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ON SEMIGROUP RINGS 

by 

Lawrence Paul Runyan 

April 1968 

This thesis presents some properties of semigroup 

rings. The main considerations are directed toward 

determining properties of semigroup rings that can be 

related to properties of the semigroup or ring involved. 

The major theorems on semigroup rings are presented in 

detail. A computer program written in the Symbolic 

Programming System (SPS) for the IBM 1620 which generates 

the addition and multiplication tables for semigroup rings 

is included. 
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CHAPTER I 

THE PROBLEM AND DEFINITIONS 

I • THE PROBLEM 

A semigroup ring is a system of functions from a 

semigroup into a ring which forms a ring under suitable 

definitions for the operations. 

The current trend in this world of increasing 

specialization is to learn as much as possible about some 

small area of an important field. It is in this respect 

that semigroup rings are important. They comprise a 

small subclass of important algebraic systems called 

rings. Semigroup rings can be considered as polynomial 

rings as illustrated by a later example. They can also be 

considered as a system of functions, a central concept in 

mathematics. 

Some of the properties of semigroup rings are 

described, illustrated and proved in this study. In 

particular, the central problem focuses on how various 

properties of the semigroup and ring are reflected in 

the resulting semigroup ring. 

Before formulating properties of an abstract system, 

some examples are usually considered. For finite orders, 

the order of a semigroup ring equals the order of the ring 

raised to the power of the order of the semigroup involved. 



Hence, for even small order semigroups and rings, the 

resulting semigroup ring will have relatively large order. 

The difficulty of constructing large complex examples in 

any reasonable length of time was solved by designing a 

computer program which generates the addition and multi­

plication tables for semigroup rings. 

II. DEFINITIONS 

Before defining a semigroup ring, some basic 

definitions of elementary abstract systems used in this 

study are formulated. 

Semigroup. A semigroup (S,•) is a system consist-

ing of a non-empty set S and a binary operation on S 

such that is associative, i.e., a·(b·c) = (a·b)•c for 

all a,b,c£S. 

When there is no chance of confusion, a•b will be 

written ab • 

Group. A group (G,+) is a system consisting of a 

non-empty set G and a binary operation + on G 

satisfying the following conditions: 

(i) 
(ii) 

(iii) 

+ is associative, 
there is an element 0 in G called the 

right identity, such that a + O = a 
for all a£G , and 

for every element a£G there exists an 
element -a£G called the right 
inverse of a , such that a+ (-a) = O. 

2 
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Any group in which the operation + is commutative, 

i.e., a+ b = b +a for all a,bEG , is called an Abelian 

group. 

Ring. A ring (R,+,•) is a system consisting of a 

non-empty set R and two binary operations + and • on 

R such that 

(i) 
(ii) 

(iii) 

(R,+) is an Abelian group, 
(R,•) is a semigroup, and 
both the left and right distributive laws hold, 

i.e., a·(~rc) = a·b + a•c and 
(b+c)•a = b•a + b•c for all a,b,c,ER • 

In any ring (R,+,·) , the Abelian group (R,+) is 

called the additive structure, and the semigroup (R,•) is 

called the multiplicative structure. 

Commutative ringo A ring (R,+,·) is a commutative 

ring if a•b = b•a for every a,bER • 

Ring with identity. A ring (R,+,•) is a ring with 

identity if there is an element 1 in R such that 

a•l = l·a =a for all aER • 

Zero ring. A ring (R,+,·) is a zero ring if 

a·b = 0 for all a,bER • 

Integral domain. A commutative ring with identity 

(R,+,·) is an integral domain if a•b = 0 implies 

a = 0 or b = 0 for all a,bER • If this condition holds, 
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the system is said to be free of zero divisors. 

Throughout this thesis, S, G and R will be used 

to represent a semigroup, group and ring, respectively. 

Jacobsen's definition (6:95) of a semigroup ring 

will be used in this thesis. 

Semigroup ring. Let (S,·) be any semigroup and 

(R,+,•) be any ring. Let T be the set of all functions 

defined on S with values in R such that f(s) = 0 for 

all but a finite number of SES • Further, define addition 

(pointwise) and multiplication (convolution) on T as 

follows: 

and 

taken over 

The set T 

called the 

The symbol t indicates the summation is 
uv=s 

all pairs u,v of elements whose product is s 

equipped with the operations $ and Q is 

semigroup ring of s with respect to R and 

denoted {T,~,8) • A typical element fET will be repre-

sented by { f } where f(ex) = f • ex ex£S ex 

. 



III. ORGANIZATION OF REMAINDER OF THE THESIS 

The first theorem contains a fundamental result 

about semigroup rings, a semigroup ring is a ring. 

5 

In the next section, two examples of semigroup rings 

are examined in order to better understand their structure. 

The main body of the thesis contains several theorems 

relating properties of a semigroup ring to properties of the 

underlying semigroup and ring. These theorems culminate 

with a theorem giving necessary and sufficient conditions 

for a semigroup ring to be an integral domain. 

The computer program used to generate semigroup rings 

is presented in the last chapter with flow charts and a 

detailed explanation of the logic involved. A complete 

printout of the program and an example of its output are 

included in the appendix. 



CHAPTER II 

REVIEW OF THE LITERATURE 

As indicated earlier, Jacobsen's definition (6:95) 

of a semigroup ring is used in this thesis. There is an­

other definition by Redei (9:225) which emphasizes the 

concepts of an algebra and a vector space in formulating 

the definition of a semigroup ring. 

There has been very little work published on 

semigroup rings. There is a paper by Hans Schneider and 

Julian Weissglass (10:1) entitled "Group Rings, Semigroup 

Rings and Their Radicals". As indicated by the title of 

this paper, semigroup rings and group rings are closely 

related. Group rings differ from semigroup rings in that 

the domain of the functions under consideration is a group 

~nstead of a semigroup. The rings resulting from this 

change necessarily have more structure due to the increas­

ed structure in the domain. In the field of group rings 

many papers have been published. Relative to group rings, 

Lambeck (7:172) has an extensive bibliography as well as 

some interesting results on group rings in the appendix. 

There are two papers by D. B. Coleman (2:962; 3:511) that 

concern group rings. 

There is extensive literature on semigroups, 

especially the work of Clifford and Preston (1:2-224)e 



7 
McCoy (8:1-46) contains a comprehensive treatment of rings. 

There is an abstract by Robert Gilmer (4:21) stat­

ing necessary and sufficient conditions for a semigroup 

ring to be an integral domain. A complete proof of his 

theorem is contained in this thesis. 



CHAPTER III 

INTRODUCTION TO SEMIGROUP RINGS 

The first theorem begins the study of semigroup 

rings by establishing that semigroup rings are rings. 

Theorem 3-1. The semigroup ring T of S with 

respect to R is a ring. 

Proof. Clearly, pointwise addition and convolution 

multiplication of two functions from S into R result 

in a function from S into R • 

To show the associativity of $ , let f 1 , f 2 , f 3 
be elements of T. Then 

((f1 e £2))e f
3
(s) = (f1 e f 2 )(s) + f 3(s) 

= ( £1(s) + f 2(s) )+ f
3

(s) 

= f
1

(s) + (£2(s) + £3(s)) 

= £
1

(s) +((f2 $ f 3)(s)) 

= (£1 e (f2 e f 3))(s) 

using the definition of $ in T and the associativity of 

+ in the ring R • Therefore, 

which completes the proof of associativity of $ in T • 



For an additive identity, consider the function 

0(s)=O for all SES, where 0 is the additive identity 

in R. Then for any function f ET 
' 

(f $0) (s) = f (s) +0(s) 

= f (s) + 0 

= f (s) 

Hence, 0 is the right identity for T since f $ 0 = f 

for all f ET 

For the additive inverse of any function f ET 
' 

consider the function -f defined by (-f)(s) = -(f(s)) 

where (-(f(s)) is the additive inverse of f(s) in R 

Then 

~ e (-f)) (s) = f(s) + (-(f(s~ 

= 0 

for all SES • Therefore, f $ (-f) = 0 • This implies 

that -f is the right inverse of f • 

9 

To complete the proof that (T,$) is an Abelian group, 

let f1, f 2 ET Then 

(f
1 

e f 2)(s) = f
1

(s) + f
2 
(s) 

= f 2(s) + f 1 (s) 

= (f2 $ f
1
)(s) 

' 

since addition is commutative in R • Therefore, 
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fl $ f 2 = f2 $ fl 

in T. 

for all fe:T • Hence e is commutative 

To show that i is asociative, let f
1

, f
2

, f 3 E T • 

Consider, 

= r ( r f 1(r)·f2(t)) ·f3(v) 
uv=s rt=u 

= r (f1(r)·f2(t)) ·f3(v) 
(rt)v=s 

= r £
1
(r)•f2(t)·£

3
(v) , 

rtv=s 

since multiplication in both the semigroup and ring is 

associative. But, 

= r f1(u)•(f2. f3)(v) 
uv=s 

= r f1(u)·( r f 2(x)·f3(y)) 
uv=s xy=v 

= r f 1 (u)•(f2(x)•f3(y)) 
u(xy)=s 

= r f
1
(u)•f2(x)•f3(y) • 

uxy=s 

Since both summations are over all triple factorizations 

of s , 

r f1(r)·f2(t)·f3(v) = r f1(u)·f2(x)·f3(y) , 
rtv=s uxy=a 

which implies that (f 1 Q £2) Q £3 = £1 e (f 2 Q f 3) for all 

f 1 , f2, f 3ET. Therefore, (T,Q) is a semigroup. 



To complete the proof, the distributive law must be 

established. Let f1, £2 , £3 ET. Then 

(f1 0 (f2 $ f3))(s) = r f1(u)·(f2 $ f3)(v) 
uv=s 

= r f 1(u}•(f2(v) + £3(v) 
uv=s 

11 

= r f1(u}•f (v) + fl(u}·f3(v) 
uv=s 2 

= r fl(u)•fz(v) + r f1(u)·f3(v) 
uv=s uv=s 

= 

= 

using properties of the ring R • This implies that 

proof that the left distributive property holds in T. 

The right distributive property is proved similarly. 

Thus (T,$} is an Abelian group, (T,9) is a semigroup 

and both the left and right distributive laws hold. There­

fore, by the definition of a ring, (T, e, 0) is a ring. 

It should be noted that the finitely non-zero 

restriction on the functions in T is necessary to insure 

that the summation in the definition of multiplication be 

finite. This could be replaced with the restriction on the 

semigroup that every element have only a finite number of 
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distinct factors. This, however, would restrict the class 

of semigroups used in the definition of semigroup ring since 

there are semigroups whose elements have an infinite number 

of factors. 

A good way to study an abstract system is to 

construct some examples. Example 3-1 illustrates the 

connection between semigroup rings and polynomial rings. 

Before examining this connection, consider the 

following definition of a polynomial ring. 

Polynomial ring. Let (R,+,·) be a ring and (I,+) 

be the non-negative integers. A polynomial p in an 

indeterminate x over the ring R is a formal sum 

Eaixi, where aiER and only a finite number of the a
1
.'s 

iEl 

are different from zero. Two polynomials, p= Eaixi and 
iEl 

q = Ebixi are equal if and only if ar=br for all rEI • 
iq 

Define addition (pointwise) and multiplication (convolution) 

on R[xJ , the set of all polynomials over R , by 

(i) 

and 
(ii) 

where Cr = r a.b· 
i+j=r1 J 

is a ring (6:92)o 

p + q = r(a· + b·)xi , • 1. 1. 
1.El 

p•q = Ee.xi 
iEI1 

• With·this definition, (R[X] ,+, 0
) 



Example 3-1. Let (S,+) be the semigroup of 

non-negative integers and (R,+,·) be any ring. The 

resulting semigroup ring (T,e,e) is isomorphic to the 

ring of polynomials R[xf in an indeterminant x with 

coefficients in R and exponents in S • 

Consider the mapping t between the semigroup ring 

T and the polynomial ring R[x] defined as follows: 

where f= {fs} • 
se:S 

qi (f) = E f XS 
se:Ss ' 

The mapping qi is onto, since for any polynomial, 

p= Ea-xi in R[x] , . si i.e: 
f = { ai} is in T • 

ie:s 

13 

Let f and g be two distinct elements of T such 

that 

qi(f) = Ea xi 
ie:Si 

= qi (g) 

Then f. = a = g for all ie:S. But, f. = g. 
]. i i ]. l. 

that f(i) = g(i) for all ie:S. Hence, f = g. 

qi is one•to-one. 

Consider 

~ (f e g) = 

= 

= 

i 
E(f. e gi)x 

ie:S i 

Efixi + Egixi 
ie:S i ~ 

implies 

Therefore, 
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= ¢ (f) + ¢ (g) , 

using the definition of 4> and the definition of addition in 

T • Also, 
¢(f 8 g) = E{f 8 g)ixi 

ie:S 

= ¢(f). (g) 

by definition of multiplication in R[xJ • 

Now t is a one-to-one operation preserving mapping 

from T onto R[x]. 

In general, any semigroup ring can be thought of in 

terms of its isomorphic polynomial ring under the above 

identification. This is of little value however, unless 

the semigroup is totally ordered so that the concept of 

the degree of a polynomial can be introduced. 

The next example is finite and can be illustrated 

with Cayley tables. 

Example 3-2. Let the semigroup S be the zero 

semigroup of order two. Its Cayley table is 

• s t 
s s s 

t s s • 

Let the ring R be the system of integers modulo 

2 • Its Cayley tables are: 



and 

1 1 0 1 0 1 • 

The four functions in the resulting semigroup ring 

are f1, f2, f 3, f 4 as defined below for s,tES • 

f 1 (x) = 0 for all xES , 

f 2(x) =[~ if x=S, 
if x=t, 

f 3(x) =[6 if x=s, 
if x=t, and 

f4(x) = 1 for all XES. 

The additive structure of the resulting semigroup 

ring T is Klein's four group with Cayley table 

e f 1 f 2 f 3 f4 

1 3 4 

f 2 f 2 f 3 f4 fl 

f 3 f2 f4 fl f 2 

f 4 f 4 fl f 2 f 3 • 

15 

The multiplicative structure of T is given by the 

Cayley table: 
0 f 1 f 2 f 3 f4 

1 

f 3 f 3 fl 

f 3 f 3 fl 

f1 f1 f1 • 



CHAPTER IV 

THEOREMS ON SEMIGROUP RINGS 

Io THE ADDITIVE STRUCTURE 

Let (R,+) be the additive structure of a ring. 

Consider the formal products IT Ri for any index set I and 
ie:I 

Ri=R o The sum of two elements in this system is defined 

pointwise by 

where ci = ai + bi • This system is called the Cartesian 

product group. If there are only finitely many non-zero 

coordinates in each element of the system, i.e., for 

{ail e: IT Ri , ai = 0 for all but a finite number of 
ie:I ie: I 

ai's, then the system is called the direct product group D. 

In the direct product group, the additive identity is 

{a.} , 
i ie:I 

where a = 0 i 
for all ie:I • 

The additive inverse of an element { a·} in D is 
i. I l.E: 

{-ai} , where 
ie:I 

is the additive inverse of a. 
l. 

in Ro 

Addition in D is connnutative and associative since 

addition in R is connnutative and associative. Hence, D 

is an Abelian group. 
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The next theorem relates the direct product group to 

this study of semigroup rings. 

Theorem 4-1. The additive structure of the semigroup 

ring T of S with respect to R is isomorphic to the 

direct product group of (R,+) with S as the index set. 

Proof. Let t be a mapping from T onto D such 

that t (f) = f where f = { fa:} and ~ = f( a:) o Then t is 
a:e:S 

an isomorphism from T onto D. 

This completely determines the additive structure of 

the semigroup ring. When the semigroup is finite, say of 

order n, the semigroup ring's additive structure is exactly 

n copies of the additive structure of the ringo 

For further results on direct and Cartesian product 

groups, see Hall (5:33). 

II. THE MULTIPLICATIVE STRUCTURE 

Because of the complex multiplication involved in a 

semigroup ring, and the fact that the multiplication need 

only be associative, the multiplicative structure of a 

semigroup ring is not easily characterized. This makes the 

multiplicative structure far more interesting. 
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This section is composed of several theorems relating 

various properties of the semigroup and the ring to properties 

of the semigroup ring. The first theorems are characteriza­

tion theorems because they deal with properties of the 

semigroup and ring which do not yield a system with more 

structure than a ring. The last theorems are generalization 

theorems since they are concerned with properties of the 

semigroup and ring which yield more structure than a ring 

for the resulting semigroup ring. Together they culminate 

with Gilmer's theorem on integral domains (4:21). 

The first theorem characterizes some of the 

annihilators in a semigroup ring. A left [right] annihila­

tor is an element f where f Q g = 0 (gQf=OJ for all 

g in T • Unfortunately, the theorem does not necessarily 

describe all of the annihilators in a semigroup ring. 

Theorem 4-2. Any function in T whose range is 

composed entirely of left [right] annihilators in the ring 

R is a left ~ight] annihilator of the semigroup ring T 

of S with respect to R • 

Proof. Let f = { fa:} be an element of T where 
CX:£ s 

the fa:'s are left annihilators in the ring R • Then for 

any g£T, 
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( f Q g)(s) = l: f (u) • g(v) 
uv=s 

= l: fu • g(v) 
uv=s 

= 0 ' 

since f is a left annihilator in R for every UES. u 
Hence, f is a left annihilator in T . The case in which 

each of the fa: IS are right annihilators yields a right 

annihilator in T in a similar way. 

Notice that the converse of this theorem is not true. 

This is shown by example 3-2 where fi Q f 4 = f 4 Q fi = 0 

for all fi in the semigroup ring, but the range of f 4 is 

{ l}, which is not an annihilator in the ring of integers 

modulo 2. 

Theorem 4-3 gives necessary and sufficient conditions 

for a semigroup ring to be a zero ring, i.e., a ring in which 

a·b=O for all a,b in the ring. 

Theorem 4-3. The semigroup ring T of s with re-

spect to R is a zero ring if and only if the ring R is 

a zero ring. 

Proof. Assume the semigroup ring T is a zero ring. 

Then f Q g = 0 for all f, gET. 

Consider the two functions f ,ga defined by 
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[: if s :/: Uo ' 
f (s) = 

if s = Uo ' 
and 

lo if s :/: Vo ' 
g(s) = 

b if s :. Vo 

where a and b are any two non-zero elements of R • If 

there are not two non-zero elements in R , then we are done 

since R would then be a zero ring. Further denote the 

product u0 v 0 in S by s 0 • Now (f Q g)(s0 ) = 0 since 

T is a zero ring. But, 

(f 0 g)(so) = E f(u)·g(v) 
uv=s 0 

= 

= a•b • 

Therefore, a•b = 0 for all a,beR Hence R is the 

zero ring. 

Now assume that R is a zero ring. Then a•b = 0 

for all a,beR Let f and g be any two functions in 

T Then 

(f Q g)(so) = E f(u)•g(v) 
uv=s 0 

= 0 

since f(u)·g(v) = 0 for all u,veS because f(u), g(v)eR • 

Therefore, T is a zero ring. 
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The next theorem gives necessary and sufficient con-

ditions for a semigroup ring to be a commutative ring. 

Theorem 4-4. Let R be a ring which is not a zero 

ring. The semigroup ring T of S with respect to R is 

a commutative ring if and only if the semigroup S and the 

ring R are commutative. 

Proof. Assume that the ring R is not commutative. 

Consider the functions f and g in T defined for some 

fixed u0 ES as 

[: 
if s r uo , 

f (s) = 
if s = UO , 

and 

= [: 
if s r UO , 

g(s) 
if s = Uo , 

where a and b are two non-zero elements in R such 

that ab#ba. Such a pair exists since R is not commu-

tative. Denote the product uouo by s 0 ES. Then 

(f 0 g)(s0 ) = 

= 

= 

= 

r f(u)•g(v) 
uv=s 0 

f (uo). g(uo) + r f(u). g(v) 

ab + 0 

ab, 

uv=s0 
u,v#u0 
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and 

(g Q f)(s 0 ) = E g(u)•f(u0 ) 
uv=s 0 

= ba 

But since ab F ba, (f e g)(so) F (g 0 f)(so) • Therefore, 

f 0 g F g e f and T is not commutative. 

Now assume the semigroup is not commutative. Then 

u0 v
0 

F v
0

u
0 

for some u0 , v0 £S. Clearly u
0 

F v0 • Then 

examine functions 

[: 
if s F uo , 

f (s) = 
if s = uo , 

and {o if s F VO , 
g(s) = 

b if s = VO , 

where a,b£R such that a•bFO. Such a pair exists since 

R is not the zero ring. Let s 0 denote the product 

u0 v
0 

in S • 

Consider 
(f 0 g)(s

0
) = 

= 

l: f(u) • g(v) 
UV-So 

= ab + 0 

= ab 



But, 

(g 0 f)(s) = l: g(u)•f(v) 
uv=s 

0 

= l: g(u)·f(v) 
uv=s0 
u=f:.v0 
v=f:.u0 

since v0 ·u0 =/:-s 0 • Therefore, (g 6 f)(s 0 ) = O. Hence, 

(f 0 g)(s0 ) =f:. (g Q f)(s 0 ) , which implies that T is not 

connnutative. This completes the first part of the proof 

using the method of contraposition. 

For the proof of the sufficient conditions, assume 

both S and R are connnutative. Then for any functions 

f, g£T, 

(f 6 g)(s) • l: f(u)•g(v) 
uv=s 

= l: g(v)·f(u) 
uv=s 

= l: g(v)·f(u) 
vu=s 

= (g Q f)(s) 

Therefore, f 9 g = g 0 f • Hence T is a commutative 

ring. 
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One should note that the commutativity of the ring or 

the semigroup alone is not sufficient to insure the 

connnutativity of the semigroup ring. The following example 

is an illustration of this facte 
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Example 4-1. Let the semigroup be defined by the 

following Cayley table: 

• s t 
s s t 

t s t 
' 

and let the ring be the system of integers modulo 2. The 

semigroup is not commutative. The multiplicative structure 

of the semigroup ring is given by the Cayley table 

fl f 2 f 3 f 4 

f 1 fl f 1 fl fl 

f 2 fl f 2 f 3 f 4 

f 3 fl f 2 f 3 f 
4 

f 4 fl f f fl • 1 1 

The semigroup ring is clearly not a commutative ring. 

For an example of a semigroup ring that is not a 

commutative ring because the ring is not commutative, see 

the example in the appendix. 

Theorem 4-5. If R is a ring with identity and S 

is a semigroup with identity then the semigroup ring T 

of S with respect to R is a ring with identity. 

Proof. Let er be the identity element for R and 

and es be the identity for S • Consider the following 
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function 

[:r if s = es ' 1(s) = 
if s # es . 

Then for any function feT, 

(f @ 1) (s) = t f (u) • l(v) 
uv=s 

= f(s) · (es) + t f(u) • 1(v) 

= 

= 

f(s)·er + 0 

f (s) 

uv=s 
v#es 

Similarly (l 0 f)(s) = f(s). Therefore, f Q \ = \ 9 f = f 

for all fET. This completes the proof that T is a ring 

with identity. 

Corollary 4-1. If R is a ring with a left [right J 

identity and S is a semigroup with a left [right] identity, 

then the semigroup ring T of S with respect to R has 

a left [right] identity. 

Proof. Consider the function eer defined by 

{:r if s=e 
e(s) s = 

if s#es 

where es is the left ( right J identity in the semigroup 

and er is the left [right J identity in the ring. 



Then e is a left [right] identity for T. 

Theorem 4-6. Let S be a cancellative semigroup. 

If the semigroup ring T of S with respect to R is 

a ring with identity, then the ring R and the semigroup 

S have identities. 

Proof. The proof of this theorem consists of the 

next three lemmas. 

Lemma 4-6 (a) If R is a ring without identity 

and S is a semigroup with identity, then the semigroup 

ring T of S with respect to R is a ring without 

identity. 

Proof. Assume R is a ring without identity and 

S has an identity element 1 such that l•s = s•l = s 

for all sES. We want to show that T does not have an 

identity. We proceed indirectly assuming T has an 

identity 1 such that 1 Q f = f Q 1 = f for all fET 

and derive a contradiction. Consider the function f ET 

defined as 

[: if s=s
0 

, 
f (s) = 

if s#=s0 , 

where s 0 is a fixed element of S. Then 

26 
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(t e f) (scs) = 1: t (u) • f (v) 
uv=s0 

= t(l) .f(s
0

) + l:t(u)•f{v) 
UV•S 0 
v:/=s

0 

= t(l) ·a, 

for each s ER. But 

( 1 e f) (s) = f(sJ 

= a . 
Therefore, t (1) ·a = a for all ae:R. A similar argument 

for f e 1 yields a· t(l) = a for all ae:R. Thus t (1) 

is an identity in R. This contradicts the assumption that 

R was a ring without identity completing the proof. (Notice 

that the assumption that S is cancellative was not needed 

in this lemma.) 

Lemma 4-6 (b). If R is a ring with identity and 

S is a concellative semigroup without identity, then the 

semigroup ring T of S with respect to R is a ring 

without identity. 

Proof. Assume that R is a ring with identity 1 

such that l•a = a.1 = a for all ae:R, and that S is a 

ring without identity. In order to prove that T is a 

ring without identity we will proceed indirectly by assuming 

T has an identity t such that t 9 f = f gt = f for all 

fe:T, and derive a contradiction. These assumptions require 



that for all SES there must exist a UES such that 

u.s = s and 1(u) = 1. The requirement that 1(u) = 1 

for any two distinct UES will yield a contradiction of 

the single-valuedness of elements of T. 
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Given an s 0 £S, consider the function fET defined 

by 

f(s) = {: 

Then 

= 

= 1 

if 

if 

s:#s 
0 

s=s 
0 

By the definition of multiplication in T 
' 

(1 0 f)(s 0 ) = E 1(u)·f(s) 
uv=s0 

' 
• 

Hence, there exists a u
0

£S such that u
0

s
0 

= s
0 

will be unique since S is cancellative. Then 

( 1 0 f}(s 0 ) = 1 (u0 ) .f(s
0

) + E 1 (u} ·f(v) 
uv=s 0 
v:/=s 0 
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in which case 1 (u
0

) = 1. This must be true for every 

element in S. That is, for every s 0 ES there exists an 

element u
0
ES (it may depend on s 0 ) such that u0 s 0 = s 0 and 

t (u0 ) = 1. 

By considering (f 0 1)(s0 ), we find that for every 

s
0 

ES there exists a v
0

ES such that s 0 v0 = s 0 and 

t (v
0

) = 1. 

Thus for a given s 0 ES there exist elements u0 ,v0 ES 

such that 

the product 

u s = s v = s 
0 0 0 0 0 

u0 v0 by t 
0 

there exists elements u1 ,v
1

ES 

and t ( u1) • 1 ( v 1 ) = 1 . 

Consider the function 

g(s) 

Denote 

Then, by the same argument, 

such that U •t = t •V = t
0 1 0 0 1 

gET defined by 

=G 
if s = v or s = to 0 

otherwise 

Then, since S is cancellative, 

= E 1 (u) ·g(v) 
uv=t0 

= 

+£ 1 (u) • g(v) 
u:v=s 
v:/=t0 
v:/=v0 
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= l·l + 1·1 + 0 

= 1 + 1. 

But ( 10 g)(t0 ) = g(t0 ) = 1. Since 1+1#1 for any 

ring, this contradicts the single-valuedness of 1 e g as a 

function in T. This completes the proof of the lemma. 

Lennna 4-6 (c). If R is a ring without identity and 

S is a cancellative semigroup without identity, then the 

semigroup ring T of S with respect to R is a ring 

without identity. 

Proof. Assume that neither S no R has an identity. 

Then to prove that T does not have an identity, assume that 

it does and derive a 

Let 1 be the 

for some fixed s e:S 
0 

contradiction. 

identity in T and f E:T defined by 

= f: if s # So ' f (s) 
if s = so 

and a non-zero element ae:R. If there 

is no non-zero element in R, we are done since T is then 

a zero ring, hence contains no identity element. 

Then ( 19 f)(s0) = (f 9 1)(s0 ) -f(s0 ) =a. If 

U•So # So for any U ES then 

( 1e f) (s0 ) = I: 1(u)·f(v) 
uv=s 0 

= I: 1(u)•f(v) 
UV:;;SO 
v#s 0 

= 0 , 



which is a contradiction. 

If for each s
0

ES there is an element u0 ES (which 

may depend on s 0 ) such that u
0

s 0 = s0 , then 

( t0 f)(s 0 ) = 2: t(u) •f(v) 
uv=s0 
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= t(u0 ) •f(s
0

) + 2: 1 (u) .f(v), 
uv=s0 "" 
v'Fs0 

since S is cancellative. Then 

= 1 (u0 ) •a. 

This implies that t (u0 )•a =a for every aER. Since 

(f 8 1)(so) =a yields similarly that a. 1(u0 ) =a. This 

is a contradiction of the assumption that R is a ring 

without identity because t(u0 ) is an identity for R. This 

completes the proof of this lennna. 

The proof of lemmas 4-6(a), (b) and (c) complete the 

proof of theorem 4-6. 

Corollary 4-2. Let S be a cancellative semigroup. 

If the semigroup ring T of S with respect to R has a 

left [right] neutral then both the semigroup S and the 

ring R have a left [ right ] neutral. 

Proof. The proof of this corollary is similar to the 



proof of theorem 4-6 replacing the word identity with left 

[right] identity. 
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Theorem 4-6 employs several of the previous theorems 

in its proof. As the culmination of the study, it gives 

necessary and sufficient conditions for a semigroup ring to 

be an integral domain. 

Theorem 4-7. Let R be a commutative ring with 

identity and S be an additive Abelian semigroup with zero. 

Then necessary and sufficient conditions for the semigroup 

ring T of S with respect to R to be an integral domain 

are the following: 

(l} R is an integral domain, 
(2} S is cancellative, and 
(3} if s and t are distinct 

eiements of S and if n is 
a natural number, then ns#:nt. 

Before proceeding with the proof of this theorem, the 

next theorems establish some of the interesting consequences 

of these restrictions on S and R. The first is that the 

semigroup must be infinite or contain only the zero element. 

Theorem 4-8. Let (S,+) be a cancellative Abelian 

semigroup with at least two distinct elements, s and t , 

such that nsfut for all natural numbers n. Then S is 

infinite. 
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Proof. Assume S = { a1 , a 2 , a 3 , ••• , ap} is finite. 

Since S is cancellative, for a given a e: S, the elements 

ai + aj = a- + a. are distinct for each j = 1, 2, . . . p • J 1. ' 
Then, since s is cancellative, a. + x 

1. = a. 
J 

has a unique 

solution for each ai, aj e: S • 

In particular, a· + 1. x = ai has a unique solution 

Oi for each ai e: S . This O· 1. is unique for the system 

since, if 0· 1. is the solution of a. 
1. 

+ x = a. 
1. 

and Oj is 

the solution of a. + x = a. 
' 

then 
J J 

(ai+aj) + oj = ai + a. 
J 

and (ai+a.) + Oi = a. + a. 
J 1. J 

since s is associative and commutative. Hence, o. = o. 
l. J 

since s is cancellative. Thus, there is a unique ~e:s such 

that a. 
1. 

+ 0 = a· l. for all 

Further, the equation 

a.e:s. 
l. 

a. + x = 0 
l. 

has a unique solu-

tion for each aie:s, i.e., every aie:s has a unique inverse 

denoted by -ai. 

Since S is finite, for each aie:S there is a 

natural number q such that qai = 0 • For if not, there 

is an aj such that naj~O for every n. Hence, there are 

distinct natural numbers 1 and m (we can assume m<l) 

such that lai = mai • Therefore, 
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= ai· + ai· + • • • + ai. 
\....: 'v ...../ 

• 

1 - terms m - terms 

This implies that 

a. + a. + . . . + a. + (-a· -a. -a. -... -ai) = 0 
\_ 1 1 1 \... 1 1 1 

-y- / 
~ 

_,/ 

1 - terms m - terms 

Then, using the commutativity and associativity of S , this 

becomes: 

This implies 

a . + a 1· + . • • + a
1
. = 0 

~ ~ _,/ 

1 - m terms 

(1-m)a. = 0 
1 

for some natural number 1-m F O. Hence, for each aiES, there 

is a natural number q such that qai = O. 

n • 

such that a. F nO 
1 

for every natural number Let ai ES 

But nO.=O. Hence, nai = nO which is a contradiction. 

Therefore, S is infinite. 

Theorem 4-9. If (S,+) is a cancellative Abelian 

semigroup with a zero element, then S can be embedded in 

a group G. 

Proof. Consider the set S x S . Define a relation 

on S x S by 

(a,b)~{c,d) iff a+ d = b + c • 



The relation "' is reflexive since (a, b) "' (a, b) in 

view of the commutativity of S. 

The relation is symmetric since (a,b) "' (c,d) if 

and only if a + d = b + c • This implies c + b = d + a 

since = is symmetric and S is commutative. Hence, 

(c,d) "' (a,b). 
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The relation"' is transitive since (a, b) "' (c,d) and 

(c,d) "' (e,f) if and only if a+ d = b + c and c + f = d + e. 

Then 

(a+d) + (c+f) = (b+c) + (d+e) 

and 

(a+f) + (d+c) = (b+e) + (d+c) 

by commutativity and associativity in S. Hence, a+ f = b + e. 

by the cancellative property of S. This implies (a,b)"' (e,f). 

Therefore, the relation "' is an equivalence relation 

on S x S. 

Denote the equivalence class of (a,b) by (a:ti) 

and let 

G = { (a;l)) : (a , b) e: S x S } 

Define addition in G by 

(a;l>) * (C,0) = (a+c, b+d) 

Addition is well defined since if a,b,c,d,e,f,g,h e: S such 

that (a,b) "' (e,f) and (c,d) "' (g,h) , then a+f = b+c and 

c+b = d+g. Therefore, (a+f) + (c+b) = (b+e) + (d+g) and 
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(a+c) + (f+h) = (b+d) + (e+g), since S is commutative and 

associative. Therefore, 

(a+c,h+d) (e+g, f+h) 

which implies 

(a+c, b+d) = (e+g,f+h) . 

Hence, 

(a:l>} * (C:0)= (e;7) * (g,h) 

by definition of * 
The identity of G is (l),'IT) = {(a,a) 

where 0 is the identity in S • Then 

(a;D) * (l),'IT) = ( a+o , b+o) 

- (a,o) . 

ae:S } , 

Every element (a,b) in G has an inverse (~) 

in G since 

~) * ('E";a) = (a+b,b+a) 

= (l),'IT) 

since a+b = h+a. 

G is also commutative and associative since S has 

these properties. 

Therefore, G is an Abelian group 

Let S = {(:i";O") : a e: S } Then (S, *) is a 

subgroup of G. 

Let ~ be a mapping from S to S, where 
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~(a) = (a,O) 

Then 

~ (a+b) = (a+b, 0) 

= (a,O) * (b,O) 

= 4> (a) * 4> (b) 

The mapping 4> is onto and one-to-one since, for (a,O) 

in S, a is in S. Therefore, 4> is an isomorphism of 

(S,+) onto (S,*). 

Now we have (S,+) embedded in the difference group 

(G,*) with S as the isomorphic copy of S. This completes 

the proof of the theorem. 

The following theorem reveals that G, as defined in 

theorem 4-9, is torsion free, i.e., none of its non-zero 

elements has finite order. 

Theorem 4-10. Let G be as defined in theorem 4-9. 

If distinct s,tES implies ns;i:nt for any natural number n, 

then G is torsion free. 

Proof. Let (a;l)) be any non-zero element of G, 

and assume the order of (a;l)) is some finite number n. 

Then 

n(a,l>) = cn:n> , 
where 



n(a,b) 

Hence, 

(na,nb) 

= 

= 
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~-;l)) * (~_b_)_*_·_· _·_*_<_a_,_~ 
n - terms 

(a+a+ ... +a, J)+bf ••. +}) 
n-terms n:t'erms 

= (na,nb) • 

= (D,°IT) ' 

which implies that (na,nb)"' (0,0). Therefore, na+O = nb+O 

by definition of"' . Hence, na=nb. This is a contradiction 

of the hypothesis since a#b. Therefore, every element of G 

has infinite order which means G is torsion free. Since G 

(as defined in Theorem 4-9) has been shown to be torsion free 

under the conditions of Theorem 4-9, it can be totally ordered. 

Before proceeding with this development, the following terms 

are defined in order to clarify the proof. 

Partial order. A set G is said to be partially 

ordered by a relation P if the relation P is defined on 

G and satisfies, 

(i) 
(ii) 

(iii) 

aPa for all aEG (pis reflexive), 
if apb and bpa then a=b (p is 

antisymmetric), and 
if apb and bpc then ape 

( Pis transitive). 

Total order. A set G is said to be totally ordered 

by p if G is partially ordered by p and for a,bEG, 

either apb or bpa. 
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A totally ordered set is sometimes called a chain. 

Thereom 4-11. Let G be defined as in theorem 4-9. 

If G is torsion free, then G can be totally ordered. 

Proof. Since G is torsion free, for each 

(a;D)EG a,b # 0 , n(a;D) # (CJ,1i) for any natural number n. 

Therefore, 

N = { (a;t)) , 2{a,1)) , 3 (a;t)) , ••• } 

is a subsemigroup of G. 

Consider all subsemigroups of G which contain N 

but not (1),"U). These can be partially ordered by set 

inclusion. For any chain of such subsemigroups { Ni } , 
1JN. is a subsemigroup of G containing N but not (1),"U). 

J. J. 

Therefore, each chain has an upper bound. Zorn's lemma now 

assures the existence of a maximal element for the class of 

all subsemigroups containing N but not (1},"'0'). This 

maximal element P is a subsemigroup containing N but 

not ((),"O') • 

The claim is that for any (c;cI)EG, exactly one of 

(C,0) = ('Q,OJ or (C,a)EP or (a,c)E P holds. If (c;cI) = {CJ,"O'), 

then "'{C;a) = (d,c)~P. If cc:cr> F (1},"'0'), then c F d. If 

both (C.:0) , and (cr,c) were elements of P, then their sum 

rc:<J) * \"<l':C) = ('0;1YJ would have to be in P since P is 

a subsemigroup of G, hence closed. This is a contradiction 
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since (l),l}) ¢p by construction of P. Therefore, at most 

one of (C:0) and (<r,c) may be in P. 

Suppose neither (C:0) or (<r,c) were in P. Then 

consider the subsemigroup Ped generated by (C:0) and P 

and the subsemigroup Pde generated by (<r,c) and P. 

Then 

and 

since neither (C:0) nor (<r,c) are contained in P. This 

contradicts the maximality of P unless (l),l})ePcd and 

(0, 0) e Pde • This means 

(u,v) * m(C:0) = (D,lr) 

and 

(w,x) * n(<r,c) = (D,lr) 

for (u,v) and ('W:X) in P and some natural numbers n 

and m. 

Then 

n(u,v) * nm{'C';<I) = ((},O) 

and 

m(w,x) * mn(<r,c) = ((},O) 
' 

which, upon adding the two equations, yields 

n(u,v) * m (w,x) = ((},O) • 
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This is a contradiction of the closure of P under * since 

n(u,v) and m("W;i) are in P but their sum ({),"U) is not. 

Therefore, at lea~t one of (C"';Q)EP or (<r,c)EP holds. 

This completes the proof that exactly one of 

(C:0:) = (CJ,"rr), or (C:0)EP or (O";C)EP holds. 

For any (a:D) and (C:0) in G , define a relation 

<·such that 

(a:D) < (C,0) iff (a:D) * (<r,c) E p • 

Define a relation ~ on G by 

(a;l)) ~ (C:0) if f ta,1)) < (C:0) or (a,l)) = ( c, d) , 

where (a,l)), (C:0)£G. 

The relation ~ is reflexive since (a:D) • (a:D). 

The relation ~ is antisymmetric since if (a:D) ~(C:0:) 

and (C:0:) ~ (a,l>) , then (a,l)) = (C:0) • For if (a, b) #= 

(C:0), then (a:l>') * (<r,c)EP and (C,0) * (o;:i)E P. Then their 

sum ('(),'TI) would have to be in P, which is a contradiction. 

Therefore, (a,l)) = (c;a). 

The relation <is transitive since if (a:D) < (C:0) 

and (C,0) < (e,r) , then (a:D) * (Q,C} £ P and (C:0) * 
(T;'e)EP. Hence, (a,l)) * (r,e} EP. This implies that 

(a:o) < (e;r) • Now it is easily seen that ~ is transitive. 

For any two elements Ca:D), rc:ct) £ G, either Ca:D) < 

(C,0) or (C:0) < (a,"D) or (a,"D) = (C,0). Assume (a:D) < (C,0) 

and (a:D) = (C:0) do not hold. Since (a+d,b+c) #= ({J,"U), 
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and (a+d,b+c) ~P, (b+c, a+d) must be in P. This implies 

that (b,a) * (C,0) E P. Hence (C,0) < (a,1>). A similar 

proof follows for the other combinations. 

This completes the proof that the relation ~ is a 

total ordering of G. 

Now consider the group ring T
0 

of G with respect 

to an integral domain R'. Let Ts be the subsemigroup ring 

of T where S is the isomorphic image of S in G , as 
0 

discussed in theorem 4-9. Then the semigroup ring T of S 

with respect to R is isomorphic to 

isomorphism ~ defined by 

tb T -+ T-s 
~(f) = f 

T­s under the 

where r(i) = f(s) and s = (s;11). Notice the range elements, 

{fs} and {f(__J , 
SES s,U) 

are identical. 

(s,O)ES 

Theorem 4-12. The group ring 

to R is an integral domain. 

T 
0 

of G with respect 

Proof. By theorem 4-4, T is a commutative ring 
0 

since both G and R are commutative. 

By theorem 4-5, T0 is a ring with identity since 

G and R have identities. 

Now, we need only show that T
0 

contains no divisors 

of zero to complete the proof. 
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Assume f :/:: a is a zero divisor in T
0 

• 

Then there exists a nonzero element g .,...,, such that '"'J. 0 

fQg= a. 

Since elements of T0 are isomorphic to polynomials 

in an indeterminant x, with coefficients in R and exponents 

in G, we can consider the associated polynomials of g and f 

defined as 

and 

f ++ L f (s) XS 

g 

sEG 

++ L g(s) XS 

sEG 
• 

Multiplication and addition in T0 correspond to the 

same operations on the associated polynomials. 

Since G is totally ordered and each of the functions 

is finitely non-zero, m will be considered the degree of the 

polynomial 1: f (s)xs 
sEG 

if m is the largest element of G 

that f(m)xm :/:: O. 

Then f 0 g = E> means 

L f (s) XS • 

SEG 
1: g(s) xs = 0 

sE;G 

such 

Thus f(m)•g(n) must be O, where m and n are the degrees 

of 1: f (s)xs 
SES 

and 1: g(s)xs respectively. 
SES 

This contradicts 

that R is free of zero divisors since f (m) and g(n) are 

non-zero elements in the integral domain R. Therefore, T
0 

must be free of zero divisors. 
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This completes the proof that T
0 

is an integral 

domain. 

Proof of theorem 4-7. The essentials of the first 

part of this proof have been given in the previous theorems. 

All that remains is to note that the semigroup ring T of 

S with respect to R is isomorphic to Ts , a subring of 

T0 • Then T0 an integral domain implies T~ is an 

integral domain. Therefore, T is an integral domain. 

Assume the semigroup ring T of S with respect to 

R is an integral domain. We will show that if properties 

(1), (2) or (3) fail, then T will not be an integral domain. 

(1) Assume R has a zero divisor, i.e., 
a.b=O with aFO and bFO for some 
a,be:R. Then consider f,ge: T 
defined by 

f: if s=u0 , 
f (s) = 

if SF0 ' 

[: if s=vo ' 
g(s) = 

if SFV
0 

, 

where uo,vo are fixed elements in s. Let the product 

Uo•Vo be so • Then 

(f Q g)(s
0

) = 1: f(u)•g(v) 
uv=s0 

= 0 + f(u0 )•g(v0 ) 

= a•b 

= 0 • 
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Hence, f 6 g = E> where neither f nor g is E> 

Hence, T has divisors of zero and is not an integral 

domain. 

(2) 

(3) 

Assume S is 
Then for some 
a+c = b+c and 
the associated 

not cancellative. 
a,b,ce:S , 

a#b • Consider 
polynomials, 

xa+c 
of T 

and xb+c 
Then 

, of two elements 

= xb+c 

= 0 

= 0 

= 0 

where neither factor is zero. 
Hence, T is not an integral 
domain. 

Assume n is the smallest natural 
number such that ns # nt for distinct 
elements s,te:S Then 

0 = 

= 

+ .•• + xs+(n-2)t + x<n-l)t) • 

But xs-xt # 0 and, since n is minimal and 
positive, the exponents of the terms in the 
right factor are distinct. For assume any 
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two terms have equal exponents. Then 

(n-i)s + (n-j)t = (n-p)s + (n-q)t • 

where 

(n-i) + (n-j) = (n-p) + (n-q) = n-1 • 

Therefore, 

(p-i)s = (j-q)t. 

But 

(n-i) + (n-j) = (n-p) + (n-q) = n-1 

implies 

p-i = j-q ' 

and 

p+q = i+j = n+l • 

Then 

0 <p+q< n and 0 <i+j<n. 

Hence, 

p < n and j < n • 

Therefore, 

p-i < p < n and j-q < j < n • 

This is a contradiction of the minimality of 
n since we now have 

(p-i)s = (j-q)t 

where 

p-i = j-q < n • 



Thus T has divisors of zero and therefore is 
not an integral domain. 

This completes the proof of theorem 4-7. 
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CHAPTER V 

THE COMPUTER PROGRAM FOR GENERATING SEMIGROUP RINGS 

The program for generating semigroup rings is written 

in the Symbolic Programming System (SPS) for the IBM 1620 

computer. Limitations on the order of the semigroup rings 

that it will generate are due to memory size and not the 

technique of the program. The program could easily be 

adapted for larger orders. It can be divided into three 

somewhat disjoint parts, the listing of the functions, the 

additive structure, and the multiplicative structure. Both 

the semigroup and the ring will be represented by non-negative 

integers. 

I. THE LISTING OF FUNCTIONS 

The set of functions is the same for any fixed order 

semigroup and ring. The number of elements in any finite 

semigroup ring is nr where n is the order of the ring and 

r is the order of the semigroup. 

These functions are stored in blocks consisting of 

two parts. The first part is the number of the function 

and the second contains the functional values of the functions 

beginning with £(0) on the far right of each block and pro­

ceeding to the left to f (n) where n is the order of the 

semigroup. 

These functions are generated by repeated addition of 
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1 modulo N where N is the order of the ring. The 

functions are numbered as they are generated and it is this 

number that is punched as output. 

For example, the functions for a semigroup ring whose 

underlying semigroup is of order two and ring is of order 

three are found in storage as follows: 

LU I o I u I o I 
IU 11IU111 

IU 12IU121 

IU 13 IT 101 

IU 14 IT Ill 

l_Q_lslTl21 

IU 16 l"Z 101 

IU 17 l"Z Ill 
IU Isl"! 121 

where the first two digits in each block are the numbers of 

the functions and the second are the functions. 

I I. THE ADDITIVE STRUCTURE 

To generate the addition table for a semigroup ring, 

the semigroup and the ring are entered into storage as blocks 

of three digits a b c where a 0 b = c and 0 is an 

operation of the semigroup or ring. 

Since addition is pointwise, to add two functions the 
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functional values at each element of the semigroup must be 

found. To add fi and fj , fi(O) and fj(O) are trans­

mitted into a two digit field I. Then the addition table for 

the ring is searched by comparing the first two digits in 

each block and I. When they match, the third digit (the 

sum) is stored in the result area. This is repeated for 

each element in the semigroup. When the sum at each point 

is computed, the result is compared with the listing of 

functions and the number of the resulting function is stored 

in the output area. 

This procedure is repeated by fixing i and increas­

ing j by 1 until j equals the order of the semigroup 

ring. Then j is set back to zero and i is increased by 

1. This process continues until i equals the order of the 

semigroup ring. This has the effect of proceeding across the 

table, down one row, and across again. 

A flow chart for the program generating the addition 

table for the semigroup ring is shown below. 



Set A 
to 0 

Iner eas e,,__.,...::-H 
i by 1 

Input 
Semigroup S 

and 
Ring R 

Transmit 
fi(A) to I-1 
f. (A) to I 
J 

Transmit 
digit at R 

into RESULT 
(fi+f ·)(A} 

Set j 
to 0 
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Increase 
address of 
R-1 by 

3 

Transmit number 
of resulting 
function into 

OUTPUT 

Output 
add table 

T 
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III. THE MULTIPLICATIVE STRUCTURE 

As multiplication in the semigroup ring is convolution, 

the multiplicative portion of the program is quite complex. 

The program begins by transferring to address of the 

two functions fi, fj to be multiplied into Al and A2. 

The addition table of the semigroup is searched to find the 

factors of 0,1,2, ••• , in succession. 

The addresses in Al and A2 refer to the right hand 

end of the blocks representing the two functions, i.e., 

fi(O) and fj(O). The multiplication of two functions acts 

from right to left on the functional values beginning with 

f(O). 

For a,b~S 

the address in Al 

from A2 yielding 

factors of zero, a is subtracted from 

yielding the address of fi(a), and b 

fj(b). The two digits, fj(a) and fj(b), 

are transferred into RESULT 1 to be multiplied. 

The multiplication is performed by comparing RESULT 1 

and the first two digits in the blocks representing the 

multiplication table of the ring. When they match, the third 

digit (the product) is transferred into RESULT 2-1. The 

functions are then evaluated at the next pair of factors of 

zero. These digits are multiplied as before and their pro­

duct is stored in RESULT 2. 

The sum of the two digits in RESULT 2 is then found 



by searching the addition table of the ring. This sum is 

transferred into RESULT 2. 

The above procedure is repeated until all of the 

factors of zero have been used. Then the final entry in 

RESULT 2 is transmitted into RESULT. 
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This entire process is repeatdd for 1,2, ••• until all 

the elements in the semigroup have been used. RESULT contains 

(fi 0 fj)(O), RESULT - 1 contains (fi 0 fj)(l), •••• The 

final product fi 0 fj is stored in RESULT. The number of the 

resulting product is found as before and transmitted into the 

output area. 

This procedure for multiplication has the effect of 

proceeding across the table, down one row, and across again. 

Since the number of digits required to represent a 

row of either table of the semigroup ring is greater than the 

punching positions available on the card(80) , the output 

cards must be sorted so as to list the table properly. The 

resulting format of the output is illustrated by the following 

diagram: 



. 
£so 

Page 
One 

Page 
Two 

... 

A flow chart explanation of the multiplicative 

structure of the semigroup ring is shown below. 
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Subtract 
a from 
address in 

Al 

Subtract 
b from 
adClress in 

A2 

Transmit 

Input 
Semigroup 

and 
Ring RA,RM 

digit addressed 
by Al to 

RESULTl-1 

Transmit 
digit addressed 
by A2 to 
RESULT! 

Add 3 
to RM 

Transmit c 
in a·b=c 

into 
RESULT2 

Transmit c 
a·b=c 

into 
RESULT2-1 

Initialize 
i,j ,A 
to 0 

Transmit 
address 

of f i to Al 
fj to A2 

Add 1 
to A 

Transmit 
digit in 
RESULT 2 to 
RESULT 

Subtract 1 
from address 
of RESULT 

Add 1 
to j 

Add 1 
to 
i 

Transmit c 
in a+b=c 

into 
RESULT2-1 

*P is address 
a+b=c. 

Transmit 
number of 
resulting 

function to 
out ut 

ncr ase 
Al to add­
ress of 
next 
function 

Set j 
to 

0 

Output 

Results 



CHAPTER VI 

SUMMARY AND RECOMMENDATIONS 

This thesis as a study of semigroup rings has shed 

some light on the relationship betwen the structure of a 

semigroup ring and the structures of the underlying semi­

group and ring. 

The more important relationships examined include 

necessary and sufficient conditions for a semigroup ring 

to be commutative, to be a zero ring, or to be an integral 

domain as well as various conditions on S, R or T which 

yield information about the presence of identities in S 

and R when T has an identity. 

In theorem 4-6, it seemed necessary from examination 

of several examples to require that the semigroup S be 

cancellative in order to show that the semigroup ring 

having an identity implies that both the semigroup and the 

ring have identities. Here an unanswered question may be 

raised of whether or not an example can be constructed of 

a semigroup ring with identity in which the underlying 

semigroup is not cancellative. 
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DC 3,100 
DC 3,111 
DC 3,122 
DC 3,133 
DC 3,200 
DC 3, 210 
DC 3,220 
DC 3,230 
DC 3,300 
DC 3,311 
DC 3,322 
DC 3,333 

S3XR4 DS 5 
DS 320 
DC 30,000000000000000000000000000000 
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OUTPA DC 50,00000000000000000000000000000000000000000000000000 
DC 30,000000000000000000000000000000 

OUTPB DC 50,00000000000000000000000000000000000000000000000000 
DC 30,000000000000000000000000000000 

OUTPC DC 50,00000000000000000000000000000000000000000000000000 
Al DC 5,00000 
A2 DC 5,00000 
Bl DC 5,00000 
B2 DC 5,00000 
B3 DC 5,00000 
Dl DC 2,00 
D2 DC 2,00 
FAl DC 5,00000 
FA2 DC 5,00000 
FACT DC 2,00 
1 DC 2,00 
L DC 4,0004 
LL DC 2,00 
M DC 4,0019 
N DC 4,0000 
0 DC 4,0079 
P DC 2,00 
Q DC 5,00000 
R DC 2,00 
S DC 5,00000 
Sl DC 2,00 
U DC 5,00000 
Ul DC 2,00 
V DC 2,00 
W DC 5,00000 
BL DNB 2 
FlXF2 DC 2,00 



APPENDIX 

I. A PRINTOlIT OF A COMPlITER PROGRAM 

The following is a listing of the program used to 

generate examples of semigroup rings. It is written in the 

symbolic programming system (SPS) for the IBM 1620 computer. 

Also included in this section is one example of the 

resulting semigroup ring as output by the computer. 

DORG402 
S3 DC 3,000 

DC 3,010 
DC 3,020 
DC 3,100 
DC 3,110 
DC 3,200 
DC 3,121 
DC 3,211 
DC 3,222 
DC 3,555 

RlA DC 3,000 
DC 3,011 
DC 3,022 
DC 3,033 
DC 3,101 
DC 3,110 
DC 3,123 
DC 3,132 
DC 3,202 
DC 3,213 
DC 3,220 
DC 3,231 
DC 3,303 
DC 3,312 
DC 3,321 
DC 3,330 

RlM DC 3,000 
DC 3,010 
DC 3,020 
DC 3,030 
DC 3,100 
DC 3,111 



A1XA2 DC 2,00 
RES DC 3,000 
RESULTDC 3,000 
CNTER DC 2,00 
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LIST DAC 37,THE LISTING OF FUNCTIONS IS COMPLETE' 
INST DAC 40,ENTER THE ORDER OF THE SEMIGROUP RING R' 
INSTl DAC 48,THIS COMPLETES THE ADD TABLE FOR ALL SEMIGROUP' 
INST2 DAC 38,RINGS OF ORDER R WITH THIS FIXED RING' 
INST3 DAC 49,THIS COMPLETES THE MULTIPLICATION TABLE FOR THIS' 
INST4 DAC 16, SEMIGROUP RING' 
INST5 DAC 49,SET SWITCH ONE ON IF NEW ADD TABLE IS NOT NEEDED' 
INST6 DAC 22,ENTER A NEW SEMIGROUP' 
INST7 DAC 47,SWITCH TWO ON IF USING NEW MULT TABLE FOR RING' 
INST8 DAC 25,ENTER NEW TABLE FOR RING' 
INST9 DAC 48,SET SWITCH THREE ON IF ENTERING A NEW SEMIGROUP' 
INST10DAC 50,SWITCH FOUR ON IF ENTERING NEW ADD TABLE FOR RING' 
INPUTADSS 80 
INPUTBDSS 80 
ZERO DC 5,00000 
ZER DC 2,00 
START DC 5,00000 
TRANS IF S3XR4,START 

SF S3XR4-2 
AM *-18,5,10 
AM *-18,5,10 
AM START,1,10 
AM START-3,1,10 
AM N,1,10 
C N,L 
BN TRANS 
SM START,4,10 
AM START,10,10 
AM L,4,10 
C L,M 
BN TRANS 
SM START,40,10 
AM START,100,9 
AM M, 16,10 
CM N,64,8 
BN TRANS 
RCTY 
WATYLIST 
RCTY 
WATYINST 
RNTYR-1 
TDM OUTPA-79,1 
TDM OUTPB-79,2 



TOM OUTPC-79,3 
TD OUTPA-75,BL 
TD OUTPA-76,BL 
TD OUTPB-75,BL 
TD OUTPB-76,BL 
TD OUTPC-75,BL 
TD OUTPC-76,BL 
SF OUTPA-78 
SF OUTPB-78 
SF OUTPC-78 
CF OUTPA-79 
CF OUTPB-79 
CF OUTPC-79 
CF OUTPA-49 
CF OUTPB-49 
CF OUTPC-49 
RCTY 
WATYINST5 
H 
BCl STARl 

ST TD I-l,S3XR4,27 
SF I-1 
SM *-13,1,7 

ST2 TD I,S3XR4,27 
SM *-1,1,7 
CF I 

COMP C RlA-1,I,2 
BE EQUAL 
AM *-18,3,7 
AM W,3,7 
B COMP 

EQUAL AM W,RlA,7 
TD RESULT,W,211 
SM *-6,1,7 
TF W,ZERO 
TFM COMP+6,RlA,7 
SM COMP+6,l,7 
AM V, 1, 10 
CM V,3,10 
BE Cl 
B ST 

Cl AM ST+ll,3,7 
AM ST2+11,3,7 
SF RESULT-2 
TFM EQUAL+l8,RESULT,7 
SF RESULT-2 

C2 C S3XR4,RESULT,2 
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BE ENDl 
AM *-18,5,7 
AM Q,5,7 
B C2 

ENDl TFM C2+6,S3XR4,7 
AM Q,S3XR4,7 
SM Q,3,7 
TF OUTPA-73,Q,211 
CF OUTPA-74,, 2 
AM *-18,3,7 
AM *-18,3,7 
TD OUTPA-72,BL,2 
AM *-6,3,7 
AM P, 1, 10 
CM P,25,10 
BN *+60 
AM END1+42,5,7 
AM END1+54,5,7 
AM END1+90,5,7 
TF P,ZER 
TF Q,ZERO 
TF V,ZER 
TF RESULT,ZER0-2 
TF W,ZERO 
AM ST+ll,5,7 
AM Ul,1,10 
C Ul,R 
BE *+24 
B ST 
IF P,ZER 
TF Ul,ZER 
TFM ST+ll,S3XR4,7 
AM ST2+11,5,7 
CF OUTPA-78 
CF OUTPR-78 
CF OUTPC-78 
WNCDOUTPA-79 
WNCDOUTPB-79 
WNCDOUTPC-79 
SF OUTPA-78 
SF OUTPB-78 
SF OUTPC-78 
AM OUTPA-77,1,10 
AM OUTPB-77,1,10 
AM OUTPC-77,1,10 
TFM END1+42,0UTPA-73,7 
TFM END1+54,0UTPA-74,7 
TFM END1+90,0UTPA-72,7 
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AM Sl,1,10 
C Sl,R 
BE *+24 
B ST 
RCTY 
WATYINSTl 
WATYINST2 
TF Sl,ZER 
TFM ST2+11,S3XR4,7 
TF OUTPA-77,ZER 
TF OUTPB-77,ZER 
TF OUTPC-77,ZER 

STARl TFM A2,S3XR4,7 
SF A2-4 
TFM Al,S3XR4,7 
SF Al-4 

STAR2 TD FACT,S3,7 
SF FACT-1 
C FACT,LL 
BE ENl 
TD RES,FIXF2-1,27 
SM *-6,1,7 
TFM TRA1+6,FIXF2-1,7 
IF CNTER,ZER 
AM LL,1,10 
CM LL,3,10 
BE EN2 
B STAR2+12 

ENl SM STAR2+11,1,7 
TD FA2,STAR2+11,11 
CF FA2 
SM STAR2+11,1,7 
TD FA1,STAR2+11,11 
CF FAl 
SF FA2-4 
SF FAl-4 
AM STAR2+11,2,7 
S A2,FA2 
S Al,FAl 
TD A1XA2-1,Al,11 
TD A1XA2,A2,11 
SF A1XA2-1 
CF AlXA2 

COMl C RIM-1,A1XA2,2 
BE *+48 
AM Bl,3,7 
AM COM1+6,3,7 
B COMl 
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AM Bl ,RIM, 7 
TRAl TD FIXF2-1,Bl,211 

CF FIXF2 
AM CNTER,1,10 
CM CNTER,2,10 
BN ENO 
SF FIXF2-1 

COM2 C RIA-1,FIXF2,2 
BE *+48 
AM COM2+6,3,7 
AM B2,3,7 
B COM2 
AM B2,RIA, 7 
TD FIXF2-1,B2,11 
B *+24 

ENO AM TRA1+6,1,7 
AM STAR2+11,3,7 
TF Bl,ZERO 
TF B2,ZERO 
TFM COM1+6,RIM-1,7 
TFM COM2+6,RIA-l,7 
B STARl 

EN2 SF RES-2 
C S3XR4,RES,2 
BE EN3 
AM *-18,5,7 
AM B3,5,7 
B EN2+12 

EN3 AM B3,S3XR4,7 
SM B3,3,7 
TF OUTPA-73,B3,211 
CF OUTPA-74, ,2 
AM *-18,3,7 
AM *-18,3,7 
TD OUTPA-72,BL,2 
AM *-6,3,7 
AM P,1,10 
CM P,25,10 
BN *+60 
AM EN3+30, 5, 7 
AM EN 3+42 , 5, 7 
AM EN3+78, 5, 7 
TF P,ZER 
TF RES,ZER0-2 
TFM STAR2+11,S3,7 
TFM STAR2+54,RES,7 
TF LL,ZER 
TF FACT,ZER 
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TFM COM1+6,RIM-l,7 
TFM COM2+6,RIA-l,7 
TF Bl,ZERO 
TF B2,ZERO 
TF B3,ZERO 
TFM EN2+18,S3XR4,7 
TF FIXF2,ZER 
TF A1XA2,ZER 
TF Al,ZERO 
TF A2,ZERO 
TF FAl,ZERO 
TF FA2,ZERO 
AM Dl,1,10 
C Dl,R 
BE *+36 
AM STARl+ll,5,7 
B STARl 
TF Dl,ZER 
CF OlITPA-78 
CF OlITPB-78 
CF OlITPC-78 
WNCDOlITPA-79 
WNCDOlITPB-79 
WNCDOlITPC-79 
SF OUTPA-78 
SF OlITPB-78 
SF OUTPC-78 
TFM EN3+30,0UTPA-73,7 
TFM EN3+42,0lITPA-74,7 
TFM EN3+78,0UTPA-72,7 
AM OUTPA-77,1,10 
AM OUTPB-77,1,10 
AM OUTPC-77,1,10 
AM STAR1+35,5,7 
TFM STAR1+11,S3XR4,7 
TF P ZER 
AM DZ,1,10 
C D2,R 
BE *+24 
B STARl 
RCTY 
WATYINST3 
WATYINST4 
H 
TF OUTPA-77,ZER 
TF OUTPB-77,ZER 
TF OUTPC-77,ZER 
TF D2,ZER 
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TFM STAR1+35,S3XR4,7 
SETUP RCTY 

WATYINST9 
H 
BC3 *+24 
B *+72 
RCTY 
WATYINST6 
RNCDINPUTA 
SF INPUTA 
TF S3+24,INPUTA+26 
RCTY 
WATYINSTlO 
H 
BC4 *+24 
B *+72 
RCTY 
WATYINST8 
RNCDINPUTB 
SF INPUTB 
TF RIA+45,INPUTB+47 
RCTY 
WATYINST7 
H 
BC2 *+24 
B FLAG 
RCTY 
WATYINST8 
RNCDINPUTB 
SF INPUTB 
TF RIM+45,INPUTB+47 

FLAG SF S3-2,,2 
AM *-6,3,7 
CM FLAG+6,00527,7 
BN FLAG 
TFM FLAG+6,S3, 7 
B TRANS 
DENDSETUP 
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II. AN EXAMPLE OF THE OUTPUT 

Example A-1. An example of the computed semigroup 

ring appears in the following two pages. The semigroup used 

is given by the following Cayley table: 

• 0 1 2 

0 0 0 0 

1 0 0 1 

2 0 1 2 

The additive and multiplicative structures for the 

ring used are given by the following Cayley tables: 

+ 

0 

1 

2 

3 

0 1 

0 1 

1 2 

2 3 

3 0 

2 3 

2 3 

3 0 

0 1 

1 2 

0 

1 

2 

3 

0 1 2 3 

0 0 0 0 

0 1 2 3 

0 0 0 0 

0 1 2 3 



OJ 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 1920 21 22 23 2~ 25 22 21 28 29 30 
o~ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 
01 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 01 00 03 0200 01 02 03 03 02 01 00 02 03 00 
02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 
03 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 01 00 03 0200 01 02 03 03 02 01 00 02 03 00 
04 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 04 05 06 0705 04 07 06 06 07 04 05 07 06 05 
05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 05 05 0505 05 05 05 05 05 05 05 05 05 05 
06 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 04 05 06 0705 04 07 06 06 07 04 05 07 06 05 
07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 05 0500505 05 05 05 05 05 05 05 05 05 05 

'08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 
09 00 01 02 03 Ol 00 03 02 02 03 00 01 03 02 01 00 01 00 03 0200 01 02 03 03 02 01 00 02 03 00 
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000 00 00 00 00 00 00 00 00 00 00 
11 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 01 00 03 02 00 01 02 03 03 02 01 00 02 03 00 
12 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 04 05 06 0705 04 07 06 06 07 04 05 07 06 05 
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 05 05 osos 05 05 05 05 05 05 05 05 05 05 
14 00 01 02 03 01 00 03 02 02 03 00 01 03 02 01 00 04 05 06 0705 04 07 06 06 07 04 05 07 06 05 
15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 
16 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 
17 00 00 00 00 05 05 05 05 10 10 10 10 15 15 15 15 17 17 17 17 20 20 20 20 27 27 27 27 30 30 30 
18 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 
19 00 00 00 00 05 05 05 05 10 10 10 10 15 15 15 15 17 11 17 17 20 20 20 20 2~ 2~ 2~ 2~ 30 30 30 
20 00 00 00 00 05 05 05 05 10 10 10 10 15 15 15 15 20 20 20 2017 17 17 17 30 30 30 30 27 27 27 
21 oo 01 02 03 04 os 06 01 00 09 10 11 12 13 14 1s 21 io 23 22 11 16 19 10 29 20 31 30 2s 24 21 
22 00 00 00 00 05 05 05 05 10 10 10 10 15 15 15 15 20 20 20 20 17 17 17 17 30 30 30 30 27 27 27 
23 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 21 20 23 22 17 16 19 18 29 28 31 30 25 24 27 
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9 08 11 10 13 12 15 14 01 00 03 02 05 04 07 06 25 24 27 26 29 28 31 30 17 16 19 18 21 20 23 22 
0 11 08 09 14 15 12 13 02 03 00 01 06 07 04 05 26 27 24 25 30 31 28 29 18 19 16 17 22 23 20 21 
1 10 09 08 15 14 13 12 03 02 01 00 07 06 05 04 27 26 25 24 31 30 29 28 19 18 17 16 23 22 21 20 
2 13 14 15 08 09 10 11 04 05 06 07 00 01 02 03 28 29 30 31 24 25 26 27 20 21 22 23 16 17 18 19 
3 12 15 14 09 08 11 10 05 04 07 06 01 00 03 02 29 28 31 30 25 24 27 26 21 20 23 22 17 16 19 18 
4 15 12 13 10 11 08 09 06 07 04 05 02 03 00 01 30 31 28 29 2, 27 24 25 22 23 20 21 18 19 16 17 
5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 31 30 29 28 21 26 25 24 23 22 21 20 19 18 17 16 
5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 00 01 02 03 0 05 06 07 08 09 10 11 12 13 14 15 

7 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30 01 oo o3 02 o~ 04 01 06 09 08 11 10 13 12 15 14 
3 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29 02 03 00 01 0 07 04 05 10 11 08 09 14 15 12 13 
~ 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28 03 02 01 00 0 06 05 04 11 10 09 08 15 14 13 12 
) 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27 04 05 06 07 0 01 02 03 12 13 14 15 08 09 10 11 
L 20 23 22 17 16 19 18 29 28 31 30 25 24 27 26 05 04 07 06 01 00 03 02 13 12 15 14 09 08 11 10 
2 23 20 21 18 19 16 17 30 31 28 29 26 27 24 25 06 07 04 05 02 03 00 01 14 15 12 13 10 11 08 09 
3 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 
i 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 08 09 10 11 12 13 14 15 00 01 02 03 04 05 06 07 
5 24 27 26 29 28 31 30 17 16 19 18 21 20 23 22 09 08 11 10 13 12 15 14 01 00 03 02 05 04 07 06' 
5 27 24 25 30 31 28 29 18 19 16 17 22 23 20 21 10 11 00 09 14 15 12 13 02 03 oo 01 06 01 04 o~ 
7 26 25 24 31 30 29 28 19 18 17 16 23 22 21 20 11 10 09 08 15 14 13 12 03 02 01 00 07 06 05 0 
3 29 30 31 24 25 26 27 20 21 22 23 16 17 18 19 12 13 14 15 08 09 10 11 04 05 06 07 00 01 02 03 
~ 28 31 30 25 24 27 26 21 20 23 22 17 16 19 18 13 12 15 14 09 08 11 10 05 04 07 06 01 00 03 02 
) 31 28 29 26 27 24 25 22 23 20 21 18 19 16 17 14 15 12 13 10 11 08 09 06 07 04 05 02 03 00 01 
L 30 29 28 27 26 25 24 23 22 21 20 19 18 17 l..6..__l5 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 
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