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ABSTRACT 

EFFECTS OF 5𝛂-DIHYDROTESTOSTERONE (DHT) ON MOUSE GUT MICROBIOME— 

A STUDY OF SEX DIFFERENCES AND HORMONAL EFFECTS ON  

GUT MICROBIOME COMPOSITION 

by 
 

Bikesh Shrestha 

May 2019 

 
Type 1 Diabetes (T1D) is a polygenic and multifactorial disease, traditionally attributed 

to genetic susceptibility and diet. Over the past decade, novel studies have placed a higher 

significance on the role of gut microbiome in T1D pathogenesis. Furthermore, diabetic mouse 

models have shown higher incidence of T1D in females compared to males, attributed to the 

differences in gut microbial community structure. Interestingly, female mouse models elicit 

male-like protection from T1D when transplanted with the male gut microbiome. In a previous 

study, we observed that female Non-obese diabetic (NOD) mice implanted with slow release  

5a-dihydrotestosterone (DHT) for 90 days showed improved glucose tolerance when compared 

to untreated females. We hypothesized that DHT treatment alters female gut microbial profile to 

resemble a male-like gut microbiome that induces improved glucose tolerance, a determinant of 

T1D protection. We compared the gut microbiome composition of DHT-treated female mice 

with placebo-treated females and age-matched males to identify and characterize changes in the 

gut microbiome. Extracted bacterial DNA from intestinal samples were subjected to 16S rRNA 

sequencing. Sequence reads were analyzed using MicrobiomeAnalyst and Piphillin, two  

web-based programs for phylogenetic and functional analysis. We identified a significant 

increase in Bacteroides acidifaciens in DHT-treated females, which can potentially improve 
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glucose tolerance and attenuate T1D. Additionally, we noticed strong similarity trends in the 

proportional composition of the most abundant taxa between DHT-treated females and  

age-matched males. Our study shows that DHT-treatment alters the female gut microbial profile 

to resemble a male-like microbiome and possibly induce improved glucose tolerance, a 

determinant of T1D protection. 

Keywords: Type 1 Diabetes, Dihydrotestosterone, Gut microbiome 
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CHAPTER I 
 

INTRODUCTION AND LITERATURE REVIEW 
 

The human body serves as complex ecosystem that supports a vast community of 

microorganisms. This microbial community is primarily dominated by bacteria colonizing 

different regions, including skin, urogenital tract, oral cavity, nasal cavity, and the 

gastrointestinal tract. The Human Microbiome Project funded by the National Institutes of Health 

(NIH) has revealed the presence of signature microbial communities among different niches in 

human beings, with some individual variations [1]. Such variations in abundance and diversity 

are mostly attributed to the founder effect (initial gut colonizers), environment, diet, host 

genetics and delivery mode during birth [1,2]. 

Among the different microbiome niches, the gastrointestinal tract is the largest and most 

functionally prominent. The gut microbiome contains at least ten times more cells and a hundred 

times more genes than its host [3,4]. The microbial density is the largest at the distal end of the 

digestive tract, with the colon housing up to 1012 microbial cells per gram of fecal content [4]. 

Firmicutes and Bacteroidetes are the two most abundant bacterial phyla in the gut microbiome 

[3,4,5]. Bacteria belonging to the Proteobacteria, Fusobacteria, Verrucomicrobia, Cyanobacteria 

and Actinobacteria phyla are also commonly observed in the human gut, but in smaller 

proportions [3]. Collectively, the human gastrointestinal tract contains up to a hundred trillion 

bacteria belonging to 500—1000 different species [5]. 

Gut Microbiome Development 

The human fetus develops in a mostly sterile environment in the uterus and colonization 

of the gut begins primarily at birth. Based on the delivery mode, a newborn is exposed to a wide 

array of bacteria, which make up the primary gut colonizers. The gut microbiome in vaginally 
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born babies are primarily composed of Prevotella, Lactobacillus or Sneathia spp. These bacterial 

species are seeded orally during passage through the birth canal [6]. For those born through 

caesarean section, the initial gut colonizers consist of Staphylococcus, Corynebacterium, and 

Propionibacterium spp, derived from the skin [7,8]. A newborn’s intestine is an aerobic 

environment that supports oxygen-tolerant facultative anaerobes. Within days, strictly anaerobic 

bacteria take over as the intestinal lumen becomes anoxic. During the first few weeks of 

development, bacteria from the mother’s skin and vaginal microbiome, belonging to families 

Enterococcaceae, Streptococcacae, Clostridiaceae, Lactobacillaceae and Bifidobacteriaceae, 

colonize the infant’s gut [2]. 

Food is another prominent modulator of the gut microbiome, acting as a source of entry 

and substrate for new colonizers. Bifidobacterium species are more prominent prior to weaning 

due to their oligosaccharide (sugar) fermenting traits. The gut microbiome undergoes 

successional changes until the age of 2—3 years and starts stabilizing with the introduction of 

solid food. Once solid food is introduced, the gut microbiome experiences an increase in 

Bacteroides, Ruminococcus and Clostridium species, and a decrease in milk oligosaccharide 

fermenters [2]. 

Microbial composition in infants prior to weaning starts with relatively low bacterial 

diversity but large inter-individual variations. As the infant gets older, the gut microbiome 

increases in diversity and decreases in inter-individual variations, as it is further shaped by food, 

environmental exposure and exposure to medications, such as antibiotics. A stable and mature 

adult-like gut microbiome composition is established around age 3. By age 7, the phyla 

Firmicutes and Bacteroidetes make up 90% of the bacterial composition in the gut [2,8]. A 

healthy and functionally significant gut microbiome community aids polysaccharide breakdown, 
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and helps to regulate immune and neural development, as well as hormonal functions and other 

metabolic activities [9].  

Healthy Immune System and the Gut Microbiome 

The gut microbiome helps their hosts in synthesis of amino acids and vitamins, and in the 

processing of indigestible cellulosic compounds from plant polysaccharides [2] A mutualistic 

relationship exists between the gut microbiome and the host, whereby the microbiome gets a 

nutrient-rich environment while it regulates metabolic and homeostatic functions. Compositional 

shifts in the microbiome have been shown to have adverse effects on hosts’ health [10].  

A healthy immune system requires a healthy gut microbiome. A properly functioning 

immune system sustains a healthy microbiome while minimizing any risk of infection, 

controlling the balance between regulatory and inflammatory response. The mucosal immune 

system regulates anti-inflammatory activities by producing the secretory antibodies; secretory 

Immunoglobulin A and secretory Immunoglobulin B. Secretory antibodies regulate bacterial 

colonization in the gut and prevent colonization by harmful agents. [8,11]. Additionally, the gut 

microbiome regulates host immune cells and mediators. The early life microbiome provides the 

necessary stimuli for differentiation of cells and tissues in the immune system and plays crucial 

roles in the development of intestinal and systemic lymphoid tissue [12]. Comparative studies 

between mice without gut microbiome, termed Germ Free (GF) mice, and conventionally-raised 

mice have shown a significant decrease in gut mucus thickness in the absence of a gut 

microbiome. GF mice are axenic, specially raised to be devoid of all microorganisms and 

therefore lack a gut microbial community. Similarly, GF mice had lower blood vessel density, 

less stem cell differentiation, reduced antibody production, reduced production of antimicrobial 
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peptides in the mucus lining, and poorly developed lymphoid tissue [3,13]. A healthy gut 

microbiome and healthy immune system have a mutualistic relationship. 

A healthy gut microbiome is also crucial for proper functioning of T cells. T cells, also 

called T lymphocytes, are essential part of our immune system with several subsets, each with a 

distinct function. One of its subsets, the Type 1 regulatory (Tr1) or regulatory (suppressor) T 

cells, are involved in minimizing T cell mediated immunity and suppressing autoreactive T cells. 

Tr1 cells suppress inflammation and regulate tolerance to self antigens. Shifts in the microbiome 

composition may alter this regulatory function and trigger erroneous inflammatory responses. 

Several autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, psoriasis and T1D 

have been attributed to uncontrolled inflammatory responses brought on by an increase in 

another T cell subset, the T-helper cells (CD4+ cells) and subsequent activation of killer T cell 

subset, the cytotoxic T cells (CD8+ cells) [14,15]. T helper cells help activate cytotoxic T cells 

while regulatory T cells regulates tolerance to self antigens and autoimmune responses. A 

balance between T helper cells and regulatory T cells is vital in keeping erroneous activation of 

cytotoxic T cells in check and preventing autoimmune disease such as T1D [16]. 

Gut Microbiome and Diseases 

Metabolic diseases such as obesity and T1D are polygenic and multifactorial. While a 

number of gene variants are associated with them, environmental factors such as diet and 

lifestyle strongly influence disease progression. In addition to genetics, lifestyle and diet, the gut 

microbiome is another important factor that affects calorie intake and subsequently impacts the 

severity of metabolic diseases [9]. As we uncover the relationship between clinical parameters 

and the gut microbiome in disease pathogenesis, understanding microbial communities and their 



 5 

functional implications for the host can provide better understanding of human health and 

disease progression. 

A healthy gut microbiome requires a healthy diet. Studies have shown that the human 

population in developed Western nations has undergone shifts in gut microbiome diversity and 

composition, attributed to diet rich in sugar and processed foods, compared to rural populations 

that rely on a more traditional diet [17,18]. Scientists have observed gut microbial imbalance, 

termed dysbiosis, in many cases of inflammatory and immune-mediated diseases prevalent in 

Western populations including Crohn’s disease, rheumatoid arthritis, ankylosing spondylitis, 

ulcerative colitis, and T1D [19,20,21,22]. 

Type 1 Diabetes  

Type 1 Diabetes (T1D), also known as insulin-dependent diabetes, is an autoimmune 

disease. It is characterized by the destruction of pancreatic b cells by cytotoxic T cells and other 

immune cells [4,16,23]. It is a consequence of immune regulation breakdown resulting from 

expansion of CD4+ and cytotoxic CD8+ cells, autoantibody producing B lymphocytes and the 

activation of the innate immune system, which collectively destroy the pancreatic b cells [16]. 

When b cells are destroyed, our body cannot produce enough insulin to regulate glucose levels in 

the blood stream. 

Genetic and environmental factors are attributed to its etiology. Population studies and 

clinical studies in patients have indicated that T1D is associated with genes linked to the Major 

Histocompatibility complex (MHC), mainly in the Class II region. The gene complex Human 

Leukocyte Antigen system codes for the MHC proteins. Several MHC class II haplotypes have 

been associated with T1D susceptibility. Additionally, polymorphisms in the regulatory region of 
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the insulin gene, cytotoxic T lymphocyte-4 (CTLA-4) gene and other genes are associated with 

T1D susceptibility [24]. 

While more than 50 genes have been associated with T1D, the increased prevalence of 

T1D in recent years suggests that environmental factors, particularly influences from the gut 

microbiome, may play a larger role [5]. The continuous rise in the prevalence cannot be 

explained by genetic factors alone. The MHC class II haplotypes found in T1D patients can also 

be found in normal individuals [24]. The incongruous occurrence of T1D in only one member of 

monozygotic twins in another study further shows that T1D is heavily regulated by non-genetic 

factors [26]. Novel studies are examining the gut microbiome as a prominent non-genetic 

environmental modulator in T1D pathogenesis [5]. 

Non-Obese Diabetic Mouse—a T1D Model 

Non-obese Diabetic (NOD) mice are an animal model for T1D that develop spontaneous 

insulitis by 5—6 weeks of age due to cell-mediated immunity. Insulitis is the inflammation of the 

islet of Langerhans followed by destruction of b cells. NOD mice share similarities in T1D 

progression and traits with humans, including presence of pancreas specific autoantibodies, 

autoreactive CD4+ and CD8+ cells and similar genetic linkage. The major genetic contributor to 

diabetes susceptibility in NOD mice is the MHC class II molecule [24].  

T1D onset in NOD mice occurs at about 12—14 weeks of age in females and relatively 

later in males [46,58]. The disease onset is observed as early as 10 weeks of age in females with 

a cumulative incidence of 70%—80% by 30 weeks of age. In contrast, T1D in male NOD mice 

begins around 20 weeks of age with cumulative incidence of around 20% by age 30 weeks [24]. 

Interestingly, this difference in T1D incidence between the sexes in NOD mice is not observed in 

GF strains, pointing to the role of gut microbiome in eliciting protection from T1D [25]. Before 
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puberty, the gut microbial community does not differ significantly between male and female 

NOD mice. Post puberty, the male gut microbiome profile deviates while the female gut 

microbiome profile stays similar to that of young mice. Adult male and female NOD mice have 

different gut microbial composition, and the gut microbiome of castrated males is more similar 

to females than to non-castrated males [26]. Hormonal changes at puberty likely alter the gut 

microbiome composition and this change elicits the sex bias in T1D incidence. The transfer of 

the male gut microbiome from male NOD mice to GF female NOD mice caused elevated 

testosterone levels in the females [25].  

Furthermore, identification and quantification of metabolic products in serum (serum 

metabolomics analysis) of the GF female NOD mice recipients of the male NOD mice gut 

microbiome showed lowered concentrations of sphingolipid and glycerophospholipid long-chain 

fatty acid in the serum, compared to control NOD females, indicating downstream metabolic 

changes triggered by the male gut microbiome transplantation. Such metabolic changes were not 

observed upon transfer of the control female NOD mice gut microbiome to GF female NOD 

mice recipients. This suggested that the metabolic outcome is determined by the sex of the gut 

microbiome donor. Blocking the androgen receptor (AR) signaling pathway using flutamide 

attenuated all male gut microbiome specific metabolic changes observed in female recipients. 

This suggests that elevated testosterone elicited metabolic changes upon male gut microbiome 

transfer to females.  

Additionally, the same study quantified insulin specific autoantibodies (Aab) between 

different NOD mice treatment groups. Insulin specific Aab is an autoimmune phenotype in  

pre-diabetic NOD mice and in humans. Aab in female recipients of male gut microbiome was 

significantly lower than in unmanipulated females. Once again, this difference was attenuated in 
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female recipients of male gut microbiome treated with flutamide [25]. The study suggests that 

gut microbiome and androgens regulate each other through a reciprocal feedback mechanism, 

affecting the metabolome and autoimmune responses. 

Gut Microbiome and T1D Pathogenesis 

Studies on both rodent models and human subjects have revealed correlation between gut 

dysbiosis and T1D progression (Table 1). In a T1D human study, bacteria from phylum 

Bacteroidetes increased proportionally in abundance in diabetic children while members of 

phylum Firmicutes increased over time in healthy infants. Also, the gut microbiomes in diabetic 

children were less diverse and differed more between patients, while healthy children had similar 

gut microbiome composition with higher diversity [27]. A similar cross-sectional study identified 

phylum level decreases in Actinobacteria and Firmicutes, and the corresponding  

Firmicutes-to-Bacteroidetes ratio in diabetic children compared to healthy children [28]. Similar 

compositional changes were also observed at the genus level with significantly reduced 

proportions of lactic acid-producing bacteria, mucin-degrading bacteria and butyrate-producing 

bacteria, all known to be essential to the maintenance of gut integrity [28]. Poor health 

corresponds with decreased diversity and reduced stability in the gut microbiome [27,34]. The 

current challenge is to identify gut microbiome markers associated with these metabolic diseases 

and define their causative roles.  

Despite advancements in recent studies, we know very little about the role of the gut 

microbiome in T1D pathogenesis. While a number of correlations have been identified, we have 

yet to make progress in understanding the causal relationship. Current studies suggest that gut 

microbiome alters T1D pathogenesis through its effects on gut permeability as well as molecular 

mimicry of self antigens by bacterial proteins and metabolites. Additionally, gut microbiota 
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alters autoimmunity by modulating our immune system (Fig. 1). Various pathogen-associated 

molecular patterns such as lipopolysaccharides found in the gut microbiome can activate  

Toll-like receptors that can induce pro diabetogenic or anti-diabetogenic signals. Additionally, 

the gut microbiome can modulate the immune system by regulating T cells and their subsets [5]. 

Table1 
Alterations in the gut microbiome and its possible effects as listed in published studies 

 
 

In a human case-control study between 10 children at risk for T1D and 10 controls, a 

significant increase in Dialister invisus, Gemella sanguinis and Bifidobacterium longum were  

Gut microbiome change Model Possible Effects  Reference 
Increase in Dialister invisus, Gemella sanguinis and 
Bifidobacterium longum 

Human Increased 
permeability 

24 

Decrease in Bifidobacterium adolescentis and 
Bifidobacterium psudocatenulatum 
Increases in genus Bacteroides  

Human Increased 
permeability 
Decrease in lactate 
and butyrate 
producing species 

30 

 

Decrease in Akkermandia, Prevotella (mucin degraders) 
Decrease in Faecalibacterium, Subdoligranulum (butyrate 
producers) 
Increase in Alistipes, Bacteroides, Veillonella (producers 
of other Short-Chain-Fatty-Acids) 

Human Decreased 
intestinal integrity 
and increased gut 
permeability 

15 

Decreased abundance of Staphylococci and Lactobacilli in 
patients 

Human Limited ability to 
regulate 
proinflammatory 
response – 

31 

Increase in segmented filamentous bacteria in female  NOD 
mice 

Stimulation of 
Th17 cells and 
inhibition of Th1 
effector cells 

32 

Increase in Fusobacteria NOD 
mice 

Stimulation of 
CD8+ T cells 

33 

Decreased Lactobacillus, Bryantella, Bifidobacterium, and 
Turibacter and increased Bacteroides, Eubacterium and 
Ruminococcus 

Rat Possible role of 
gut flora in 
antigenic load in 
the intestine and 
subsequent effect 
on immune 
system. 

34 

Decrease in Firmicutes and increased Bacteroidetes Human Decreased 
diversity and 
reduced stability 

28 



 10 

 

Fig. 1  
Flowchart of the possible relationship between gut microbiome and T1D 
 
 

observed in T1D cases. This corresponded with significant increase in gut permeability detected 

through the lactulose/mannitol test [23]. While the relationship between the microbiome and gut 

permeability was not determined, this study suggests that T1D is associated with change in 

microbiome composition and increased gut permeability. A similar human study that compared 

the gut microbiome between children with at least two diabetes-associated autoantibodies and 

age and sex-matched autoantibody negative controls revealed that pancreatic b-cell 

autoimmunity is associated with lower abundance of lactate and butyrate-producing bacterial 

species [30].  Children with b-cell autoimmunity had increased abundance of Bacteroides 

bacteria and decreased Bifidobacterium adolescentis and B. pseudocatenulatum. Bifidobacterium 

species are known to produce butyrate [29]. 

The gut microbiome of healthy humans is composed of butyrate-producing and  
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mucin-degrading bacteria, while that of human diabetic patients is composed of producers of 

other short-chain-fatty-acids (SCFAs) such as succinate, acetate and propionate [13]. Butyrate is 

known to contribute to mucin synthesis, regulate tight junctions and maintain gut permeability, 

possibly helping in T1D regulation. Lactate can be further metabolized into butyrate. Mucin is a 

glycoprotein produced by mammals to maintain gut integrity. The presence of mucin degraders 

is an indicator of abundant mucin and a healthy gut [14].  

While human studies are limited, studies on mouse models have fueled further 

exploration of relationships between the gut microbiome and T1D. Infecting the gut of NOD 

mice with the wild-type enteric pathogen Citrobacter rodentium, disrupted the intestinal 

epithelial barrier and accelerated insulitis [35]. A modified strain of C. rodentium lacking the 

Escherichia coli secreted protein F, which is associated with virulence in E. coli strains, was 

incapable of disrupting the gut epithelial barrier. Infecting the mice with this modified strain did 

not disrupt gut integrity or affect insulitis [35]. We know from recent studies that an altered gut 

microbiome is associated with T cell-mediated destruction of pancreatic b cells in T1D patients 

[32]. An increasingly permeable gut fails to prevent translocation of unwanted toxins, antigens 

and other infection factors into the intestinal mucosal components, possibly triggering an 

autoimmune reaction [36]. When gut integrity is compromised, CD8+ T cells, in pancreatic 

lymphatic system become activated and proliferate, triggering insulitis [5]. These Cytotoxic T 

cells (CD8+) are subsets of T cells that recognize and destroy infected cells and tumor cells in our 

body.  They identify their target by binding to antigens presented by the infected cells.  CD8+ T 

cells are predominantly involved in pancreatic islet infiltration and subsequent b cell destruction 

in T1D in both human and NOD mice [37]. Recent studies have attempted to bridge the gap in 

understanding the role of gut microbiome in regulation of CD8+ T cell-mediated autoimmunity. 
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Certain transporter protein peptides expressed by Leptotrichia goodfellowii, a member of the 

phylum Fusobacteria, directly mimic CD8+ T cell antigens and stimulate the immune cells and 

thus accelerate insulitis in NOD mice [32]. Since T cell antigen recognition is nonspecific, the 

gut microbiome can present a lot of potential antigens that can mimic CD8+ T cell antigens and 

accelerate diabetes [32]. Molecular mimicry of T cell antigens is one of the proposed 

mechanisms of diabetes progression induced by the gut microbiome.  

 In addition to CD8+ T cells, certain gut bacteria have been known to regulate other T cell 

subsets and their functions.  One such subset is CD4+ T helper cells, which helps suppress and 

regulate different immune responses. The crosstalk between CD4+ T helper cells and intestinal 

microbiota helps regulate immune response during homeostasis and inflammation. Listeria 

monocytogenes can induce T helper type 1 (Th1) response and segmented filamentous bacteria 

regulate T helper type 17 (Th17) response [5,38]. Th1 cells help promote macrophage activation 

and CD8+ T cell proliferation in response to microbial pathogens. Similarly, Th17 cells are 

pro-inflammatory and play similar defensive role against extracellular pathogens by recruiting 

macrophages to infected tissue [39]. Aberrant regulation of CD4+ T helper cells are associated 

with several autoimmune disorders [40]. A healthy crosstalk between CD4+ T helper cells and 

intestinal microbiota is essential for immune homeostasis.  

Tr1 cells minimize T cell mediated immunity and suppress autoreactive T cells. Changes 

in the gut microbiome can increase the number of Tr1 cells in the intestine. Tr1 cells can inhibit 

activation of effector T cells, decreasing incidence of diabetes [5,12]. Although the exact 

mechanism for the gut microbiome to regulate proliferation and activation of certain T cell 

subsets is yet to be understood, SCFAs secreted by the microbes seem to exert important roles. 

Comparative studies between Specific Pathogen Free (SPF) and Germ Free (GF) mice show that 
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SPF mice have significantly higher SCFAs such as butyrate and propionate produced as 

metabolites in the gut. These SCFAs induce increased T regulatory cell generation and 

accumulation in the colon and decreased pro-inflammatory Th17 cell production [5,15]. It is 

evident that the gut microbiome and their metabolites cross talks with the immune system to 

maintain homeostasis and any dysbiosis may possibly result in inflammation and autoimmune 

disorders. 

Variation in Gut Microbiome Along the Gastrointestinal Tract 

Many recent studies and observations from human and rodent models indicate possible 

relationships between gut dysbiosis and T1D. In particular, scientists have looked into the 

abundance of two phyla, Firmicutes and Bacteroidetes, and the Firmicutes/Bacteroidetes ratio as 

a possible indicator of diabetes. T1D is reportedly associated with a decreased proportion of 

Firmicutes and Actinobacteria and increased proportion of Bacteroidetes in fecal bacteria 

[27,28]. Most studies on T1D and gut microbiome rely on gut microbial data obtained from fecal 

samples. The bacterial composition in fecal samples may not fully represent the gut microbiome 

composition. The gut microbiome along the gastrointestinal (GI) tract in rodent models have 

regionally distinct profiles along the tract and distinct alterations between control and T1D 

patients [41] A study on GI tract of C57BL/6 mice showed that Lactobacillaceae are more 

abundant in proximal gut while the distal gut is primarily inhabited by bacteria belonging to 

family Ruminococcaceae, Lachnospiraceae, Rikenellaceae, Prevotellaceae and Bacteroidaceae 

[42]. This clearly suggests variations in gut microbial composition along the GI tract. The core 

gut microbiome differs along the GI tract due to differences in selective pressures within their 

physiochemical conditions. Cecum, colon and fecal samples share more similarity and differ 

from stomach and small intestine gut microbiome composition [42]. Since gut microbiome 



 14 

composition varies along the GI tract, we should pay special attention to what samples we use 

for microbiome related study. 

A previous study on rats reported that bacterial species from human duodenum instilled 

in the pancreatic ductal system induced rapid cellular infiltration and subsequent B cell 

destruction [43]. With shared blood supply and close functional relationship with the pancreas, 

analysis of small intestine samples offers a better probe into relationship between gut 

microbiome and T1D. Hence, it only seems logical that we look into the small intestine 

microbiome in more depth than merely find correlation between fecal data and T1D. 

Androgens and T1D in NOD Mice 

Castration increases while oophorectomy decreases T1D in NOD mice [44,45]. Previous 

studies have confirmed significant reduction in T1D occurrences in female NOD mice treated 

with sub-cutaneous DHT implants (15mg) over a period of 60 days. DHT is a reduced form of 

testosterone and a more potent agonist of AR, that cannot be converted to estrogen. When spleen 

cells from non-treated female NOD mice were transferred to DHT-treated females, the protective 

effects of DHT was diminished with increased incidence of diabetes at an earlier age [46].   

The androgen-dependent attenuation diabetes in NOD mice is due to the alteration of gut 

microbiome [25]. Androgens support expansion of certain microbial composition, forming a 

positive feedback mechanism that contributes to sexual dimorphism in T1D incidence. There is a 

clear relationship between alteration in gut microbiome during puberty and T1D incidence in 

NOD mice, with suppressed autoimmunity in males. Sex specific microbiome difference due to 

androgens in males induces metabolite changes and changes in serum androgen level that 

opposes T1D pathogenesis [25]. T1D in human is not sex biased since the peak onset of T1D 

precedes puberty.  
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Approaches to Investigating the Microbiome 

There are two common approaches to studying the gut microbiome, diversity analysis 

and functional analysis (metagenomics) (Fig. 2).  Diversity analysis compares the different 

taxonomic groups identified through 16S rRNA sequencing. Metagenomics is a more expensive 

technique that sequences every gene from a sample to reveal the biological functions of the 

entire community. Alternatively, we can use 16S rRNA data to infer metagenomic content by 

utilizing available genome databases. Recent studies have shown high accuracies in predicting 

metagenomic content by matching OTU sequences to its nearest-neighbor genome [47,48].  

 
Fig. 2  
Microbiome study flowchart [49] 
 

 

16S Ribosomal RNA (rRNA) Sequencing 
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The use of the 16S rRNA gene as a marker gene for taxonomic assignments and 

phylogenetic analysis in a microbial community has become a common practice among the 

scientific community. The 16S rRNA gene  is the preferred marker gene to study phylogeny for 

three main reasons: it is present in almost all bacteria; its function is mostly conserved, any 

random sequence change is an accurate measure of evolution; and it is large enough for 

informatics analysis (1500 bp) [50]. The 16S sequence consists of nine hypervariable regions 

that are separated by nine conserved regions [51,52]. For phylogenetic analysis, most studies use 

partial sequences of individual variable regions instead of sequencing the entire gene [53,54,55]. 

The 16S rRNA fourth variable (V4) region (Fig. 3) provide a reliable measure to represent full 

length 16S rRNA sequence in phylogenetic analysis of bacteria [56]. 

 
 

Fig. 3 
16S reference sequence from Escherichia coli with V4 region (highlighted in blue) [57] 
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Metagenomic Inference with Piphillin 

16S rRNA data can provide information on microbial community structure. However, 

functional analysis is necessary to understand the biological implications of the microbial 

community. Although shotgun metagenomic sequencing allows comprehensive quantification of 

functional genes and possibly interference of their roles in the community, this usually tend to be 

rather expensive and technologically challenging. Novel computational algorithms are now being 

utilized to employ 16S rRNA sequence data to predict metagenomic content with a high level of 

accuracy. This is achieved by matching identified OTUs with the nearest sequenced genome 

from available database, such as KEGG (Kyoto Encyclopedia of Genes and Genomes) [48,49]. 

Piphillin is one such web-based algorithm that can predict metagenome by using  

nearest-neighbor matching between 16S rRNA sequences and genome reference database. It 

searches OTU sequences against the genome references to generate a genome abundance table. 

The inferred genome contents are summed to generate the total metagenomic content of the 

sample. This metagenomic contents are expressed in terms of KEGG Orthology (KO) [49]. Each 

KO entry obtained, identified by the K number, represents computational prediction of cellular 

processes and functions of the community, based on genomic information [56]. 

Data Analysis with MicrobiomeAnalyst 

MicrobiomeAnalyst is a user-friendly web-based tool that offers comprehensive 

statistical analysis, visual exploration and integration of microbiome data. Using 16S rRNA gene 

data it offers compositional profiling through common statistical methods for different alpha and 

beta diversity analyses at different taxonomic levels. Alpha diversity analysis allows us to 

investigate species abundance and richness within a particular treatment group. Beta diversity 

analysis allows us to compare variation in species distribution among different treatment groups. 
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The program also supports functional profiling by predicting metabolic potential. It supports data 

filtering and normalization technique coupled with differential analysis methods for comparative 

analysis. This is a powerful tool that supports many common data formats and offers many 

statistical and visual analysis tools for diversity and functional analysis of the microbial 

community [59]. 

Significance and Potential Therapeutic Applications 

Millions of people around the world live with T1D and obesity. While there are several 

management options for these metabolic diseases, there are still no cures.  Recent studies have 

shown that the interaction between hormones and gut microbiome modifies the T1D progression 

whereby males are more protected. The regulatory relationship between the gut microbiome and 

hormones in disease progression cannot be simply discarded. Identifying the relationship 

between gut microbiome, hormones and metabolic diseases has important health implications in 

disease diagnosis and treatments.  

Once we develop a clearer understanding, we can look into probiotics as potential tools to 

improve gut integrity in T1D. Furthermore, we can explore antigen specific therapies that target 

beta cell reactive T cells, without affecting our immune system. The use of probiotics to improve 

gut integrity and using engineered bacterial strain to transport auto-antigen to induce tolerance 

are some possible methods to help attenuate T1D. 

By understanding the relationship between gut microbiome, hormones and their 

metabolic effects, we can learn how they play a role in regulating health and disease. 

Furthermore, understanding the sex-difference in microbiome composition will help us 

understand gender-associated differences in diseases and identify high risk populations. 

Understanding the underlying microbial reason behind such dimorphisms and disease prognosis 
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can open the possibilities of non-invasive microbial therapy techniques, such as the use of 

genetically modified probiotics and effective vectors of auto-antigens, in disease treatments. 

Once we understand the regulatory mechanism, we can potentially alter the gut microbiome 

make up to elicit disease protection and support better health. What we know so far is just the tip 

of the iceberg. With new evidence emerging, we now know that microbiome alterations are 

causal factors in disease progression and not merely a consequence of disease. 
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Abstract 
 
Background: Non-obese Diabetic (NOD) mice are a polygenic model for Type 1 Diabetes 

(T1D) research that spontaneously develop the disease. T1D is polygenic and multifactorial, 

traditionally attributed to genetic susceptibility and diet. Novel studies have alluded to the role of 

gut microbiome in T1D pathogenesis. Interestingly, NOD mice have shown higher incidence of 

T1D in females compared to males, attributed to the sex specific gut microbial composition. In a 

previous study, female NOD mice implanted with slow release 5a-dihydrotestosterone (DHT) 

pellets for 90 days showed improved glucose tolerance compared to placebo-treated females. In 

order to investigate whether a difference in gut microbiome existed in these mice, we compared 

the gut microbiome composition of DHT-treated females with placebo-treated females and age-

matched males. Samples from the small intestine were used for DNA analysis, utilizing the 16S 

rRNA sequences to determine species richness and diversity, and infer metabolic potential of the 

respective microbial communities. 

Results: We identified significant increases in Bacteroides acidifaciens in DHT-treated females. 

Additionally, males and DHT-treated females showed strong similarity trends in the proportional 

composition of the most abundant taxon. 

Conclusion: Our study shows that DHT treatment alters the female gut microbial profile to 

resemble a male-like microbiome which may induce improved glucose tolerance, a determinant 
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of T1D protection. 
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Background 

The human body serves as an ecosystem to a diverse microbiome, which colonizes 

different regions such as the skin, urogenital tract, oral cavity, nasal cavity and the 

gastrointestinal tract. Among the different microbiome niches, the gastrointestinal tract is the 

largest and most functionally prominent. The gut microbiome contains at least ten times more 

cells and a hundred times more genes than its host [3,4]. This microbial density is the largest at 

the distal end of the digestive tract, with the colon housing up to 1012 microbial cells per gram of 

fecal content, primarily dominated by two bacterial phyla: Bacteroidetes and Firmicutes [3,5]. 

Collectively, the human gastrointestinal tract contains up to a hundred trillion bacteria belonging 

to 500–1000 different species [5]. 

The gut microbiome helps their hosts in the synthesis of amino acids and vitamins, and 

processing indigestible cellulosic compounds from plant polysaccharides [2]. They share a 

mutualistic relationship whereby the microbiome gets a nutrient rich environment while it 

regulates certain metabolic and homeostatic functions. Compositional shifts in the microbiome 

adversely affects the host’s health [10]. Gut microbial imbalance (dysbiosis) has been associated 

with several inflammatory and immune-mediated diseases prevalent in Western populations, 

including Type 1 diabetes (T1D) [19,21,22]. 

T1D, also known as juvenile diabetes or insulin-dependent diabetes, is an autoimmune 

disease characterized by the destruction of pancreatic b cells by cytotoxic T cells and other 

immune cells [6,17]. It is a consequence of immune regulation breakdown resulting from 
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expansion of CD4+ and cytotoxic CD8+ cells, autoantibody producing B lymphocytes and the 

activation of the innate immune system, which collectively destroy the pancreatic b cells [16]. 

When b cells are destroyed, the body cannot produce enough insulin to regulate glucose levels in 

the blood stream. 

Genetic and environmental factors are attributed to its etiology. Population studies and 

clinical studies in patients have indicated that T1D is associated with genes linked to the Major 

Histocompatibility complex (MHC), mainly in the Class II region. The gene complex, Human 

Leukocyte Antigen system codes for the MHC proteins. Several MHC class II haplotypes have 

been associated with T1D susceptibility [24]. Additionally, polymorphisms in the regulatory 

region of insulin gene, cytotoxic T lymphocyte-4 (CTLA-4) gene and other genes are associated 

with T1D susceptibility [24] 

The continuous rise in the T1D prevalence in recent years cannot be explained by genetic 

factors alone. While more than 50 associated genes have been identified, such increased 

prevalence suggests that environmental factors may play a bigger role [5]. The MHC class II 

haplotypes found in T1D patients can also be found in normal individuals [24]. Novel studies in 

the Non-Obese Diabetic (NOD) mouse are looking into gut microbiome as a prominent non-

genetic environmental modulator in T1D progression [25,26]. 

NOD mice are animal model for T1D that develop spontaneous insulitis by 5—6 weeks 

of age, due to cell mediated immunity. Insulitis is the inflammation of the islet of Langerhans 

followed by destruction of insulin producing b cells, characterized as T1D. NOD mice share 

similarities in T1D progression and traits with humans, including presence of pancreas-specific 

autoantibodies, autoreactive CD4+ and CD8+ T cells and similar genetic linkage [61]. The major 

genetic contributor to diabetes susceptibility in NOD mice is the MHC class II molecule [24]. 
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T1D onset in NOD mice occurs at about 12—14 weeks of age in females and relatively 

later in males [46,60]. The disease onset is observed as early as 10 weeks of age in females with 

a cumulative incidence of 70%—80% by 30 weeks of age. In contrast, T1D in male NOD mice 

begins around 20 weeks of age with cumulative incidence of around 20% by age 30 weeks [24]. 

Interestingly, this difference in T1D incidence between the sexes in NOD mice is not observed in 

Germ Free (GF) strains (axenic mice with no microorganisms in the gut), pointing to the role of 

gut microbiome in eliciting protection from T1D [25].  

Before puberty, the gut microbial community does not differ significantly between male 

and female NOD mice. Post puberty, the male gut microbiome profile deviates while the female 

gut microbiome profile stays similar to that of young mice. Adult male and female NOD mice 

have different gut microbial composition, but the gut microbiome of castrated males is more 

similar to females that to non-castrated males [26]. Hormonal changes at puberty likely alter the 

gut microbiome composition and this change elicits the sex bias in T1D incidence. The transfer 

of the male gut microbiome from male NOD mice to GF female NOD mice caused elevated 

testosterone levels in the females. This increase in testosterone correlated with increase in T1D 

protection in the GF female NOD mice [25].   

Furthermore, identification and quantification of metabolic products in serum (serum 

metabolomics analysis) of the GF female NOD mice recipients of the male NOD mice gut 

microbiome showed lowered concentrations of sphingolipid and glycerophospholipid long-chain 

fatty acid compared to control NOD females, indicating downstream metabolic changes triggered 

the by the male gut microbiome transplantation. Such metabolic changes were not observed upon 

transfer of the control female NOD mice gut microbiome to GF female NOD mice recipients. 

This suggested that the metabolic outcome is determined by the sex of the gut microbiome 
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donor. Blocking the AR signaling pathway using flutamide attenuated all male gut microbiome 

specific metabolic changes observed in female recipients. This suggests that elevated 

testosterone elicited metabolic changes upon male gut microbiome transfer to females.  

Additionally, the same study also quantified insulin specific autoantibodies (Aab) 

between different NOD mice treatment groups. Insulin-specific Aab is an autoimmune 

phenotype in pre-diabetic NOD mice and in humans. Aab in female recipients of male gut 

microbiome was significantly lower than in unmanipulated females. Once again, this difference 

was attenuated in female recipients of male gut microbiome treated with flutamide [25]. The 

study suggests that gut microbiome and androgens regulate each other through a reciprocal 

feedback mechanism, affecting the metabolome and autoimmune responses. Previous studies 

have confirmed a significant reduction in T1D occurrences in female NOD mice treated with 

sub-cutaneous DHT implants (15mg) over a period of 60 days [46]. It is hypothesized that 

androgen-dependent attenuation diabetes in NOD mice is due to the alteration of gut microbiome 

[25]. 

NOD mice share many immunological and genetic traits with the human form of the 

disease and spontaneously develop diabetes. In a previous study, it was observed female NOD 

mice, implanted with slow release DHT pellets for 90 days at 19—20 days old, showed 

improved glucose tolerance, a determinant of improved T1D [58]. We used 16S rRNA sequence 

data of the gut microbial community using intestine samples preserved from that study to assign 

operational taxonomic unit (OTUs) and categorize them into taxonomic units. We then compared 

the gut microbiome composition and diversity between DHT-treated female NOD mice,  

placebo-treated female NOD mice and age-matched male NOD mice to identify the effect of 

increased androgen concentration on the gut microbiome composition. Furthermore, we looked 
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at the differences in potential metabolic pathways between the three treatment groups through 

functional analysis. We hypothesized that the DHT-treated female gut microbiome would be 

more similar to the male gut microbiome than to the placebo-treated female gut microbiome, 

both in terms of diversity and composition, and in functional profile. 

Results 

Phylum Level Analysis: 

The four most abundant phyla in our samples were Firmicutes, Bacteroidetes, Actinobacteria 

and Proteobacteria. Although the proportion of different phyla varied among individuals, we 

noticed a clear trend in proportional distribution of the two most abundant phyla between the 

treatment groups (Fig. 4). The mean percent distribution of Firmicutes in DHT-treated females 

and untreated males was 43.5 % and 54.5 % respectively while placebo-treated females had a 

higher percentage of Firmicutes at 62.73 %. Conversely, the mean percent distribution of 

Bacteroidetes in males and DHT-treated females was 45.6 % and 42.2 % respectively while 

placebo treated females had a lower Bacteroidetes proportion of 28.8 % (Table 2). Although we 

could not identify any statistical significance (p ≤ 0.05), we noticed a trend of higher similarity 

between males and DHT-treated females than between DHT-treated females and placebo-treated 

females. We also noticed a slight (but non-significant) increase in Proteobacteria in DHT-treated 

females. 
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Fig. 4  
Relative log-transformed counts (normalized by total sum scaling) of the two most abundant phyla (A) 
Firmicutes and (B) Bacteroidetes in the three treatment groups: DHT-treated females (red), males (green) 
and placebo-treated females (blue) 
 
 
 
 
Table 2  
Relative mean proportional abundance (in percent) of all phyla identified in DHT-treated females, males 
and placebo-treated females. 

 
 
 

S No. PHYLUM DHT-treated MALE PLACEBO-treated p-value 
1 Firmicutes 43.25 54.50 62.73 0.21 
2 Bacteroidetes 45.60 42.22 28.92 0.28 
3 Proteobacteria 9.63 2.09 5.36 0.13 
4 Actinobacteria 1.48 0.99 2.96 0.35 
5 Tenericutes 0.005 0.16 0.008 0.08 
6 Verrucomicrobia 0.024 0.018 0.006 0.49 
7 Cyanobacteria 0.007 0.0033 0.013 0.58 
8 Thermotogae 0.0023 0.00097 0.0013 0.62 

A B 
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Class Level Analysis: 

We identified 15 classes in our samples. The two most abundant classes were Bacilli and 

Bacteroidia (Fig. 5). Class Bacilli was the most abundant class in placebo-treated females (non-

significant) while Bacteroidia was the most abundant class in males (non-significant) and DHT-

treated females. Class Erysipelotrichia was significantly more abundant in males than in 

placebo-treated and DHT-treated females (Table 3).                                                               

   
Fig. 5 
Relative log-transformed counts (normalized by total sum scaling) of two most abundant classes (A) 
Bacteroidia and (B) Bacilli in the three treatment groups: DHT-treated females (red), males (green) and 
placebo-treated females(blue) 
 
 
 
 
 
 
 
 

A B 
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Table 3 
Relative mean proportional abundance (in percent) of all classes identified in DHT treated-females, males 
and placebo-treated females. * represents significance (p≤0.05; two-way ANOVA). Mean values not 
sharing a letter within each row are significantly different from each other (p≤0.05; Tukey’s test). Mean 
values sharing letters or without letters are non-significant within the row. 
 

S No. CLASS  DHT-treated MALE PLACEBO-treated p-value  
1 Bacilli 39.58 41.78 56.93 0.31 
2 Bacteroidia 44.95 41.49 26.86 0.24 
3 Clostridia 3.36 11.58 5.56 0.09 
4 Deltaproteobacteria 8.51 1.713 4.01 0.18 
5 Actinobacteria 1.48 0.999 2.96 0.35 
6 Flavobacteriia 0.60 0.72 2.04 0.32 
7 Gammaproteobacteria 0.98 0.32 1.26 0.12 
8 Erysipelotrichia 0.29a 0.96b 0.16a 0.031* 
9 Alphaproteobacteria 0.05 0.20 0.097 0.57 
10 Betaproteobacteria 0.11 0.028 0.076 0.02 
11 Mollicutes 0.004 0.16 0.008 0.083 
12 Cytophagia 0.045 0.013 0.022 0.23 
13 Verrucomicrobiae 0.024 0.018 0.006 0.49 
14 Cyanobacteria 0.007 0.003 0.013 0.58 
15 Thermotogae 0.0023 0.0009 0.0012 0.62 

 

Order Level Analysis: 

We identified 22 different orders with Lactobacillales, Bacteroidales and Clostridiales as 

the most abundant groups. Lactobacillales was more abundant (non-significant) in placebo-

treated females while Bacteroidales was more abundant (non-significant) in males and  

DHT-treated females (Fig. 6). Clostridiales was more abundant (non-significant) in males (Table 

4). Although in small proportion, Erysipelotrichales was significantly more abundant in males 

than in placebo-treated females and DHT-treated females. 
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Fig. 6 
Relative log-transformed counts (normalized by total sum scaling) of two most abundant orders (A) 
Lactobacillales and (B) Bacteroidales in the three treatment groups: DHT-treated females (red), males 
(green) and placebo-treated females (blue) 
 
 

Table 4 
Relative mean proportional abundance (in percent) of the five most abundant orders (1—5) and 
significantly different order (6) identified in DHT-treated females, male and placebo-treated females. * 
represents significance (p≤0.05; two-way ANOVA). Mean values not sharing a letter within each row are 
significantly different from each other (p≤0.05; Tukey’s test). Mean values sharing letters or without letters 
are non-significant within the row. 
 

S No. ORDER DHT-treated PLACEBO-treated MALE Significance 
1 Lactobacillales 38.58 56.74 41.58 0.25 
2 Bacteroidales 44.95 26.86 41.49 0.24 
3 Clostridiales 3.36 5.56 11.58 0.09 
4 Desulfovibrionales 8.51 4.01 1.71 0.18 
5 Actinomycetales 1.05 2.73 0.46 0.29 
6 Erysipelotrichales 0.29a 0.16a 0.96b 0.03* 

A B 
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Family Level Analysis: 

We identified 42 families in our analysis. Lactobacillaceae, Porphyromonadaceae and 

Bacteroidaceae were the most abundant families. Lactobacillaceae was the most abundant 

family in placebo-treated females (non-significant) while Porphyromonadaceae and 

Bacteroidaceae were more abundant in males and DHT-treated females (non-significant) (Fig. 

7). Bacteria belonging to family Ruminococcacea were significantly higher in males compared to 

DHT-treated and placebo-treated females. Erysipelotrichaceae was significantly higher in males 

compared to placebo treated females. Clostridiales was significantly higher in males compared 

to DHT-treated females (Table 5).  

 

Table 5 
Relative mean proportional abundance (in percent) of the five most abundant family (1—5) and 
significantly different families (6—8) identified in DHT-treated females, males and placebo-treated 
females. * represents significance (p≤0.05; two-way ANOVA). Mean values not sharing a letter within 
each row are significantly different from each other (p≤0.05; Tukey’s test). Mean values sharing letters or 
without letters are non-significant within the row. 
 

S No. FAMILY DHT-treated MALE PLACEBO-treated Significance 
1 Lactobacillaceae 35.04 28.73 53.12 0.10 
2 Porphyromonadaceae 21.22 23.47 16.06 0.43 
3 Bacteroidaceae 23.72 17.94 10.61 0.28 
4 Streptococcaceae 2.28 12.55 3.01 0.11 
5 Desulfovibrionaceae 8.51 1.71 4.01 0.18 
6 Ruminococcaceae 0.25a 1.06b 0.16a 0.004* 
7 Erysipelotrichaceae 0.29a 0.96b 0.16a 0.03* 
8 Clostridiales 0.0008a 0.07b 0.01 0.02* 
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Fig. 7 
Relative abundance counts (normalized by total sum scaling)  of two most abundant families(A) 
Bacteroidaceae (B) Lactobacillaceae (C) Porphyromonadaceae and three family groups with significant 
differences (p≥0.05; two-way ANOVA) (D) Ruminococcacaceae, (E) Erysipelotrichaceae and (F) 
Clostridiales in the treatment groups DHT-treated females(red), males (green) and placebo-treated 
females (blue) 
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Genus Level Analysis: 

We identified 93 genera among our samples. Lactobacillus, Bacteroides and Barnesiella 

were the three most abundant genera, Lactobacillus with the highest proportional abundance in 

placebo-treated females, and the latter two were more abundant in males and DHT-treated 

females respectively (non-significant) (Fig. 8). Ruminococcus was significantly more abundant 

in males than both DHT-treated females and placebo-treated group. Intestinimonas, 

Pseudoflavonifractor and Porphyromonas were significantly more abundant in males than DHT-

treated females. Coprobacter was significantly more abundant in DHT-treated females compared 

to both males and placebo-treated females (Table 6). 

 

                                                   

 
 
 
Fig 8 
Relative abundance counts (normalized by total sum scaling) of three most abundant genera(A) Bacteroides 
(B) Lactobacillus (C) Barnesiella and in the treatment groups: DHT-treated females (red), males (green) 
and placebo-treated females (blue) 
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Table 6 
Relative mean proportional abundance (in percent) of the five most abundant genera (1—5) and 
significantly different genera (6—9) identified in DHT-treated females, males and placebo-treated females. 
* represents significance (p≤0.05; two-way ANOVA). Mean values not sharing a letter within each row are 
significantly different from each other (p≤0.05; Tukey’s test). Mean values sharing letters or without letters 
are non-significant within the row. 
 

S No. GENUS DHT-treated MALE PLACEBO-treated Significance 
1 Lactobacillus 35.04 28.72 53.12 0.10 
2 Bacteroides 23.72 17.94 10.61 0.28 
3 Barnesiella 10.84 10.25 6.12 0.29 
4 Lactococcus 2.27 12.55 2.99 0.11 
5 Porphyromonas 2.78a 8.27b 5.84 0.05* 
6 Coprobacter 0.79a 0.16b 0.25b 0.01* 
7 Ruminococcus 0.07a 0.56b 0.07a 0.03* 
8 Intestinimonas 0.00059a 0.040b 0.003 0.035* 
9 Pseudoflavonifractor 0.0002a 0.026b 0.002 0.040* 

 

Species Level Analysis: 

After low count filtering, we retained 176 species among all our samples. Lactobacillus 

johnsonii and Bacteroides acidifaciens collectively made the majority of the bacterial 

composition in our samples. Placebo-treated females showed a trend of increased L. johnsonii 

(Fig. 9). B. acidifaciens was significantly more abundant in both males and DHT-treated females 

than in placebo-treated females. There were no significant differences in the proportion of B. 

acidifaciens between males and DHT-treated females. Clostridium avalense, Lactobacillus 

reuteri, Ruminococcus spp., Intestinimonas butyriproducens, Bacteroides capillosus, Clostridium 

indolis, Porphyromonas spp and Anaerostipes sp were all significantly more abundant in males. 

Coprobacter fastidious and Desulfovibrio desulfuricans were significantly more abundant in 

DHT-treated females (Table 7).  
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Fig 9 
Relative abundance counts (normalized by Total Sum Scaling) of two most abundant species (A) 
Lactobacillus johnsonii and (B) Bacteroides acidifaciens in the treatment groups: DHT-treated 
females(red), males (green) and placebo-treated females(blue) 
 
 
Table 7 
Relative mean proportional abundance (in percent) of the two most abundant species (1—2) and 
significantly different species (2—12) identified in DHT-treated females, males and placebo-treated 
females. * represents significance (p≤0.05; two-way ANOVA). Mean values not sharing a letter within 
each row are significantly different from each other (p≤0.05; Tukey’s test). Mean values sharing letters or 
without letters are non-significant within the row. 

 

S No. SPECIES DHT-treated MALE PLACEBO-treated Significance 
1 Lactobacillus johnsonii 23.15 16.21 39.03 0.28 
2 Bacteroides acidifaciens 23.60a 17.24a 10.05b 0.02* 
3 Clostridium_ lavalense 0.045a 0.557b 0.090a 0.003* 
4 Lactobacillus reuteri 0.001a 0.018b 0.0003a 0.004* 
5 Coprobacter fastidiosus 0.79a 0.16b 0.25b 0.01* 
6 Ruminococcus spp. 0.0004a 0.37b 0.0007 0.02* 
7 Intestinimonas 

butyriciproducens 
0.0005a 0.04b 0.003 0.03* 

8 Bacteroides capillosus 0.02a 0.03b 0.002 0.04* 
9 Clostridium indolis 0.07a 0.50b 0.21 0.05* 
10 Porphyromonas spp 2.78a 8.27b 5.84 0.05* 
11 Desulfovibrio 

desulfuricans 
1.26a 0.18b 0.48 0.05* 

12 Anaerostipes sp 0.004a 0.113b 0.007 0.05* 

A B 
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Alpha Diversity Analysis: 

We used the Shannon index to measure species diversity, taking into account the species 

richness and abundance from our data. Although the male gut microbiome seemed to have a 

higher alpha diversity based on increased average index value (Fig. 10), we did not find 

significant difference among treatment groups (p = 0.28). 

 

 

Fig. 10 
(A) Shannon diversity index for male (green), placebo-treated female (blue) and DHT-treated female (red) 
samples. (B) Principle Coordinates Analysis (PCoA) plot showing beta diversity of males (green), placebo-
treated females (blue) and DHT-treated females (red)  
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We used Principal Coordinate Analysis (PCoA) to visualize differences in species 

composition among treatment groups using the Bray-Curtis Index as a measure of Beta diversity 

and a permutational MANOVA (PERMANOVA) for statistical significance. Fig. 10 shows the 

PCoA plot with individual samples from DHT-treated females, males and placebo-treated 

females (p < 0.054). 

Functional Analysis: 

We looked into KEGG pathways using KEGG ortholog abundance data obtained from 

Piphillin, which identified 138 pathways. While none showed significant differences, a few 

trends were noted (Table 8). Compared to males, placebo-treated females had increased potential 

(non-significant) for Lipopolysaccharide (LPS) synthesis. This was even higher in DHT-treated  

Table 8 
Relative abundance (per million reads) of KEGG pathways in DHT-treated females, males and placebo-
treated females.  
 

PATHWAY DHT-treated Placebo-treated Male p-value 

Lipopolysaccharide biosynthesis 630.51 450.90 218.42 0.13 

Biosynthesis of unsaturated fatty acids 1185.52 1711.43 531.65 0.17 

Fatty acid biosynthesis 2782.34 3617.05 1344.99 0.26 

Fatty acid elongation 38.915 44.32 4.91 0.33 

Fatty acid degradation 1340.96 1707.77 513.47 0.15 

Inositol phosphate metabolism 593.04 896.057 272.94 0.17 

alpha-Linolenic acid metabolism 167.90 298.15 60.39 0.38 

Linoleic acid metabolism 58.07 50.19 16.46 0.13 

Limonene and pinene degradation 593.31 412.94 138.49 0.40 
Fluorobenzoate degradation 200.77 178.73 65.69 0.35 

Steroid degradation 132.52 63.59 12.70 0.30 

Metabolism of xenobiotics by cytochrome 
P450 

361.88 405.10 105.97 0.40 

Drug metabolism - cytochrome P450 517.40 567.07 155.08 0.41 

Geraniol degradation 600.43 626.41 167.50 0.41 
Lipoic acid metabolism 1679.67 2593.13 675.59 0.43 
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Fig. 11 
Area plot of metabolisms across different sample 
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females. Fatty acid metabolism potential (biosynthesis, elongation and degradation) was 

relatively higher (non-significant) among placebo-treated females. Both DHT-treated and 

placebo-treated females showed increase potential (non-significant) for xenobiotic and drug 

metabolism. Additionally, we identified 11 metabolic processes from different samples to create 

their functional profile for comparative analysis (Fig. 11). None of the treatment groups showed 

any significance differences with regards to metabolic processes. 

Discussion 

We examined the diversity and functional profiles of the small intestine bacterial 

composition in NOD mice between DHT-treated females, untreated males and placebo-treated 

females. Our data were analyzed at different taxonomic levels to identify microbiome 

compositional traits that differed between the treatment groups and identify any possible 

similarity between males and DHT-treated females.   

Although NOD mice develop spontaneous T1D, there is a strong sex bias with higher 

incidence of disease progression in females.  The attenuation of T1D in male NOD mice is due to 

the altered gut microbiome induced by higher androgen concentration [25] A previous study had 

shown improved glucose tolerance in DHT-treated female mice and male mice compared to 

placebo-treated females [60]. We hypothesized that DHT altered gut microbiome in female NOD 

mice to resemble a composition similar to male gut microbiome and this altered microbiome is 

responsible for improved glucose tolerance. The goal of this study was to understand the effects 

of androgens on gut microbiome and infer possible protective effects against T1D.  

Four major phyla: Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria 

comprised the gut microbiome in the small intestine of NOD mice in our study. We noticed a 

trend of reduced Bacteroidetes and increased Firmicutes in placebo-treated females, mainly 
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explained by increase in bacteria in the class Bacilli. Males and DHT-treated females showed 

similar abundance profile trends with reduced Firmicutes and increased Bacteroidetes. These do 

not support findings from previous studies on human stool samples which associate T1D with 

increased Bacteroidetes and reduced Firmicutes [27]. However, these are consistent with similar 

study conducted on human duodenal mucosa samples, which showed an increase in phylum 

Firmicutes in human T1D subjects and a subsequent decrease in phylum Bacteroidetes [60]. 

Increase in phylum Firmicutes was also observed in the duodenal gut microbiome in rats with 

Streptozotocin-induced T1D [41]. Although our differences were not statistically significant, the 

observed trend of increase in phylum Bacteroidetes and reduced Firmicutes in DHT-treated 

female NOD mice, corresponds with duodenal gut microbiome composition in healthy subjects 

in T1D studies. 

Our data support studies conducted on small intestines and show a clear trend in 

similarity in phyla abundance profiles of the microbiomes in males and DHT-treated females. 

We also observed similar trends at both class and order levels. Males and DHT-treated females 

had higher proportions of Bacteroidia and lowered proportions of Bacilli compared to placebo-

treated females (non-significant). Similarly, placebo-treated females had a higher proportion of 

Lactobacillales and lower Bacteroidales compared to both males and DHT-treated females  

(non-significant). Erysipelotrichales were present in significantly higher proportion in male 

samples only. This suggests that DHT shifts certain gut microbial populations in females to more 

closely resemble male-like profiles but does not have any effect on other female microbial 

profile features, which remain unchanged. Based on this observation, we can infer that DHT-

treated females and placebo-treated females still share some similarity, as DHT alone cannot 

completely shift the female gut microbiome composition into male-like composition. 
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We observed similar trends at the family level, with increased proportions of 

Lactobacillaceae and decreased proportions of Porphyromonadaceae and Bacteroidaceae in 

placebo-treated females compared to both males and DHT-treated females (non-significant). 

Decreased Porphyromonadaceae is consistent with a previous observation on stool samples from 

diabetic children, which showed lowered Porphyromonadaceae in patients than in healthy 

controls [27].  Three families, Ruminococcaceae, Erysipelotrichaceae and Clostridiales, 

occurred in significantly high proportions in males compared to both DHT-treated and placebo-

treated females. We do not know what roles these play in the small intestines with regards to 

T1D pathogenesis.  

Similar trends were also observed at the genus level, with the most abundant genus 

showing clear similarity between males and DHT-treated females. Genus Bacteroides showed a 

trend of higher proportion in males and DHT-treated females than in placebo-treated females 

(non-significant). Low level of Bacteroides is considered an indicator of high blood glucose level 

in the elderly population [63]. Similarly, the genus Barnesiella showed a trend of increased 

proportional abundance in males and DHT-treated females. Although these traits were not 

statistically significant, increased Barnesiella has been associated with reduced T1D incidence, 

whereby gluten-containing diets increased Barnesiella sp. among others and attenuated T1D in 

NOD mice [64]. 

At the species level, Lactobacillus johnsonii was most abundant and showed a trend to 

higher proportion in placebo-treated females compared to both males and DHT-treated females. 

Additionally, Lactobacillus reuteri has a significantly higher proportion in males and  

DHT-treated females compared to placebo-treated females. Although they made a small portion 

of the microbiome, L. reuteri is believed to improve incretin and insulin secretion [65]. 
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Bacteroides acidifaciens, the second most abundant species had a significantly higher proportion 

in DHT-treated females and males, compared to placebo treated females.  

Feeding mice with B. acidifaciens increases their insulin level and lowers blood glucose 

concentrations, compared to control mice. B acidifaciens also enhances production of glucagon-

like-peptide (GLP-1) and decreases the expression of dipeptidyl peptidase-4 (DPP-4), an enzyme 

that degrades GLP-1 in the small intestine [64].  GLP-1 is an incretin that can decrease blood 

sugar level by enhancing insulin secretion. This suggests that B. acidifaciens or their metabolites 

improves glucose tolerance and insulin sensitivity Additionally, we know that B. acidifaciens 

also plays a major role in inducing production of immunoglobulin A (IgA) in both small and 

large intestines [67,68]. IgA are antibodies secreted in the mucus membrane in both large and 

small intestine. Type 1 diabetes has been long associated with selective IgA deficiency [69]. 

Desulfovibrio desulfuricans was significantly higher in DHT-treated females. 

Desulfovibrio species are known to oxidize butyrate in the presence of sulphate as an electron 

acceptor in anaerobic environment [71] Abundance of Desulfovibrio species signifies production 

of butyrate in the small intestine. Butyrate is known to be anti-diabetogenic and contributes to 

mucin synthesis, regulates tight junctions and maintains gut integrity [14] 

The Shannon diversity index for alpha diversity and the Principal Coordinate Analysis 

(PCoA) for beta diversity using the Bray-Curtis Index showed differences in diversity between 

individual samples. We could not demonstrate similarity between males and DHT-treated females, 

or between the two female treatment groups. We observed variations in the diversity between 

individual samples. Interestingly, this variability is also observed in the development of T1D. 

Although female NOD mice develop T1D at an earlier age than males, the onset could begin 

anytime between 10—14 weeks with a cumulative incidence of about 70% to 80% by 30 weeks 
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of age. Similarly, males usually develop T1D after 20 weeks of age with a cumulative incidence 

of only 20%—30% age. Although females have a higher T1D incidence, age of T1D development 

is a variable in NOD mice. The variation in diversity between individual samples could be a result 

of age-based variation in the development of T1D. 

Functional analysis allowed us to compare different possible metabolic pathways in the 

microbial communities. We noticed a higher average occurrence of LPS biosynthesis in DHT-

treated females, followed by placebo-treated females and males. LPS production is attributed to 

Gram-negative bacteria [71]. The increase in LPS production potential in DHT-treated females 

coincides with an increase in Bacteroidetes (which are Gram-negative). Elevated LPS 

concentrations in plasma has been associated with several metabolic disorders and is known to 

induce inflammation. Studies suggest that LPS from the gut can translocate into plasma and 

induce metabolic endotoxemia, triggering inflammatory disorders [72]. T1D prognosis in NOD 

mice is associated with TLR4 and the Myeloid differentiation primary response 88 pathway and 

these can be directly affected by LPS levels [73,74].  In general, a high amount of LPS coupled 

with increased gut permeability is seen as a biomarker for inflammation and metabolic disorders, 

including insulin resistance.  Normally, the lipid A domain of LPS binds and activates TLR-4, 

which further triggers downstream activation of NF-KB (nuclear factor kappa-light-chain-

enhancer of activated B cells) pathway. However, not all subtypes of LPS may stimulate the 

immune system and some have even shown inhibitory effects [74]. One study highlighted this 

difference in immunogenicity through intraperitoneal injection of LPS derived from Escherichia 

coli and Bacteroides dorei whereby, LPS from E. coli led to delayed onset and reduced incidence 

of T1D. LPS from B. dorei did not show such protective effects [74]. 
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Another related study showed that LPS produced from Bacteroidetes can trigger 

protective effects in Inflammatory Bowel Disease in mouse models. LPS from Proteobacteria did 

not confer such protections.  The study raises the possibility of immunoinhibitory effects of 

certain LPS and cautions against directly connecting LPS levels with immunogenicity [75]. 

Hence, we cannot draw any definite conclusion based on higher metabolic potential of LPS 

biosynthesis in DHT treated females.  

It is also worth noting that placebo-treated females had a higher proportion of fatty acid 

metabolism. Although, we did not observe any significant differences the observed trend 

coincides with the previous observations of distinct differences in male and female NOD mice in 

serum metabolite levels of a subset of glycerophospholipid and sphingolipid metabolites [25]. 

Additionally, all experimental groups with implants (DHT or placebo) exhibited higher 

abundance of xenobiotic and drug metabolism pathways. This could be due to the presence of 

exogenous sub-cutaneous pellet implants.   

Methods 

Tissue Collection: 

We used three NOD mouse treatment groups for this study: DHT-treated females, 

untreated males and placebo-treated females. All mice used in the study were housed in 12:12 

light-dark cycle and fed NIH-31 chow and water ad libitum. Female mice were implanted with 

either a placebo pellet or a DHT 90-day slow release pellet (2.5 mg) (Innovative Research of 

America, Sarasota FL) at 19-20 days. Pellets were implanted before the onset of insulitis, which 

normally occurs at 5-6 weeks of age. Age-matched males did not get any treatments. At the 

completion of the study (90 days after pellet insertion), all mice were euthanized via CO2.  

Following euthanasia, the small intestines were collected and stored individually at -80 degrees, 
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until thawed for DNA extraction [1]. Animals were cared for and handled in accordance with the 

National Institute of Environmental Health Sciences Institutional Animal Care and Use 

Committee approval (Protocol # 01-30) at Reproductive & Developmental Biology Laboratory, 

NIEHS, NIH, Research Triangle Park, NC. Intestine samples from age-matched untreated males 

(n = 7), DHT-treated-females (n = 8) and placebo-treated females (n = 7) were obtained for this 

study. 

DNA Extraction: 

Frozen intestine tissues were equilibrated to room temperature before extraction. Upon 

thawing, the intestines were stretched out in a standard sterile dissecting tray. All instruments 

were treated with 95% ethanol and heated over a Bunsen burner to eliminate contaminants. The 

first 1.3 cm from each end of the intestinal sample was then removed to minimize contamination. 

Then, 25 mg tissue was collected from the proximal and distal ends. Genomic DNA was 

extracted from each sample using DNeasyTM Blood and Tissue Kits (Qiagen Inc, Germantown, 

MD) according to the manufacturer’s instructions, with the exception that the final DNA elution 

step was repeated to increase DNA yield. UV absorbance ratio at 260nm was used to quantify 

DNA and the purity was determined using 260/280 ratio. 

16S rRNA Sequencing and OTU Assignment: 

Isolated genomic DNA was sent to MR DNA Lab (Shallowater, TX) a commercial 

sequencing service in order to identify the bacterial members present in each sample using 16S 

rRNA (Ribosomal Ribonucleic Acid) amplicon sequencing. 16S rRNA gene sequencing is a 

well-established and a reliable method to identify bacterial taxa and compare bacterial 

populations from complex microbiomes. 16S rRNA genes are highly conserved and used by 

scientists to identify and assign phylogeny to all bacterial species in a sample [76] 
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The 16S rRNA gene V4 variable region Polymerase Chain Reaction (PCR) primers 

515/806 were used for sequencing. The PCR followed a single-step 30 cycle using the 

HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94°C for 3 

minutes, followed by 30 cycles of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 1 

minute. This was followed by the final elongation step at 72°C for 5 minutes. Sequencing was 

performed using an Ion Torrent PGM sequencer and operational taxonomic units (OTUs) were 

subsequently generated for each sequence. OTUs were defined by clustering at 1% divergence 

(99% similarity). The final OTUs were categorized taxonomically using the BLASTn option for 

searching the database derived from NCBI (www.ncbi.nlm.nih.gov) and from 

RDPII (http://rdp.cme.msu.edu). The OTUs were then compiled into most relevant taxonomic 

level based on percent identity to the reference sequence as defined in Table 9. 

 
Table 9  
Percent identity associated by Taxonomic designation  
 

Identity to reference sequence  Identity Designation  
> 97%  Species  
Between 97% and 95%  Genus assignment  
Between 95% and 90%  Family assignment  
Between 90% and 85%  Order assignment 
Between 85% and 80%  Class assignment 
Between 80% and 77%  Phylum assignment 
< 77%  (unknown)  

 

Diversity Analysis: 

We used MicrobiomeAnalyst, a web based comprehensive statistical and analytical tool 

for microbiome data for diversity and functional analysis [60]. OTU abundance data were used 

for the diversity analysis. All samples with their respective sequence read counts (Fig 12). 
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Fig. 12 
Total sequence read counts from individual samples 
 
 

Table 10 
Sample characteristics of three treatment groups: males, DHT-treated females and placebo-treated females 
 
Reads Number 
Total number of samples 22 
Total Read counts 5943464 
Average Counts per sample 270175 
Maximum counts per sample 632144 
Minimum counts per sample 46740 
Total species identified 805 
Total species ≥ 2 counts 462 

 

Marker Data Profiling (MDP) feature in MicrobiomeAnalyst was used to analyze 

microbial composition and diversity in our samples. The OTU abundance table and metadata file 

was uploaded in the program for differential abundance testing. We used the SILVA format for 

taxonomic assignments for our analysis. Our data contained 462 total species with two or more 

read counts. To account for any sequencing errors, we used the default low count filter with 
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minimum count of 4 and 20% prevalence; only those features with at least 20% of its values 

containing at least 4 counts were retained for analysis.  This resulted in 286 low abundance 

species being removed from the analysis. 176 species remained for comparative analysis. We 

used total sum scaling to normalize data and account for sampling depth. Relative abundance 

was compared at different taxonomic levels. Shannon index was calculated at species level to 

determine alpha diversity within each test groups. One-way ANOVA with post hoc Tukey HSD 

test were used to test for significant differences (p ≤ 0.05) among groups. Principal Coordinate 

Analysis (PCoA) was used to analyze beta diversity using the Bray-Curtis Index to analyze 

dissimilarity in communities and permutational MANOVA (PERMANOVA) was employed to 

determine statistical significance. 

Functional Analysis 

Piphillin was used to generate KEGG Orthologs (KO) from the OTU abundance table 

and representative sequence file [51].  KEGG orthologs are functional orthologs derived from 

KEGG Orthology database that represent a computational prediction of cellular processes and 

functions of the community, based on genomic information. The KEGG ortholog abundance 

table was entered into MicrobiomeAnalyst for functional analysis. MicrobiomeAnalyst uses this 

input format to generate KEGG pathway abundance table and a metabolic profile 

(https://www.genome.jp/kegg-bin/get_htext#B2). We compared metabolic features among 

experimental groups and used a one-way ANOVA to identify any significant differences.  

Conclusions 

Our study suggests that exogenous androgen treatment in female NOD mice using DHT 

implants can shift female gut microbiota to resemble the composition of gut microbiota in males. 

Although we observed only a few significant differences, we noticed strong similarity trends in 
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the proportional composition of the most abundant taxon between DHT-treated females and age-

matched males. We identified significant increases in Bacteroides acidifaciens in DHT-treated 

females, a bacterial species known to enhance glucose tolerance and attenuate T1D. Taken 

together, our findings suggest that gut microbiome modulations play causative roles in T1D 

progression.  
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