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CHAPTER I
INTRODUCTION

This paper presents some ideas on a different approach
to the teaching of integral calculus. The method presented
here, though simple in nature, requires little alteration
when new toplcs such as probablility and series are developed.

The theory of function rings is developed in Chapter
II. Chapter III contalns the proof of The Extension Theorem
which is the basis of the theory. If "integral" is defined
on a function ring, then when the function ring is enlarged
to 1ts Cauchy Completion, the integral 1s extended to the
Cauchy Completion.

In the prototype example, "integral' is defined in
the evident way for step functions defined on a closed and
bounded interval X of the real line. When f is a real-
valued function defined on X for which there exists a
sequence {f,} of step functions which converges uniformly
to £, we define f to be the limit of the sequence
{ fp}. This definition of integral is shown to be legi-
timate and the characteristics of the function f are examined.

Though algebraic in nature, the proofs do not rely
on topological concepts, which is in keeping with the spirit
of simplicity. Several theorems yield more general results
than necessary but since these extensions require little

extra effort, they are stated.



CHAPTER II
FUNCTION RINGS

Let X be a non-empty set and let RX denote the set
of all functions f: X > R where R denotes the real numbers.
The set RX is both a ring and a lattice under operations
defined pointwise; i1i.e. for f, g € RX and all x € X
(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), (f v g)(x)
is the larger of f(x) and g(x), and (f A g)(x) is the
smaller of f(x) and g(x). Furthermore, [fv(-fi,(x) =
[£(x)| for all f € R¥ and for all x € X so we use the
notation |f| = fwv(-f). Also the following relations
hold in RX:

2-1) |f£+ gl < |f| + |gl

2-2) ~(f v g) = (-f) A (-g)

2-3) fvi(gah) =(fvg)la(fv h)
2-4) fa(gv h) = (fA g)v (fA D)
2-5) (fvg)+h=(f+h)v(g+h)

2-6) (fAg)+h=(f+nh)A(g+ h).

Statements 2-3 and 2-4 show the lattice is distributive

and statements 2-5 and 2-6 show that in the lattice, addi-
tive translations are lattice automorphisms. For each real
number r we let r also denote the constant function in RX

defined by r(x) = r for all x ¢ X.



A function ring on X is a pair (A, {un}) where A
is a non-empty subring and sub-lattice of RX and {up} is
a sequence in A such that

2-7) un > 0 but up # 0 for each n in the set N of

positive integers,

2-8) 1if f € RX and 0 < f < u, for all n € N, then

n
f =0,
2-9) 2up4] = up4]l + Upt4] < up for each n € N,
2-10) 1if f € A and n € N, then there exists m € N
such that |fup| < uj.
It is not required that A have a unity. For an example of
a function ring, let X be any non-empty set and let up be
the constant function 1/2" for each n € N. Let
A = {f € RX | there exists a constant function ¢ such that
|f| < ¢}. Then (A, {un}) is a function ring.

For (A, {upl}), a function ring on X, we call two
sequences {f,} and {g,} in R* related if and only if for
each n € N, there exists k € N such that |fg - g¢| < up
for all s, t > k; that is, |fs - 8¢| < up for all s and t
sufficiently large. A sequence which is related to itself
is called a Cauchy sequence. If related is restricted to
the set of all Cauchy sequences in R¥, then related is an
equivilance relation. Although related is not an equivi-
lance relation in general, it is transitive and symmetric,.

A sequence {fp} in R* is said to have the limit f ¢ R¥
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or to converge to f € RX if and only if {fp} 1s related to
the sequence {g,} where g, = f for all n € N. We will

write {f,} » f.

THEOREM 1. For (A, {upl}) a function ring on X, the 1limit
of a sequence in R¥ is unique.
Proof: Suppose {fp} +» f, {fq} » g, and n € N, Then

|fg = f| < up4q for all s sufficiently large and

lft - gl

A

Ui+l for all t sufficlently large. Hence
It - gl < |f-f,] + |fy - 8l < upyq + upyy < up, for all
s and t sufficiently large. Thus |f - g| < u, for all
neNso|f-g|l=0.

A function ring (A, {upl}) is Cauchy complete if

every Cauchy sequence 1n A has a limit in A.

THEOREM 2. For (A, {upnl}) a function ring on X, every

Cauchy sequence in RX has a limit in RX,

Proof: Let {gn} be a Cauchy sequence in RX. For each

n e N we have |gs - 8t| < up for all s and t sufficiently

large, hence |gg(x) - g¢(x)]| < up(x) for all x ¢ X and

s and t sufficiently large. Since {up(x)} + 0 for all

x € X, we see that {g,(x)} is a Cauchy sequence of real

numbers. Since R 1s complete, the sequence {gn(x)} has

a 1limit g(x) € R for each x ¢ X thus defining a function
X

g ¢ R". We must show for each n ¢ N, there exists k ¢ N

such that |gg - g| < u, for all s > k. Suppose n ¢ N and



choose k € N such that |gs - gt| < un for all s, t > k.
Suppose x € X and € > 0, then |gt(x) - g(x)]| < € for all
t sufficiently large. So if s, t > k and t 1s sufficiently
large, we have |gg(x) - g(x)| < [gq(x) - ge(x)]| +
lge (x) - g(x)] < uy(x) + €. Thus for all € > 0, we have
lgg(x) - g(x)| < u,(x) +e whenever s > k so
leg(x) - g(x)| < u,(x) for all s > k. Note that k was
chosen before x and 1s independent of x so
lgs - gl < u, for all s 2> k.
We define a map to be a function
a: (A, {upl) » (B, {vp}) from a function ring A on X
to a function ring B on Y with the following properties:
2-11) if f < g in A, then a f < a g in B,
2-12) a(f + g) = af + ag for all f, g € A,
2-13) for each n € N, there exists m € N such that

if |[f| < up, then |af| < vp.

THEOREM 3. Let a: (A, {unl) » (B, {vn}) be a map. If
{fh} is a Cauchy sequence in A, then {af,} 1is a Cauchy
sequence in B,

Proof: Let n € N and choose m € N such that

|af]| < vp whenever |f| < up. Then for all s and t suffi-
clently large, |fg - ft| < up and |a(fg - ft)]

= |afg - aft] < vp so {afp} is a Cauchy sequence in B,



CHAPTER III
THE EXTENSION THEOREM

We are now ready to state the Extenslon Theorem
which has been proved in a more general context by

J. T. Morse. (1)

THEOREM 4. If (A, {up}) is a function ring on X, then
there exists a function ring (Q, {up}) on X such that

A € A and each element of (ﬁ, {un}) is the 1limit of a
sequence in (A, {upnl}) and - (ﬁ, {un}) 1is Cauchy complete,
If (B, {vph}) 1s a Cauchy complete function ring on Y

and a: (A, {up}) » (B, {vhl}) is a map, then a has a
unique extension &: (ﬁ, {un}) - (B, {vn}) as a map.

In addition, if a preserves multiplication, then so does
a.

Proof. For brevity, we will denote (A, {upl), (B, {vphl),
and (Q, {un}) by A, B, andf? respectively. Define 2 to

be the set of all f € RX such that there exists a sequence

A

{fh} in A which converges to f., First, we must show
is a function ring. Properties 2-7, 2-8, and 2-9 are
clearly true so consider property 2-10 of {upn}. Let
f e ﬁ and suppose n € N, Also let {fp} be a sequence

in A such that {fp} + f. Choose m € N such that

u? fun+l and m 2 n + 1. This is possible by choosing
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m € N such that uiup < up since uy < u;. Pick k € N such
that |f - fkl < uw and choose s > m, s € N, such that
|fyus| < up. Then we have |fug|< ug |f - fi| + |flug]
< Ugup + up < up + Up < Uptl * Up+l < up so 2-10 is
satisfied. Now, if f, g € % ana 1ir {fnl and {gnhl are
sequences in A with {f,} + f and {g,} > g, it 1s clear
that {f, - gn} » f - g ¢ 2. To show {fhegn} + fg, suppose
n € N and choose p € N such that lfupl < un4+1. Choose
t € N such that |ug(|g| + up)| < upsy. Then for all s
sufficiently large, |fsgs - fg| = |f(gs - &)
+(fs - f)(gg - 8 + g)| < [fup| + |ug(lg]l + up)|
< ups1 + Up+l < up where |gg - g| < up and [fg - f| < ug
for all s sufficlently large. For ﬁ to be a sublattice
of RX, we must show if f, g € ﬁ, then f v g € 2 and
f A g e A. Note that if 2 1s closed under v, it will be
closed under A since f A g = - [(-—f)v (—g)]. Suppose
ne N, then |[fg - f| < u, and |gg - g| < u, for all s
sufficlently large where {f,} and {g,} are as above.
Furthermore, f - uy < fg < f + up and
g - uy < gg < g+ u, for all s sufficiently large and
(fveg)l-uy,<fv g <(fv g)+u,or
[(fsv 8g) - (f v g)| < u, for all s sufficiently large.
Thus {f,v g,} *fv gand f v ge ﬁ. A 1s thus seen to
be a function ring on X and we must show ﬁ is Cauchy

complete.



Let {g,} be a Cauchy sequence in A. There exists
g € Rx such that {ghl *+ g by Theorem 2. For each g,
denote {gnm} a sequence in A which has 1limit g,. Suppose
s € N and for each n € N, choose k ¢ N such that
lgnk - 8nl < ug4y and set a, = gni. The sequence {a,}
is in A and we will show {ap} + g, hence g e‘ﬁ. Since
lag - g¢| < ug4y for all t sufficiently large and
gy - g] < ugyy for all t sufficiently large, we have
lag - gl < lag - s¢l + lge - 8l < uge1 + uge1 < ug for
all t sufficiently large so {ap} + g and g ¢ 4. We are
now ready to define a: ﬁ + B, If f e Q, there exists
a sequence {fn} in A such that {fp} + f. Since {f,}
is a Cauchy sequence in A, {afnl} is a Cauchy sequence
in B and since B is Cauchy complete, {af,} has a limit
T ¢ B. Define 4f = £ and we must verify that the choice
of {f,} did not effect the selection of &f. Let {g,}
be a different sequence in A with 1limit f. Suppose n € N,
then there exists m € N such that if |h| < up, then
fah| < v,. Since {f,} is related to {g,}, there exists
k € N such that for all s, t > k, |fg - gt| < uyp which
implies |afg - agy|l < vy for all s, t > k. So {agyl}s
related to the sequence {afp} and hence has limit fe¢B
by the uniqueness of ?. Clearly 2 is an extension of a.

For a to be a map, it must satisfy 2-11, 2-12,

and 2-13. Conslder 2-13 and suppose n € N. Choose m € N



such that if g e A and |g| < up_y, then |ag| < vp4y. Let
£ e? with |f| < uy and let {f,} be a sequence in A with
1imit f. Choose k € N such that |fg - f| < up for all
s > k, then |[fg| < |fg = £| + |f] < up + up < up_y for
all s > k. Hence we have |afg| < vp+1 for all s > k so
choose t € N such that |&f - afg| < vn+1 for all s > t.
Then for all s sufficiently large, f € A with If] < upy
implies |af] < |Gf - afg| + |afg] < vps1 + vpel < vp
and 2-13 is satisfied.

Let £, g € & with {f,} and {gy} sequences in A
with limits f and g respectively. It is evident that
{f, + gn} = £ + g so by the definition of @,
{a(fn + gn)} » G(f + g). Since a is a map al(fp + gn)
= af, + agy for each n € N, so {afp + agp} + &f + fg
and by the unigueness of limits in RX, &(f + g)
= Gf + @g. Similarly, i1t is shown that &(fg)
= (8r)(8g).

Property 2-11 will now follow if we assume f, g € ﬁ
as above with f < g and note that if {fn} 1is a sequence

in A with 1limit f, then {|fnh|} + |f]|. Since

{gn - fpt »2-¢>0, {|gg - ful} » (g - £) and by the

definition of o, {algy - fnl} » &(g - ) = & - Gf. Since

lgn - fnl > 0 for each n € N, algn - fnl

| v

0 for each n € N

and hence ﬁg - &r > 0 or ar < ag.
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We conclude our proof by showing & is unique.
Assume ¢: A + B is a map with ¢f = Gf if f € A. Suppose
£ e? and {fn} is a sequence in A with limit f. Since 2
and ¢ are both maps, {an} + af and {¢fn} + ¢f. But,

afn = ¢f, for each n € N, so Theorem 1 implies af = ¢f,



CHAPTER IV
INTEGRATION

Consider any non-empty set X and a non-empty subset
I of RX with the following properties:
4-.1) The elements of I are idempotents; i.e., f ¢ I
implies f? = f,
4-2) I is closed under the operations Vv and A,
4_3) for each f ¢ I, there exists g € I such that
fAg=0and f v g=1where 1 is the constant
l-valued function on X,
4-4) there exists a functiond: I + R such that
b-4a) 41if f, g € I with f < g, then
d (£) < d (),
hohp) 1if f, g e I and f A g = 0, then
drv e =d) +4 ().
Remark 4.1. Note that the operations A and multiplication

are identical on I. By 4-2 and 4-3, the constant functions
0 and 1 are elements of I. From 4-4a and 4-Ub it follows
thatd (0) = 0 andd(f) > 0 for all f e I,

Definition 3.1: If f ¢ RX and f(X) is finite, then f is

a step function if and only if for each a € R, there exists
g € I such that for all x ¢ X, f(x) = a if and only if
g(x) = 1. Note that the function g € I is necessarily unique.

Let S be the set of all step functions in RX, Note that each



12
step function f can be written uniquely in the form
f=ah, + ¢+« + ajhy where each hy € I and f(x) = aj
if and only if hy(x) = 1 for all x € X and each
i=1, 2, *++, J. We call a,h;, + a,h, + ¢-- + aJhJ the

standard decomposition of f.

THEOREM 5. The set S of all step functlons is a sublattice
and subring of RX,

Proof. To show S 1s a sublattice of RX, suppose f, g € S
and a € R. There exists h, k € I such that for all x € X
we have f(x) = a if and only if h(x) = 1 and g(x) = a 1if
and only if k(x) = 1. Therefore (f v g)(x) = a if and
only if h(x) = 1 or k(x) = 1 so (f v g)(x) = a 1if and only
if (h v k)(x) = 1., Since h, k € I, hvkeIand fv g

is a step function. We note that f A g = -‘z-f) v (—gﬂ
and 1f f, g€ S, f A g € S 1s evident. Suppose f, g € S
and g has the standard decomposition

g = bk, +b,k, + + bpkh. By evident inductlon on n,
it is sufficient to conslder the case n = 1 and b, # 0 to
prove S 1s closed under addition. Suppose a € R and
choose s, t € I such that f(x) = a if and only if s(x) = 1
and f(x) = a - b, 1f and only 1if t(x) = 1. Choose h € I
such that k; A h = 0 and k, v h =1, Then (f + g)(x) = a
if and only if (s A h) v (t A k,)(x) = 1; 1.e. that is
(f(x) = a and g(x) = 0) or (f(x) = a - b, and g(x) = bl).

But (s A h) v (t Ak,) € I, hence f + g ¢ S. Now that
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closure under addition 1s proved, by the distributive laws
of RX 1t i1s sufficient in proving closure under multiplica-
tion to consider the case where f and g are each constant
multiplies of elements of I. But this case 1s evident
since I is closed under A, hence closed under multiplication.

Remark 3.2. The set S of all step functions 1s the smallest

subring and sublattice of RX which contains I and all con-
stant functions.

Let f € S with standard decomposition
f=af +a,f, +++- + af. Define a function §: S + R
where R denotes the set of real numbers by sf =
ad(f,) + a,Q(f,) + == + and(fn). Note that S restricted
to the elements of I is equal to J SO We write S in place
of‘& for elements of I. Also if f 1s a step function and

f > 0, then clearly jf > 0.

THEOREM 6. The function S on S has the following properties
for all f, g € S:

4-5) f{af = aff for all a ¢ R,

4-6) Sf+g= §f+Sg,

4-7) If f < g, then {f < (e
Proof: Statement 4-5 is evident from the definition of
on S, For U-6, it 1s sufficient to consider the case g = ah
for a e R, a # 0, and h € I as was done in Theorem 5. Let
f = alf1 + azf2 + e + anfn be the standard decomposition

of f and let wy € I such that f{ Awy = 0 and f{ v wy =1
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for 1

l, 2, ***, nand w € T such that hA w = 0 and

hvw=1l. Then f + g= (a; + a)(f; A h) + ««« +

(an + a)(fn A h) + a, (£, A W) + =+ + an(fn A w) +

a(h A w,A *+* A w,) and each distinct pair of summands

has lattice A equal to zero. Thus by the required properties
of 4 on I, S(f + g) = (a; + a) S(f1 A h) + *+¢ ¢

(an + a)f(tn a m) + 2, §ces a )+ v g (e a W) +

aS(h A WA .. A W,). Note that gfi =

SEfi A h)v (f1a w)]= g(fiA h) + Sfil\ w for i = 1,+¢+, n,
S0 S(f + g) = a,jf, + aZsz + e + anan + ag(fl A h)

+ oo 4 aS(fn A h) + ag(h AW, A **° Awp) = Sf + a.gh

=§f + Sg since S(f,h h) + <+ + S(fn A h) +

Y(h AWLA **° A Wp) = g Bf\ s fn)AH] +

ftnaw, A ceaw) = S(feiv o v v v e )] an)
= S(l A h) = Sh. For the proof of 4-7, note that if f < g,
then g = £ + (g - f) and (g - f) > 0, so apply U4-6 to
obtain fg = fr+ f(z- 1) > (r.

The set S is not a function ring as a sequence {u }
in S must be deflined with properties 2-7 through 2-10. As
soon as this 1is done, (S, {up}) becomes a function ring.

If property 2-13 is verified for S: S + R, then by noting
that the real numbers are a Cauchy complete function ring
when a proper sequence {vp} is defined, the Extension

Theorem may be applied to (S, {upl}) and S.



CHAPTER V
EXAMPLES AND APPLICATIONS

Example 1. Let [ﬁ, 6] be a closed and bounded
interval in the set R of real numbers with a < b. The set
X
I will consist of all idempotent functions f € R for which

there exists a partition T = {t , t see, th} of X with

-
a =ty <t; < e+ < th = Db such that if tj.1 < x < t1 and
ti-1 <y < ti, then f(x) = f(y) for each 1 = 1, <++, n,

In other words, f 1s constant on each interval (ti_3, ti)
and the value of f at the end points of (ti-1, ti) need

not agree with the value of f on (ty_.3, tiy). Define

d: I+RboyQ(f) =a,(t; - tg) + as(t, = t,) + +++ +
an(tp -~ tn-1) for f ¢ I and ay = f(t_i__:_z_'E_i_:_l_) The defini-
tion owa is independent of the partition T on X(2), The
set I 1s a Boolean algebra under the operations A and v
and the functiond satisfies properties U4-4a and 4-Ub.

We extend I to the set S of all step functions defined on
X. If feS and f = a,f + c°° ¢ anfn is the standard
decomposition of f, then S: S + R defined by

gf = ale (f1) + e + an\-ﬂ(fn) is an extension of‘eQ to S.
Theorem 6 shows that Saf = aif for any a ¢ R, £ € S and
fr+g=0r+fgforall £, g e s. We would 1ike to apply
the Extension Theorem to S to obtain a larger class of

integrable functions. To make S a function ring, it
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suffices to exhibit a sequence {up} in S which satisfies
properties 2-7 through 2-10 since S is a subring and sub-
lattice of RX by Theorem 5. The sequence of constant
functions {up} defined by un(x) = 1/2n for all x € X will
clearly suffice,

We note that the definition of the sequence {up}
will restrict the function in the set (S, {un}). If the
sequence {up} 1is defined as above, then for each n € N,
un # 0 so by property 2-10 we see that |f| < up/upm or
each f in (S, {un}) is bounded. PFurthermore, it is evi-
dent that if f € (S, {un}), then f is bounded on the set
of all x € X such that upn(x) # 0 for all n € N.

The real numbers R are a ring and a lattice so if
we define a sequence {vp} in R by vp = 1/2N for each n € N,
then (R, {vp}) is a function ring. The function
S: (s, {upl) » (R, {vp}) will be a map if property 2-13
is satisfied since 2-11 and 2-12 are verified in Theorem 5.
Suppose n € N, We must show there exists m € N such that
if |f| < up, then ISfI < vp = 1/20, Choose m € N such
that (1/2m) S 1 < 1/2n where 1 1s the constant function
1(x) = 1 for all x € X. Note that if £ ¢ 5, |{r| < §ir|
so if |f] < um = 1/2™ 1, then 1fr] < glfl < Sum =
1/2m s 1l < v. Hence property 2-13 is satisfied and
j: S + R 1s a map.
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The Extension Theorem may now be applied to S and
f. Let f € R¥ and x € X. If for each sequence {xpn} in X
with {xp} +» x and x, > x for each n, the sequence {f(xp)}
converges in the real numbers R, then f 1s said to have a
right-hand 1imit at x. This is equivilant to sayling that

1im f(x + h) exists. The left-hand limit of f at x is
0<h-+0

similarly defined.

THEOREM 7. The set S consists of all f € RX such that the
left-hand and right-hand limits exlist at each point x ¢ X.(a)
Proof. Let f € S, t, € X, and {f,} a sequence in S with
limit f. We will show the right-hand limit exists at t,

and observe that the left-hand 1imit is simlilarly shown.

Let {ty} »+ t, with each ty > t,. If we can show that

{f(ty)} 1is a Cauchy sequence in R, then since R is complete,
{f(tk)} converges. Suppose n € N, then there exists k € N
such that |[fp - f| < upsp for all m > k. Since fp € S,

1im fp(t, + h) exists and there is § > O such that if
0<h+0

ty < tg § tq < t, +§, then [fp(ts) - fplty)| < 1/27%1,
Hence if m > k and t, < tg < tq < t, + §, then

| £(ts) = £(tg)| < |f(ts) - fmltg)| + |fmlts) - fmltg)] +

| fm(tq) - £(tq)| < 1/20%2 4 1/0n%l 4 /o042 o o0 2 ),
Therefore the right-hand limit exists for f at t, and we

may now focus our attention on the converse.
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Let f € RX such that the left-hand and right-hand
limits of f exist for each t € X. Suppose n £ N. For

each t, e X, there exlists a St £ R,Jt; > 0, such that 1if
0 0

t<t§_t

. 1 <t, + §t,, then |f(t ) - £(¢t )| < 1/2" and

2

[N
)
ct

1
Q-

to < t} < t; < t,, then |[£(t]) + £(t})]| < 1/2n,

The class of all intervals {t: [t - t,] <!§t°}, one for
each to € X, will cover X. Since X is a compact set, a
finite subclass of these intervals will also cover X.

The finite polint set consisting of the endpoints and mid-
points of these intervals lies in some natural order in X.

If 1t is given by a = s, < 5, < **¢ < Sp = b, then we let

Ji = (sy, si{+1) and note that if t, t! e Jy, then

|£(t) - £(t')] < 1/2". Choose any s' € Ji for

1 =1, *+-, p - 1 and define fn(t) = f(s}) 1f t e Jy,

1, ..I, p.

1 =1, *»o, p-1orfp(t) = f(sg) if t = s4, 1
It is clear that f, € S for each n € N and if m € N, there
exists k € N such that |fg - f| < 1/2M for all s > k.

A
Therefore the sequence {f,} in S has 1imit f, hence f € 'S.
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Example 2:
Consider the set of all F: R -+ R such that F 1is
monotone increasing and bounded both above and below, with

F(a - 0) = 1im F(a - h) and F(a + 0) = 1im F(a + h) both
0<h+0 o<h-+0

existing for each a ¢ R. For a, b € R with a < b, define
L ([a, 6]) = F(b) - F(a - 0), £ ((a, b]) = F(b) - F(a),
X (@, b))

~ F(a). If h is the characteristic function of an interval

F(b - 0) - F(a - 0), and &£ ((a, b)) = F(b - 0)

J, define the 1ntegra1,tb , of h to beéf (J). The theory
in the thesis applies here. It is used in probability and
statistics where 0 < F(x) < 1 for all x € R and F 1s called
a distribution function. In classical analysis, the re-

sulting integral i1s called the Stieltjep integral.
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