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ABSTRACT 

DNA Methylation and Genetic Divergence Associated with an Inducible Defensive 
Response in Mimulus guttatus 

by 

David Louis Farr 

June 2019 

Phenotypic plasticity allows many organisms to respond to their environment by 

changing their phenotype, but the mechanisms to do so are not well understood. Yellow 

Monkeyflower (formerly Mimulus guttatus; now Erythranthe guttata) is one such 

organism that can serve as a model to promote our understanding of these mechanisms 

due to its striking response to insect herbivory. Monkeyflower responds to leaf damage 

by increasing the number of hair-like glandular trichomes, a putative defensive trait that 

reduces the magnitude of damage by insects. This plastic response is transgenerationally 

inherited in a way that is sensitive to genome-wide demethylation when transmitted 

through the maternal but not the paternal germline. Investigation of this phenomenon has 

been hampered by a lack of computational tools to analyze pooled methylome and 

genome sequence data. In this study, two distinct software pipelines were developed and 

tested on data from Monkeyflower. The first pipeline detects regions that are 

differentially methylated and identifies adjacent candidate genes, using Nanopore data. 

This was tested on data from a Monkeyflower recombinant inbred line (RIL) subject to 

either parental damage or control conditions. The second pipeline uses pooled DNA 

sequence data to identify genomic regions that exhibit statistically significant divergence 

in allele frequencies. This was tested on genome sequence data from an experiment 
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involving artificial selection for increased trichome production. Results indicate that 

epigenetic inheritance of the damage response in a particular RIL is associated with 59 

differentially methylated regions. Relevant functions, including anatomical structure 

development and response to abscisic acid, are significantly overrepresented in the set of 

genes that lie closest to these DMRs. Artificial selection for high trichome production 

produced one highly divergent region adjacent to a gene associated with seed coat 

mucilage development. These findings identify candidate epigenetic and genetic factors 

associated with glandular trichome development while providing an effective test case for 

the development of two new software pipelines. 
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CHAPTER I 

INTRODUCTION 

 Phenotypic plasticity allows organisms to adapt to their environment by mounting 

a phenotypic response to challenges. This sometimes results in dramatic variation, such 

as the increase of glandular trichomes in plants--hair-like structures that can secrete 

chemicals to effectively deter insects from damaging leaves. The mechanisms used by 

organisms to achieve this striking variation are not well known, though the study of the 

specific genetic and epigenetic changes involved are often accomplished through the use 

of genome and epigenome sequencing. As sequencing technology has become less 

expensive and more widely available, computational methods to analyze the resultant 

datasets have lagged. In response, the development of new software and analysis 

pipelines has become imperative. This study involves the development of two novel 

analysis pipelines, as well as their application to existing datasets from experiments 

addressing the epigenetic and genetic control of glandular trichome production in Yellow 

Monkeyflower. 

New Methods in Genome Sequencing 

The development and use of DNA sequencing technology have progressed rapidly 

over the last few decades, resulting in a demand for high-throughput genomic analyses 

that has at times outpaced the availability of appropriate computational methods. This has 

been a major driver for researchers to not only develop new methods in computational 

analysis but to automate and streamline multiple steps in data processing. One of the core 

informatics strategies to address these issues is the development of software pipelines. In 
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addition to their ability to improve analytical methods, pipelines can increase 

accessibility for the broader community of biologists by bridging the fragmented series of 

programs that are often needed to produce straightforward results.  

 As the efficiency and availability of sequencing technology have increased, the 

cost associated with sequencing DNA has greatly decreased. Whole-genome sequencing 

(WGS) has become more prevalent, enabling more biologists to use industry-standard 

Illumina and emerging Nanopore technology (Besser et al. 2018) to answer compelling 

questions about genomic divergence and differential regulation associated with 

adaptation. Nanopore has emerged as one of the most affordable next-generation 

sequencing (NGS) methods, and its value can be extended by pooling the DNA of 

multiple individuals from a population before WGS. Pooled WGS allows for estimating 

allele frequencies within a group of individuals, without the need to separately sequence 

each individual. This type of experimental design works well for detecting genomic 

regions associated with variation between groups that differ in one key trait. Developing 

software that accommodates this design can provide a valuable platform for biologists 

investigating any species. 

Phenotypic Plasticity in Yellow Monkeyflower 

 Mimulus guttatus, recently renamed Erythranthe guttata and commonly known as 

Yellow Monkeyflower, is an emerging model organism that displays striking phenotypic 

variation between geographic populations. This species serves as an excellent test case to 

develop software that can detect genetic and epigenetic divergence associated with 

defensive traits. Like many plants (Maes & Goosens 2010, Huchelmann et al. 2017, 

Scoville et al. 2011), Yellow Monkeyflower naturally produces two distinct types of 
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trichomes – hair-like appendages on leaves and other aerial tissues that can reduce the 

frequency and intensity of herbivory (Coliccio et al. 2013, Holeski 2013). Interestingly, 

populations from Point Reyes Natural Seashore (PR) and Iron Mountain (IM) in the 

Cascade mountains differ significantly in their trichome production. In Point Reyes, 

Monkeyflower grows in dense perennial clusters that experience more frequent insect 

interactions. Members of this population produce more glandular trichomes, which 

secrete chemicals that have been shown to passively deter insects (Holeski 2007, Holeski 

et al. 2013, Harborne 1993). In the Iron Mountain population, Monkeyflower grows as a 

smaller, sparser annual that experiences fewer insect interactions. Members of this 

population primarily produce structural trichomes that do not secrete chemicals but may 

actively restrict insect movement and inhibit egg deposition (Levin 1973). 

 In addition to variation in constitutive production of glandular or structural 

trichomes, a significant increase in glandular trichomes can be induced by simulating 

insect damage to leaves (Holeski 2007). The effects of this induction are readily seen in 

subsequent generations produced by damaged parents, where the effects not only persist 

for three generations (Akkerman et al. 2016, Holeski 2007), but the combination of 

maternal and paternal damage produces a sex-dependent, additive increase in glandular 

trichome production (Akkerman et al. 2017). Despite strong evidence that trichome 

development in Monkeyflower is a phenotypically plastic trait (Akkerman et al. 2017, 

Holeski 2007), the genetic architecture and differential regulation involved in this rapid 

response are poorly understood. 

 The status of Yellow Monkeyflower as an emerging model for ecological 

genomics is especially useful to ongoing research in evolutionary biology. Scientists who 
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seek to develop universal analytical methods often use well-studied models. This allows 

for greater reproducibility and the use of rich existing data sets, such as an annotated 

reference genome. Monkeyflower is an attractive model for advancing and testing 

computational methodology due to existing genomic resources. Also, because of the role 

glandular trichomes play in plant defenses and production of medically or economically 

important compounds, our understanding of this trait has important implications for 

broader agricultural and ecological study. 

Software Development for Genetic and Epigenetic Analysis 

 Genome-wide association studies (GWAS) are often conducted by comparing 

individual genotypes that vary in a specific phenotype. Using this basic premise, genetic 

variations associated with higher baseline trichome production can be detected based on 

comparisons between naturally divergent populations such as IM and PR. More 

specifically, genetic divergence detected at the level of SNPs in a pooled WGS study can 

expand our understanding of the genetic architecture for trichome production. One of the 

first test statistics that allow for a test of divergence between populations is B*, 

developed by Kelly (2013). The B* test identifies windows of SNPs that exhibit 

significant divergence in allele frequency. These windows can then be compared with the 

published, annotated Mimulus reference genome (Helsten et al. 2015) to generate a list of 

candidate genes that may be involved in producing related phenotypic variation.  

 Nanopore sequencing can extract the DNA sequence of long fragments. 

Importantly, it also outputs raw signal data that can be used by Nanopolish (Simpson et 

al. 2017) to detect specific patterns of methylation in DNA, which can contribute to 

epigenetic transcriptional regulation without any change in a DNA sequence. Applied to 
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WGS, Nanopolish can detect methylation on cytosine nucleotides, allowing for the 

construction of a methylome dataset. 

 These methods for separately analyzing pooled, whole-genome sequences for 

genetic and epigenetic data analysis are new (Kelly et al. 2013, Simpson et al. 2017) and 

therefore have significant gaps in translation of computational methodology as a result of 

having no public software release, or requiring a complex process for analysis that can 

present a barrier for novice researchers. Using the genomic data sourced from two 

separate experiments, I use a three-fold approach to further elucidate the molecular 

architecture of glandular trichome development in Yellow Monkeyflower: 

1. Develop a software pipeline for genome analysis that identifies significant 

divergence in allele frequencies based on original C# development by Farr 

and translated to an R package by McKinnon (unpublished work, 2019). 

2. Apply the proposed genome analysis pipeline to an existing variant call 

format file resulting from Neuffer (2015) to identify significant single 

nucleotide polymorphisms (SNPs) associated with evolutionary 

divergence due to artificial selection for increased glandular trichome 

production.  

3. Use Nanopore whole-genome sequencing of pooled tissue samples from 

Akkerman et al.’s (2017) experiment on epigenetic inheritance to discover 

significant differentially methylated regions (DMRs) associated with 

increased glandular trichome production. As a principal component of this 

analysis, a pipeline will be proposed that handles the Nanopolish 

(Simpson et al. 2017) methylation frequency data processing and DMR-
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Scan (Colicchio et al. 2018) analysis. This pipeline will extend the original 

functionality of DMR-Scan to include identifying gene, annotation, and 

whether or not each DMR is nearby a coding sequence or regulatory 

region. 

 This comprehensive approach will contribute to our understanding of specific 

methylation and evolutionary patterns in Yellow Monkeyflower as well as expand the 

toolset for analysis in future research on any organism. 
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CHAPTER II 

LITERATURE REVIEW 

Glandular Trichome Production in Response to Biotic Stress 

Glandular trichomes are found in more than 30% of vascular plants (Huchelmann 

et al. 2017) and are found on leaves where they form from extensions of the plant 

epidermis. Trichomes exist as specialized unicellular or multicellular structures that 

contribute to the secretion of tannins, essential oils, mucilage, and resinous structures 

(Levin 1973). In Monkeyflower, glandular trichomes secrete phytochemicals, including 

phenylpropanoid glycosides (PPGs), that likely contribute to defense against insect 

herbivores (Holeski et al. 2013, Holeski 2007, Scoville et al. 2011). An increased number 

of such polyphenolic secondary metabolites has been associated with a decreased rate of 

herbivory (Coley et al. 1985; Holeski et al. 2013). Plants that produce and secrete these 

phytochemicals incur a continuous energetic cost to maintain even small concentrations 

in their trichome secretions. The half-lives of such phytochemicals can vary broadly from 

10 hours to six days among some agricultural species, although some can be recycled 

during senescence (Coley et al. 1985). Holeski et al. (2013) observed an increase in PPG 

concentration as an induced response when Monkeyflower leaves were damaged, which 

suggests a plastic mechanism for the plant to increase its defensive capabilities in 

response to simulated leaf herbivory. 

Epigenetic Mechanisms and Trait Plasticity 

 When environmental factors trigger a change in phenotype, this phenomenon is 

referred to as phenotypic plasticity. Such phenotypic changes often involve epigenetics, 



 8 

defined as the sum of regulatory mechanisms that dictate whether a gene can be 

transcribed, without resulting in permanent modifications to DNA. Multiple forms of 

epigenetic regulation exist together in most organisms (Maunakea et al. 2010; Satyaki 

2017). However, one of the most common forms of epigenetic modifications observed in 

plants is the presence of cytosine-phosphate-guanine (CpG) modifications. CpG 

commonly appears as large islands, or repetitive sequences of CpG nucleotides along the 

same strand where a methyl group has been added to the cytosine. As the organic methyl 

group is added to a CpG, the cytosine is converted into 5-methylcytosine (Jablonka & 

Raz 2009) 2009). The presence of CpG modifications that occur in a promoter region, 

typically preceding a coding gene, prevent transcription factor proteins from binding to 

the promoter to initiate transcription of the coding sequence (Grant-Downton & 

Dickenson 2005). The effects of this mechanism generally act as a way to silence a gene 

(Finnegan et al. 1998); however, if a protein product such as a repressor is silenced from 

transcription, an increase in transcriptional activity of another coding gene may be 

apparent in the phenotype. 

 Germline epigenetic regulation is compatible with the transgenerational 

inheritance of epigenetically regulated genes, similar to the process of gene imprinting 

(Satyaki & Gehring 2017). Much of this process was summarized by Satkayi (2017) as a 

general mechanism for the process of gene imprinting in plants. While gene imprinting is 

only one potential mechanism for epigenetic inheritance, it is an example of how parents 

contribute to methylation patterns in offspring. Methylation is frequently established 

from the germline contributions of the paternal line where the MET1 protein, a form of 

methyltransferase studied in the model organism Arabidopsis thaliana, can establish a 
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fully methylated 5-methylcytosine from a hemimethylated cytosine that acts in opposition 

to demethylase (DME) activity. In the central cell of the plant ovule, DME upregulation 

is coupled with low expression of MET1, whereas in sperm cells DME is absent and 

MET1 is expressed at high levels. This contributes to a classic presentation of a 

hypomethylated ovule and a methylated pollen grain where the hemimethylated CpG 

residues are targets for MET1 and are subsequently methylated. 

 5-azacytidine (5-aza) has been shown to decrease methylation in progeny and has 

been used previously as a human cancer treatment by inhibiting the ability for 

methyltransferase, specifically MET1, which is associated with high levels of activity 

during replication and in the plant embryo (Christman 2002; Satyaki 2017). In Akkerman 

et al. (2016), damage to parental Monkeyflower resulted in a significant increase in 

glandular trichome density in progeny. When both the maternal and paternal parents had 

been damaged, an additive effect on the increase of trichomes was noted. Treatment of 

the seeds with 5-aza resulted in the loss of the maternally transmitted high-density 

response. This suggests that 5-aza directly antagonizes the process by which the maternal 

response to damage is passed on to offspring. In contrast, the paternal effect of damage 

was not erased by 5-aza treatment, suggesting an unknown alternate mechanism involved 

in paternal epigenetic inheritance. While it is possible that paternally associated RNAs 

could re-establish the damage-induced paternal methylation patterns after treatment with 

5-aza, this possibility remains unexplored and yet confirms a transgenerational, 

epigenetic basis for regulation of trichome production in response to simulated herbivory 

(Akkerman et al. 2016). 
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Genetic Adaptation for Plant Defense 

The specific genetic architecture that may be responsible for glandular trichome 

generation in Monkeyflower is not well understood. The basis for phenotypic variation in 

many organisms, however, can originate from both genetic differences and epimutation 

(Cohen 1999, Colicchio 2017, Morishita et al. 2012). Transposable elements make up a 

large component of many plant genomes – as much as 90% of Maize – and are common, 

mobile vehicles for methylation (Underwood et al. 2017). Changes to epigenetic 

silencing of these vast arrays of transposons can provide a pathway to phenotypic 

variation. In addition, spontaneous conversion of a 5-methylcytosine to a thymine base 

can introduce further deleterious, favorable, or silent genetic variation (Morishita et al. 

2012). 

 Due to the cost associated with a regular turnover of energetically expensive 

phytochemicals within trichomes (Colicchio 2017, Coley et al. 1985) constitutive 

expression of high numbers of glandular trichomes is unlikely to be a favorable trait. It 

has been observed that Monkeyflower trichome production is associated with a decreased 

magnitude of leaf damage by herbivory rather than a decrease in the frequency of 

herbivory events, which suggests a somewhat proportional response and therefore a 

tradeoff in trichome development (Colicchio 2017). These effects have been observed in 

a variety of isolated populations of Monkeyflower and vary drastically depending on the 

frequency of insect interactions as well as growth conditions (Colicchio 2017).  

 The existence of allelic and phenotypic diversity allows for a relatively 

straightforward study design where artificial selection can be used to capture the genomic 

signal observed in a partial sweep. In a population of RILs created from a single F1 
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individual, single nucleotide polymorphisms – the most fundamental unit of genetic 

variation – can be analyzed from the standpoint of reference versus alternate allele 

frequency (Kelly et al. 2013). When artificial selection is used to select for one specific 

phenotype, such as glandular trichome density, a resulting increase in allele frequency 

divergence can be observed (Kelly et al. 2013, Neuffer 2015). The linkage disequilibrium 

existing even after multiple generations of cross-breeding requires a conservative 

methodology; however, an additional benefit of analyzing SNP-level variation between 

sample populations is a decrease in confounding epistatic interactions (Kelly et al. 2013). 

Review of Common Computational Analyses 

One of the traditional approaches to the discovery of genetic variation associated 

with a phenotype of interest is genome-wide association studies (GWAS), which has 

played a major role in understanding the genetic basis of human disease and pathology 

(Bush & Moore 2012). In GWAS experimental design and analysis, the general goal is to 

identify SNP variation between populations; however, the methods traditionally used in 

GWAS (Bush & Moore 2012) can preclude analysis of pooled genomic data where 

contributing individuals of each sample cannot be determined. Furthermore, pooled 

genome sequencing applied to a GWAS-style construct cannot be analyzed for the effects 

of linkage disequilibrium (Kelly et al. 2013).  

 Traditional GWAS Fst analysis, as well as the B* test proposed by Kelly (2013) 

are used to identify genetic divergence. However, careful interpretation is required due to 

the potential for a non-causal variation to appear associated with the studied trait. The B* 

test is more conservative and, when paired with the GenWin (Beissinger et al. 2015) 

analysis, is less likely to miss or obscure windows of SNPs associated with causal 
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variation. Use of GenWin reduces the probability of choosing a window size, according 

to the methods proposed by Kelly (2013), that arbitrarily weights calculated B-value 

divergence too high or low. Without the discovery of a median window size for analysis, 

a window that is too small will result in very noisy data and will tend to inflate the 

number of regions that appear to be significantly different (Kelly 2013 and Beissinger 

2016). Windows that are too large result in a higher probability of missing a truly 

significant window due to the frequency of repeats such as transposable elements that 

occur in large regions throughout the genome. 

 Python is one of the most commonly used computational languages in 

bioinformatics research, due in part to its agnostic treatment of various operating systems 

and its cost-effectiveness. Many of the foundational tools used for the processing of raw 

genomic data produced through sequencing methods are written in Python, such as 

SAMTools, minmap2, and Nanopolish for nanopore data published by Li (2009, 2018) 

and Simpson (2017) respectively. While these tools are frequently utilized, the 

computational experience required to correctly install their dependencies and carry out 

their pipelines is extensive. Fortunately, many of the developers of these and other 

essential applications released their work under MIT, GNU, or open-source licensing and 

this makes their use a reliable component of software pipelines that handle data 

throughout a sequence of various processing methods. This also allows for the 

introduction of original code designed to summarize, display, or connect standalone 

software in novel pipelines. The development of these pipelines can improve general 

accessibility by decreasing the technical experience required (Leipzig 2017), as well as 

by integrating existing software to achieve a novel output method. 
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 "R” is another common statistical analysis programming language which, like 

Python, is free for common use and focuses on statistical and graphical analysis and 

generation rather than the potentially more diverse user base for Python in commercial 

software development. RStudio is a successful integrative development environment 

(IDE) for working with R, which contributes to its accessibility for researchers that lack 

extensive software development experience. Perhaps one of the most important features 

of R is that published R scripts and packages can more easily allow for the installation of 

required third party R libraries, reducing or eliminating the need for a user to manually 

install dependencies by simply including simple commands in the R script itself. This has 

resulted in a wide array of bioinformatics tools that are either in R or Python, appealing 

to a wide array of researchers interested in -omics research such as genomics, 

transcriptomics, and methylome applications. 
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CHAPTER III 

METHODS 

Tissue Collection and Library Preparation 

Mimulus guttatus RIL 85 served as a single source line for a full factorial 

experiment measuring the effects of the damage and 5-azacytidine treatment as detailed 

in Akkerman et al. (2016). The goal of the original experiment was to examine whether 

induction of the mechanism to increase glandular trichome damage in response to 

simulated insect herbivory could be transgenerationally inherited and if it was sex-

dependent. Preserved leaves from the progeny of samples that had both maternal and 

paternal damage, as well as progeny of parental samples that had no damage, were used 

in this study. Samples from the progeny of the maternal and paternal damage can also be 

referred to as double-damaged, and the effects of this damage resulted in evidence for 

additive effects in Akkerman et al. (2016). For each of these treatments (double damage 

or no damage), samples from the 6th leaf pair for each of the 6 individual progeny of the 

6 independent parent pairs were stored in liquid nitrogen, resulting in a total of 36 

individual plants in each treatment.  

 In preparation for DNA extraction, the leaf tissue samples for each of the two 

groups were thawed and ground as preparation for pooled sequencing. Pooled DNA from 

each group was then extracted using a standard Urea extraction (Appendix B) and the 

sequencing library was prepared according to the PCR-free Oxford Nanopore 

Technologies protocol.  



 15 

Methylome Sequencing 

 Methylome sequencing was performed using a Minion nanopore sequencer from 

Oxford Nanopore Technologies, according to the manufacturer’s protocol for 1D 

Genomic DNA by ligation (SQK-LSK108, Version GDE 9002 v108 revU 18Oct2016), 

using three R9.4.1 flow cells for pooled DNA from undamaged parents and four R9.4.1 

flow cells for pooled DNA from damaged parents. Raw sequence data were collected 

from each flow cell for 48 hours, using ONT’s MinKNOW program.  MinKNOW’s 

Albacore real-time basecaller was used and the default read quality control sorted the raw 

read fragments according to the Mimulus v.2.0 reference genome. Once the base-called 

FASTQ data was obtained, reads that passed quality control were analyzed using the 

recommended pipeline for Nanopolish (Simpson et al. 2017) for detection of 5-

methylcytosine in conjunction with aligning, sorting, and mapping the basecalled data to 

the Mimulus guttatus v2.0 reference genome (Helsten et al. 2015) obtained from 

Phytozome (Neupane et. al 2011). To obtain the 5-mC calls, the call-methylation 

function of Nanopolish was used. This produces individual log-likelihood ratio 

probabilities of methylation for every resulting methylated fragment, which can be 

summarized by using the methylation frequency function to generate a concise table of 

methylation frequencies. This process was replicated to generate frequency data for both 

undamaged and double (parental) damaged groups. 

 After sequencing and mapping, Qualimap 2.2.1 (Okonechnikov et al. 2016) was 

used to generate a summary report on the damaged and undamaged genomes to aggregate 

statistics and information about the respective BAM files using the default settings. 
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Finally, Samtools “stats” (Li et al. 2009, 2011) was used to evaluate the average 

read/fragment length for each sample. 

Genomic Analysis from Artificial Selection 

 After the artificial selection experiment conducted by Neuffer (2015), a variable-

call format (VCF) file was generated based on pooled-sequencing of multiple 

populations: the source population, two replicate control populations, and two replicate 

treatment populations. The control and treatment populations were successively bred for 

four generations. In each generation, 30 plants were selected for breeding based on a 

random number generator (control populations) or their status as the highest trichome 

producers in the populations (treatment populations). The pooled genomic data that 

contributed to the VCF was sequenced using Illumina technology at the University of 

Kansas. McKinnon helped generate an R package (unpublished work, 2019) that 

incorporated a C# application developed by Farr, based on an original unpublished 

Python script to run the analysis proposed in Kelly (2013) after identifying the median 

window for analysis of SNPs from the VCF file based on GenWin (Beissinger et al. 

2015). These methods were applied to the existing VCF file sourced by Neuffer (2015) 

where the final output of the pipeline, developed by Farr and ported to R by McKinnon 

(2019, unpublished work), results in a file that provides a B* test statistic, a BH-adjusted 

P-value (Benjamini & Hochburg 1995), and the genomic position of the mid-point of 

each sliding window. 

 The B* test (Kelly et al. 2013) involves calculating a B value for every window 

of SNPs defined by the median value calculated from GenWin (Beissinger et al. 2015) in 

the dataset based on allele frequency differences. The median window was calculated to 
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be 7. The B and B*, which is a test statistic tractable to a Chi-square distribution, is 

calculated and reported for every window. This genomic position was then compared to 

the Mimulus guttatus v.2.0 (Hellsten et al. 2013) annotated reference genome published 

online on Phytosome (Neupane et al. 2011) to identify the closest gene, using BEDTools 

"closest" (Quinlan et al. 2010). 

   

Methylome Analysis 

 Methylome analysis was accomplished by modifying the DMR-Scan R-Script 

from Colicchio (2018) to accept output from Nanopolish’s methylation frequency 

function. The script was further modified to allow for analysis of our experimental design 

which only contains CpG methylation and the two pooled samples. Further settings, such 

as the use of Changepoint (Yokoyama et al. 2015) PELT manual penalty of 1.4 was used 

based on implementation of previous research using similar methylation data analysis 

(Colicchio et al. 2018). Only methylation frequencies that differed by a minimum of 4% 

were included in the analysis. Consistency of differential methylation in the resulting 

putative DMR regions was analyzed after scaling and re-centering the segments defined 

by Changepoint. A modified generalized linear model was used to predict methylation 

frequency as a function of parental treatment, with a logit link function and binomial 

distribution of error terms, using the lme4 package (Bates et. al 2015). This model 

provides p-values for individual DMRs. The integrated “p.adjust” function was used to 

perform a Benjamini-Hochberg (1995) correction for multiple comparisons and false 

discovery rate analysis on the results, where multiple comparison adjusted p-values of 
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less than 0.05 were used to indicate significantly differentially methylated regions and 

were retained for further analysis. 

Once the modified DMR-Scan script provided the list of significant DMRs, the 

BEDTools program (Quinlan & Hall 2010) was used to discover proximity to the closest 

gene using the “closest” function, and then whether the DMR intersected (“intersect” 

function) with a coding domain sequence (CDS) or regulatory 5’-UTR region according 

to the Mimulus guttatus v2.0 repeat-masked assembly and annotation. 

Gene Ontology Enrichment & Analysis 

 Once the closest genes to each DMR were identified, BLAST annotations were 

obtained by using BEDTools “intersect” (Quinlan et al. 2010) to map these genes to 

function. The list of genes was subject to gene ontology (GO) enrichment analysis 

through PlantRegMap (Jin et al. 2017), which utilized a Fisher’s Exact Test with a 

manually defined α = 0.05 to discover DMR-associated GO terms that were significantly 

over-represented. ReviGO (Supek et al. 2011) was used to summarize and visualize the 

GO enrichment results, using the default settings. Due to a small number of terms 

resulting from the genomic analysis, no GO enrichment was performed on the genomic 

dataset; however, the GO terms associated with each significant result were identified 

using Dicot Plaza 4.0, an online tool for searching data from many dicot organisms. 
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CHAPTER IV 

RESULTS 

Differentially Methylated Regions 

Qualimap (Okonechnikov et al. 2016) reports indicated that for the double 

damaged (maternal and paternal damage) sequence data, the mean genomic coverage for 

scaffolds 1-14 was 2.77 with an overall mapping quality of 22.65 (Phred score) and a 

general error rate of 18.75%. The error rate is calculated as the ratio of total collected edit 

distance vs. the number of alignment mismatches reported by SAMTools (Okonechnikov 

et al. 2016). These numbers included scaffolds beyond the total number of chromosomes 

in Monkeyflower, so the actual general error rate may somewhat lower than reported. 

One of the contributing factors to this error rate could be a large number of sequence 

scaffolds that are unlocalized between the reference and sample genome sequences. For 

the undamaged sequence data, the mean genomic coverage was 1.40x with a mean 

mapping quality of 21.28 and a general error rate of 20.47%. Again, these reports were 

calculated including scaffolds above the total number of chromosomes, so these numbers 

may be inflated. The average read/fragment length reported by SAMTools  (Li et al. 

2009) for the double damaged sample was 1,589 base pairs, and for undamaged the 

length was 2,114 base pairs. 

 The resulting data indicated 59 unique DMRs, identified from the pipeline 

developed for the methylation analysis (available at https://www.github.com/davidfarr). 

Of these, 17 DMRs intersected genomic features such as 5’-UTR regulatory regions or 

CDS coding sequences. One DMR was long enough to intersect both of these key 

features. These 17 DMRs are summarized in Table 1. 
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Table 1  Results of Nanopolish and DMR-Scan analysis pipeline. Each row represents an 
individual DMR based on differences to mean methylation frequency. Only DMRs that 
were intersecting or within 2 kilobases of a genomic feature are listed. Distance in base 
pairs and DMRs that are not near a genomic feature may be found in the appendices. The 
difference in mean methylation is calculated based on the methylation frequencies for 
methylated segments of the parental damaged and undamaged individuals. P-values are 
FDR adjusted for α = 0.05. 
Significance: All are P <0.05; *P < 0.01; **P < 0.001; ***P < 0.0001. 
 

CHR Start BP Diff. Mean 
Methylation 

DMR 
Size (BP) Nearest Gene Associated 

Genomic Feature 
1 28582 8.00E-02  329 Migut.A00002 5’-UTR 
5 34877 -4.97E-02  623 Migut.E00005 5’-UTR 
6 31237 -1.03E-01  115 Migut.F00003 5’-UTR 
7 31750 9.64E-01  13 Migut.G00001 5’-UTR 
10 29964 -2.12E-01  65 Migut.J00005 5’-UTR 
10 48388 -3.49E-01  22 Migut.J00007 5’-UTR 
11 10821 -4.20E-02  545 Migut.K00001 5’-UTR 
11 12382 -4.97E-02 ** 1126 Migut.K00001 5’-UTR 
11 65607 -2.57E-01 *** 62 Migut.K00005 CDS 
11 74531 -2.99E-01 * 58 Migut.K00008 5’-UTR 
11 79413 6.43E-01  13 Migut.K00009 5’-UTR 
13 2796 -8.51E-02 * 218 Migut.M00001 5’-UTR 
13 30805 5.99E-01 * 16 Migut.M00003 5’-UTR 
14 17052 -2.64E-01  54 Migut.N00004 5’-UTR, CDS 
14 18012 -4.41E-02 *** 524 Migut.N00004 5’-UTR 
14 18012 -4.41E-02 *** 524 Migut.N00005 5’-UTR 
14 27582 8.75E-01  15 Migut.N00008 5’-UTR 

 

 The complete list of DMRs was converted to a format compatible for processing 

through the GO Enrichment analysis described in the methods above. The GO 

enrichment process uses Fishers Exact Test and FDR to produce a list of GO terms 

categorized by biological process, cellular component, and molecular function. The 

complete list is provided in appendix A and has been summarized according to biological 

process in Table 2. The full GO term results were analyzed and visualized with Revigo in 

Figure 1.  
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DMR GO Enrichment Analysis 

Table 2 Summary of the GO enrichment analysis results related to biological process. 
Fisher’s Exact Test was used to identify ontological terms that are significantly 
overrepresented based on the list of all genes identified from the DMR analysis. An FDR 
of 0.05 was used to account for multiple comparisons and in all cases, the q-value for the 
terms below was 1. Significance: All are P < 0.05; *P < 0.01 
 
GO Term Annotated Count Expected p-value 
response to abscisic acid 286 3 0.39 0.0065 * 
response to alcohol 330 3 0.45 0.0097 * 
response to lipid 370 3 0.51 0.0132 
single-organism carbohydrate 
metabolic process 

382 3 0.52 0.0144 

single organism reproductive process 758 4 1.04 0.0175 
developmental process involved in 
reproduction 

830 4 1.14 0.0237 

shoot system development 486 3 0.67 0.0271 
response to hormone 878 4 1.2 0.0285 
reproductive process 937 4 1.28 0.0351 
response to endogenous stimulus 939 4 1.29 0.0353 
carbohydrate metabolic process 971 4 1.33 0.0393 
reproduction 239 2 0.33 0.0416 
anatomical structure development 1459 5 2 0.0417 
response to acid chemical 596 3 0.82 0.0455 
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Figure 1  Visualization of GO enrichment analysis results provided by Revigo, which 
uses ontological terms to group genes by similar function in a semantic space. Circle size 
refers to the number of DMR-associated genes that fit the individual term and color 
indicates the significance of each term. Only terms that meet a dispensabilility threshold 
of 0.35 are included. 
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Genetic Analysis Results 

 
 The BAM files that contributed to the VCF included variants from a single pooled 

DNA sample from each of the following populations: the source population, control 

replicate 1, control replicate 2, treatment replicate 1, and treatment replicate 2. Genome 

sequence from IM 767 was also included to polarize the VCF format so that results 

would be expressed in terms of the frequency of the allele from the founding IM 767 

parent. This analysis compared allele frequencies in the source and control populations to 

those in the replicate treatment populations to identify genomic regions exhibiting 

significant divergence. The BAM file was generated at the conclusion of research by 

Neuffer (2015) but had not yet been analyzed in detail.  

 Of the 3,756,767 SNPs in the initial B* calculation, this results in 1,073,360 

reported windows with a B* and p-value reported. To adjust for multiple corrections and 

false discoveries, the “p.adjust” function was used using the FDR a.k.a “BH” method. 

After FDR analysis, adjusted P-values at an α = 0.05 are reported in Table 3 along with 

nearest genes, genomic features, and distance to feature.  

 The results in Table 3 were compared to the list of differentially methylated 

regions in the event that there were any common genetic or epigenetic changes between 

the two separate experiments that would show support for a common mechanism. 

However, none of the significant SNPs based on the artificial selection experiment 

matched any DMRs from the epigenetic experiment. 
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Table 3 The list of candidate genes after B* analysis. BP values correlate to the middle 
or end of the window of 7 SNPs as identified through GenWin (Beissinger et al. 2016) 
and the B* value is the test statistic reported for that window. Distances were reported to 
the nearest 5’-UTR or CDS when it occurred within two kilobases, with a positive 
distance indicating a region of genomic divergence that is upstream of the feature. 
Adjusted P-values were rounded to six significant figures and their similarity is likely 
associated with a large number of results with a P-value of 0.5, which can affect the 
adjusted p-value. P-values before correction for multiple comparison testing will be 
available on https://github.com/davidfarr. 
 

CHR BP B* Adjusted 
P-value  

Gene Feature 
Distance 
from Feature 
(BP) 

10 18469191 25.8936 0.03998 Migut.J01741 5’-UTR 642 
10 18547232 28.9589 0.03998 Migut.J01753 NA NA 
10 18547259 31.2980 0.03998 Migut.J01753 NA NA 
10 18547277 27.9977 0.03998 Migut.J01753 NA NA 

 
 

The list of genes in Table 3 was not large enough to conduct a GO enrichment 

analysis. Instead, the gene ontology was accessed using Dicots Plaza 4.0 based on Plaza 

Integrative Orthology and InterPro. These results are summarized in Table 4. 

 

Table 4  Summary of the gene ontology for the genes reported in Table 3. An AT source 
refers to a known ontology from Arabidopsis thaliana. 
 

Gene Biological 
Process 

Molecular 
Function 

Cellular 
Component  

Provider Source 

Migut.J01741 mucilage 
biosynthetic 
process 
involved in 
seed coat 
development  

1,4-beta-
D-xylan 
synthase 
activity  

Golgi 
apparatus  

PLAZA 
Integrative 
Orthology  

AT3G10320 

Migut.J01753 NA binding NA InterPro NA 
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CHAPTER V 

DISCUSSION 

Epigenomic Analysis Pipeline 

 One of the key goals of this project was to expand on and generate a pipeline that 

can locate differentially methylated regions based on Nanopore data. The first stage of 

the pipeline can be considered to be the actual sequencing itself. Nanopore sequencing 

technology allows smaller institutions and groups to perform genetic sequencing with 

lower startup costs than Illumina (Besser et al. 2018). One of the greatest remaining 

challenges using the Nanopore device for whole-genome work – whether the goal is 

epigenetic or genetic analysis – is managing historically lower base mapping accuracy 

and read quality compared to other next-gen methods such as classic bisulfite sequencing 

(Simpson et al. 2017). However, Nanopore technology is subject to frequent revision and 

improvement by Oxford Nanopore Technologies, incrementally increasing its read 

quality and accuracy while maintaining the small form factor of the nanopore device 

itself (Oxford Nanopore Technology). 

 Popular methods and software for working with “-omic” work is built on an 

assumption that input data will come from Illumina, which results in fragmentation of the 

data processing pipeline for researchers utilizing Nanopore technology. For example, 

Nanopolish (Simpson et al. 2017) provides comprehensive documentation for analyzing 

CpG methylation in Nanopore-based sequence data based on log-likelihood probability. 

However, Nanopolish output is not directly compatible with other scripts, such as DMR-

Scan (Colicchio et al. 2018), that were initially designed to accept Illumina data for 

downstream analysis.  
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 To generate a pipeline for analysis of Nanopore data, an R script was developed 

that included Bash programming to expedite the process of generating a methylation 

frequency file that can be enumerated into the DMR-Scan R script. The current version of 

this new pipeline requires users to have the necessary python components installed prior 

to use, such as Nanopolish (Simpson et al. 2017), minmap2 (Li 2018), BCFTools (Li 

2011), SAMTools (Li et al. 2009), BEDTools (Quinlan & Hall 2010), and their 

dependencies. All R libraries are installed and called running the pipeline R script and 

simply require R to run. The input format for the actual DMR analysis can be difficult to 

visualize into figures, so a report-generating tool such as Qualimap (Okonechnikov et al. 

2016) is useful to summarize and visualize basic data and runs as a standalone third-party 

application. 

 The public release of the nanopore methylation pipeline will appear on 

https://github.com/davidfarr. 

Genomic Analysis Pipeline 

 The statistical methods originally proposed by Kelly (2013) did not come with a 

public release of a script or software to complete the analysis. Kelly generated a series of 

unpublished python scripts that were hard-coded to support Neuffer (2015). In Farr 

(2019) an initial C# language translation of the python scripts was used to present 

preliminary data and software methods for discovery of SNPs and nearby genes that are 

associated with increased constitutive production of trichomes in response to artificial 

selection. The C# program was expanded to take advantage of a more object-oriented 

programming methodology and cater to a more diverse set of needs.   
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 With the help of McKinnon (unpublished work, 2019), the software pipeline that 

was generated to run the B* analysis was converted to an R package, which is expected 

to expand its user base to more researchers – especially those who are using UNIX based 

systems such as Linux or macOS without dependence on third-party frameworks. The 

final version of the R package will allow for a range of user options so that the B* 

analysis can be used to locate SNPs displaying evolutionary divergence from any VCF 

input where the contributing BAM files are representative of pooled genomic DNA. 

Differentially Methylated Regions 

 Using the pipeline for discovering differentially methylated regions, a total of 59 

DMRs were located along with their closest genes, features, and gene ontology 

enrichment (Table 2, Figure 1). The full list of DMRs, which includes DMRs that were 

not within 2 kilobases of a CDS or 5’-UTR, are located in the appendices. All of the 

DMRs were returned as significant as a result of the analysis from DMR-Scan (Colicchio 

2018). Many of the GO terms reported during enrichment were biologically interesting. 

Genes associated with terms for anatomical structure development and growth, as well as 

response to endogenous stimuli and abscisic acid, were particularly interesting as they 

support the biosynthetic and structural growth of trichomes as well as known plant 

signaling pathways that respond to damage (Colicchio et al. 2015). The exact mechanism 

by which Monkeyflower upregulates glandular trichome production is not well 

understood, so the results do not confirm a specific mechanism, but instead support a 

series of methylation changes that may be associated with the epigenetic response to 

simulated insect damage to leaves. 
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Candidate Genes for Glandular Trichome Production 

 One of the most important changes to the software pipeline developed by Farr 

(2019) that is included in the current R package developed with help from McKinnon 

(unpublished work, 2019) is the inclusion of the p.adjust method to supplement false 

discovery rate analysis with an additional correction for multiple comparisons, resulting 

in the generation of adjusted p-values. Rather than only limiting false discoveries, the test 

provides a shorter list of SNPs with significant adjusted p-values that are sourced from 

highly significant original B* results. 

 The most relevant set of ontological terms displayed in Table 4 for the gene 

identifier, Migut.J01741, is associated with mucilage development in the seed coat. 

Broadly, mucilage can be defined as a secretory product associated with glandular 

trichomes as well as the formation of the seed coat (Li 2009, Tsai 2017). Mucilage and 

transcription factors promoting genes for mucilage development are expressed at higher 

levels in Arabidopsis thaliana trichomes and are an essential component of seed coat 

development in reproduction (Li 2009, Tsai 2017). Mucilage can also be used in 

medications, and therefore has agricultural and economic importance as well (Malviya 

2011, Prajapati 2013).  
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CHAPTER VI 

CONCLUSION 

 Within the scope of this study, we observed that there was significant variation in 

glandular trichome production as both an epigenetic response and a genetic response to 

selection. The phenotypic variance between populations and individuals is likely due to 

complex interactions between genetic factors, epigenetic factors, and expression level 

changes that are difficult to untangle in a single experiment. Rather, our data suggest 

candidate genes of interest and differentially methylated regions associated with 

increased trichome production that require future investigation through gene knockout or 

knockdown studies, as well as a thorough exploration of the role of transcription factors 

and transposable elements.               

 Akkerman (2016) proposed that glandular trichome production as a defensive trait 

was transgenerationally inherited in a sex-dependent manner and that maternal 

transmission was specifically susceptible to interference by 5-azacytidine, which impedes 

the replication of CpG epigenetic modifications. The results summarized in Table 1 

support the assertion that parental damage results in significantly differentially 

methylated regions and suggest a potential ontological basis for regulation of associated 

genes.  

 The results of the genomic analysis show an increase in the frequency of Point 

Reyes alleles located at one end of chromosome 10 (Table 3) and associated with 

increased constitutive trichome production. This region exists closest to gene ID 

Migut.J01741, which is associated with mucilage development and represents an 

attractive candidate gene for the inheritance of increased trichome production.  Future 
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knockout or knockdown of this gene could be used to assess involvement with trichome 

production.  

 Sound data reporting from Nanopore sequencing typically requires high accuracy, 

quality, and genomic coverage (Kurdyukov et al. 2016, Ziller 2015), despite the potential 

value of extended read lengths not afforded cost-effectively from Illumina sequencing 

(Besser et al. 2018). These are areas which must be improved upon to present the most 

meaningful results of the methylation data. At present, due especially to a low coverage 

and quality, these factors diminish the statistical power of the epigenetic portion of this 

experiment, thus while it is possible that given greater coverage and quality mapping, 

some or all of the DMRs identified would remain significant, it is difficult to assess the 

probability of error and should be noted as such. The pipeline that was generated to carry 

the raw Nanopore data into DMR analysis will be useful for future studies and should be 

expected to produce actionable results when more quality DNA can be sequenced from 

the remaining samples from the Akkerman (2016) experimental population. Future 

challenges aside, the ability to apply differential methylation analysis to Nanopore data 

has not benefited from great documentation or software development, and the release and 

test case for the analysis is exciting as future studies into Monkeyflower unfold. 
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APPENDIXES 

APPENDIX A 

Full List of Differentially Methylated Regions 

Appendix A  Table of the complete 59 differentially methylated regions resulting from 
the DMR-Scan analysis. Genomic features within 2 kilobases are described where 
available. A positive distance from genomic feature implies that the DMR was upstream 
of the feature where applicable. Adjusted P-values are calculated based on a=0.05. 
Significance: All are P <0.05; *P < 0.01; **P < 0.001; ***P < 0.0001. 
 

CHR Start 
BP 

Diff. Mean 
Methylation 

DMR 
Size 
(BP) 

Nearest Gene Genomic 
Feature 

Distance 
from 
Genomic 
Feature 
(BP) 

1 4127 9.23E-01  12 Migut.A00001 NA NA 
1 5455 3.39E-01  28 Migut.A00001 NA NA 
1 10412 -2.24E-01 ** 85 Migut.A00001 NA NA 
1 18171 -3.58E-01 ** 37 Migut.A00001 NA NA 
1 25599 -5.39E-02 *** 649 Migut.A00002 NA NA 
1 28582 8.00E-02  329 Migut.A00002 5’-UTR 955 
2 23067 -8.20E-01 *** 17 Migut.B00003 NA NA 
2 28443 -1.33E-01 * 167 Migut.B00004 NA NA 
2 48986 -3.30E-01  39 Migut.B00006 NA NA 
3 2498 -3.44E-01  23 Migut.C00001 NA NA 
3 26607 7.77E-01  9 Migut.C00001 NA NA 
3 38308 2.81E-01  47 Migut.C00001 NA NA 
4 6582 7.86E-01  13 Migut.D00002 NA NA 
5 25254 1.78E-01 * 94 Migut.E00003 NA NA 
5 34877 -4.97E-02  623 Migut.E00005 5’-UTR 534 
6 31237 -1.03E-01  115 Migut.F00003 5’-UTR -1991 
6 32407 4.17E-01 * 26 Migut.F00003 NA NA 
7 9403 1.32E-01 ** 119 Migut.G00001 NA NA 
7 9775 -4.97E-02  565 Migut.G00001 NA NA 
7 16843 2.07E-01 *** 60 Migut.G00001 NA NA 
7 18957 -3.34E-01 * 35 Migut.G00001 NA NA 
7 25625 -6.81E-01 * 15 Migut.G00001 NA NA 
7 31750 9.64E-01  13 Migut.G00001 5’-UTR 0 
7 36764 4.31E-01  29 Migut.G00002 NA NA 
8 8472 -1.77E-01 * 83 Migut.H00001 NA NA 
8 25101 2.92E-01 *** 77 Migut.H00002 NA NA 
8 29930 -6.11E-01  17 Migut.H00002 NA NA 
8 55375 7.07E-02 * 278 Migut.H00007 NA NA 
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9 336 -2.26E-01  62 Migut.I00001 NA NA 
10 26693 1.77E-01  79 Migut.J00004 NA NA 
10 29964 -2.12E-01  65 Migut.J00005 5’-UTR -64 
10 40149 6.22E-01  14 Migut.J00006 NA NA 
10 42634 4.33E-01  17 Migut.J00007 NA NA 
10 48388 -3.49E-01  22 Migut.J00007 5’-UTR 1579 
11 2350 -5.94E-02 * 406 Migut.K00001 NA NA 
11 10821 -4.20E-02  545 Migut.K00001 5’-UTR -315 
11 12382 -4.97E-02 ** 1126 Migut.K00001 5’-UTR -1876 
11 14000 -1.24E-01 *** 276 Migut.K00001 NA NA 
11 29573 -8.48E-02 ** 315 Migut.K00001 NA NA 
11 65607 -2.57E-01 *** 62 Migut.K00005 CDS NA 
11 74531 -2.99E-01 * 58 Migut.K00008 5’-UTR -557 
11 79413 6.43E-01  13 Migut.K00009 5’-UTR 1411 
12 14273 -1.29E-01  124 Migut.L00003 NA NA 
12 19183 -8.33E-02  212 Migut.L00004 NA NA 
12 25208 1.02E-01  251 Migut.L00004 NA NA 
12 35035 5.91E-01  21 Migut.L00004 NA NA 
13 2796 -8.51E-02 * 218 Migut.M00001 5’-UTR 0 
13 8699 2.57E-01 * 77 Migut.M00001 NA NA 
13 21383 -3.75E-01 * 47 Migut.M00002 NA NA 
13 21808 2.15E-01 *** 56 Migut.M00002 NA NA 
13 23480 1.59E-01 * 136 Migut.M00002 NA NA 
13 25721 -4.74E-02 *** 682 Migut.M00002 NA NA 
13 30805 5.99E-01 * 16 Migut.M00003 5’-UTR -877 
13 36044 2.56E-01 * 47 Migut.M00003 NA NA 
14 17052 -2.64E-01  54 Migut.N00004 5’-UTR 

and CDS 
819 

14 18012 -4.41E-02 *** 524 Migut.N00004 5’-UTR -25 
14 18012 -4.41E-02 *** 524 Migut.N00005 5’-UTR -25 
14 27582 8.75E-01  15 Migut.N00008 5’-UTR 0 
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APPENDIX B 

Scoville Lab Urea Extraction Protocol 

 

Day before grinding 

1. Place mortar and pestle(s) in freezer 
2. Place 70% ethanol in freezer 
3. Can make 5M NaCl 
4. Can make TE buffer 

 

Day of extraction 

5. Remove phenol:chloroform:isoamyl alcohol from fridge and place in hood.  
Protect from light. When equilibrated to 15 to 30 degrees, swirl thoroughly to 
form a single, clear, homogenous phase.  (If necessary, it may be okay to use the 
lower, clear, organic layer at 2 to 8 degrees).  Pipette out desired amount to retain 
protective argon layer in the bottle.  

6. Need 5mL per extraction.  
7. Make up lysis buffer 
8. During step 7, make up RNaseA (0.5 mL per sample; 10mg/mL).  For 8 

extractions, need 40 mg in 4mL (or 42 mg in 4.2 mL) 
9. During step 8, make up Chloroform:isoamyl alcohol 24:1 

 

Locate/prep 

 

10. 1 50 mL falcon tube (lysis buffer) 
11. 5M NaCl (3.5 mL per 10 extractions) 
12. spatula, weigh boats for tissue (1g) and RNAase A (42 mg) 
13. platform shaker in hood 
14. rocking platform 
15. centrifuge for 15 mL falcon tubes; 3000 – 4000 rpm 
16. 15 mL falcon tubes: 4 per sample 
17. water bath or incubator at 37 degrees 
18. ice 
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5M NaCl 

1. Mix 14.61 g NaCl with 45 mL of ddH2O by stirring. 
2. Add ddH2O until final volume is 50 ml. 
3. Store at room temperature. 

 

70% ethanol 

1. Measure 73.68 mL of 190 proof (95% ABV) ethanol 
2. Add ddH2O to a final volume of 100 mL 

 

1x TE buffer 

1. 500 uL of 1M Tris-HCl (pH 8.0) 
2. 100 uL of EDTA (0.5 M) 
3. Add ddH2O to a final volume of 50 mL 

 

Chloroform:isoamyl alcohol 24:1 

1. 48 mL chloroform: 2 mL isoamyl alcohol for 50 mL 
2. 43.2 mL chloroform : 1.8 mL isoamyl alcohol for 45 mL 
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