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ABSTRACT

SPIKE-BASED CLASSIFICATION OF UCI DATASETS WITH MULTI-LAYER

RESUME-LIKE TEMPOTRON

by

Sami Abdul-Wahid

May 2018

Spiking neurons are a class of neuron models that represent information in timed

sequences called “spikes.” Though predominantly used in neuro-scientific investigations,

spiking neural networks (SNN) can be applied to machine learning problems such as

classification and regression. SNN are computationally more powerful per neuron than

traditional neural networks. Though training time is slow on general purpose computers,

spike-based hardware implementations are faster and have shown capability for ultra-

low power consumption. Additionally, various SNN training algorithms have achieved

comparable performance with the State of the Art on the Fisher Iris dataset. Our main

contribution is a software implementation of the multilayer ReSuMe algorithm using

the Tempotron principle. The XOR problem is solved in only 13.73 epochs on average.

However, training time on four different UCI datasets is slow, and, although decent

performance is seen, in most respects the accuracy of our SNN underperforms compared

to other SNN, SVM, and ANN experiments. Additionally, our results on the UCI dataset

are only preliminary, necessitating further tuning.
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CHAPTER I

INTRODUCTION

Spiking neural networks (SNN) are a class of neuron models developed to simulate

dynamical behaviors of biological neurons. SNN exhibit time-continuous dynamics of

one or more state variables, often inspired from neuroscience, enabling them to capture

phenomena not seen in traditional artificial neural networks (ANN).

Spiking neurons often communicate by sending brief, high amplitude pulses of

activity, colloquially referred to as “spikes,” which are key characteristics of biological

neural phenomena. A spiking neuron’s internal dynamics, as influenced by incoming

spikes, determines if and when it sends its own spikes. Dynamical SNN models, which

vary with levels of sophistication, relate these neural input and output dynamics. The

more complex models are highly nonlinear, while others are linear and relatively simple.

Early paradigms of thought strictly assumed that biological neurons communicated

information predominantly through mean spike firing rates. Recent evidence, however,

has shown that precise spike-time encoding is widely used by the brain [1, 2], allowing

for higher information transfer rate [3] and greater metabolic efficiency. SNN models are

therefore commonly studied in the context of their local spike times [4, 5, 6].

SNN applications range from neuroscientific investigations [7] to classic machine

learning problems. They have been trained to classify images [8, 9, 10] and recognize

sound events [11], and can also perform unsupervised clustering [12]. Additionally

recurrent SNN have shown good performance on time-series prediction problems [13].

While gradient-based supervised training of SNN presents mathematical challenges,

important developments have been made by several researchers [14, 15, 16, 17, 18].
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Logic units implemented with spike-time encoding are computationally more

powerful than their digital counterparts [19]. However, as simulating SNN on digital

processors often incurs high computational overhead, quick and efficient hardware

implementations have been studied [20, 21, 22]. Trained deep ANN have also

successfully been adapted to efficient spike-based encoding in hardware [23, 24] and

hardware implementations of SNN may be trained to reduce power usage [25].

As such, SNN can be useful and viable alternatives to classic machine learning

approaches. However, algorithmic studies in SNN training can be carried out with more

flexibility in software, after which research may be conducted to investigate the feasibility

of a useful hardware implementation.

Research Focus

Here the Tempotron-like ReSuMe rule, as seen in [26], is adapted to a two-layer

network according to [16]. This forms the multi-layer ReSuMe-like Tempotron algorithm,

which is similar to the multi-layer Tempotron algorithm from [17], but is based on the

exponential windowing functions of the ReSuMe algorithm. We implement the multi-

layer ReSuMe-like Tempotron on a general purpose desktop computer. Using this,

classification is performed on the XOR problem and four UCI datasets. Results on the

XOR problem show convergence in 13.73 ± 6.70 epochs, a significant improvement over

the results in [17], yet does not surpass more recent work [27]. On UCI, our SNN showed

decent performance on the Iris [28] and Ionosphere [29] benchmarks, yet performed

poorly on both the Vertebral Column [30, 31, 32] and, especially, the Teaching Assistant

Evaluation (TAE) [33] datasets. In all cases, SNN results underperformed in-house

SVM experiments with respect to training time and accuracy, while performance on

TAE was only slightly better than a random classifier. Our results on the UCI datasets

2



are preliminary, as the six weeks of computation time prevented a thorough parameter

investigation. Meanwhile our classification results on the XOR problem demonstrates the

training speed advantages of single-spike classification in SNN. Further study is needed

on this training algorithm for a definitive conclusion.
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CHAPTER II

BACKGROUND

Classification

Classification is a broad field with applications such as image recognition

[34, 35, 36], audio recognition [37], and cancerous cell diagnosis [38, 39]. Humans

visually perform classification by recognizing characteristic combinations of features.

To classify, machines must correlate distinguishing features with the associated class.

An example includes the subspecies of Iris flowers correlating with the petal and sepal

dimensions. Machines can learn such correlations when given a database of iris flowers,

such as the well known Fisher Iris dataset [28], that contains feature quantities paired with

species label. The light representing scenes or pictures of objects will also correlate with

the type of scene or object, allowing a competent machine to learn and generalize from

these.

To identify correlating features, a wide variety of supervised learning algorithms

are available. These must access the features and class labels from a database. Generating

these databases often requires collective effort from institutions. An organization may

hire workers to look through and classify thousands of human photographs by gender and

age [40]. This allows scientists and engineers to study and apply algorithms for gender

classification.
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Artificial Neural Networks

ANN are a class of trainable functions. These can, given arbitrary size and

parameters, model any mathematical function [41, 42]. ANN can represent continuous

[43], discrete [44], and boolean [45] functions.

ANN consist of neural units (neurons) connected together in a directed graph. A

feedforward connectivity architecture is commonly used, typically with three layers as

seen in Fig. 1. Each connection is associated with one or more parameters, such as a

weight value. Classical ANN are widely used in engineering applications due to their

efficiency and effectiveness, and their neuron units consist of functions of weighted

inputs.

The sigmoid function is a widely used neuron activation function. This is defined as

sgm(s) =
1

1 + exp (−βs) (2.1)

and illustrated in Fig. 2. This function represents a neuron’s output firing rate as a

function of the scalar argument (s). Here s =
∑

iwixi where xi represents firing rate

from input i and wi is the corresponding weight (see Fig. 3).

To derive the weight changes used to train the network, a gradient descent approach

[46] can be taken in which the network output is differentiated by the weights. In a

feedforward three-layer structure, the outputs of output neuron k and hidden neuron j

are

zk = sgm(~y · ~Wk) (2.2)

yj = sgm(~x · ~Vj). (2.3)
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Input Hidden Neurons Output Neurons

FIGURE 1.: Feedforward architecture of neurons.

FIGURE 2.: The sigmoid function often used in traditional ANN.
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s =
∑
i xiwi

output → sgm(s)

sgm(s) = 1
1+exp (−λs)

FIGURE 3.: The sigmoid neuron
The sigmoid neuron.
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where ~x and ~y are inputs to the network and the outputs of hidden neurons, respectively;

W and V are weight matrices to hidden neurons and output neurons respectively, and ~Vj

and ~Wk are weight vectors to hidden neuron j and output neuron k, respectively.

Supervised Training in ANN

Since ANN use continuous functions, differentiation with respect to parameters

is straightforward as it only involves application of the chain rule in calculus [46].

Supervised training involves modifying weights along a gradient of the error function.

When given an input vector and a desired output vector is known, the relative weight

modifications in a training step can be determined to bring the observed output closer

to its desired value. To determine weight modifications for each connection, the partial

derivatives δjk and δij are expressed as

δjk =
∂zk
∂wjk

(2.4)

δij =
∂zk
∂vij

(2.5)

where wjk and vij are the weight of the connection between hidden neuron j and output

neuron k, and the weight between input neuron i and hidden neuron j, respectively. The

gradient magnitude is expressed in terms of

σ2 =
∑

i, j

δ2ij +
∑

j, k

δ2jk (2.6)

7



after which the weight changes at each step can be expressed as

∆wjk = rδjk(zk − dk)/σ (2.7)

∆vij = rδij(zk − dk)/σ (2.8)

where r is the learning rate, and dk is the desired output value of output neuron k.

Supervised training of a neural network requires a dataset of input values in which

each data point has a corresponding desired output value, or label. The training process

involves computing the ANN-predicted output for each data point, and modifying the

weights according to the above gradient descent rule to bring the network closer to the

desired output at each step. This continues until a specified stopping condition, such as

meeting a desired training accuracy, is met.

Spiking Neural Networks

SNN are a different class of neural networks, as compared to ANN. Whereas

ANN are modeled after a rate-based communication of biological neurons, SNN exhibit

qualities of finer grained neural behavior. This requires a degree of temporal dynamism.

Spiking neuron models are often described by differential equations. Some variants

exhibit complex non-linear phenomena, while other more simplistic models can be a

linear sum of time varying inputs. A key commonality is the time dimension which allows

dynamic evolution of one or more state variables, and is necessary for a precise spike time

encoding.

SNN are often described in terms of biological neural behavior. A biological

neuron, shown in Fig. 4, consists of dendrites and axons, along with a cell body. Neurons

exhibit an electric potential difference, called the membrane potential, between the

8



FIGURE 4.: A biological neuron diagram [47].

inside and outside of the cell membrane. In a real neuron, this membrane potential is

highly dynamic and can manifest a wide-ranging array of rich behaviors. Under certain

circumstances the neuron will produce an action potential, a process in which a brief

spike in electric activity is sent down the axon. The axon is usually connected to dendrites

of other neurons, which then receive the signal. After firing, there is usually a brief time

period, called the refractory period, in which the neuron is relatively quiescent. Various

SNN neuron models seek to mimic this dynamic neural behavior with different degrees of

sophistication.

Fig. 5 shows two neuron models connected by a single synapse with weight w. The

pre-synaptic neuron fires a series of precisely timed spikes along the synapse. Each spike

is convolved with the synaptic kernel to produce the synaptic current, which flows into the

post-synaptic neuron, influencing its membrane potential and inducing the post-synaptic

neuron to then fire its own series of spikes.

One or more spiking neurons can be arranged for decision making. For instance,

a spike-based classifier can be constructed by encoding attributes from an image dataset

into spike times and feeding these into an SNN that will be trained. The classifier’s output

neurons can then be trained to fire in certain manners depending on the input image class.

See Fig. 6 for an example.

9



FIGURE 5.: Two spiking neurons firing a precise times [18]. Here the pre-synaptic
neuron emits spikes that travel down the synapse. Each spike is in the form of the
synaptic kernel, the amplitude of which is multiplied by the synaptic weight w upon
arrival at the pos-synaptic neuron. These spikes then activate the membrane potential of
the pos-synaptic neuron which then emits its own spikes.

Spiking Neuron Models

A classic and biologically realistic spiking neuron model is the Hodgkin Huxley

(HH) neuron [48]. It is named after its discoverers, Alan L. Hodgkin and Andrew F.

Huxley, who won the Nobel Prize in Physiology or Medicine for their seminal work,

which included the development of the groundbreaking HH model. This model describes

the electro-chemical dynamics observed in a squid neuron through a set of coupled

differential equations. Simulations of the HH neuron can exhibit a set of key qualitative

FIGURE 6.: Image classification with SNN. Encoders and architecture are taken
from [10]. The image is convolved with spatial filters (GCs and CCs) into a series of
spatiotemporal spikes which are fed into the encoding neurons of a feed-forward SNN
classifier.
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dynamics observed in biological neurons [49]. It is thus often used by neuroscientists as a

template equation to model specific neural phenomena in detail.

The high computational cost in simulating HH neurons [49] has eventually led to

the discovery of the Izhikevich neuron model [50]. Named after its discoverer Eugen

M. Izhikevich, the Izhikevich model (or Izhikevich neuron) is more condensed and

computationally tractable than the HH neuron, and manifests many of the rich behaviors

seen in the HH model. However, it does not directly describe the electro-chemical

dynamics of neural ionic channels.

The Leaky Integrate and Fire (LIF) neuron [6], another spiking neuron model,

is much simpler and lacks many of the rich dynamics seen in the HH and Izhikevich

neurons. However, it requires very little computational overhead during simulation and

still allows for precise spike time encoding.

One variant of LIF neurons is governed by the following differential equation [18]:

CmV
′ = −gL(V − EL) + I, (2.9)

where V is the primary variable representing the voltage across the neuron membrane,

I is the input current from other neurons, gL and Cm are constants that influence the

membrane potential’s rate of evolution, and EL is the resting potential. V ′ denotes the

time derivative of V . Assuming an analytical form for I , the LIF neuron has an analytical

solution that can manifest jump discontinuities as time evolves [18].

A simpler case of the LIF model takes no differential equation form [15], but is

simply the weighted sum of synaptic input currents. This is expressed as

V = I (2.10)

11



In either case, I represents the pre-synaptic current. When dealing with networks

manifesting precise spike time coding, I often is a weighted sum of double exponential,

α, where

I =
∑

i

wi
∑

f

α(t− tif ) (2.11)

and

α(t) = e−t/τ1 − e−t/τ2 (2.12)

Here, tif is the firing time of the f th spike emitted by the ith pre-synaptic neuron. Both τ1

and τ2 are time constants, and τ1 > τ2. The function α(t) is known as the synaptic kernel.

If the voltage V reaches the value V = VT , then the neuron outputs a spike at that time.

This sends the output synaptic kernel α(t− tf ) to any neurons in the next layer. Fig. 7 (a)

shows the shape of the synaptic kernel in a voltage vs. time graph. Additionally, multiple

spikes can be facilitated by setting V = EL at the times that the threshold is reached, and

perhaps including a brief refractory period in which all input currents are blocked.

When V reaches the threshold and resets, the neuron will emit a spike. The exact

value at which this happens depends on the dynamics of the state variable, which depends

on the times and amplitudes of the signals preceding it. The goal of supervised learning

in a feedforward spiking neural network, then, is to appropriately modify any of the

preceding weights, delays, and other neuron model parameters in order to produce a

desired relationship between the input and output spike times. The ultimate goal is to

train the network to accurately generalize on data it has not previously seen.

Software Tools

Software libraries for simulating SNN do exist, such as the Brian2 library [51] for

Python. Brian2 consists of a high-level interface to a CPU-based numerically efficient

12



(a) Kernel (b) Spiking

(c) Non-Spiking

FIGURE 7.: Example dynamics in a spiking neuron modeled by Eq. 2.9. The synaptic
kernel Eq. 2.12 is used. (a) shows the kernel itself in blue, with the spike time indicated
by a green dashed line. (b) and (c) each show the neuron voltage activity in blue, with
three input synaptic kernels multiplied by their respective weights, and the threshold of
spiking in dotted blue: (b) shows a case in which the input kernels induce the neuron
potential to reach the threshold and spike at around 4.5 ms, followed by a refractory
period of 3 ms; (c) shows a case in which the input spikes do not cause spiking.
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backend, allowing the user to incorporate one or more user-specified spiking neuron

models, connectivity structures, and synaptic equation models. Both numerical time

integration, and analytic spike time computations, are supported in the backend, which

uses tools such as C++ and NumPy. However, it does not provide weight or delay training

algorithms for SNN.

Hardware Implementations

Von Neumann-based architectures are inherently energy-inefficient, and more

complex spiking neuron models require expensive time integration techniques. As such,

a number of studies have sought to implement SNN efficiently in hardware. For instance,

IBM developed TrueNorth, a clockless, spike-based digital microarchitecture chip capable

of simulating one million neurons with only 70 mW of power, far less than typically seen

in general-purpose computing processors [52, 22]. Likewise, as spike-based classification

often varies in the needed number of spikes for decision making, training SNN for

power efficiency has been theoretically shown to be a viable way of reducing power

consumption [25]. In addition, the inherent asynchrony of analog-based hardware also

makes for an elegant and simple ’brain-like’ medium for neural computation. This has

inspired recent research in overcoming the challenges [53] analog hardware poses to

learning, demonstrating the ability for high precision on imprecise architectures [21, 54].

Supervised Training with SNN

Several approaches have been taken to train SNN. Early work with evolutionary

algorithms [55] and statistics-based algorithms involving stochastic neuron models

[56, 57] have been conducted. However, the evolutionary approach to training converges

14



slowly, with 450 generations needed to learn the XOR problem. In addition, the statistical

approach in [56] [58].

Gradient Descent with SNN

As the efficiency of gradient descent-based training algorithms have repeatedly

been seen in ANN, attempts have been made to mimic this in SNN. ANN can be trained

using a direct calculation of a gradient because of their continuity. Computing gradient

descent with SNN, however, presents challenges. Although some forms of Eq. 2.9 are

analytically tractable, yet mathematical discontinuities occur at neural firings. This is

significant in the case of a multi-layer architecture, where a small change in weight

can cause the sudden appearance or disappearance of an incoming spike. Other neuron

models such as HH and Izhikevich neurons have no known general analytic solution.

The importance of training multi-layer SNN lies in their capacity for learning

patterns, and in their ability to solve linearly non-separable problems [14, 16]. The

memory capacity of a single layer SNN is limited by the number of input synapses, thus

putting constraints on the spike encoding, whereas in a multi-layer network, capacity can

be effected by the number of hidden units without effecting encoding. This has motivated

research on how to effectively train single-layer and multi-layer SNN.

Spikeprop

Spikeprop is the first supervised training algorithm devised for SNN. It minimizes

the energy function through differentiation of the output spike time with respect to the

synaptic weights. Spikeprop solves the problem of discontinuities by requiring each

neuron to fire exactly once [14, 59, 60]. However, because it is a gradient based approach,

it is prone to getting stuck in local minima [58]. In addition, in order to approximately
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differentiate the state variable, each pre-synaptic spike must have a linear effect on Vi(t),

i.e. the sum of their effects should equal their lone effects summed. As such, Spikeprop

can best be used with linear neuron models such as LIF. When training on the Iris dataset,

after 1000 epochs 97.4% accuracy on the training set, and 96.1% accuracy on the test set,

were achieved.

The original Spikeprop algorithm was derived only for training synaptic weights.

Later it was improved [60] by incorporating the training of other network parameters,

such as synaptic delays. This reduces the number of synaptic connections needed to solve

the XOR problem by an order of magnitude, and results in much faster convergence.

Widrow-Hoff Rule in Gradient Descent

Other approaches to training SNN attempt to use an adapted version of the gradient

descent approach. This is done by basing weight changes on a firing rate approximation

of the neuron, i.e. the Widrow-Hoff (WH) rule. The WH rule is

∆w = rx(yd − y), (2.13)

where w is the weight in question, x is the input firing rate to the neuron, y is the neuron

output firing rate, and yd is the desired output firing rate of the neuron. However, this

is problematic, since training involves the minimization of an energy function often

determined by differences between spike trains:

E(t) = (Sao (t)− Sdo (t))2 (2.14)
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which is inherently discontinuous. Here

Sao (t) =
∑

f

δ(t− taf ) (2.15)

taf is the f th observed firing time of output neuron o and

δ(t) =





∞ if t = 0

0 otherwise
(2.16)

is the Kronecker delta function that satisfies

∫ ∞

−∞
δ(t)dt = 1. (2.17)

The set of desired firing times meanwhile are denoted as

Sdo (t) =
∑

f

δ(t− tdf ) (2.18)

where tdf is the f th desired firing time of output neuron o.

The task of the training algorithm is to connect the continuous WH approximation

to the disconinuous spike-train behavior of the neurons. Several training algorithms such

as ReSuMe [16], PSD [61], and SPAN [62], achieve this.

ReSuMe

The ReSuMe training algorithm [16] is a very flexible and biologically plausible

algorithm that can, in principle, be used to train weights and delays in networks of

arbitrary number of hidden layers. It incorporates the principle of spike-timing dependent
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plasticity (STDP), which has been seen in actual neural behavior (in different variations).

STDP is a principle by which weights of synapses passing correlating spikes will

strengthen over time, while those passing non-correlating spikes will correspondingly

weaken.1 The derivation of ReSuMe begins by initially expressing the energy function in

terms of a difference in firing rates of the output neurons as

E(t) =
1

2

∑

o∈O

(Ra
o(t)−Rd

o(t))
2, (2.19)

where Ra
o(t) is the actual firing rate of output neuron o, and Rd

o(t) is the desired firing rate

of output neuron o. Then, as in the WH rule, a linear relationship between the firing rates

of connected neurons in adjacent layers is assumed:

Ro(t) =
1

n

∑

h∈H

whoRh(t) (2.20)

Rh(t) =
1

m

∑

i∈I

wihRi(t). (2.21)

Here Ro(t) is the time instantaneous firing rate of output neuron o, and n is the number of

hidden neurons; Rh(t) is the time instantaneous firing rate of hidden neuron h while woh

is the weight of the connection between hidden neuron h and output neuron o, and m is

the number of input neurons.

1STDP alone, when properly configured for, can be used to train an SNN in an unsupervised manner.

18



This energy function, expressed in continuous terms, can be differentiated with

respect to any of the weight parameters in the network:

∂E(t)

∂who
=

1

n
(Ra

o(t)−Rd
o(t))Rh(t) (2.22)

∂E(t)

∂wih
=
∑

o∈O

who
n

(Ra
o(t)−Rd

o(t))Ri(t) (2.23)

After this, the rate terms are switched into Kronecker delta terms which describe spike

trains

R(t)→ S(t) (2.24)

where

S(t) =
∑

f

δ(t− tf ) (2.25)

to yield the expressions

∂E(t)

∂who
=

1

n
(Sao (t)− Sdo (t))Sh(t) (2.26)

∂E(t)

∂wih
=
∑

o∈O

who
n

(Sao (t)− Sdo (t))Si(t) (2.27)

Although products of Kronecker delta terms are mathematically problematic, a

statistical model [63] has been developed that describes long-term plasticity between a

pre-synaptic and post-synaptic neuron, i.e. weight changes, associated with pre-synaptic
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and post-synaptic firing correlation. According to this model,

Spost(t)Spre(t)→Spre(t)
[
a+

∫ ∞

0

apre(s)Spost(t− s)ds
]

+

+Spost(t)

[
a+

∫ ∞

0

apost(s)Spre(t− s)ds
]
. (2.28)

It has been shown that this plasticity model will weaken the weights that transfer

highly variable spike trains, such as those subjected to high amounts of random noise

fluctuations, while synapses transferring consistent spike trains will strengthen over time.

By substituting Eq. 2.28 into Eqs. 2.26 and 2.27, the resulting weight update expressions

are:

∂who
∂t

=
1

n
Sh(t)

[∫ ∞

0

apre(s)[Sdo (t− s)− Sao (t− s)]ds
]

+
1

n
[Sdo (t)− Sao (t)]

[
a+

∫ ∞

0

apost(s)Sh(t− s)ds
]

(2.29)

∂wih
∂t

=
1

mn
Si(t)

∑

o∈O

[∫ ∞

o

apre(s)[Sdo (t− s)− Sao (t− s)]ds
]
who

+
1

mn

∑

o∈O

[Sdo (t)− Sao (t)]

[
a+

∫ ∞

0

apost(s)Si(t− s)ds
]
who (2.30)

The terms apre and apost are called the window functions, and are often exponential in

nature:

apre(−s) = −A− exp

(
s

τ−

)
, if s ≤ 0 (2.31)

apost(s) = +A+ exp

(−s
τ+

)
, if s > 0 (2.32)
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Here a is a non-Hebbian term, and is an important component of spike timing dependent

plasticity. The non-Hebbian term causes desired spikes to unconditionally increase the

associated synaptic weights, and observed spikes to decrease the weights. This allows the

network to undergo training even when all synaptic weights are zero and all hidden and

output neurons do not fire. It also speeds up the training process [16].

Often times inhibitory synaptic connections are used. These are connections with

negative weights. It has been heuristically found [16] that ignoring the weight sign, when

modifying inhibitory and excitatory synaptic weights, will increase the training speed,

despite the fact that this is not consistent with the gradient descent approach. As a result,

the weight updates for the input-to-hidden neurons are

∂wih
∂t

=
1

mn
Si(t)

∑

o∈O

[∫ ∞

o

apre(s)[Sdo (t− s)− Sao (t− s)]ds
]
||who||

+
1

mn

∑

o∈O

[Sdo (t)− Sao (t)]

[
a+

∫ ∞

0

apost(s)Si(t− s)ds
]
||who|| (2.33)

where || · || denotes the absolute value.

Another useful tool in speeding up the training process is synaptic scaling. This can

be used to keep the firing rates, or number of spikes, within a pre-define range. This is

done by using the update step of

wij =





(1 + f)wij if wij ≥ 0

1
1+f

wij if wij < 0

(2.34)

where f > 0 for rj < rmin and f < 0 for rj > rmax.
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Overall, ReSuMe training involves a process in which a set of hypothetical2 teacher

neurons use STDP processes to modify the weights between neurons in the network,

while anti-STDP processes decrease weights after observed spiking activity. Thus it can

be intuitively seen that, using ReSuMe, the firing times of the output neurons in the neural

network can reliably converge to the firing times of the teacher neurons.

ReSuMe has no constraints on the number of spikes per neuron, and it’s only

constraint for the neuron model is a roughly linear relationship between input and output

firing rate. It can also be extended to any number of hidden layers and even to recurrent

structures.

Simulations show that, when applied on a feedforward neural network with a

single hidden layer, the ReSuMe algorithm converges faster than Spikeprop does when

conducting comparisons on benchmarks such as the Iris dataset or the XOR problem.

Small changes in the number of delayed subconnections can have significant and effects

on the final performance without a clear pattern or direction. In addition, training with

ReSuMe shows an erratic evolution of the performance measure over training epochs, yet

despite this, the weight vector is seen to progress in a consistent direction (see Fig. 8).

Overall, the ReSuMe training algorithm is very flexible as it allows for any neuron

model to be used, and can ostensibly be used to train an SNN to produce arbitrary

relationships between input and output spike trains. When trained on the Iris dataset,

97% accuracy was achieved on the training set and 94% on the test set after 137 epochs

[16].
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FIGURE 8.: ReSuMe weight progression: A plot of each weight value with respect to
training epoch while training a neuron.

FIGURE 9.: DL-ReSuMe weight progression: A plot of each weight value with respect to
training epoch while training a neuron.
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DL-ReSuMe and EDL

The ReSuMe algorithm, for the case of a single layer of neurons, was later extended

to include heuristic training steps that modify the pre-synaptic delays of a single neuron

[58] and a single layer SNN [64]. The result is a drastic increase in training performance,

training convergence rate, and consistency of the performance evolution. According to

these heuristics, delays are modified in order for the neuron to fire at the desired spike

times. This is done in conjunction with weight updates using Eq. 2.29. At desired spike

times at which no spike is observed, the delay associated with the most recently fired

excitatory synapse is modified so that the post-synaptic potential of that connection

coincides with the desired spike time, and the weights are adjusted to elevate the neuron

state variable to the spiking threshold. At observed spike times that do not coincide with

a desired spike time, the same is done except with the most recently fired inhibitory

synapse, and the weight is adjusted to bring the neuron state variable below the firing

threshold. Each delay is only modified once during the entire training run.

In a simulation [58] performed to test the efficacy of this algorithm, a single neuron

was used with 400 synaptic inputs. For each input synapse, a separate Poisson process

was used to generate a random spike train, and likewise for the desired spike train.

Training was performed using both DL-ReSuMe and ReSuMe, and the performance

comparison can be seen in Fig. 10. It is evident that with the delay training heuristics the

network’s performance measure progresses in a much cleaner and more consistent fashion

under DL-ReSuMe rather than under plain ReSuMe. When trained using DL-ReSuMe,

the network ultimately reaches a higher final performance accuracy in significantly less

training steps. In addition, the range of values traversed by the different weight vector

components is drastically lower in DL-ReSuMe than in ReSuMe.

2i.e. these neurons do not have any connections in the network other than to direct weight modifications
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FIGURE 10.: A comparison between DL-ReSuMe and ReSuMe as applied to a single
neuron receiving 400 spike trains. Input and desired output spike trains were randomly
generated by Poisson processes [58]

A number of improvements [65] were later made to DL-ReSuMe, with the resulting

algorithm known as Extended Delay Learning (EDL). In contrast with DL-ReSuMe,

EDL allows each delay to undergo multiple changes during the training process, supports

initializing the SNN with non-zero delays, and modifying the delays associated with both

inhibitory and excitatory connections. These improve the performance and accuracy over

DL-ReSuMe.

Classifying with Tempotron and ReSuMe

The general case of the ReSuMe weight update routines trains an SNN to fire spikes

at precisely set times. However, a classification problem presents the option to record the

SNN-predicted class based on which output neurons fire or don’t fire. A simple training

heuristic, known as the Tempotron rule [15], trains the neural network in this manner.
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This heuristic, applied to the simple LIF neuron described in Eq. 2.10, is

∆wi = λ
∑

ti<tmax

α(tmax − ti) (2.35)

and is explicitly a gradient descent approach. Here, tmax is the time at which the neuron

reaches its maximum voltage v(t). This rule applies only to a single layer SNN, and also

assumes an infinite refractory period3. This learning rule, which is a specific case of the

ReSuMe algorithm, has also been extended to multiple layers using a simple heuristic to

back-propagate error [61]. Using this multi-layer Tempotron algorithm to train an SNN

for Iris classification, 98.1% accuracy was achieved on the training set and 94.7% on the

test set.

The ReSuMe update rules of Eq. 2.29 can also be adapted for classification using

the same principle [26], where the desired spike train is replaced by tmax. When this is

done, and accounting for single firing, the weight update becomes

∆wi =
λ

m

[
a+

∫ ∞

0

apost(s)Si(tmax − s)ds
]
, (2.36)

where tmax is the time at which the membrane potential reaches its maximum value, Si(t)

is a sum of Kronecker delta functions denoting the input spike train, and λ is defined as

λ =





−1 if the neuron fires when it should be quiescent

1 if the neuron does not fires when it should fire

0 otherwise

(2.37)

This rule is known as Tempotron-like learning with ReSuMe.

3The neuron fires at most once.
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FIGURE 11.: Tempotron speed vs. ReSuMe speed: A comparison [26] between
Tempotron, ReSuMe, and Tempotron-like ReSuMe as applied to a single neuron receiving
spike trains of two classes. Input spike patterns were uniformly randomly generated
[15, 26]. a) Original Tempotron algorithm. b) Original Tempotron algorithm, modified
such that, when training away undesired spikes, tmax in Eq. 2.35 is replaced by the firing
time. c) Tempotron-like learning with ReSuMe. d) ReSuMe training to fire once at a
specific time on positive input, and to not fire on negative input. e) ReSuMe training to
fire once at specific time on positive input, and to fire once at a different specific time on
negative input. The inset shows the zoom-in view of a), b), and c).

There are significant advantages to using the Tempotron principle for classification

as compared to training for precise spike times. Instructing neurons to simply fire or

not fire, as opposed to producing spikes at specific times, involves less constraint and

thus is ultimately an easier problem. This can be seen in Fig. 11, which shows the

number of epochs to convergence on a simple learning problem using a) Tempotron,

b) a slightly modified Tempotron, c) Tempotron-like learning with ReSuMe, and d)-e)

ReSuMe. Tempotron training converges the neuron drastically faster ReSuMe, while the

Tempotron-like ReSuMe learning rule was slightly faster than Tempotron alone.
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SPAN and PSD

SPAN and PSD are training algorithms that take a similar approach as ReSuMe by

basing the training algorithm on the WH rule. SPAN solves the problem of discontinuity

by expressing neural dynamics as convolutions of incoming spikes with a continuous

kernel function. This forms the basis of the energy function to be minimized, though in

the actual computation of the SNN output the spikes are unchanged [62]. The PSD rule

is similar to SPAN, except that only input spikes are convolved. Like Tempotron, PSD

was also extended to multi-layer SNN using the same heuristic for error back-propagation

[17].

Chronotron

The Chronotron refers to two different learning rules, I-learning and E-learning,

both of which are single layer training algorithms. I-learning is heuristically derived, but

performs slightly worse than the single layer version of ReSuMe. A neuron trained by

E-learning, however, will exhibit a memory capacity that is roughly an order of magnitude

greater than a neuron trained with either ReSuMe or I-learning. However, I-learning will

converge faster than E-learning [66].

NSEBP

Recently, the Normalized Spiking Error Back Propagation (NSEBP) algorithm [27]

was developed. It is designed for SNN of arbitrary numbers of hidden layers for a simple

case of a neuron model called the Spike Response Model (SRM).

When the input spike kernel is Eq. 2.12 (see pg. 12), the SRM is analytically

tractable if τ1 = 2τ2. Thus, when training a single neuron, an analytic formula can be

used to determine the ideal shifts in pre-synaptic spike times—known as spike “jitter”—

28



FIGURE 12.: STIP vs. ReSuMe on Iris: Training accuracy vs. epoch on a multi-layer
architecture [67].

to produce the desired output spike time. This approach is carried recursively by directly

training the previous neurons to produced the desired spike jitters. As a result, training

with NSEBP required an order of magnitude less training epochs compared with the

multi-layer ReSuMe algorithm. When training on Iris using NSEBP, 98% training

accuracy and 96% test accuracy were achieved after only 18 epochs, whereas ReSuMe

required 137 epochs.

Inner Products of Spike Trains

Another recent algorithm [67], referred to here as STIP, expresses the energy

function as an inner product between the observed output spike train and the desired spike

train. The spike train, a sum of Kronecker delta functions, is convolved with a symmetric

and continuous kernel function to produce an expression that can be differentiated with

respect to the weights in both the output and hidden layers.
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As such, this algorithm can be applied to multi-layer SNN to solve problems such

as Iris and XOR. Compared to multi-layer ReSuMe [16], training with STIP results in

faster and more consistent progression of accuracy over epochs. This is demonstrated in

Fig. 12. STIP also achieves a higher final performance than multi-layer ReSuMe on the

Iris dataset, resulting in 96.7% accuracy on the test set as compared to 94.7%.

BP-STDP

Another approach [68] to training SNN, known as BP-STDP, is based on a

mathematical proof that the non-leaky variant of the LIF neuron’s membrane potential

behaves similarly to a rectified linear unit (ReLU). By replacing the values of the ReLU

with spike counts over time intervals, the weight update routines for training the SNN

can be modeled after those for training an ANN with ReLU units. Doing this involves

using STDP and anti-STDP rules to handle products of spike trains. The derived training

algorithm can be applied to multi-layer SNN in which each neuron has no constraint on

the numbers of spikes. Using BP-STDP, the XOR problem was solved in around 150

iterations, and a 96% test accuracy on the Iris dataset was achieved.

Multi-layer SNN with Delay Training

As relatively few studies have investigated delay training in SNN, a recent study

[69] sought to apply the EDL [65] approach to a multi-layer SNN. EDL was used to train

the weights and delays of the hidden-to-output neurons. Meanwhile the input-to-hidden

neuron weights (not the delays) were trained with STDP and anti-STDP rules. Using

this approach, 99.8% training accuracy and 95.7% test accuracy was achieved on the Iris

dataset, and a smooth progression in accuracy over epochs was observed (see Fig. 13).
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FIGURE 13.: Multilayer SNN with delay training on Iris: Training accuracy vs. epoch
[67]. A multilayer SNN was trained with EDL on the hidden-to-output weights and
delays, and STDP and anti-STDP rules on input-to-hidden weights. A comparison
between one and three output neurons is shown.

Tab. 1 summarizes, ordered from highest to lowest test accuracy, the accuracy and

training epochs of the previously discussed SNN training algorithms on the Iris dataset.

The best result was achieved by STIP, while ReSuMe was the worst. Despite being one

of the earliest algorithms, Spikeprop achieved one of the highest levels test accuracy,

though this may be due to the enormous number of training epochs used. However, from

the available data, NSEBP is by far the most efficient in terms of training time, and may

easily surpass the others if trained over more epochs.

Comparison of Algorithms

Comparisons on the XOR benchmark were made between multi-layer PSD, multi-

layer Tempotron, Spikeprop, multi-layer ReSuMe, and a Spikeprop implementation

with a learning rate adaptation technique incorporated [70]. Both multi-layer PSD and

multi-layer Tempotron converged on 100% of simulations. Spikeprop was slowest while

NSEBP was much faster. This can be seen in Tab. 2. The slow convergence of Spikeprop

may be due to the necessity for small learning rates, while the analytic approach of the

NSEBP algorithm allows for any desired spike time shifts for a given input to be effected

in one training step.
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TABLE 1.: SNN classification on Iris.

Accuracy
Algorithm Train Test Epochs
STIP [67] 0.981 0.967 -
Spikeprop [59] 0.974 0.961 1000
NSEBP [27] 0.98 0.96 18
BP-STDP [68] - 0.960 -
Multi-DL-ReSuMe [69] 0.998 0.957 -
Multi-Tempotron [61] 0.981 0.947 -
ReSuMe [16] 0.960 0.94 174

TABLE 2.: Convergence on XOR with several SNN training algorithms.

Algorithm Epochs
Spikeprop [59] 250
Fast Spikeprop [70] 127
Multi-layer ReSuMe [16] 137
Multi-layer PSD [17] 86
Multi-layer Tempotron [17] 37
NSEBP [27] 4-11
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FIGURE 14.: Effect of training set size on Iris classification taken from [17]. (a) and (b)
respectively show the training and testing accuracy with respect to the size of the training
set.

Class Encoding

A few approaches towards output encoding can be taken when training an SNN

to classify. In binary encoding, a neuron that fires represents a “1”-valued digit in the

binary class label while a quiescent neuron represents a “0.” When index encoding is

used, output neuron i firing signifies class i. Index encoding uses the first neuron to fire

for class labeling.

Index encoding allows predictions to be made based on which output neuron

reaches the highest voltage (relative confidence), as opposed to which output neuron

fires (absolute confidence). Fig. 14 depicts a comparison of three a multi-layer

SNN classification approaches on Iris dataset [17]. Performance of the multi-layer

Tempotron rule using both absolute confidence (MuTmptr Fire) and relative confidence

(MuTmptr Vmax), and the multi-layer PSD rule (MuPSD), are compared. It is seen that

relative confidence results in higher training and generalization accuracy.
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TABLE 3.: UCI dataset characteristics: The TAE is the only among here with categorical
attributes. The three columns under “Categorical” indicate the number of categorical
attributes with number of classes as indicated by the corresponding subcolumn

No. Original Attributes
Categorical

Dataset Datapoints Numerical 2 25 26 Total Classes
tae 151 1 2 1 1 5 3
iris 150 4 3 3
vertebrae 310 6 3 3
ion 351 34 2 2

UCI Datasets

The University of California at Irvine currently hosts a well known online

repository of small to medium data sets to be used for machine learning benchmarking.

These include databases for classifying cancer malignancies, predicting income from

census information, and predicting car safety, to name a few.

Four examples of UCI datasets include the Teaching Assistant Evaluation dataset

(TAE), the Iris dataset, the Vertebral Column dataset, and the Ionosphere dataset. For

purposes of minimizing computation time, these datasets were selected because they were

small and had low numbers of attributes.

TAE

The Teaching Assistant Evaluation dataset consists of evaluations of teaching

assistants at the Statistics Department of the University of Wisconsin-Madison over

five semesters, including two summer semesters. This set contains 151 datapoints with

qualities about the teacher and the class, along with the three-class label of teaching
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assistant’s performance. It was originally developed to research bias elimination within

decision tree splits [33].

Numerous classification experiments have been performed on TAE. The Buntine

decision tree algorithm [71] achieved 67% accuracy on TAE [72]. Raw SVM experiments

with grid search have yielded 64% accuracy, while further incorporating particle swarm

optimization and feature selection techniques improved accuracy to 83% [73].

Iris

The Iris dataset [28] is a very widely used benchmark for machine learning

algorithms. It consists of 150 datapoints, each containing the petal width, petal length,

sepal width, and sepal length of an individual of three different species of Iris plants. Two

of the classes are linearly non-separable.

SVM studies on this dataset have yielded 96% accuracy with grid search

optimization, and 98% accuracy with particle swarm optimization, and further improved

to 99.20% when feature selection techniques are added [73]. Recently, 100% accuracy

was achieved with a back-propagation neural network (BPNN) after 10,000 training

epochs [74].

Vertebrae

The Vertebral Column [30, 31, 32] dataset depicts normal and abnormal spinal

anatomical features. It consists of 310 datapoints of vertebral attributes, along with

classifications of normal, disk hernia, or spondilolysthesis, and was collected by

Guilherme de Alencar Barreto and Ajalmar Rêgo da Rocha Neto at the Department

of Teleinformatics Engineering, Federal University of Ceará in Brazil, and Henrique

Antonio Fonseca da Mota Filho at the Hospital Monte Klinikum in Ceará.
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TABLE 4.: Classification on UCI datasets.

Accuracy
Dataset ANN SVM Best
tae 0.55 [78] 0.64 [73] 0.83 [73]
iris 1.00 [74] 0.96 [73] 1.00 [74]
vertebrae 0.85 [75] 0.82 [75] 0.97 [75]
ion 0.90 [77] 0.93 [73] 0.99 [73]

One experiment used 10-fold cross validation on the raw dataset and solved the 3-

way classification to 85.48% accuracy using ANN and 81.61% with SVM. They further

improved this to 96.77% and 96.45% by using a novel pairwise fuzzy C-means based

feature set [75]. Another experiment achieved further improvements on the raw dataset:

93.55% with ANN and 86.33% with SVM, using 10-fold cross validation, although they

cleaned the dataset by “handling” noisy values [76].

Ion

The Ionosphere dataset is taken from an array of high frequency antennas located

in Goose Bay, Labrador, which are used as a radar system to collect data on electrical

activity in the ionosphere. This dataset consists of 351 datapoints, with 33 features and 1

class value, i.e. whether suitable, or not suitable, for further investigation [29].

Basic BPNN applied to the dataset with 80/20 split between training yield an

average accuracy of 90.24%, while using a CMTNN improved this to 93.43% [77].

Likewise, SVM studies on this dataset have shown 97.50% accuracy on test set when

parameters are optimized using PSO, and this increases to 99.01% when features

selection is added [73].
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CHAPTER III

METHODS

We program a multi-layer feed-forward spiking neural network with one hidden

layer and multiple delayed subconnections (see Fig. 15). The multi-layer ReSuMe

training algorithm is derived for the case of multiple delayed subconnections, and

reduced to the case of a classification problem by incorporating Tempotron-like learning

[26]. We benchmark on the XOR problem along with four UCI datasets: Iris, Teaching

Assistant Evaluation (TAE), Vertebral Column, and Ionosphere. For the XOR problem,

the number of epochs until perfect accuracy is recorded for one set of parameters in order

to demonstrate the correctness or our implementation. Experiments on the UCI datasets

are done using cross-validation and a grid search over the numbers of hidden neurons.

Network Parameters

We first derive the mathematical expressions that govern the behavior of a spiking

neural network with one hidden layer. Our feedforward neural network consists of

integrate and fire neurons. We simulate the voltage v(t) of a neuron in either the hidden or

output layer via a weighted sum of spike kernels arriving at various times:

vj(t) =
∑

i

∑

k

wkij
∑

f

α(ti,f − dki,j) (3.1)

where wki,j is the weight associated with the kth connection between neuron i in the

previous layer, and neuron j in the next layer, and dki,j is the delay along that connection.
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Input Neurons Hidden Neurons Output Neurons

Multiple Delayed Subconnections

FIGURE 15.: Connectivity structure of our SNN. A feed-forward arrangement is used
with multiple connections between each neuron pair. Each connection may have a
different weight and delay.

We use α(t) to denote the spike kernel:

α(t) = e
− t
τ1 − e− t

τ2 (3.2)

and ti,f to denote the f th firing time of neuron i in the preceding layer. Here τ1 = 5 ms

and τ2 = 1.25 ms are decay parameters selected to have a ratio of τ1/τ2 = 4 as was done

in [16, 61]. The input layer produces a set of discrete spike times which are determined

from the data.
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If vi(t) reaches the threshold vT , where vT = 100, a spike time is recorded1. Spikes

in the hidden layer cause a reset in the value of v(t) to zero, and a refractory period

begins.

ReSuMe Based Multi-Layer Tempotron Training Algorithm

Weight updates for hidden-to-output weights

The multi-layer ReSuMe training algorithm involves weight updates and can be

derived to account for multiple delayed subconnections. The starting point for calculating

the weight updates for this case are:

∆wkho(t) = δo(t)Rh(t) (3.3)

δo(t) :=
1

mnh

[
Rd
o(t)−Ra

o(t)
]
. (3.4)

where ∆k
how(t) is the change in weight of the kth subconnection between hidden neuron

h and output neuron o; Rh(t), Rd
o(t), and Ra

o(t) are the instantaneous firing rate of hidden

neuron h, the desired firing rate of output neuron o, and the actual firing rate of output

neuron o, respectively; m is the number of delayed subconnections between each neuron

pair; and nh is the number of hidden neurons. Eqs. 3.3 and 3.4 are Eqs. 3.28 and 3.29

from [16].

The weight update equations for multiple delayed subconnections are derived by

using the same approach derived for SNN with single-synapse connections between

neuron starting from these preceding two expressions as described in [16]. First the firing

1It must be noted that the simulated membrane potential is linearly related to input current. As such,
VT = 100 when the learning rate is 50 is equivalent to the case of VT = 1 and the learning rate is 0.5,
assuming the weights are scaled correspondingly
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rates for spike-trains are substituted as

R(t)→ S(t), (3.5)

which results in the weight update equation of

∆wkho(t) =
1

mnh

[
Sdo (t)− Sao (t)

]
Sh(t− dkho). (3.6)

Next, products of spike trains with the statistical model of STDP and anti-STDP

relationship [63], expressed as

Spost(t)Spre(t) =Spre(t)

[
a+

∫ ∞

0

apre(s)Spost(t− s)ds
]

+

+Spost(t)

[
a+

∫ ∞

0

apost(s)Spre(t− s)ds
]
, (3.7)

are substituted into Eq. 3.6, resulting in the following expression for the weight updates

for the synapses between the hidden and output layers:

∆wkho(t) =
1

mnh
Sh(t− dkho)

∫ ∞

0

apre(s)
(
Sdo (t− s)− Sao (t− s)

)
ds+

+
1

mnh

(
Sdo (t)− Sao (t)

) [
a+

∫ ∞

0

apost(s)Sh(t− dkho − s)ds
]
. (3.8)

Weight updates for input-to-hidden weights

To derive the weight update routines for the synapses between the input neurons

and the hidden neurons, the starting equations are

∆wkih = δh(t)Ri(t− dkih) (3.9)
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δh(t) =
1

mni

∑

l,o∈O

δo(t)w
l
ho (3.10)

where ∆wkih is the weight change in the kth delayed subconnection between input

neuron i and hidden neuron h; ni is the number of inputs; and dkih is the delay along that

subconnection. Again, after substituting rate terms into spike train terms the expression

∆wkih =
1

m2nhni

∑

l,o∈O

wlho
[
Sdo (t)− Sao (t)

]
Si(t− dkih) (3.11)

is acquired.

Next, after incorporating the absolute values of the weights, as in Eq. 2.33, the final

weight update expression is

∆wkih =
1

m2ninh
Si(t− dkih)

∑

l,o∈O

||wlho||
∫ ∞

0

apre(s)
[
Sdo (t− s)− Sao (t− s)

]
ds+

+
1

m2ninh

∑

l,o∈O

||wlho||
(
Sdo (t)− Sao (t)

) [
a+

∫ ∞

0

apost(s)Si(t− dkih − s)ds
]
.

(3.12)

where || · || denotes the absolute value.

Adaptation to classification

Tempotron-like learning is applied to the derived ReSuMe weight update algorithm.

This is done by updating the corresponding weights when there is a discrepancy between

actual firing and desired firing of an output neuron. If the output neuron fires but is not

desired to fire, then the weight is updated according to this algorithm without change.

However, in cases in which the output neuron was supposed to fire, but doesn’t, the time

at which the neuron reaches its maximum voltage is used as the desired spike time. Using
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this idea results in the definition

λo =





−1 if neuron o fires when it should be quiescent

1 if neuron o does not fires when it should fire

0 otherwise

(3.13)

Additionally, tmax,o will be defined as the time at which neuron o either reaches a

maximum value of Vo(t), or the time at which it spikes (and is unable to spike thereafter)

Using these definitions, the weight updates for the synapses between the hidden

neurons and output neurons becomes

∆wkho(t) =
λo
mnh

Sh(t− dkho)
∫ ∞

0

apre(s)δ(tmax,o − s)ds+

+
λo
mnh

δ(tmax,o − t)
[
a+

∫ ∞

0

apost(s)Sh(t− dkho − s)ds
]
, (3.14)

while the weight updates for synapses between input neurons and hidden neurons

becomes

∆wkih =
1

m2ninh
Si(t− dkih)

∑

l,o∈O

λo||wlho||
∫ ∞

0

apre(s)δ(tmax,o − s)ds+

+
1

m2ninh

∑

l,o∈O

λo||wlho||δ(tmax,o − t)
[
a+

∫ ∞

0

apost(s)Si(t− dkih − s)ds
]
. (3.15)

Since each neuron can only spike once, these equations reduce to

∆wkho(t) =
λo
mnh

δ(tmax,o − t)
[
a+

∫ ∞

0

apost(s)Sh(t− dkho − s)ds
]

(3.16)

∆wkih =
1

m2ninh

∑

l,o∈O

λo||wlho||δ(tmax,o− t)
[
a+

∫ ∞

0

apost(s)Si(t− dkih − s)ds
]
. (3.17)
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TABLE 5.: XOR problem parameters searched: For every unique every combination
of parameters, 44-45 experiments were performed using different random initialization
seeds.

Hidden neurons Delayed subconnections Learning rate No. random initializations
4-7 10, 12, 14 1, 10, 25, 50 100 44-45

Brian2 Simulation Library

Version 2.0.1 of the Brian2 SNN simulation library is used. Brian2 enables the use

of synaptic weights and delays, and also interfaces to Numpy, Weave, or auto-generated

C++ code for the underlying simulation. Brian2 also incorporates MatPlotLib functions

for plotting, and allows the user to record certain neural state variables during simulation,

such as spike times.

The XOR Problem

The XOR problem is a small, linearly non-separable classification problem. It

consists of four data points, each with two single-digit binary features. If both binary

digits are the same, the class is labeled a “1.” If the binary digits differ from each other,

the class is labeled “0”. To encode this in a spiking neural network, input digits of type

“1” are set to spike at 0 ms, while digits of type “0” are set to spike at 8 ms. The third

input is a reference spike at 0 ms. The SNN uses one output neuron.

To investigate the XOR problem, an extensive parameter search space is conducted.

As shown in Tab. 5, numbers of hidden neurons, numbers of delayed subconnections, and

the learning rate were all varied. The subconnection delays were randomly generated to

be between zero and ten milliseconds, while the weights are uniform-randomly generated

between -320 and 1,280.
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TABLE 6.: XOR problem encoding

inputs (ms) output
0 8 0 silent
8 0 0 silent
8 8 0 fire
0 0 0 fire

For each combination of parameters, 44-45 experiments with different random

initialization seeds were conducted. Training was performed until either validation

accuracy reached 100%, or 250 epochs were traversed. The number of epochs until

convergence was recorded. The optimal parameters for fast and reliable convergence

were searched for.

Training and testing are performed each epoch until the network exhibits the

behavior seen in Tab. 6 on the test runs.

UCI Dataset Experiments

The network architecture was also used to classify on the four UCI datasets listed

in chapter 2. Each dataset was split into separate sets for training, validation, and testing,

and the results averaged using 11-fold cross validation for the Vertebral Column dataset,

and 10-fold cross validation for the other three datasets. To prepare each set, the data is

split into separate sets for each class, after which they were each scrambled and split into

their corresponding number of folds: 1 fold each for validation and testing, and the rest of

the folds for training. The corresponding training, validation, and test sets for each class

were recombined and scrambled again for the training process. The TAE dataset included

attributes with categorical data, while all other datasets had only numerical attributes.
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Encoding Input Features to Spike Times

Categorical and numerical attributes were treated differently in the input encoding

process. Two separate experiments were performed on TAE dataset, one using binary

encoding, and the other using index encoding, for input categorical features.

Binary encoding is performed by setting the number of input neurons for a

categorical attribute to the lg of the number of categories. The input firing pattern is then

set such that the “on” and “off” neurons form the binary representation of the category

index. Index encoding is performed by using the number of categories as the number of

neurons for that attribute. The index of the category then corresponds to the index of the

“on” neuron, whereas the rest were “off”. In all cases, “on” neurons fire at time t = 0 ms

while “off” neurons fire at time t = 8 ms.

Encoding numerical attributes is simpler. Each numerical input attribute is linearly

normalized, independently of the other features, across all datapoints to a range of time

t = 0 ms to t = 8 ms. Each attribute is then linearly reversed so that a higher number in a

particular numerical attribute implies a sooner input spike time encoding. Additionally, in

order to give absolute reference for each dataset, input spikes at 0 ms were added.

After converting input datapoints to spike times, the experiment was conducted

by training with the Tempotron-like ReSuMe algorithm for a maximum of 500 epochs.

After each epoch, the training, validation, and testing accuracy are recorded. The training

algorithm finishes if 500 epochs were computed, with no early stopping criteria. After

termination, the epoch with maximum performance is determined. The values for

training, validation, and test accuracy at this epoch are recorded as the final values.

However, determining the optimal epoch proved somewhat ambiguous. This was

due to the erratic behavior seen in the accuracy-vs-epoch graph. For instance, over one

epoch, the training accuracy may drop significantly while validation accuracy jumps up,
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and visa versa. This is consistent with the known behavior of an SNN being trained with

the ReSuMe algorithm [16]. In addition, the relative smallness of the validation sets made

them prone to such rapid changes. Therefore, for each training run, the final recorded

train, validation, and test accuracy was selected based on the minimization

Epochopt = argmin[(1− ytrain)
2 + (1− yval)

2 + 4(yval − ytrain)
2]. (3.18)

Here ytrain and yval are arrays of training and validation accuracy at each epoch,

respectively. Epochopt is the epoch at which final values for train, validation, and test

accuracies are reported. Elimination of the second and third terms will result in the

classic fitness function for minimizing training error. However, Eq. 3.18 was selected

to minimize training error, validation error, and the difference between the two, in an

attempt to acquire good results during an erratic evolution of accuracy over epochs. In

addition, Eq. 3.18 contains no information on test accuracy. Once the epoch is selected,

the training, validation, and test accuracy at that epoch are recorded for the particular

cross validation fold and set of parameters.

In the UCI dataset experiments, a grid search with 5, 6, and 7 hidden neurons

was performed. The only exception is the Iris dataset, which ranged from 4 to 8 hidden

neurons. In all experiments, 10 subconnections with delays uniformly randomly

distributed between 0 and 11 ms were used, and weights were uniformly and randomly

initialized within a range of -320 to 1,280. This was done in order for 20% of weights

to be inhibitory, while the magnitude of the range facilitated initial spiking with a large

voltage threshold in the neuron units. All folds in a cross-validation experiment used the

same initialization seed and hence the same initial synaptic weights. For each number of

hidden neurons, 5 trials of cross-validation were performed using different initialization

seeds.
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Just as is done with the XOR simulation setup, additional input neurons firing at 0

ms were added so that linear offsets can be distinguishable.

Comparison Experiments

Predictions on all four UCI datasets were also made using an SVM with

RBF kernel. To optimize SVM parameters, both a grid search and a particle swarm

optimization (PSO) algorithm was used. For both, in order to search a wide range without

exorbitant amount of experimental runs, parameters C and γ varied along an exponential

scale:

C = 10i (3.19)

γ = 10j/N (3.20)

where N is the number of input features, and i and j are parameters set by the

optimization algorithm. For grid search, the variables i and j were searched in the range

(-3,7) inclusively over 26 steps in order to balance both a large range of values and small

spacing. With PSO experiments, i and j were constrained within the same range using a

population size of 150 over 300 iterations. Optimal parameters were determined based on

the fitness function Eq. 3.18.

Inputs to SVM were the additive inverse of inputs to SNN scaled to interval of (0-

1). This was done because, for SNN inputs, smaller numbers correspond to later spikes,

while stronger stronger inputs correspond to earlier spikes. With SVM, the opposite is

true.
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CHAPTER IV

RESULTS

The Tempotron-like ReSuMe training algorithm [26] has been adapted for the

multi-layer ReSuMe training algorithm [16] and applied to a three-layer classifier with

multiple delayed subconnections. Using this, the XOR problem was solved and varying

levels of accuracy were seen on the four UCI datasets. Experiments on UCI datasets have

totaled 690 data runs, and computations took roughly 6 weeks on two 3.40GHz Intel(R)

Core(TM) i7-3770 quad-core processors (totaling 16 logical processors). The extensive

grid search on the XOR problem involved 2685 experiments total.

The XOR Problem

The XOR problem was solved over an extensive parameter space. Numbers of

hidden neurons ranged from 4 to 7; delayed subconnections had values of 10, 12, and

14; and the learning rate took values of 1, 10 25, 50, and 1001. Tab. 7 shows convergence

statistics for the optimal combination of parameters over 44 trial runs. On average just

under 14 epochs were needed to find the solution.

1These may seem like high learning rates, but with spike threshold of 100, a learning rate of 50
corresponds to a learning rate of 0.5 with a spike threshold of 1.

TABLE 7.: XOR convergence statistics using optimal parameters of 7 hidden neurons, 10
delayed sub-connections, and a learning rate of 50.

Epochs to solve
Mean Stdev Min Max Convergence Rate (%)
13.73 6.70 3 35 100
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TABLE 8.: XOR comparison: Convergence of several algorithms on the XOR problem.
Bold indicates our experiment. In all cases, the neuron model consisted of a linear sum of
the spike kernel. Models using spike kernel of α = t

τ
exp (1− t

τ
) are denoted by SRM,

while models using α = exp (t/τ1) − exp (t/τ2) are denoted by LIF. In all cases, the
neuron model was the simplest case as denoted by Eq. 2.10.

Algorithm Spike
Kernel

Epochs

Spikeprop [59] SRM 250
Multi-Layer ReSuMe [16] SRM 137
Fast Spikeprop [70] SRM 127
Multi-Layer PSD [17] LIF 86
Multi-Layer Tempotron [17] LIF 37
ReSuMe-like Tempotron LIF 14
NSEBP [27] LIF 4

Tab. 8 compares various algorithms on the XOR problem. Ours converges

faster than all listed except NSEBP. Differences in efficiency across experiments may

potentially be due to differences in extensiveness of the parameter search space, or

differences in the neural parameters used. All experiments listed in Tab. 8 use a linear

sum of pre-synaptic kernels, as opposed to more complex, non-linear differential

equation. The only difference is the presynaptic kernel themselves. Those listed with

the SRM kernel use

α =
t

τ
exp (1− t

τ
) (4.1)

while those listed as LIF use

α = exp (
t

τ1
)− exp (

t

τ2
) (4.2)
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TABLE 9.: Neuron parameters on XOR: Comparison of algorithms on XOR problem.
Bold indicates our experiment.

Algorithm Spike
Kernel

parameters

Spikeprop [59] SRM τ = 7ms
Multi-Layer ReSuMe [16] SRM τ = 7ms
Fast Spikeprop [70] SRM τ = 7ms
Multi-Layer PSD [17] LIF τ1 = 7ms, τ2 = 1.75ms
Multi-Layer Tempotron [17] LIF τ1 = 7ms, τ2 = 1.75ms
ReSuMe-like Tempotron LIF τ1 = 5ms, τ2 = 1.25ms
NSEBP [27] LIF τ1 = 5ms, τ2 = 2.50ms

In each, the time constants can be modified to make both kernels very similar in shape.

The studies listed as SRM used τ = 7ms, while those listed as LIF used different

parameters.

UCI Dataset Experiments

Results on all four UCI datasets for all parameters, averaged across five trials of

k-fold cross-validation, are shown in Fig. 16. Additionally, Fig. 17 shows numbers of

epochs until values were recorded according to Eq. 3.18, averaged over all experiments

for each dataset. In both cases, middle ticks correspond to mean accuracy while error

ranges correspond to one standard deviation. A numerical summary of train, validation,

and test accuracy, for optimal numbers of hidden neurons, is shown in Tab. 10. Significant

overfitting can be seen in all experiments, while training and validation accuracies

are close to each other. There is some correlation between number of hidden neurons

and final performance in all datasets, especially Iris. Training runs on the Iris dataset

converged faster with higher numbers of hidden neurons, while convergence epochs with
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FIGURE 16.: All UCI datasets. All UCI datasets. Middle ticks correspond to mean
accuracy while error ranges correspond to one standard deviation.

other datasets did not show this phenomenon. Additionally, extremely high variance in

the number of training steps is seen.

Iris

The Iris dataset contains 150 datapoints in 3 classes. 10-fold cross validation was

performed, and datapoints were split evenly between 3 classes: 40 data points per class

were used for training, 5 for validation, and 5 for testing.
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FIGURE 17.: Boxplot: Epochs until recorded. Middle ticks correspond to mean epochs
while error ranges correspond to one standard deviation.

Looking at Fig. 16 we see that test accuracy has a higher variance and lower mean

than both validation and training accuracy, while interestingly, validation accuracy is

slightly higher than training accuracy. This latter fact may be due to the relative smallness

of the validation set compared to the training set, which could allow for greater variation

in validation accuracy over its evolution vs. epoch than training accuracy. This would give

more leeway for the second term in Eq. 3.18 to be optimized. Overall, accuracy peaks at

seven hidden neurons.
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TABLE 10.: SNN accuracy on UCI datasets, averaged over five iterations of k-fold cross-
validation. The second column indicates the number of hidden neurons that yielded
optimal value of the fitness function (Eq. 3.18).

Hidden Accuracy
Dataset Neurons Train Validation Test Epochs
iris 7 0.911±0.032 0.917±0.032 0.893±0.084 182±160
ion 5 0.848±0.052 0.853±0.047 0.815±0.074 359±110
vertebra 7 0.642±0.039 0.646±0.044 0.577±0.074 181±151
tae 7 0.526±0.039 0.540±0.041 0.420±0.102 229±138

Ion

The Ionosphere dataset contains 351 data points. Using 10-fold cross validation,

273 datapoints were allocated for training, and 39 for each, validation and testing.

Accuracy is consistently above 75%, and sometimes above 80%. There is some

overfitting with respect to training and testing sets, while again, accuracy on the validation

set is often greater than on the training set. No obviously consistent correlation between

numbers of hidden neurons and overall accuracy can be seen.

Vertebrae

Vertebral Column is a 3-class dataset containing 310 datapoints. Using 11-fold

cross validation, 248 datapoints were allocated for training, and 31 datapoints for each,

validation and testing.

Test accuracy on the Vertebral Column hovers around 60%. In all but one case,

mean test accuracy is consistently lower than training accuracy, while again, validation

accuracy is consistently higher than training accuracy except in one case.
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TAE

TAE is a 3-class dataset containing 151 datapoints. 10-fold cross validation was

used. As folds had slightly different numbers of data points for each class, training sets

ranged from 115 to 121 datapoints, while validation and test sets ranged from 15 to 18

datapoints. Additionally, binary encoding resulted in slightly higher accuracy than index

encoding with SNN computations, and much higher accuracy than index encoding for

SVM computations. Therefore all TAE results listed here use binary encoding.

TAE shows high variance in test accuracy, while training and validation accuracy

show narrower ranges. The consistent trend of underfitting with respect to training

and validation accuracy is especially pronounced for TAE. Test accuracy tends to be

significantly lower than train and validation accuracy, which shows the poor performance

of the classifier on this dataset.

Comparison with SVM and Literature

Tab. 11 shows the comparison between the overall test sets from the optimal

parameters in both SNN computations and SVM computations, as determined by training

and validation accuracy. Datasets are ordered from easiest (top) to hardest (bottom).

Evidently the Iris dataset was easiest for both our algorithms and published research,

while TAE dataset was the most difficult.

Our SNN performed best on Iris and Ionosphere. While it outperformed in-house

SVM experiments on Iris with respect to accuracy, it by no means reaching the state-of-

the-art in vanilla algorithms2. In addition, accuracy performance on TAE was extremely

poor, averaging at around 42%, which is a little better than a random classifier.

2No preprocessing
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TABLE 11.: Test accuracy on UCI datasets for both SNN and SVM. For each dataset, the
experiment resulting in the lowest value of the argument to Eq. 3.18 was used for final
reporting. Bold column labels indicate in-house experiment.

Hidden
Dataset Neurons SNN SVM (PSO) SVM (Grid) SVM ANN
iris 7 0.893±0.084 0.868±0.293 0.869±0.294 0.96 [73] 1.00 [74]
ion 6 0.815±0.074 0.847±0.301 0.843±0.299 0.93 [73] 0.90 [77]
vertebra 6 0.577±0.074 0.768±0.262 0.774±0.264 0.82 [75] 0.94 [76]
tae 6 0.420±0.102 0.513±0.208 0.496±0.206 0.64 [73] 0.55 [78]

TABLE 12.: SNN classification on Iris. Bold indicates our experiment.

Accuracy
SNN Algorithm Train Test Epochs
STIP [67] 0.981 0.967 -
Spikeprop [59] 0.974 0.961 1000
NSEBP [27] 0.98 0.96 18
BP-STDP [68] - 0.960 -
Multi-DL-ReSuMe [69] 0.998 0.957 -
Multi-Tempotron [61] 0.981 0.947 -
ReSuMe [16] 0.960 0.94 174
ReSuMe-like Tempotron 0.911 0.893 182

Comparison With Other SNNs on Iris

A comparison of performance on the Iris dataset between in-house SNN

experiments and those of SNN training algorithms taken from the literature is shown

in Tab. 12. Our experiment performs worst of all listed. However, it must be noted

that the original experiments of the multi-layer ReSuMe training algorithms found

significant, random changes in test accuracy when varying the numbers of delayed

subconnections. With 9 delayed subconnections, test accuracy was 94%, while with

10 delayed subconnections, test accuracy was 89%. Because computation time was

prohibitive (6 weeks), and several reruns needed to be made to correct mistakes, it was
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impractical to perform a comprehensive grid search over all the important parameters.

These results must therefore be counted as preliminary. Additionally, a different input

encoding scheme, such as the gaussian based population encoding seen in [59], may

improve results.
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CHAPTER V

CONCLUSION

We have taken an approach to optimizing an SNN for classification and adapted

it to the multi-layer case using readily available algorithmic methods. Our SNN has

solved several classic numerical benchmark problems. After a thorough parameter search,

we have improved upon previous results on the XOR benchmark where the number of

epochs until full recognition is the concern. On the UCI datasets, however, our SNN

performed best on Iris and Ionosphere, outperforming in-house SVM experiments on

Iris with respect to accuracy. However, on the other datasets cases it did worse than our

SVM experiments, and in all cases our SNN was less accurate than ANN and SVM

experiments, or SNN experiments, from the literature. Our SNN accuracy was also

especially poor on the Vertebral Column and TAE datasets. More tuning of the SNN may

improve results significantly.

SNN training with this setup shows that training effectiveness is effected by the

profile of initial synaptic weights and/or delays. The presence of multiple delayed

subconnections spreads out the arrival times of pre-synaptic spikes. This allows for

greater ranges of potential output spike times given the appropriate synaptic weights.

However, cases in which a spike is desired to be produced at a time in which the incoming

pre-synaptic kernels are relatively sparse would necessitate a correspondingly large

change in synaptic weights. This phenomenon can be seen in Fig. 8 where, although

weight progression during training shows consistent direction, some weights seem to

grow indefinitely. This problem with a lack of homogeneous ’supply’ of pres-synaptic

kernels, however, is solved to some extent in our case since the desired spike time is set

to the point at which the membrane potential is at its maximum. This can be seen in the
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fact that Tempotron training, and Tempotron-like ReSuMe training, are both much more

efficient than ReSuMe alone when training for the single-spike classification problem.

However, it is possible that sparsity of pre-synaptic kernels may be improved upon. This

may be done by incorporating appropriate delay training. The principle cause by which

delay training influences spiking behavior seems to be the coordination of the synchrony

of incoming spikes, and the reduction of extent to which weight values need to change in

order to produce desired changes in spike times.

As seen in our improvements on the XOR problem, the multilayer ReSuMe-

like Tempotron algorithm may have potential. If further investigations demonstrate its

capability to train SNN with high accuracy on meaningful datasets, then research may

be conducted on the feasibility of implementing the learning algorithm efficiently in

hardware. Applications that depend crucially on energy efficiency therefore may be best

suited with an SNN solution in hardware.

Future Work

A comprehensive grid search over the parameters used for classification on the

UCI datasets still needs to be performed to produce a final and reliable expression for

the performance of this algorithm. Varying parameters should include the numbers of

delayed subconnections, the range of delays allowed, and the learning rate parameters. In

addition, different feature encoding schemes may have better results. It may also be useful

to investigate any bias in the fitness function.

The ReSuMe training algorithm was derived based on the assumption of a linear

relationship between firing rates of connected neurons. A similar approach may be

taken to derived a general formula that includes delay training. A gradient-based multi-

layer delay training algorithm would have to find an energy function that describes the
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efficiency by which synaptic kernels coincide with desired spike times in the hidden or

output neurons. Finding this will be left for future work.
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