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ABSTRACT 

 

POSTGLACIAL FIRE, VEGETATION, AND ENVIRONMENTAL CHANGE IN THE  

 

SINLAHEKIN WILDLIFE AREA, OKANOGAN COUNTY, WASHINGTON (USA) 

 

by 

 

Kevin Christopher Haydon 

 

May 2018 

Historically fire has played a key disturbance role in many ecosystems of the 

western United States. One of the most affected landscapes is the dry ponderosa pine-

dominated forests of eastern Washington. Over the past decade, these forests have 

experienced a dramatic increase in large, high-severity wildfires, resulting in significant 

damage to natural resources, property, and habitat. Public land managers are now faced 

with the increasing challenge of maintaining these fire-dependent ecosystems in tandem 

with the projected impacts of future climate change. To do this, land managers need to 

make informed, adaptive decisions based on what it known in terms of historic fire 

regimes and how ecosystems respond to climate variability, both past and future. 

However, little is known about the long-term fire history of these dry forests in 

Washington State. The purpose of this study was to reconstruct the long term fire and 

vegetation history of Doheney Lake in the Sinlahekin Wildlife Area (SWA), which is 

located in a dry ponderosa pine forest. A 614 cm-long sediment core was recovered from 

the site that spanned the past ~12,210 calendar years before present. Macroscopic 

charcoal and pollen analysis were used to reconstruct the postglacial environmental 

history of the site. Results show that fire maintained a constant presence on the landscape 

and has been closely linked to fuel availability, until Euro American settlement (ca. AD 
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1850). In general, fire activity was highest during late Holocene when climate is thought 

to have been cool and wet, which may suggest the influence of interannual climate 

variability and/or the possibility that human ignitions contributed to the fire regime. Fire 

in the Sinlahekin Wildlife Area will likely continue to be driven by fuel availability and 

climate, therefore land managers may want to consider expanding their use of fire as a 

management tool. 
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CHAPTER I 

INTRODUCTION 

Problem 

Historically fire has played a key disturbance role in many ecosystems of the 

western United States (Fitzgerald, 2005). By promoting biodiversity, cycling nutrients, 

and maintaining spatial variability, it has been an important element across numerous 

landscapes (Brown et al., 2004; Peterson et al., 2005). Over the past century, active fire 

suppression by land managers has severely altered historic fire regimes in many forest 

types, some of which are now facing unnatural densities of late-successional species 

(Arno et al., 1997; Harrod et al., 1999). This leads to a reduction in biodiversity and 

reduces their resilience to natural disturbance agents like fires and insect outbreaks 

(Agee, 1993; Peterson et al., 2005).  

One of the most affected landscapes is the dry ponderosa pine (Pinus ponderosa)-

dominated forests of eastern Washington (Fitzgerald, 2005). Over the past decade, these 

forests have experienced a dramatic increase in large, high-severity wildfires, resulting in 

significant damage to natural resources, property, and habitat (Graham and Jain, 2005; 

Dale, 2009). The 2015 fire season in Washington is evidence of this, which marked the 

worst wildfire season in state history with over one million acres burned, 250 homes lost, 

an $89 million bill to taxpayers, and three firefighter fatalities (WaDNR, 2017). Public 

land managers are now faced with the increasing challenge of maintaining these fire-

dependent ecosystems in tandem with the projected impacts of future climate change 

(Covington et al., 1997; Fitzgerald, 2005). To do this, land managers need to make 

informed, adaptive decisions based on what it known in terms of historic fire regimes and 



2 

 

how ecosystems respond to climate variability, both past and future (Harrod et al., 1999; 

Hessburg et al., 1999).  

Little is known about the long-term fire history of these dry forests in Washington 

State. Previous studies based on the analysis of fire-scarred trees have shown that the 

ponderosa pine/Douglas-fir (Pseudotsuga menziesii) forests of the eastern Cascades were 

characterized by short return intervals and low-intensity fires prior to Euro American 

settlement (Hessburg et al., 1999; Everett et al., 2000; Ohlson and Schellhaas, 2000). 

Wright and Agee (2004) found mean fire return intervals for the past ~400 years of 18.8 

years the Teanaway River drainage near Ellensburg. Everett et al. (2000) showed average 

fire free intervals of 6.6-7 years from AD 1700-1860 for the Mud Creek drainage near 

Entiat and the Nile Creek Drainage near Naches. Research conducted in the Sinlahekin 

Wildlife Area near Tonasket by Schellhaas et al. (2000) found that mean fire free 

intervals in two units were 6.1 years and 8.5 years from 1792-1896 and 1768-1896, 

respectively. While these records provide insight into fire activity from the pre-settlement 

era, they lack the length necessary to illustrate how past fire regimes varied in relation to 

climatic and vegetation shifts in these ecosystems on longer timescales. A record 

spanning several thousand years will allow land managers to better understand these past 

relationships, and better prepare these ecosystems for future climate change.  

 

Purpose 

The purpose of this study was to reconstruct the long term fire and vegetation 

history in one portion of ponderosa pine forest in the Eastern Cascades/Okanogan 

Highlands with the goal of better understanding how and why long term fire activity has 
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varied during the postglacial period. The area chosen for this research was the Sinlahekin 

Wildlife Area (SWA), which is the oldest wildlife area in the state and comprises 

predominantly of eastern slope dry forest types and sagebrush steppe communities 

(Franklin and Dyrness, 1988). This area is ideal for this study because of the well 

documented history of land use actions and management strategies (including fire 

suppression), previously conducted tree ring-based fire studies, and a recent increase in 

fire occurrence. Additionally, area land managers have shown interest in using long term 

paleoecological records and the data they reveal as a means to support the use of fire in 

future land management strategies (WDFW, 2006). The specific objectives of this 

research were as follows. 

  

1) To reconstruct the postglacial fire and vegetation history of the SWA using 

macroscopic charcoal and pollen analysis of a lake sediment core. 

During summer of 2011, sediment cores spanning the past ~12,000 years were 

recovered from Doheney Lake and Blue Lake in the Sinlahekin Wildlife Area. Magnetic 

susceptibility, loss-on-ignition, and macroscopic charcoal techniques were used to 

analyze both cores, and pollen analysis was conducted on the Doheney Lake core. 

Radiocarbon dates along with the presence of known tephra layers were used to create an 

age-depth model for each core. However, because of abnormalities in the Blue Lake core 

likely caused by multiple mass wasting events in the watershed, indicated by both the 

charcoal and magnetic susceptibility records, only the Doheney Lake core was analyzed 

further using the CharAnalysis statistical program, and is described in the following 

manuscript.  
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2) To examine how postglacial climate variability, climate-driven vegetation shifts, and 

human land use activities influenced past fire activity at the site. 

In order to examine these influences, the Doheney Lake record was interpreted 

within the context of what is known in terms of climatic changes during the past ~12,000 

in this area of the PNW. In addition, the reconstructed fire and vegetation history was 

placed into the larger regional context by comparing it with available nearby 

paleoenvironmental records, as well as the combined record for the PNW. This allowed 

for some distinction between localized versus regional influences on the record. Lastly, 

the Doheney Lake reconstruction was interpreted within the context of what is known 

about pre-contact human history and their impacts on the landscape in this area of the 

Eastern Cascades during the postglacial period. 

 

3) To determine the extent to which pre- versus post-settlement fire regimes and 

vegetation patterns differ in the SWA and the implications of this for future forest 

management. 

To achieve this, the high-resolution short term dendrochronological records from 

the Sinlahekin Wildlife Area were examined alongside the reconstructed fire and 

vegetation histories from Doheney Lake. Euro American settlement patterns and area 

land management strategies were also considered.  
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Significance 

This research is significant for many reasons. First, the SWA is the oldest wildlife 

area in the state of Washington. It was established in 1939 and is currently under the joint 

ownership of the United States Bureau of Land Management, Washington Department of 

Natural Resources, and the Washington Department of Fish and Wildlife. The SWA is 

located in the Ponderosa Pine Zone and supports high levels of biodiversity which 

includes over 510 species of vascular plants, 210 species of birds, 60 species of 

mammals, 25 species of fish, and 20 species of reptiles (WDFW, 2018). The current 

management has expressed interest in reconstructing the long-term fire history of the 

SWA to use as a reference for prescribed burning (WDFW, 2010). However, prior to this 

study no data existed addressing the long-term fire history of ponderosa pine forests on 

the eastern slope of the Cascade Range.  

The results of this study will add data to the existing body of literature regarding 

linkages between fire regimes, vegetation, and climate change in the PNW. These data 

may be examined with already existing data from the PNW in order to conduct a 

comparative study on the regional synchronicity of fire regimes (Walsh et al., 2015). 

These data may also be a valuable resource for land managers in the formulation of future 

management plans when coupled with projected climate change. These data will serve as 

a long term record of the role of fire in forest ecosystems and may be useful in informing 

the public of the crucial role fire has historically played in maintaining these forests 

throughout the postglacial period. 

  



6 

 

CHAPTER II 

LITERATURE REVIEW 

Ponderosa Pine Forests of the Eastern Cascades 

Historical Context 

 Throughout history, ponderosa pine forests have served as a valuable natural 

resource for wildlife and humans, and they and continue to maintain their importance 

today (Oliver and Ryker, 1990). Currently they support a wide array of ecological, 

economic, and recreational functions (Graham and Jain, 2005). In order to prepare these 

forests for projected climate change, it is necessary to evaluate their current state along 

with their environmental history (Whitlock and Bartlein, 2004; McKenzie et al., 2000). 

Through a better understanding of these forests and the natural processes that shape and 

maintain them, land managers will be better equipped ensure that they remain viable for 

future generations (Whitlock et al., 2003; Kolb et al., 2007). 

 

Distribution and Ecology 

 Ponderosa pine forests are distributed widely throughout the Pacific Northwest, 

including portions of Washington, Oregon, Montana, and Idaho (Graham and Jain, 2005). 

In eastern Washington, ponderosa pine forest is found in a small band varying from 15 to 

30 kilometers wide along the eastern flank of the Cascade Range and extensively in the 

Okanogan Highlands Province located in the north-central part of the state (Franklin and 

Dyrness, 1988). In these areas, the forests generally span an elevation of 600 to 1,200 

meters above sea level. Ponderosa pine, which is the dominant tree within the ponderosa 

pine zone, is a large evergreen conifer found throughout the western United States. Its 
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distribution stretches as far north as British Columbia and as far south as Mexico 

(Graham and Jain, 2005).  

According to Oliver and Ryker (1990), ponderosa pine forests occur in a wide 

range of soils. These soils may be derivatives of igneous, metamorphic, or sedimentary 

rocks. Common parent material for soils where ponderosa pines are found include 

quartzite, schist, basalt, granite, lime stone, and sandstone. These soils fall into the 

alfisols, entisols, inceptisols, mollisols, and ultisols orders. Franklin and Dyrness (1988) 

note that in eastern Washington, coarse-textured sandy soils produce ponderosa pine with 

higher growth and survival rates when compared to those found in areas with fine-

textured clayey soils. Concentration of soil nutrients such as nitrogen (>.9 percent) and 

phosphorus (>.08 percent) necessary for ponderosa pine growth are low when compared 

to amounts required to support other conifers with overlapping ranges (Oliver and Ryker, 

1990). 

 The typical growing season for ponderosa pine east of the Cascades in 

Washington consists of a hot summer with little precipitation; July, August, and 

September often receive less than 25 millimeters total (Franklin and Dyrness, 1988). 

Winters are characterized by low temperatures and considerable precipitation with total 

annual precipitation is generally between 355 and 760 millimeters, much of which comes 

in the form of snow (Franklin and Dyrness, 1988). Summer thunderstorms are frequent, 

and lightning strikes often ignite dry fuels during drought years (Agee, 1993). These 

years have been noted to align with regional climatic drivers such as El Niño-Southern 

Oscillation and the Pacific Decadal Oscillation prior to the period of European settlement 

(Hessl et al., 2004). Although ponderosa pine thrives in the dry, eastern Washington 
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environment, adequate soil moisture during spring and early summer is critical for 

seedling establishment (Agee, 1993). 

 According to Fitzgerald (2005), ponderosa pine is one of the most fire-adapted 

conifers of the western United States, and its morphological characteristics reflect this. 

Ponderosa pine develops a deep root system early on to facilitate the uptake of nutrients 

and water. These deep roots are less susceptible to damage caused by ground fires. 

Ponderosa pine also boasts thick, flakey layers of bark that fall off when burning; this is 

often considered their greatest fire adaptation. When mature, the bark of the tree turns a 

distinct reddish-orange color. Needles are bundled, typically three per fascicle, and can 

range from 12-28 cm. They provide protection for buds from fire. Ponderosa pine has a 

fairly simple branching structure, with branches often growing well off the ground. This 

prevents rapid spread of ground fires to the relatively open crowns (Fitzgerald, 2005). 

Ponderosa pine may live as long as 300-600 years. Senescent trees may reach over 70 m 

in height and over 2 m in diameter. 

Numerous other tree species co-occur in eastern Washington ponderosa pine 

forests. Particularly common trees include Douglas-fir (Pseudotsuga menziesii), grand fir 

(Abies grandis), lodgepole pine (Pinus contorta) and western larch (Larix occidentalis), 

with adjacent riparian zones composed of black cottonwood (Populus trichocarpa), red 

osier dogwood (Cornus sericea), and quaking aspen (Populus tremuloides) (Franklin and 

Dyrness, 1988). A wide variety of forbs can also be found including balsamroot 

(Balsamorhiza spp.), sagebrush mariposa lily (Calochortus macrocarpus), Oregon 

sunshine (Eriophyllum lanatum), grasswidow (Olsynium douglasii), and Douglas’ 

catchfly (Silene douglasii) (Vance, 2010). These forbs are found along with numerous 
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grasses including Thurber’s needlegrass (Achnatherum thurberianum), squirreltail 

(Elymus elymoides), Idaho fescue (Festuca idahoensis), pine bluegrass (Poa secunda), 

and bluebunch wheatgrass (Pseudoroegneria spicata) (Vance, 2010). Lichens are often 

found hanging from branches of ponderosa pines; most common is the black tree-lichen 

(Bryoria fremontii) (Clay-Poole, 2012).  

 Ponderosa pine is a fairly shade-intolerant species (O’Hara, 2005). Prior to 

European settlement, these forests were simple in structure with an open park-like 

distribution, including large gaps (~15 meters) between even-aged tree patches that 

formed an uneven-aged canopy (see figure 2) (Agee, 1993; Hessburg et al., 2005; Harrod 

et al., 2007). The understory vegetation was dominated by a variety forbs and grasses. 

Low branches were removed by frequent low-severity ground fires which aided in 

maintaining gaps, and prevented the accumulation of ground litter (Schellhaas et al, 

2009). Historical reconstructions suggest stand densities ranged from 49-124 trees per 

hectare (Fitzgerald, 2005). 

Prior to European settlement, natural disturbances such as fire and insect 

outbreaks have been present in eastern Washington ponderosa pine forests (Agee, 1993; 

Everett et al., 2000). Primarily, however, fire has the dominant force in determining 

forest structure, removing litter and downed deadwood, and cycling nutrients into the 

soil, which promotes understory growth (Hessburg et al., 2005, Schellhaas et al., 2009). 

Prior to European settlement, these forests were dominated by frequent, low-severity fire 

regimes (Everett et al., 2000; Wright and Agee, 2004). Research conducted by Schellhaas 

et al. (2009) suggests a historic fire-free interval of ≤17 years was common (discussed 

below). Fires occurring after a 17 year fire-free interval tended to be higher severity 
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(Agee, 1993). Wright and Agee (2004) noted that evidence of large, not necessarily 

stand-replacing fires is also present in historical records. These events have been 

observed to occur in ~27 year intervals, which coincides with periods of seasonal 

drought, potentially linked to the El Niño-Southern Oscillation (ENSO). Research 

conducted by Heyerdahl et al. (2002) suggests decadal fire activity in these forests may 

also be linked to precipitation variation caused by the Pacific Decadal Oscillation.  

 According to Hessburg et al. (1994), eastern Cascade ponderosa pine forests are 

also adapted to disturbance in the form of insects, the most pervasive of which is the 

western pine beetle (Dendroctonus brevicomis). The pine beetle enters ponderosa pine by 

boring into the bark. Once inside, the adult beetles lay eggs which hatch in and turn in to 

larva, eventually consuming the tree’s phloem until they reach maturity. This cycle can 

be repeated multiple times and shares a direct relationship with likelihood of tree 

mortality. Most susceptible were senescent trees that were unable to extrude beetles using 

resin. Lightning struck trees, as well as trees occurring in the high moisture-stressed 

interface between the ponderosa pine zone and the arid steppe, were also highly 

susceptible. Beetle outbreaks serve an important ecological function by cycling nutrients 

from weaker trees, which creates favorable conditions for saplings to establish (Miller 

and Keen, 1960). It has also been suggested that beetle outbreaks in stands untouched by 

understory fires has aided in the maintenance of low stand density. 

 Other biotic disturbances found in ponderosa pine forests east of the Cascade 

Range include the Pandora moth (Coloradia pandora), pine butterfly (Neophasia 

menapia), and sugar pine tortrix (Choristoneura lambertiana) budworm. Though these 

defoliators are present in ponderosa pine forests, evidence suggests that historically, they 
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have not been the cause of unnaturally high mortality (Hessburg et al., 1994). Western 

dwarf mistletoe is a pervasive parasite found in ponderosa pine forests. Historically, it 

was slow to spread due to low tree densities, simple crown structure, and elimination by 

frequent low-intensity ground fire (Hessburg et al., 1994). 

 

Current Status 

 Forest structure in Eastern Cascade ponderosa pine forests is no longer open and 

park-like. Anthropogenic fire suppression during the 20th century has allowed shade-

tolerant, fire-sensitive trees, and shrubs to fill in gaps that once existed in these forests 

(Peterson et al., 2005). Fire suppression coupled with slow rates of decomposition has 

also resulted in the accumulation of surplus litter and deadwood that remain on the forest 

floor. Standing deadwood or snags also act as ladder fuels, increasing the likelihood of 

crown fires (Everett et al., 2007). In some locations, stand densities have increased by as 

much as 422% and range from 1235-2370 trees per hectare (Fitzgerald, 2005; Schellhaas 

et al., 2009).  

The exclusion of fire has allowed Douglas-fir to extensively encroach into once 

open ponderosa pine forests. This creates high density stands with heightened stress due 

to moisture competition (Schellhaas et al., 2009). These circumstances create ideal 

conditions for high-severity fires, which were rare in ponderosa pine zones prior to fire 

suppression (Hessburg et al., 2005). Analysis of current stands indicate increased 

susceptibility to insect outbreaks, disease, stand-clearing fire events, and diseases 

introduced by fire-intolerant tree species due to encroachment (Agee, 1993). 
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 Currently, eastern Cascade ponderosa pine forests are home to numerous non-

native plant species. Non-native trees include Siberian elm (Ulmus pumila) and golden 

willow (Salix alba) (WDFW, 2006). Though Douglas-fir and grand fir have been present 

in ponderosa pine forests, fire exclusion has allowed them to establish in the shade of 

ponderosa pine and gaps (Haeuser, 2014). Non-native forbs include bull thistle (Cirsium 

vulgare), dalmatian toadflax (Linaria dalmatica), black medic (Medicago lupulina), 

forget-me-not (Myosotis arvensis), and perennial sowthistle (Sonchus arvensis) (WDFW 

2006). Over 15 species of non-native grasses can be found including reed canarygrass 

(Phalaris arundinacea), Kentucky bluegrass (Poa pratensis), Japanese brome (Bromus 

japonicas), and cheatgrass (Bromus tectorum) (Visalli, 2003). Presence of many of these 

species in ponderosa pine forests is due to anthropogenic introduction, often linked to 

ungulate grazing.  

 The introduction of new forms of disturbance during the 19th and 20th centuries 

such as logging, development, and ungulate grazing coupled with attempts to control 

natural forms of disturbance have drastically altered natural disturbance regimes. Fuel 

surpluses created by fire suppression have shifted fire regimes to low frequency, high-

intensity (often crown fires) from the natural frequent, low-intensity (ground fires) 

regimes (Wilson and Baker, 1998). Research conducted by Everett et al. (2000) indicate 

that areas with pre-settlement fire free intervals of 6-7 years have been increased to 38-43 

years following the 1910 fire suppression policy change. Harrod et al. (2007) attribute 

increased forest middle layer density of saplings and shrubs to the elongated fire return 

interval. Studies show that ponderosa pine forests that have missed 10-12 natural fire 
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episodes have the surplus fuel, complex structure, and increased density and are highly 

susceptible to catastrophic wildfire. 

 Insect outbreaks in ponderosa pine forests share a relationship with fire activity. 

Lack of thinning from frequent, low-intensity fire results in competition-related stress. As 

competition for nutrients increases with density, growth and stand vigor decline. 

Hessburg et al. (1994) studied the relationship between ponderosa pine stands and insect 

outbreaks and found that even moderate increases in vegetation stocking increase stand 

susceptibility to beetle infestation. This susceptibility is heightened when seasonal stress 

factors such as drought are introduced. Due to unnatural stand densities, western dwarf 

mistletoe (Arceuthobium) incidence has increased. Hessburg et al. (1994) estimated that 

western dwarf mistletoe infested 26 percent of eastern Cascade ponderosa pine.  

 

Future Management 

 Management of Washington’s ponderosa pine forests east of the Cascade Range 

is a complex task. Recent severe fire seasons have brought attention to the undesired 

results of nearly 100 years of fire suppression in a fire-dependent ecosystem. The recent 

realization of the potential effects of climate change, more specifically greater climate 

variability (particularly increased drought), on these anthropogenically-modified forests 

have sparked interest in gaining insight into the long-term interaction between climate 

and fire in these ecosystems (WDFW, 2010). A common thread between potential future 

management plans of these forests is the necessity to employ adaptive strategies that 

focus on multiple ecological aspects of ponderosa pine forests (Spies et al., 2010). 
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 When using reconstructed conditions as a guide for managing forest, it is 

important to take into account the natural range of variability that occurs within these 

ecosystems. As discussed by Agee (2003), disturbance processes in ponderosa pine 

forests are both cyclic and stochastic. Aside from the natural range of variability, outside 

influences such as Native American burning, may account for unexplainable fire events 

(Walsh et al., in press). Agee (2003) asserts that historical range of variability should be 

used define landscape goals, rather than developing structure-based targets. It is projected 

that as climate changes ponderosa pine will encroach areas currently occupied by 

lodgepole pine (Graham and Jain, 2005). With increased summer drought, stand-clearing 

disturbance in the lower bounds of the ponderosa pine zone could allow for the expansion 

of the neighboring arid steppe (Kerns et al., 2011).  

 It is well understood that present-day ponderosa pine forests are highly 

susceptible to wildfires resulting from multiple factors caused by fire suppression (Agee, 

1993; Everett et al., 2000; Hessburg et al., 2005; Peterson et al., 2005). To address these 

issues, various silviculture techniques are commonly practiced in an effort to restore 

these forests to a more natural state, including thinning and prescribed burning. The 

techniques are often performed together using reconstructed historical stand structure and 

composition as a guide (Harrod et al., 1999; Fitzgerald, 2005; Peterson et al., 2005). 

Mitchell et al. (2009) noted that while understory fuel reduction does reduce wildfire 

severity, the removal of the high level of understory fuel accumulation in ponderosa pine 

forests results in a large release of carbon, potentially greater than that released in a 

wildfire. Reinhardt et al. (2008) suggest that the most effective method of silviculture 

includes both incremental thinning and prescribed burning. They believe that repeated 
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fuel treatments employing both methods is the only way to not only treat the existing 

fuels surplus, but also increase the resiliency of forests for future fire activity.  

 As discussed by Spies et al. (2010), current laws and policies governing forests 

reflect static conditions at one point in time. It has become clear that ecosystems are 

dynamic and share complex relationships with the world around them. To prepare 

ponderosa pine forests east of the Cascade Range for projected climate change it will be 

critical to formulate an adaptive management strategy unique to the area. Landscape level 

assessments will need to be done in order to formulate management plans tailored to 

individual areas. Funding, societal acceptance, and jurisdictional boundaries will provide 

great challenges in achieving this. Between research and action, management of this 

nature will be expensive. Allocating finances to perform preventative forestry 

management has historically been a low priority for the federal government. Social 

pressure and public support may be the best avenue to usher the allocation of federal and 

state funds in the direction of preventative forestry management.  

Conflicting values between federal and state management will have to be 

overcome in order for effective management to take place. By establishing collective 

goals state and federal agencies can work together rather than segment connected 

landscapes by political boundaries. The body of knowledge exists to begin formulating 

adaptive management strategies that may help conserve ponderosa pine forests east of the 

Cascade Range. Without political, social, and financial support to modify and prepare 

these forests it is likely that their vast range will greatly diminish over the next century. 
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Fire History Reconstruction 

 Fire history reconstruction aims to develop a long-term understanding of fire 

activity in a specific area (Agee, 1993). From these histories, it is possible to observe 

localized changes in fire activity that may result from changes in climate, vegetation, 

human activity, or other environmental factors. These records are predominantly 

reconstructed using one of two methods, dendrochronology or charcoal analysis of lake 

sediment cores (Whitlock et al., 2003).  

Dendrochronology typically uses increment cores removed from living trees to 

date specific events (Farris et al., 2010). Dates are determined by counting growth rings 

contained in the core and has proven useful in accurately dating individual fire events by 

year (Walker, 2005). This high temporal resolution record is however limited by the 

availability of long-lived trees. When all trees in an area die, whether by disturbance or 

senescence, or are removed through logging, the record is often lost. This limits 

dendrochronological records for an area to the availability of living or recently downed 

trees present on the landscape.  

 Charcoal analysis has been used to reconstruct fire histories on both regional and 

local scales extending well beyond the lifespan of living trees (Whitlock and Larsen, 

2001). These records are obtained from charcoal particles contained in sediments 

collected from lakes or wetlands (Whitlock and Bartlein, 2004). Radiocarbon dating of 

organic material and identification of tephra layers allows for the establishment of 

sediment deposition rates and age models for lake sediment cores, making it possible to 

reconstruct the frequency of past fire events (Fowler et al., 1986).  
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 There are two common methods of charcoal analysis, macroscopic and 

microscopic (Patterson et al., 1987). Microscopic charcoal analysis (often called pollen-

slide charcoal) tallies small charcoal particles (generally <125 µm) at specific intervals 

within a sediment core. These particles are susceptible to transport >7 km from fire 

events and are used to reconstruct regional fire records (Whitlock and Bartlein, 2004). 

Macroscopic charcoal analysis generally tallies charcoal particles >125 µm using the wet-

sieve method contiguously throughout cores. Whitlock and Larsen (2001) found particles 

>125 µm are generally transported <7 km, and are useful for local fire history 

reconstruction. Coupling charcoal records along with pollen-based vegetation 

reconstructions, also derived from lake sediment cores, have the potential to provide 

insight into past environmental conditions and interactions between fire and climate 

(Whitlock and Bartlein, 2004). Given our specific objectives, we have determined 

macroscopic charcoal analysis to be the most appropriate fire proxy method for this 

research. 
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CHAPTER III 

MANUSCRIPT 

The following manuscript will be submitted to the peer-reviewed journal Canadian 

Journal of Forest Research. Because of revisions made during the peer-review process, 

the final published manuscript will vary some from what is printed here. 
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I. Introduction 

Historically, fire has played a key disturbance role in many ecosystems of the 

western United States (Fitzgerald, 2005). By promoting biodiversity, cycling nutrients, 

and maintaining spatial variability, it has been an important element across numerous 

landscapes (Brown et al., 2004; Peterson et al., 2005). Over the past century, active fire 

suppression by land managers has severely altered historic fire regimes in many forest 

types, some of which are now facing unnatural densities of late-successional species 

(Arno et al., 1997; Harrod et al., 1999). This leads to a reduction in biodiversity and 

reduces their resilience to natural disturbance agents like fires and insect outbreaks 

(Agee, 1993; Peterson et al., 2005).  

One of the most affected landscapes is the dry ponderosa pine (Pinus ponderosa)-

dominated forests of eastern Washington (Fitzgerald, 2005). Over the past decade, these 
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forests have experienced a dramatic increase in large, high-severity wildfires, resulting in 

significant damage to natural resources, property, and habitat (Graham and Jain, 2005; 

Dale, 2009). The 2015 fire season in Washington is evidence of this, which marked the 

worst wildfire season in state history with over one million acres burned, 250 homes lost, 

an $89 million bill to taxpayers, and three firefighter fatalities (Washington Department 

of Natural Resources, 2015). Public land managers are now faced with the increasing 

challenge of maintaining these fire-dependent ecosystems in tandem with the projected 

impacts of future climate change (Covington et al., 1997; Fitzgerald, 2005). To do this, 

land managers need to make informed, adaptive decisions based on what it known in 

terms of historic fire regimes and how ecosystems respond to climate variability, both 

past and future (Harrod et al., 1999; Hessburg et al., 1999).  

Little is known about the long-term fire history of these dry forests in Washington 

State. Previous studies based on the analysis of fire-scarred trees have shown that the 

ponderosa pine/Douglas-fir forests of the eastern Cascades were characterized by short 

return intervals and low-intensity fires prior to Euro American settlement (Hessburg et 

al., 1997; Everett et al., 2000; Ohlson and Schellhaas, 2000). Wright and Agee (2004) 

found mean fire return intervals for the past ~400 years of 18.8 years the Teanaway River 

drainage near Ellensburg. Everett et al. (2000) showed average fire free intervals of 6.6-7 

years from AD 1700-1860 for the Mud Creek drainage near Entiat and the Nile Creek 

Drainage near Naches. Research conducted in the Sinlahekin Wildlife Area near 

Tonasket by Schellhaas et al. (2000) found that mean fire free intervals in two units were 

6.1 years and 8.5 years from 1792-1896 and 1768-1896, respectively. While these records 

provide insight to past fire activity from the pre-settlement era, they lack the length 
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necessary to illustrate how past fire regimes varied in relation to climatic and vegetation 

shifts in these ecosystems on longer timescales. A record spanning several thousand years 

will allow land managers to better understand these past relationships, and better prepare 

these ecosystems for future climate change.  

The purpose of this study was to reconstruct fire and vegetation history in one 

portion of ponderosa pine forest in the Eastern Cascades in order to better understand 

how and why long term fire activity has varied during the postglacial period. The area 

chosen for this research was the Sinlahekin Wildlife Area (SWA), which is the oldest 

wildlife area in the state and comprises predominantly of eastern slope dry forest types 

and sagebrush steppe communities (Franklin and Dyrness, 1988). This area is ideal for 

this study because of the well documented history of land use actions, management 

strategies (including fire suppression), previously conducted tree ring based fire studies, 

and a recent increase in fire occurrence. Additionally, area land managers have shown 

interest in using long-term paleoecological records and the data they reveal as a means to 

support the use of fire in future land management strategies (WDFW, 2006).  

The specific objectives of this research were: 1) to reconstruct the postglacial fire 

and vegetation history of the SWA using macroscopic charcoal and pollen analysis of a 

lake sediment core, 2) to examine how postglacial climate variability, climate-driven 

vegetation shifts, and human land use activities influenced past fire activity at the site, 

and 3) to determine the extent to which pre- versus post-settlement fire regimes and 

vegetation patterns differ in the SWA and the implications of this for future forest 

management. The paleoenvironmental record developed here will be compared with a 

previously reconstructed late Holocene record from the SWA, as well as other nearby 
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records. This research is significant in that it is the only Holocene-length combined fire 

and vegetation record from the dry ponderosa pine forests of the Eastern Cascade Range 

of Washington to date. In addition, this record will contribute to the ongoing assessment 

of fire activity in the PNW as a whole, which is lacking in long-term fire reconstructions 

from east of the Cascade crest (Walsh et al., 2015). 

 

II. Study Area 

a. Background 

The Sinlahekin Wildlife Area (SWA) lies on the eastern flank of the North 

Cascade Range in Okanogan County, WA. It is located approximately 8 km south of 

Loomis, WA, and approximately 16 km west of Tonasket, WA (Fig. 1). The specific 

location is between 48°47’26.91” and 48°36’15.52” N latitude and 119°38’11.12° and 

119°43’0.33° W longitude, with elevations ranging from 475 m to just over 1,220 m. The 

wildlife area is situated on the western edge of the Okanogan Highlands Province and is 

mostly composed of the Sinlahekin Valley, a 20 kilometer long U-shaped valley of north-

south orientation. The rock walls of the Sinlahekin Valley rise steeply from the valley 

floor, with the overall width ranging from 1.5 to 2.5 km. This dramatic topography was 

created by the repeated advance and retreat of the Okanogan Lobe of the Cordilleran Ice 

Sheet, which most recently retreated ~14,000 years ago following the last glacial 

maximum (Lesemann and Brennand, 2009). The current climate of the SWA is 

characterized by hot, dry summers and cool, wet winters, with a considerable amount of  
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Fig. 1. Map showing the location of study site Doheney Lake and nearby Fish Lake, and 

the boundary of the Sinlahekin Wildlife Area (red line). 
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the annual precipitation arriving as snow between the months of November-March 

(WRCC, 2018). Summer thunderstorms are frequent and lightning strikes are often a 

source of ignition for dry fuels (Agee, 1994). Lightning-fire data show the nearby 

Okanogan National Forest has the highest ignition rate annually (35 lightning-ignited 

fires/400,000 ha/year) of the national forests in Washington (Kay, 2008).  

The 5,800 ha SWA consists of land owned by the Bureau of Land Management,  

Washington Department of Natural Resources, and the Washington Department of Fish 

and Wildlife (WDFW); management has been assigned to WDFW. The SWA is bordered 

by the Loomis State Forest to the west, the Okanogan National Forest to the south, and 

private land to the north and east. The SWA is boasts a high level of biodiversity and is 

used for many recreational purposes including hunting, fishing, camping, and hiking. 

Numerous microenvironments in the SWA support a wide array of flora and fauna. Over 

510 species of vascular plants, nine of which are rare or threatened, can be found there 

(Visalli, 2003). The dry forests found within the SWA are dominated by the conifers 

ponderosa pine and Douglas-fir (Pseudotsuga menziesii), with lesser amounts of western 

larch (Larix occidentalis), and numerous hardwoods primarily found in riparian locations. 

These dry forests, along with the lakes, rivers, and shrub-steppe of the SWA, provide 

habitat for 210 species of birds, 90 species of butterflies, 60 species of mammals, 25 

species of fish, and 20 species of reptiles (WDFW, 2018).  

b. Study Site 

The study site selected for this research, Doheney Lake, is situated in the 

southwestern portion of the Sinlahekin Valley at 48°35’05.42” N, 119°39’52.95” W (Fig. 
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1). This lake is one of the few within the SWA that has not been affected by mass 

wasting events or altered by human land use during the late 19th and 20th centuries. 

Doheney Lake covers roughly four ha and sits at an elevation of 475 m, with Schalow 

Mountain rising sharply to an elevation 1,160 m immediately to the west (Fig. 2). The 

lake is roughly 580 m-long and 110 m-wide. On average, the Doheney Lake area receives 

361 mm of precipitation annually, with a mean high temperature in July of 19.9°C, and a 

mean low temperature in December of -4.2°C (PRISM, 2018). Inflow comes from the 

north via Coulee Creek, while outflow occurs at the southern tip of the lake as Coulee 

Creek continues south. Maximum water depth is 7 meters and is found near the center of 

the lake. Vegetation found in the immediate vicinity of the lake includes ponderosa pine, 

Douglas-fir, water birch (Betula occidentalis), red osier dogwood (Cornus stolonifera), 

snowberry (Symphoricarpos albus), nootka rose (Rosa nutkana), Lewis’ mockorange 

(Philadelphus lewisii), Douglas maple (Acer glabrum douglasii), ocean spray 

(Holodiscus discolor), bitterbrush (Purshia tridentata), wax currant (Ribes cereum), 

western serviceberry (Amelanchier alnifolia alnifolia), poison ivy (Toxicodendron 

diversiloba), yellow lady slipper orchid (Cypripedium pubescens), and various rushes 

(Juncus) and grasses (Poaceae). 

 

III. Methods 

Fieldwork 

In summer 2011, a 6.44 m-long sediment core (DL11B) was extracted from 

Doheney Lake at a depth of 7.0 m using a hand-powered modified Livingstone piston  
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Fig. 2. Air photo of Doheney Lake and the surrounding landscape (north is at the top of 

the image). Red dot indicates the coring location. Note that this image was taken in 2016 

after the Okanogan Complex Fire burned the watershed of the lake. Image credit: NAIP 

(2017). 
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corer (Wright et al., 1983). Core segments up to 1 m-long were extruded and described in 

the field, wrapped in plastic wrap and aluminum foil, and encased in split PVC pipe for 

transport. A .64 m-long short sediment core (DL11A) containing the sediment-water 

interface was also recovered using a hand-powered Bolivia piston corer. This core was 

sampled in the field at 1-cm intervals and placed in Whirl-pak bags. All sediment 

samples were transported to the Paleoecology Lab at Central Washington University 

where they were refrigerated. 

  

Lab Analysis 

In the lab, magnetic susceptibility analysis was used to determine the amount of 

magnetically enhanceable matter within the core (Thompson and Oldfield, 1986). Higher 

magnetic susceptibility values were interpreted as higher clastic input, indicative of 

allochthonous material (i.e., sediment originating outside the lake), from events such as 

mass movements, which often follow fire events, or from the deposition of tephra layers 

(i.e., volcanic ash). Lower magnetic susceptibility values were interpreted as lower clastic 

input, indicative of more autochthonous material (i.e., organic matter originating in the 

lake). Magnetic susceptibility was completed using a Sapphire Instruments 5-cm ring 

sampler. Readings were taken at contiguous 1-cm intervals for the entire length of the 

long core. Core DL11B was then split longitudinally and described based on lithological 

changes using the Munsell soil color chart. Organic macrofossils (e.g., needles, twigs, 

cones) were removed, labeled, and placed storage vials to be used for 14C dating analysis.  
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 Loss-on-ignition analysis was conducted to determine the percent organic and 

carbonate content of the cores (Dean, 1974). The results were interpreted as changing 

conditions within the lake itself and outside factors (i.e., changing amounts of 

surrounding vegetation, tephra deposition) contributing to lake sediment composition 

(Dearing, 1991). Samples of 1 cm3 were taken at 5-cm intervals and placed in crucibles 

and weighed, and then dried at overnight at 90°C. The samples were then heated at 550°C 

and 900°C for 2 hours each time, and weight loss from each firing was used to determine 

the percentages of organic and carbonate material using formulas in Heiri et al. (2001).  

Macroscopic charcoal analysis was used to reconstruct the fire history of the 

Doheney Lake watershed and followed methods described by Whitlock and Larsen 

(2001) and modified by Walsh et al. (2008). Samples of 2 cm3 were taken at contiguous 1 

cm-intervals using a modified syringe. Samples were placed into 7 ml vials and ~5 ml of 

a solution of 5% sodium hexametaphosphate was added to each vial and left for a 

minimum of 24 hours to deflocculate the sediment. Approximately 10 mL of sodium 

hyperchlorite (commercial bleach) was then added to samples and they were allowed to 

sit overnight. Samples were wet sieved through 125-μm and 250-μm screens; only 

charcoal particles >125 μm were counted because studies show that these particles travel 

<7 km and are therefore indicative of local fire history (Whitlock and Anderson, 2003). 

The remaining residue in the screens was transferred to a gridded petri dish for counting 

using a stereoscope at 10-40X magnification. Wood and grass charcoal morphotypes 

were identified and tallied separately based on published images and descriptions (Walsh 

et al., 2008, 2010b, in press). 
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Charcoal counts were entered into the program CharAnalysis for statistical 

analysis (Higuera et al., 2009). CharAnalysis distinguishes peaks in charcoal (i.e., fire 

episodes) from more slowly varying background charcoal, is able to calculate the number 

of fire episodes per 1000 year period, mean fire return intervals, and peak fire episode 

magnitudes. It is important to note that given the sedimentation rate of certain cores and 

the “peakiness” of a record, an identified fire episode could contain more than one fire 

event within it (Long et al., 1998). The charcoal concentration data were interpolated to 

even 20-year intervals, which represents the median resolution of the record, to create the 

CHAR time series. A robust Lowess smoother was used to identify the peaks from the 

background charcoal using a window width of 600 years. 600 years was selected after 

testing the sensitivity of the record to windows of 400-1,000 years, which maximized the 

global signal to noise index (SNI) at 3.68. 

Pollen processing followed standard protocol outlined in Faegri et al. (1989). 

Samples of 1 cm3 were taken at 20 cm-intervals throughout the length of the long core 

(DL11B). 300-500 pollen grains were counted per sample at a magnification of 400-

1000X. Identifications were made to the lowest possible taxonomic level and were based 

on published references and the Central Washington University pollen reference 

collection. The exotic spore Lycopodium was added to the samples and tallied so that 

total pollen accumulation rates (PARs) could be calculated. Pollen percentages were 

calculated using only the total terrestrial pollen and spores counted in each sample. 

Aquatic sums were calculated using the entire pollen and spore sum. An openness ratio 

was calculated by dividing the sum of Pinus, Pseudotsuga/Larix, and Abies by the sum of 

those three taxa plus Artemisia, Poaceae, and Cyperaceae. Higher values indicate a more 
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closed landscape dominated by trees, while lower values indicate a more open landscape 

with higher percentages of herbaceous taxa. 

IV. Results 

DL11B 

Lithology, Charcoal Concentration, Loss-on-Ignition, and Magnetic Susceptibility  

The majority of the DL11B core is comprised of fine to medium gyttja and clayey 

gyttja ranging widely in color, with multiple clay and tephra layers of varying thickness 

scattered throughout. From bottom of the core to the Mount Mazama-O tephra (292-327 

cm), the core consisted primarily of clay/clayey gyttja of varying shades of blue-gray, 

green, and brown. A coarse sand layer occurs at a depth of 624-625 cm. A 6 cm-thick 

black clay layer is found from 442-448 cm, with periodic smaller clay bands found above 

that. Above the Mazama-O tephra to a depth of 165 cm, the sediment is medium gyttja 

varying in color from light to dark brown, with several more thin clay bands present. At a 

depth of 110-165 cm, the sediment shows laminated bands of alternating light and dark 

brown fine gyttja. Above that the sediment is dark brown fine gyttja, until a tephra layer 

identified as Mount St. Helens-W (MSH-W) is found at a depth of 62-67 cm (Nelson et 

al., 2011; Walsh et al., in press). Fine gyttja ranging in color from tan to dark brown is 

found above that to the top of the core.  

Charcoal concentrations fluctuate widely throughout the record (Fig. 3). From the 

beginning of the record through the Mazama-O ash layer, charcoal concentrations are 

generally low. The average total charcoal concentration for this period is 6.14 

particles/cm3, with an average herbaceous charcoal concentration of 4.48 particlescm3.  
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Fig. 3. Charcoal concentration (particles/cm3; herbaceous charcoal=green curve, total 

charcoal=black curve), loss-on-ignition (% organics=brown curve; % carbonates=orange 

curve), and magnetic susceptibility for the DL11B core plotted against mud depth (cm). 
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Herbaceous charcoal comprises 73.0% of the total charcoal for this period. Charcoal 

concentrations are highest from the Mazama-O ash layer to the MSH-W ash layer. The 

average total charcoal concentration for this period is 34.92 particles/cm3, with an 

average herbaceous concentration of 21.43 particles/cm3. Though the average charcoal 

concentration is higher during this period, the average percentage of herbaceous charcoal 

declines to 61.4% of the total charcoal. From the MSH-W ash layer to the top of the core, 

average charcoal concentration declines to 13.26 particles/cm3. Most notably during this 

period, the average herbaceous concentration drops to 7.59 particles/cm3 and the average 

herbaceous percentage drops to 57.2%. 

Loss-on-ignition values for carbonates and organics vary greatly. From the 

bottom of the core to the Mazama-O ash layer values for organics are consistently low 

and generally remain below 10%, while carbonate values are considerably higher at 

around 25%. From the Mazama-O ash layer to the MSH-W ash layer, percent organic 

values increase dramatically with peaks as high as 91%, while percent carbonate values 

decrease slightly to around 15%. From the MSH-W ash layer to the top of the core, 

percent organic values decrease to around 15% and percent carbonate values increase to 

around 30%. In general, the percent organic values very closely matched the pattern of 

the charcoal concentration curve. 

Magnetic susceptibility values are generally low throughout the core, however 

there are a few notable exceptions. The largest magnetic peak occurs between the bottom 

of the core and the Mount Mazama-O ash layer at a depth of 448 cm in association with a 

large black clay layer (~6 cm thick). Several other smaller peaks also occur within this 

section of the core in association with thinner clay layers. A smaller magnetic peak 



33 

 

occurs during the Mazama tephra layer between 292-327 cm. From the Mazama-O ash 

layer to the MSH-W ash layer, values remain low and consistent. A notable peak 

coincides with the MSH-W ash layer at a depth of 62-67 cm. From this ash layer to the 

top of the core no other peaks occur and values remain low. 

Core DL11C 

Chronology 

The top 14 cm of DL11A, which was entirely brown fine gyttja, was combined 

with the DL11B long core using stratigraphic markers present in both cores. The 

combined core, hereafter referred to as DL11C, was a total of 614 cm after tephra layers 

were removed (it is assumed these are instantaneous events). An age-depth model was 

created for DL11C using five AMS 14C age determinations along with the age of the 

MSH-W (470 cal yr BP; Mullineaux, 1986) and Mount Mazama-O (7627 cal yr BP; 

Zdanowicz et al., 1999) eruptions (Fig. 4). All 14C determinations were the converted to 

calendar years before present (cal yr BP) using the Calib version 7.1 program (Stuiver et 

al., 2018). Ages were chosen by selected the highest value adjacent to the median age, if 

the median age fell in a trough on the probability distribution function; if not the median 

age was used. All ages were rounded to the nearest decade (see Table 1 for age 

determinations). As a result, the age model suggests a basal date of 12210 cal yr BP for 

the DL11C core with a mean sample resolution of 20 yr/cm 

The sedimentation rate of core DL11C decreases slightly during the early 

Holocene (ca. 12200-8000 cal yr BP). During this time the average sedimentation rate 

was .075 cm/yr. During the first thousand years of the middle Holocene (ca. 8000-7000  
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Fig. 4. Doheney Lake age-depth model for core DL11B. See Table 1 for age 

determinations. 
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cal yr BP) the sedimentation rate continued to decline gradually until it stabilized at 

~.0275 cm/yr. The average sedimentation rate during the middle Holocene (ca. 8000-

4000 cal yr BP) was .033 cm/yr. During the late Holocene (ca. 4000 cal yr BP- present) 
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the sedimentation rate remained stable until about 1200 cal yr BP where it began to 

increase sharply for the remainder of the record. The average sedimentation rate for the 

late Holocene period was .081 cm/yr. 

 

CharAnalysis 

The global SNI value for the 600 year smoothing window is 3.68, indicating that 

overall the record exceeds the established threshold for using CharAnalysis to analyze the 

charcoal record. However, there were several periods during the record where it drops 

below 3, indicating that it is struggling to identify individual fire episodes (Kelly et al., 

2011). We therefore argue that the CharAnalysis program is likely underestimating the 

number of fires that occurred in the watershed during the Holocene for reasons discuss 

below. As a result, we report the values determined by CharAnalysis; however, other 

indicators of fire activity (i.e., charcoal concentrations) are also reported and will be used 

to support our interpretation of the record. 

 

Early Holocene (12200 − 8000 Cal Yr BP) 

During the Early Holocene, the average total charcoal concentration is 5.92 

particles/cm3, while the herbaceous charcoal concentration is 4.38 particles/cm3 (Fig. 3). 

Grass charcoal comprises 74.0% of the total charcoal during this period. As determined 

by CharAnalysis, the average charcoal accumulation rate is 0.42 particles/cm2/yr (Fig. 5; 

Table 2). CharAnalysis detected 25 significant episodes with an average peak magnitude 
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of 10.06 particles/cm2/peak. The largest peak during this period occurs at ca. 12,020 cal 

yr BP and has a peak magnitude of 57.03 particles/cm2. The average fire frequency for 

the early Holocene is 5.78 fire episodes/1000 yr. There is a gradual trend downward in 

fire frequency during this period from ~8 fire episodes/1000 yr at the start of the period to 

~5 fire episodes/1000 yr by ca. 8000 cal yr BP. For the most part, the SNI stayed above 

three, indicating that the program was able to easily identify fire episodes during this 

period, with the exception of one notable dip around 9300 cal yr BP. 
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Pinus pollen dominated the entire DL11C record; however, it is found in lower 

percentages in this period as compared to later in the record (ave.= 41.4%) (Fig. 6). Most 

Pinus pollen was indistinguishable as either subgenus Strobus (white pines) or Pinus 

(yellow pines), particularly during this period, but most of what could be identified is 

subgenus Pinus (0.8%) versus Strobus (0.4%). Also found in relatively high percentages 

are Alnus (7.2%), Betula (10.9%), Artemisia (12.5%), Poaceae (12.9%), monolete ferns 

(4.5%), and Typha (3.1%). Several other taxa are present in low percentages, but were at 

their highest levels during the early Holocene including Abies (0.8%), Juniperus-type 

(2.6%), Populus (0.2%), Sarcobatus (0.2%), Ceanothus (0.3%), Amaranthaceae 

(excluding Salsola-type) (0.4%), Asteraceae (excluding Ambrosia-type) (0.9%), 

Pteridium aquilinum-type (0.4%), Apiaceae (excluding Heracleum-type) (0.3%), and 

other herbs. Notably, Pseudotsuga/Larix pollen does not appear in the record until ca.  
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Fig. 5. Charcoal influx (CHAR; particles/cm2/yr; red line is the background component 

as determined by CharAnalysis), fire episodes (plus symbols), fire frequency (# fire 

episodes/1000 yr; blue line), peak episode magnitudes (particles/episode; vertical bars), 

and signal-to-noise index (SNI; orange dashed line) plotted against age (cal yr BP) for the 

DL11C core. 
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Fig. 6. Select pollen taxa percentages, total pollen accumulation rate (PARs), and tephra 

layers for the Doheney Lake (DL11C) core plotted against adjusted depth (cm) and age 

(cal yr BP). Gray shading is a 5x exaggeration of the percentage curves. 
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10000 cal yr BP, and then only at low levels (0.3%). The openness ratio is lowest during 

this period when compared to the rest of the record (0.62). 

 

Middle Holocene (8000 − 4000 Cal Yr BP) 

During the Middle Holocene, the average total charcoal concentration increases 

substantially to 21.79 particles/cm3, while the herbaceous charcoal concentration 

increases to 13.76 particles/cm3 (Fig. 3). Grass charcoal comprises 63.1% of the total 

charcoal in this period. The average charcoal accumulation rate increases to 0.71 

particles/cm2/yr (Fig. 5; Table 2). CharAnalysis detected 21 significant episodes with an 

average peak magnitude of 9.54 particles/cm2/peak. The largest peak during this period 

occurs at ca. 7350 cal yr BP and is 70.12 particles/cm2. The average fire frequency during 

this period is 5.26 fire episodes/1000 yr. Fire frequency first drops from ~5 fire 

episodes/1000 yr at the start of the period to ~3 fire episodes/1000 yr by ca. 7200 cal yr 

BP. There is then a gradual increase in fire frequency to ~5 fire episodes/1000 yr by ca. 

6200 cal yr BP, after which fire frequency remains generally steady for the remainder of 

the period. SNI values are only slightly above the threshold of three at the beginning of 

the period and drop and remain below this value from ca. 6750-4000 cal yr BP, indicating 

CharAnalysis struggled to reliably detect fire episodes throughout much of the middle 

Holocene. 

Pinus pollen again dominates the record with an average of 45.3% during the 

middle Holocene (Fig. 6). More pollen grains could be identified to the subgenus in this 
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period, with 5.7% coming from the subgenus Pinus and only 0.4% coming from the 

subgenus Strobus. Also found in relatively high percentages are Pseudotsuga/Larix 

(5.3%), Alnus (9.9%), Betula (12.4%) and Typha (3.1%). Percentages of Artemisia and 

Poaceae decreased substantially from the early Holocene to 8.1% and 6.8%, respectively. 

However, percentages Cyperaceae increased considerably from 1.1 to 3.8%. Other taxa 

that occur at their highest percentages during the middle Holocene include Tsuga 

heterophylla (1.4%), Salix (1.4%), and Sambucus (1.0%). The openness ratio increases to 

an average of 0.72 for the period, with lower values occurring earlier in the period and 

higher value occurring near the end.   

 

Late Holocene (4000 Cal Yr BP − Present) 

During the Late Holocene, the average total charcoal concentration increases 

again to 32.98 particles/cm3, while the herbaceous charcoal concentration increases to 

19.68 particles/cm3 (Fig. 3). Grass charcoal comprises 59.7% of the total charcoal during 

this period. The average charcoal accumulation rate increases substantially from the 

previous period to 1.49 particles/cm2/yr (Fig. 5; Table 2). CharAnalysis detected 16 

significant episodes with an average peak magnitude of 58.57 particles/cm2/peak. The 

average fire frequency for the period is 4.238 fire episodes/1000 yr. The largest peak 

during this period occurs at ca. 340 cal yr BP and is 254.360 particles/cm2, however, 

another large peak of 236.12 particles/cm2 occurs at ca. 2280 cal yr BP. CharAnalysis 

suggests a gradual decrease in fire episodes during this period from ~6 fire episodes/1000 

yr to ~3 fire episodes/1000 yr by ca. 1200 cal yr BP. It then increases slightly to ~4.5 fire 
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episodes/1000 yr by the end of the record. The SNI briefly dropped to near one around 

2750 cal yr BP, despite being well above three for the remainder of the period. There is a 

notable sharp decline in fire activity during the last ~250 years of the record, particularly 

after 75 cal yr BP. 

Once again Pinus pollen dominates the DL11C record during the late Holocene 

with the highest average for the entire record at 47.6%, with 5.2% of the identifiable 

grains coming from the subgenus Pinus and only 0.2% from the subgenus Strobus (Fig. 

6). Pinus percentages are highest near the beginning of the period at ca. 3500 cal yr BP, 

decrease until ca. 1200 cal yr BP, increase again until the MSH-W tephra (470 cal yr BP), 

and then decrease toward present. Found at their highest percentages in this zone are 

Pseudotsuga/Larix (6.2%), Juniperus-type (3.2%), Picea (0.8%), Alnus (12.2%), Spiraea 

(0.8%), Rosaceae undiff. (0.6%), Cyperaceae (4.1%), particularly after ca. 2500 cal yr 

BP, Salsola-type (0.7%-tied), Heracleum-type (0.4%), and Typha (10.4%). Several 

notable taxa are at their lowest percentages during the late Holocene, including Betula 

(8.7%), Artemisia (2.8%), Sambucus (0.4%), Poaceae (7.0%), Pteridium aquilinum-type 

(0.1%), and monolete ferns (0.1%). The openness ratio is on average highest during the 

late Holocene at 0.79. However, it is highest near the start of the period, decreases toward 

the middle, increases again before the MSH-W tephra layer, decreases sharply afterward, 

and then increases at the top of the record. 

 

V. Discussion 

Section 1: Doheney Lake Fire and Vegetation History 
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The age model and basal date from the DL11C core suggest that Doheney Lake 

formed shortly after the final retreat of the Okanogan lobe of the Cordilleran ice sheet ca. 

12220 cal yr BP. The pollen record indicates that initially the vegetation at the site was an 

open parkland or sagebrush steppe dominated by Pinus (likely P. contorta [Mack et al., 

1978c]), Artemisia and Poaceae (Fig. 6). This suggests a very open and dry environment, 

similar to what was reported by Mack (1979) at nearby Mud Lake and Bonaparte 

Meadows. Because of the proliferation of Pinus pollen and the distance it can travel, it is 

difficult to know whether pine trees were growing near the site or somewhere else within 

the watershed (Hebda and Allen, 1993). However, the openness ratio indicates that the 

forest was sparser at this time than at any other time during the Holocene. While 

CharAnalysis results indicate fires were most frequent during this period, charcoal 

concentrations and CHARs were at their lowest, with relatively low average peak episode 

magnitude, which indicates either the size, severity, or proximity of the fire to the lake 

(Table 2). These results coupled with the high percentage of herbaceous charcoal 

observed during this period suggest that the landscape around Doheney Lake was fuel-

limited, and as a result, the watershed experienced frequent, low-severity fires. 

The pollen reconstruction indicates substantial shifts in the vegetation near 

Doheney Lake early in the middle Holocene, particularly after deposition of the Mazama-

O tephra layer. Pseudotsuga/Larix first appeared in the record ca. 10000 years ago, but 

remained at low levels until ca. 8000 cal yr BP. It is difficult to know whether this is 

Douglas-fir, western larch, or both, given that both occur in the SWA today; however, 

Douglas-fir is much more common (Visalli, 2010). Both taxa are well known pollen 

underproducers (Baker, 1976; Mack et al., 1978a), so higher Pseudotsuga/Larix 
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abundance within the record at this time suggests its presence within the watershed and 

likely in the immediate vicinity of the lake. Concurrent with this increase is a decline in 

Betula, Artemisia, Sambucus, Sarcobatus, Ceanothus, and Poaceae, as well as most 

herbaceous species that were relatively abundant during the early Holocene. Pinus, which 

was in decline at the end of the early Holocene, remained low after the Mazama eruption, 

but then increased to near its highest abundance of the Holocene by ca. 7000-6500 cal yr 

BP. This increase was accompanied by an increase in grains that could be identified as 

the subgenus Pinus, likely indicating the arrival of P. ponderosa at the site, which is the 

dominant tree at Doheney Lake today. Overall these changes seem to indicate the 

establishment of the modern-day forests within the watershed. This is somewhat later 

than what was reported by Mack (1979) at Bonaparte Meadows (5000 14C years [ca. 5800 

cal yr BP]); however, this site is slightly farther north than Doheney, which could account 

for the difference in the timing, or perhaps this is explained by more precise radiocarbon 

dating techniques that have developed in the past 30 years. 

Accompanying this shift in vegetation at Doheney Lake during the middle 

Holocene are changes in fire activity. Average charcoal concentration and CHAR 

increased considerably as compared to earlier; however, CharAnalysis identified fewer 

fire episodes with a slightly lower average peak episode magnitude. The increase in fire 

frequency at ca. 7300-6400 cal yr BP seems to have occurred in response to the 

vegetation shifts noted above, which likely provided greater fuel abundance to sustain 

more frequent but smaller/less severe fires. It is worth noting that for nearly half of this 

period CharAnalysis was unable to maintain a SNI over the suggested threshold of three 

(Kelly et al., 2011). This brings into question CharAnalysis’ ability to detect fire episodes 
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in this portion of the record, but it is unclear whether the program is over- or under-

estimating fire occurrence. Even so, the higher charcoal concentrations and CHARs in the 

latter part of the middle Holocene, accompanied by a smaller percentage of herbaceous 

charcoal observed at this time, indicates that fires were likely larger and burned more 

woody biomass, particularly after ca. 7000 cal yr BP. 

Pinus continued to dominate at Doheney Lake throughout the late Holocene, 

however, its abundance greatly decreased from its highest point in the record after ca. 

3500 cal yr BP. This decrease occurred simultaneous to the largest increase in charcoal 

concentrations and CHARs during the Holocene (ca. 3500-1600 cal yr BP). At the same 

time, CharAnalysis indicates that fire frequency decreased (and throughout much of the 

late Holocene), while peak episode magnitudes increased greatly. This, along with even 

lower herbaceous charcoal concentrations suggests that fires became even larger or more 

severe than earlier in the record and consumed a higher proportion of woody fuels. It is 

also possible, however, given the lower resolution of the record at this point due to 

slower sedimentation rates, that more fires were happening closer together in time and 

that multiple fire events are contained within one identified fire episode (Whitlock and 

Bartlein, 2004). This would result in the larger peak episode magnitudes observed during 

much of the late Holocene. However, the greater abundance of Alnus (likely Alnus 

incana) during this period suggests that fires were larger or more intense, given that it is a 

successional species that flourishes after fire (Fryer, 2011). As a result, the forest became 

more open at this time than it had been during much of the middle and late Holocene, 

which is supported by the openness ratio and the slightly greater abundance of Artemisia 
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and Juniperus-type (likely Juniperus communis, which is intolerant of shade) (Diotte and 

Bergeron, 1989).  

Pinus abundance increased again after ca. 1500 cal yr BP and peaked immediately 

following the MSH-W eruption (470 cal yr BP). This increase appears to be in response 

to decreased fire activity at this time, illustrated by lower charcoal concentrations, 

CHARs, and the lowest fire frequency of the entire record. Fire activity increased again 

between ca. 500-250 cal yr BP (with a notable absence in charcoal influx into the record 

after the MSH-W eruption) before dramatically decreasing toward present, particularly 

after ca. 100 cal yr BP. Pinus abundance then decreased toward present while other taxa 

increased, particularly Pseudotsuga/Larix, Alnus, Spiraea, Roseaceae, and Poaceae 

(many of which are likely invasive grasses). The only other notable vegetation change in 

the late Holocene suggests an increase in wetland environment and perhaps a gradual 

filling in of the lake, which is approaching completion at present, and is marked by an 

increase in particularly Salix, Cyperaceae, and Typha (including a large spike ca. 1500 cal 

yr BP) after ca. 3000 cal yr BP.  

 

Section 2: Controls of Fire Activity during the Holocene 

Unlike what has been documented by other paleoecological reconstructions from 

the PNW (Walsh et al., 2015), it seems as if fire regimes at Doheney Lake were only 

somewhat influenced by major climatic shifts during the postglacial period. The fire 

frequency curve, which often times on a millennial scale tracks changes in insolation 

anomaly, primarily at sites west of the crest of the Cascade Mountains (Walsh et al., 
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2008), does not follow this trend at Doheney Lake. Instead, fire frequency was highest at 

the start of the record when climate is known to have been still cold due to influence of 

the retreating ice sheet, and decreased during the early Holocene warm period, which was 

a period of enhanced drought and increased summer warmth, particularly from ca. 

10,500-8000 cal yr BP (Walker and Pellatt, 2008). Fire frequency then increased 

somewhat at Doheney Lake during the next four millennia as the climate cooled and 

moistened. Perhaps the only portion of the fire frequency curve that seems to make more 

sense in terms of climate is the late Holocene, which is generally described as a stable but 

cool and moist period (Walker and Pellatt, 2008). Fire frequency at Doheney Lake 

decreased during this interval until ca. 1200 cal yr BP, after which it increased until 

present, which is not really explained by known broad-scale climatic shifts. 

It appears instead that fire activity at Doheney Lake more closely tracked climate-induced 

vegetation shifts during the Holocene, which affected available burnable biomass. 

Charcoal concentrations and CHARs increased after ca. 8000 cal yr BP as 

Pseudotsuga/Larix increased in abundance and the modern-day forest established (Figs. 5 

and 6). Fire regimes in the late Holocene, however, are still difficult to explain given that 

climate was thought to be relatively stable (Walker and Pellatt, 2008) and forest 

composition varied little. It appears instead that during the late Holocene shifts in fire 

activity, particularly increased CHARs between ca. 3500-1600 cal yr BP, drove changes 

in forest structure (as described above). 

As opposed to millennial-scale climatic influences, fire regimes at Doheney Lake 

may have been driven by changes in interannual variability, such as those created by the 

Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO). Numerous 
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studies show a strong link between drought conditions and ENSO and/or PDO in the 

interior PNW, including research conducted from nearby Castor Lake (Nelson et al., 

2011). Other studies also link increased fire activity in the interior PNW with drought 

years associated with specific phases of the PDO and ENSO (Hessl et al., 2004; 

Heyerdahl et al., 2008). Increased CHARs during the middle and late Holocene at 

Doheney Lake generally coincide with the general upward trend of ENSO events from 

8,000 cal yr BP to present (Moy et al., 2002). It may be that similar to the desert 

southwest (SW) of the US, cooler wetter years provided the conditions necessary for fine 

fuel growth at Doheney Lake, while subsequent warmer drier years allowed that biomass 

to burn (Grissino-Mayer and Swetnam, 2000). The phases, however, are opposite from 

those experienced in the SW.  

If large-scale or regional climatic fluctuations were driving the changes in fire 

activity at Doheney Lake during the postglacial period, either directly or through climate-

induced vegetation changes, then nearby reconstructions should show similar trends. 

However, few fire history reconstructions exist with which to compare to the Doheney 

Lake record. Brown et al. (2017) reconstructed fire history for the past ca. 8500 years at 

Scum Lake located in a P. contorta-dominated forest on the Chilcotin Plateau (British 

Columbia). Both the Scum and Doheney lakes records show corresponding trends of 

increased CHARs from ca. 5500 cal yr BP to just after 2000 cal yr BP. Following this, 

both records show a gentle decrease in CHARs to 1000 cal yr BP, where they both 

increased slightly until Euro American settlement. At this point, CHARs at Doheney 

Lake sharply declined to the end of the record, where as they remained high at Scum 

Lake. It is worth noting that though the CHAR curves share a similar shape, the fire 
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frequencies curves differ greatly. Fire frequencies are highest at Scum Lake after ca. 

3000 cal yr BP, while frequencies are lowest at Doheney Lake at this time. This could be 

because CharAnalysis does a better job identifying fire episodes at Scum Lake, which 

exists within a moderate-severity fire regime, so the record is “peakier” (Brown et al., 

2017). 

Also available for comparison is a 3800-year long record from nearby Fish Lake, 

which is situated approximately 3 km NW of Doheney Lake within the SWA (Fig. 1; 

Walsh et al., in press). The reconstructions bear little resemblance to one another from ca. 

3800-1200 cal yr BP, with seemingly more frequent low-severity fires occurring at Fish 

Lake at this time, and less frequent higher severity fires occurring at Doheney Lake, 

indicated by the slightly lower proportion of herbaceous charcoal (Fig. 7). This is likely 

because Fish Lake had less forest and more sagebrush steppe, which today exists on the 

south-facing shore of the lake, during this interval. However after ca. 1200 cal yr BP both 

records show a general increase in CHAR, with lower fire activity during the MCA and 

higher during the LIA. While the peak of the CHAR curves are similar in shape, the 

timing of them is slightly off (ca. 275 cal yr BP at Doheney Lake and ca. 175 cal yr BP at 

Fish Lake), which could be due to constraints on the age models. Both reconstructions 

show a steep decline in CHARs after those respective peaks, with almost no charcoal 

accumulation into either record after ca. 50 cal yr BP (AD 1900). Increases in 

Pseudotsuga/Larix at both sites at this time indicate the start of anthropogenic fire 

suppression, which likely included the loss of both human-set and lightning-ignited fires 

(discussed in further detail below).  
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Fig. 7. Comparison of charcoal influx (CHAR; particles/cm2/yr) for Fish Lake (FL11E) 

and Doheney Lake (DL11C) cores. The green curves indicate the proportion of 

herbaceous charcoal. Vertical gray bar indicates the depth of the MSH-W tephra layer. 
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 It is also necessary to consider the likelihood that human use of fire contributed to 

the observed fire regimes at Doheney Lake during the postglacial period. Humans have 

been present in the interior PNW since ca. 12000 cal yr BP (Baker, 1990), however 

archaeological evidence suggests that populations were not of considerable size until 

after ca. 5000-4000 cal yr BP (Ames, 2000). Increased population size may be what is 

reflected in the Doheney Lake CHAR curve, as humans would have more intensely used 

fire as a plant management tool and to manipulate forest cover (Turner, 1999). The area 

in and around the SWA was the ancestral homeland of the Sinkaietk (Southern 

Okanogan), and some evidence of prehistoric human use of the area remains on the 

landscape today in the form of culturally-modified trees and remnants of pit houses 

(Oliver, 2014). Unfortunately there is little documentation indicating use of fire by the 

native people in the SWA. However, fire was a known land management tool used by the 

nearby Colville tribe (see Boyd, 1999), which makes it likely that it was used in the SWA 

as well (see Walsh et al., in press for further discussion). This may be a possible 

explanation for the highly variable CHARs during the late Holocene that appear to be 

asynchronous with climatic shifts such as the Medieval Climate Anomaly (MCA; 1100-

700 cal yr BP) and Little Ice Age (LIA; 500-100 cal yr BP) (Fig. x). 

 

Section 3: Pre- versus Post-Euro American Settlement Fire Regimes in SWA 

Fire regimes in the SWA shifted dramatically following Euro American 

settlement at ca. 100 cal yr BP (AD 1850) as Native Americans were removed from the 

landscape (either by disease or forceful relocation) and fire suppression policy became 
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widespread. The impact of this is clear when looking at fire data from the Okanagan-

Wenatchee National Forest for the past century, which shows that very few fires burned 

from the 1930s-1980s (Fig. 8). Work by Schellhaas et al. (2009) reveals the effects of 

local fire suppression on stand composition and forest structure in the SWA. They 

documented that trees per hectare have increased dramatically with the majority of this 

occurring in the small diameter class. Additionally, most stands have shifted from 

ponderosa pine-dominated to Douglas-fir-dominated. Similarly, Haeuser (2014) 

illustrated encroachment patterns in the SWA supported by aerial and historical photos, 

where she noted that as a result of 20th century fire suppression, ponderosa pine has 

encroached into the lower elevation shrub steppe portions of the SWA, and Douglas-fir 

has encroached into ponderosa pine stands. This overstocking resulting from fire 

suppression has effectively changed the fire regime of the SWA, similarly to the 

surrounding Okanogan-Wenatchee National Forest (Fig. 8). Fire suppression has been so 

successful that it has shifted fire regimes in eastern cascade dry forest to a low frequency, 

high-severity regime. For the SWA, and Okanogan County, this culminated in the 2015 

fire season where the Okanogan Complex Fire burned over 121,000 hectares, including 

the Doheney Lake watershed (Fig. 2). 
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Fig. 8. Fires per decade (black line) and total area burned (gray bars) in the Okanagan-

Wenatchee National Forest between 1910 and 2010. Data source: Okanagan-Wenatchee 

National Forest Fire and Aviation Dataset (2012). 
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VI. Conclusions 

While the Doheney Lake record does provide insight into the postglacial 

environment in the SWA, it also brings forth questions left unanswered at this time. The 

trends in the vegetation establishment and shifts are generally supported by existing 

studies, yet the fire history does not conform to the theory that climate has been the 

primary driver of fire activity in this ecosystem during the postglacial period. This 

partially stems from the seemingly inverse relationship between the CharAnalysis fire 

frequency results and CHAR, as well as what are uncharacteristically long fire return 

intervals for this environment during the late Holocene. This may be explained by 

CharAnalysis’ limitations when it comes to analyzing a record with high charcoal 

accumulation rate and relatively low temporal resolution. With this in mind, the record 

seems to suggest that cooler and moister periods during the middle and late Holocene 

along with a more forested environment allowed for more burning to occur on the 

landscape. Overall, when compared alongside the vegetation history, the CHAR record 

suggests that fire on the landscape was primarily driven by fuel availability. It is unclear 

to what degree humans affected this fire history prior to the period of Euro American 

settlement, however there is a correlation between increased CHARs and what are 

believed to be increasing human populations during middle to late Holocene (after ca. 

5500 years). 

Based on this reconstruction, it is clear that fire has been a constant presence on 

the landscape from the time of deglaciation until the start of Euro American settlement. It 

is likely that fire in the SWA will continue to be driven by fuel availability. Recent 

catastrophic fire seasons during drought years in the area demonstrate that humans can 
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only suppress fire, not eradicate it, especially given current fuel conditions. It may be 

beneficial for management agencies to consider further use of fire in the SWA as a 

management tool.  

 

VII. Acknowledgements 

 The authors would like to thank D. Swedberg for his help designing the study and 

site access, as well as H. Duke, G. Scheuerman, and N. Morse for field assistance. 

Funding for this research was provided by the American Association of Geographers and 

Central Washington University Graduate School and the College of the Sciences. 

 

 

 

 

 

 

 

  



58 

 

COMPREHENSIVE REFERENCES 

Agee, J.K. 1993. Fire Ecology of Pacific Northwest Forests. Island Press, Washington, 

D.C. 505 pp. 

 

Agee, J.K. 1994. Fire and weather disturbances in terrestrial ecosystems of the Eastern 

Cascades. USDA Forest Service Research Paper PNW-GTR-320. 

 

Agee, J.K. 2003. Historical range of variability in Eastern Cascades forests, Washington, 

USA. Landscape Ecology 18: 725–740. 

 

Ames, KM. 2000. Cultural Affiliation Report, Chapter 2: Review of the Archaeological 

Data. National Park Service, Department of the Interior, Washington, DC. doi: 

10.6067/XCV83T9GXP. 

 

Arno, S.F., Smith, H.Y., and Krebs, M.A. 1997. Old growth ponderosa pine and western 

larch stand structures: influences of pre-1900 fires and fire exclusion. USDA Forest 

Service Research Paper INT-RP-495. 

 

Baker, J. 1990. Archaeological research concerning the origins of the Okanagan People. 

In Okanagan Sources. Edited by J. Webber and En’owkin Center. Theytus Books Ltd, 

Penticton, B.C. pp. 10-50. 

 

Baker, R.G., 1976. Late Quaternary vegetation history of the Yellowstone Lake basin, 

Wyoming. USGS Professional Paper 729-E. 

 

Boyd, R.T. 1999. Indians, fire, and the land in the Pacific Northwest. Oregon State 

University Press, Corvallis, OR. pp. 320. 

 

Brown, K.J., Hebda, N.J., Conder, N., Golinski, K.G., Hawkes, B., Schoups, G., and 

Hebda, R.J. 2017. Changing climate, vegetation, and fire disturbance in a sub-boreal 

pine-dominated forest, British Columbia, Canada. Canadian Journal of Forest Research 

47: 615–627. 

 

Brown, T.J., Hall, B.L., and Westerling, A.L. 2004. The impact of twenty-first century 

climate change on wildland fire danger in the western United States: an applications 

perspective. Climate Change 62: 365–388. 

 

Clay-Poole, S. 2012. Ethnobotany – Lichens [online]. WSDOT Cultural Resources. 

Available from http//www.wsdot.wa.gov/Environment/CulRes/lichens.html [accessed 30 

January 2018]. 

 

Covington, W., Fule, P., Moore, M., Hart, S., Kolb, T., Mast, J., Sacke, S., and Wagner, 

M. 1997. Restoring ecosystem health in ponderosa pine forests of the Southwest. Journal 

of Forestry 95(4): 23–29. 

 



59 

 

Dale, L. 2009. The true cost of wildfire in the western U.S. (2004) Western Forestry 

Leadership Coalition. Lakewood, CO. 

 

Dean, W.E., Jr. 1974. Determination of carbonate and organic matter in calcareous 

sediments by loss on ignition comparison with other methods. Journal of Sedimentary 

Petrology 44: 242–248. 

 

Dearing, J.A. 1991. Lake sediment records of erosional processes. Hydrobiologia 214(1): 

99–106. 

 

Diotte, M., and Bergeron, Y. 1989. Fire and the distribution of Juniperus communis L. in 

the boreal forest of Quebec, Canada. Journal of Biogeography 16: 91–96. 

 

Everett, R., Schellhaas, R., Keenum, D., Spurbeck, D., and Ohlson, P. 2000. Fire history 

in the ponderosa pine/douglas-fir forests on the east slope of the Washington Cascades. 

Forest Ecology and Management 129: 207–225. 

 

Everett, R., Baumgartner, D., Ohlson, P., Schellhaas, R., and Harrod, R. 2007. 

Development of current stand structure in dry fir-pine forests of eastern Washington. The 

Journal of the Torrey Botanical Society 134(2): 199–214. 

 

Faegri, K., Kaland, P.E., and Krzywinski, K. 1989. Textbook of pollen analysis. John 

Wiley and Sons, New York. 328 pp. 

 

Farris, C.A., Baisan, C.H., Falk, D.A., Yool, S.R., and Swetnam, T.W. 2010. Spatial and 

temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa 

pine forest. Ecological Applications 20(6): 1598–1614. 

 

Fitzgerald, S.A. 2005. Fire ecology of ponderosa pine and the rebuilding of fire-resilient 

ponderosa pine ecosystems. USDA Forest Service General Technical Report PSW-GTR-

198. 

 

Fowler, A.J., Gillespie, R., and Heges, R.E.M. 1986. Radiocarbon dating of sediments. 

Radiocarbon 28(2A): 441–450. 

 

Franklin, J.F., and Dyrness, C.T. 1998. Natural Vegetation of Oregon and Washington. 

Oregon State University Press, Corvallis, Oregon. 452 pp. 

 

Fryer, J.L. 2011. Alnus incana. Fire Effects Information System [online]. USDA Forest 

Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available from 

https://www.fs.fed.us/database/feis/plants/tree/alninc/all.html [accessed 14 May 2018]. 

 

Graham, R.T., and Jain, T.B. 2005. Ponderosa pine ecosystems. USDA Forest Service 

General Technical Report-198. 

 



60 

 

Grissino-Mayer, H.D., and Swetnam, T.W. 2000. Century-scale climate forcing of fire 

regimes in the American Southwest. The Holocene 10(2): 213–220. 

 

Haeuser, E.S. 2014. Spatiotemporal Patterns of Conifer Encroachment into Shrub-Steppe 

Habitat in the Sinlahekin Wildlife Area, Washington State. M.Sc. thesis, School of the 

Environment, Washington State University, Pullman, WA. 

 

Harrod, R.J., McRae, B.H., and Hartl, W.E. 1999. Historical stand reconstruction in 

ponderosa pine forests to guide silvicultural prescriptions. Forest Ecology and 

Management 14: 433–446. 

 

Harrod, R.J., Fonda, R.W., McGrath, M.K. 2007. Role of fire in restoration of a 

ponderosa pine forest, Washington. USDA Forest Service Proceedings, RMRS-P-46CD: 

315–327. 

 

Hebda, R.J., and Allen, G.B. 1993. Modern pollen spectra from west central British 

Columbia. Canadian Journal of Botany 71(11): 1486–1495. 

 

Heiri, O., Lotter, A.F., and Lemcke, G. 2001. Loss on ignition as a method for estimating 

organic and carbonate content in sediments: reproducibility and comparability of results. 

Journal of Paleolimnology 25: 101–110. 

 

Hessburg, P.F., Mitchell, R.G., and Filip, G.M. 1994 Historical and current roles of 

insects and pathogens in eastern Oregon and Washington forested landscapes. USDA 

Forest Service General Technical Report PNW-GTR-327. 72 pp. 

 

Hessburg, P.F., Smith, B.G., and Salter, R.B. 1999. Detecting change in forest spatial 

patterns from reference conditions. Ecological Applications 9(4): 1232–1252. 

 

Hessburg, P., Agee, J.K, Franklin, J.F. 2005. Dry forests and wildland fires of the inland 

northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras. 

Forest Ecology and Management 211(1): 117–139. 

 

Hessl, A.E., McKenzie, D., and Schellhaas, R. 2004. Drought and Pacific Decadal 

Oscillation linked to fire occurrence in the inland Pacific Northwest. Ecological 

Applications 14(2): 425–442. 

 

Heyerdahl, E.K., Brubaker, L.B., and Agee, J.K. 2002. Annual and decadal climate 

forcing of historical fire regimes in the interior Pacific Northwest, USA. The Holocene 

12(5): 597–604. 

 

Heyerdahl, E.K., D. McKenzie, L. D. Daniels, A. E. Hessl, J. S. Littell, and N. J. Mantua. 

2008. Climate drivers of regionally synchronous fires in the inland Northwest (1651-

1900). International Journal of Wildland Fire 17: 40–9. 

 



61 

 

Higuera, P. E., Brubaker, L.B., Anderson, P.M., Hu, F.S., and Brown, A. 2009. 

Vegetation mediated the impacts of postglacial climate change on fire regimes in the 

south-central Brooks Range, Alaska. Ecological Monographs 79: 201–219. 

 

Kay, C.E. 2007. Are lightning fires unnatural? A comparison of aboriginal and lightning 

ignition rates in the United States. Proceedings of the Tall Timbers Fire Ecology 

Conference 23: 16–28. 

 

Kelly, R., Higuera, P.E., Barrett, C.M., and Hu, F.S. 2011. A signal-to-noise index to 

quantify the potential for peak detection in sediment–charcoal records. Quaternary 

Research 75: 11–17. 

 

Kerns, B.K., Buonopane, M., Thies, W.G., and Niwa, C. 2011. Reintroducing fire into a 

ponderosa pine forest with and without cattle grazing: understory vegetation response. 

Ecosphere 2(5): 1–23. 

 

Kolb, T.E., Agee, J.K., Fule, P.Z., McDowell, N.G., Pearson, K., Sala, A., and Waring, 

R.H. 2007. Perpetuating old ponderosa pine. Forest Ecology and Management 249(2): 

141–157. 

 

Lesemann, J-E., and Brennand, T.A. 2009. Regional reconstruction of subglacial 

hydrology and glaciodynamic behaviour along the southern margin of the Cordilleran Ice 

Sheet in British Columbia, Canada and northern Washington State, USA. Quaternary 

Science Reviews 28: 2424–2444. 

 

Long, C.J., Whitlock, C., Bartlein, P.J., and Millspaugh, S.H. 1998. A 9000-year fire 

history from the Oregon Coast Range, based on a high-resolution charcoal study. 

Canadian Journal of Forest Research 28: 774–787. 

 

Mack, R.N., Bryant, V.M., Jr., and Pell, W. 1978a. Modern forest pollen spectra from 

eastern Washington and northern Idaho. Botanical Gazette 139: 249–255. 

 

Mack, R.N., Rutter, N.W., Bryant, V.M., Jr., and Valastro, S. 1978b. Reexamination of 

postglacial vegetation history in northern Idaho: Hager Pond, Bonner Co. Quaternary 

Research 10: 241-255. 

 

Mack, R.N., Rutter, N.W., and Valastro, S. 1979. Holocene vegetation history of the 

Okanogan Valley, Washington. Quaternary Research 12: 212–225. 

 

McKenzie, D., Peterson, D.L., and Agee, J.K.  2000. Fire frequency in the interior 

Columbia River basin: building regional models from fire history data. Ecological 

Applications 10(5): 1497–1516. 

 

Miller, J.M., and Keen, F.P. 1960. Biology and control of the western pine beetle. Misc. 

Publication 800. U.S. Department of Agriculture, Washington, D.C. 831 pp. 

 



62 

 

Mitchell, S.R., Harmon, M.E., and O’Connell, K.E.B. 2009. Forest fuel reduction alters 

fire severity and long-term carbon storage in three Pacific Northwest ecosystems. 

Ecological Applications 19(3): 643–655. 

 

Moy, C.M, Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. 2002. Variability of El 

Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. 

Nature 420: 162–165. 

 

Mullineaux, D.R. 1986. Summary of pre-1980 tephra-fall deposits erupted from Mount 

St. Helens, Washington State, USA. Bulletin of Volcanology 48: 17–26. 

 

Nelson, D.B., Abbott, M.B., Steinman, B., Polissar, P.J., Stansell, N.D., Ortiz, J.D., 

Rosenmeier, M.F., Finney B.P., and Riedel, J. 2011. Drought variability in the Pacific 

Northwest from a 6,000-yr lake sediment record. Proceedings of the National Academy 

of Sciences 108: 3870–3875. 

 

Oliver, B.G. 2014. Cultural resource management plan need for the Sinlahekin Wildlife 

Area, Washington. M.Sc. thesis, Department of Anthropology, Central Washington 

University, Ellensburg, WA. 

 

Oliver, W.W., and Ryker, R.A. 1990. Ponderosa pine. USDA Plant Guide. Vol. 1. 

 

O’Hara, K.L. 2005. Multi-aged silviculture of ponderosa pine. USDA General Technical 

Report. PSW-GTR-198. 12 pp. 

 

Ohlson P., and Schellhaas, R. 2000. Historical and current stand structure in Douglas-

fir and ponderosa pine forests. Unpublished report. USDA Forest Service. Okanogan 

and Wenatchee National Forests, Wenatchee Forestry Science Lab. 

 

Patterson, W.A. III, Edwards, K.J., and Maguire, D.J. 1987. Microscopic charcoal as a 

fossil indicator of fire. Quaternary Science Reviews 6: 3–23. 

 

Peterson, D.L., Johnson, M.C., Agee, J.K., Jain, T.B., McKenzie, D., and Reinhardt, E.D. 

2005. Forest structure and fire hazard in dry forests of the western United States. USDA 

Forest Service General Technical Report PNW-GTR-628. 

 

PRISM Climate Group. 2018. PRISM climate data [online]. Oregon State University. 

Available from http://prism.oregonstate.edu [accessed 13 February 2018]. 

 

Reinhardt, E.D., Keane, R.E., Calkin, D.E., and Cohen, J.D. 2008. Objectives and 

considerations for wildland fuel treatment in forested ecosystems of the interior western 

United States. Forest Ecology and Management 256: 1997–2006. 

 

Schellhaas, R., Conway, A., and Spurbeck, D. 2009. A Report to The Nature 

Conservancy on the historical and current stand structure in the Sinlahekin Wildlife Area. 

Schellhaas Forestry LLC, Wenatchee, WA. 54 p. 



63 

 

 

Spies, T.A., Giesen, T.W., Swanson, F.J., Franklin, J.F., Lach, D., and Johnson, K.N. 

Climate change adaptation strategies for federal forests of the Pacific Northwest. USA: 

ecological, policy, and socio-economic perspectives. Landscape Ecology 25(8), 1185–

1199. 

 

Stuiver, M., Reimer, P.J., and Reimer, R.W. 2018 CALIB 7.1 [WWW program] at 

http://calib.org, accessed 2018-1-15. 

 

Swedberg, D. 2006. Fish Lake. Sinlahekin Historical Photographs [online]. Available 

from 

http://wdfw.wa.gov/lands/wildlife_areas/sinlahekin/gallery/sinlahekin_historical.php 

[accessed 15 March 2018].  

 

Thompson, R., and Oldfield, F. 1986. Environmental Magnetism. Allen and Unwin, 

London. 227 pp. 

 

Turner, N.J. 1999. Time to burn: traditional use of fire to enhance resource production by 

aboriginal peoples in British Columbia. In Indians, Fire, and the Land in the Pacific 

Northwest. Edited by R.T. Boyd. Oregon State University Press, Corvallis, Oregon. pp. 

186–218. 

 

Vance, N.C. 2010. Evaluation of native plant seeds and seeding in the east-side central 

Cascades ponderosa pine zone. USDA Forest Service General Technical Report PNW-

GTR-823. 92 pp. 

 

Visalli, D. 2003. Vegetation Inventory of the Sinlahekin Wildlife Area. Report prepared 

for Washington Department of Fish and Wildlife. Available at: 

http://wdfw.wa.gov/lands/wildlife_areas/sinlahekin/species.php. 

 

Walker, I.R., and Pellatt, M.G. 2003. Climate change in coastal British Columbia- a 

paleoenvironmental perspective. Canadian Water Resources Journal 28: 531–566. 

 

Walker, M.J.C. 2005. Quaternary dating methods. Wiley, Chichester, UK. pp. 286. 

 

Walsh, M.K., Whitlock, C., and Bartlein, P..J 2008. A 14,300-year-long record of fire-

vegetation-climate linkages at Battle Ground Lake, southwestern Washington. 

Quaternary Research 70: 251–264. 

 

Walsh, M.K., Marlon, J.R., Goring, S.J., Brown, K.J., and Gavin, D.G. 2015. A regional 

perspective on Holocene fire–climate–human interactions in the Pacific Northwest of 

North America. Annals of the Association of American Geographers 105: 1135–1157. 

 

Walsh, M.K., Duke, H.J., and Haydon, K.C. In press. Toward a better understanding of 

climate and human impacts on late Holocene fire regimes in the Pacific Northwest 

(USA). Progress in Physical Geography. 



64 

 

 

Washington Department of Fish and Wildlife. 2006. Sinlahekin Wildlife Area 

management plan. Wildlife Management Program, Washington Department of Fish and 

Wildlife, Olympia. 

 

Washington Department of Fish and Wildlife. 2010. Sinlahekin Wildlife Area 2010 

management plan update. Wildlife Management Program. Washington Department of 

Fish and Wildlife, Olympia.  

 

Washington Department of Fish and Wildlife. 2018. Sinlahekin wildlife Area, Sinlahekin 

Unit [online]. Available from 

https://wdfw.wa.gov/lands/wildlife_areas/sinlahekin/Sinlahekin/ [accessed 10 April 

2018]. 

 

Washington Department of Natural Resources. 2015. 2015 Annual Report [online]. 

Available from https://www.dnr.wa.gov/publications/em_annualreport15.pdf [accessed 

20 April 2018]. 

 

Whitlock, C., and Anderson, S.R. 2003. Fire history reconstructions based on sediment 

records from lakes and wetlands. Ecological Studies 160: 3–31 

 

Whitlock, C., Shafer, S.L., and Marlon, J. 2003. The role of climate and vegetation 

change in shaping past and future fire regimes in the northwestern US and the 

implications for ecosystem management. Forest Ecology and Management 178: 5–21. 

 

Whitlock, C. and Bartlein, P.J. 2004. Holocene fire activity as a record of past 

environment change. Developments in Quaternary Science, Vol. 1. Elsevier. 479–490 pp. 

 

Whitlock, C., and Larsen, C.P.S. 2001. Charcoal as a fire proxy. In Tracking 

Environmental Change Using Lake Sediments: Biological Techniques and Indicators 

Volume 2. Edited by J.P. Smol, H.J.B. Birks, and W.M. Last. Kluwer Academic 

Publishers, Dordrecht. pp. 75–97. 

 

Wilson, J.S., and Baker, P.J. 1998. Mitigating fire risk to late-successional forest reserves 

on the east slope of the Washington Cascade Range, USA. Forest Ecology and 

Management 110: 59–75. 

 

Wright, C.S., and Agee, J.K. 2004. Fire and vegetation history in the eastern Cascade 

Mountains, Washington. Ecological Applications 14(2): 443–459. 

 

Wright, H.E., Jr., Mann, D.H., and Glaser, P.H. Piston corers for peat and lake sediments. 

Ecology 65(2): 657–659. 

 

Western Regional Climate Center. 2018. Western US Climate Historical Summaries 

(online). Available from https://wrcc.dri.edu/Climsum.html [accessed 13 February 2018]. 

 



65 

 

Zdanowicz, C.M., Zielinski, G.A., and Germani, M.S. 1999. Mount Mazama eruption: 

calendrical age verified and atmospheric impact assessed. Geology 27, 621–624. 

 

 

 


	Postglacial Fire, Vegetation, and Environmental Change in the Sinlahekin Wildlife Area, Okanogan County, Washington (USA)
	Recommended Citation

	tmp.1533126218.pdf.gvlX3

