 scenario between the central and southern rupture areas is the 

best solution for the 1837 tsunami. Future tsunami modeling is needed to test all 

interpretations for past earthquake rupture locations and magnitudes.  

In order to apply forward tsunami modeling methods to interpret paleotsunami 

deposits, it is important to assess the validity of matching on-land observations (i.e., 

paleotsunami deposits) from the tsunami to the paleoearthquake properties. At 60% of 

my sites, tsunami wave heights averaged ≥0.5 m between simulations, which is a 

substantial number of sites in the 1,000-km stretch of the coast of south-central Chile. 

The number of sites sensitive to magnitude and/or source location amounted to more 

than half of the total, which leads me to believe these results are tangible considering the 

quality of bathymetry available. My nine scenarios showed that more extensive 

comparisons of possible paleoearthquake parameters with on-land observations is an 

effective and promising approach to defining characteristics of historical and prehistoric 

events. 
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APPENDICES 

APPENDIX A 

Inundation at Promising Sites 

Table A1: Maximum wave heights from my nine simulations compared to the minimum 

elevation needed for the tsunami to inundate shows that all 22 final promising sites could 

have tsunami inundation and possible tsunami deposits.  
   Maximum Wave Heights (m) 

Tide 

Gauge 

site name minimum 

elevation 

needed for 

inundation 

(m)  

Mw 

8.6N 

Mw 

8.6C 

Mw 

8.6 S 

Mw 

8.8N 

Mw 

8.8C 

Mw 

8.8 S 

Mw 

9.0N 

Mw 

9.0C 

Mw 

9.0 

S 

55 Los 

Rabanos 

2.0 6.2 0.8 0.3 8.8 1.8 0.5 11.9 3.3 0.9 

6 Constituc-

ion 

4.0 4.3 0.6 0.4 5.8 1.9 0.6 8.3 2.8 1.2 

68 Tubul 8.0 4.2 1.9 0.3 8.5 8.5 0.6 9.2 8.5 1.3 

27 Playa 

Llancao 

2.5 1.1 3.4 0.3 1.9 4.7 0.6 4.2 6.8 1.6 

28 W of 

Guape 

3.0 2.3 3.3 0.3 1.7 4.8 0.6 3.1 7.0 1.9 

76 W of 

Lago 

Lleulleu 

4.0 1.3 3.4 0.3 2.5 4.6 0.6 4.6 6.6 1.6 

29 Quidico 2.0 2.2 2.2 0.3 2.0 3.7 0.6 6.2 5.0 1.4 

60 Tirua 2.0 0.8 2.2 0.6 1.4 3.5 1.1 4.5 4.4 2.6 

81 N 

Saavedra 

4.0 0.6 3.7 0.5 1.4 4.7 1.9 2.3 6.6 3.4 

31 Puerto 

Saavedra 

1.5 1.6 4.3 0.6 1.5 5.6 1.6 4.4 7.9 3.1 

83 Chelle 5.5 0.9 3.7 0.5 1.6 5.2 1.7 2.6 7.3 3.3 

84 Reduccion 

Porma 

2.0 0.9 4.0 0.5 1.6 5.5 1.6 3.0 7.6 3.1 

85 Nueva 

Tolten 

3.0 1.0 4.0 0.9 1.5 5.7 1.8 2.5 7.8 3.1 

61 W of 

Puraloco 

2.5 1.2 4.4 1.4 2.0 6.0 2.5 2.5 8.0 4.4 

64 Queule 3.0 1.3 4.1 0.6 2.2 5.8 1.9 2.2 7.9 2.8 

65 Missisipi 4.0 1.1 4.4 0.6 1.1 6.2 1.8 2.5 8.8 4.4 

34 S of 

Maiquilla

hue 

2.5 1.6 3.9 0.6 1.2 5.4 2.0 3.2 7.6 4.1 
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Table A1 (Continued): Maximum wave heights from my nine simulations compared to 

the minimum elevation needed for the tsunami to inundate shows that all 22 final 

promising sites could have tsunami inundation and possible tsunami deposits.  
Tide 

Gauge 

site name minimum 

elevation 

needed 

for 

inundatio

n (m)  

Mw 

8.6N 

Mw 

8.6C 

Mw 

8.6 S 

Mw 

8.8N 

Mw 

8.8C 

Mw 

8.8 S 

Mw 

9.0N 

Mw 

9.0C 

Mw 

9.0 

S 

71 Chaihuin 5.5 0.3 3.2 0.6 0.6 4.1 2.4 1.3 6.4 4.8 

72 Pucatrihue 4.0 0.6 2.3 2.2 1.1 4.6 3.1 1.9 6.9 5.0 

48 Chepu 3.0 0.3 2.1 2.5 0.6 3.5 4.5 1.3 5.2 6.2 

66 Lake 

Huelde/ 

Cucao 

2.0 0.3 0.9 2.7 0.3 1.9 4.4 0.6 3.1 7.0 

54 Paso 

Huencho 

3.0 0.4 1.6 2.8 0.5 1.9 3.9 0.9 4.5 5.8 
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APPENDIX B 

Tide Gauge Waveforms  

 

Figure B1: Tide gauge waveforms at Constitucion and Playa Llancao. The blue, black, 

and red squares in the Playa Llancao waveforms are the result of the tide gauge water 

depth oscillating above and below sea level due to changes in the resolution of the 

bathymetric grid during calculation in GeoClaw. 
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Figure B2: Tide gauge waveforms at West of Guape and Quidico. 
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Figure B3: Tide gauge waveforms at Puerto Saavedra and South of Maiquillahue. The red 

squares in the Puerto Saavedra waveforms are the result of the tide gauge water depth 

oscillating above and below sea level due to changes in the resolution of the bathymetric 

grid during calculation in GeoClaw. 
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Figure B4: Tide gauge waveforms at Chepu and Paso Huencho. The red and blue squares 

in both waveforms are the result of the tide gauge water depth oscillating above and 

below sea level due to changes in the resolution of the bathymetric grid during 

calculation in GeoClaw. 
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Figure B5: Tide gauge waveforms at Los Rabanos and Tirua. 
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Figure B6: Tide gauge waveforms at Puraloco and Queule. The red and black squares in 

the Queule waveforms are the result of the tide gauge water depth oscillating above and 

below sea level due to changes in the resolution of the bathymetric grid during 

calculation in GeoClaw. 
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Figure B7: Tide gauge waveforms at Missisipi and Lake Huelde. The blue, red, and black 

lines in both waveforms are the result of the tide gauge water depth oscillating above and 

below sea level due to changes in the resolution of the bathymetric grid during 

calculation in GeoClaw. 
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Figure B8: Tide gauge waveforms at Tubul and Chaihuin. 
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Figure B9: Tide gauge waveforms at Pucatrihue and West of Lago Lleulleu. The red and 

black lines and squares in the West of Lago Lleulleu waveforms are the result of the tide 

gauge water depth oscillating above and below sea level due to changes in the resolution 

of the bathymetric grid during calculation in GeoClaw. 

 

 

 

 

West of Lago Lleulleu 
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Figure B10: Tide gauge waveforms at Northern Puerto Saavedra and Chelle. The red and 

black lines in both waveforms are the result of the tide gauge water depth oscillating 

above and below sea level due to changes in the resolution of the bathymetric grid during 

calculation in GeoClaw. 
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Figure B11: Tide gauge waveforms at Reduccion Porma and Nueva Tolten. The red and 

black lines and squares in the Reduccion Porma waveforms are the result of the tide 

gauge water depth oscillating above and below sea level due to changes in the resolution 

of the bathymetric grid during calculation in GeoClaw. 
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