
Central Washington University Central Washington University 

ScholarWorks@CWU ScholarWorks@CWU 

All Master's Theses Master's Theses 

Spring 2020 

Optimizing Pollution Routing Problem Optimizing Pollution Routing Problem 

Shivika Dewan 
Central Washington University, shivika.dewan@cwu.edu 

Follow this and additional works at: https://digitalcommons.cwu.edu/etd 

 Part of the Environmental Health and Protection Commons, Oil, Gas, and Energy Commons, and the 

Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Dewan, Shivika, "Optimizing Pollution Routing Problem" (2020). All Master's Theses. 1353. 
https://digitalcommons.cwu.edu/etd/1353 

This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been 
accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU. For more 
information, please contact scholarworks@cwu.edu. 

https://digitalcommons.cwu.edu/
https://digitalcommons.cwu.edu/etd
https://digitalcommons.cwu.edu/all_theses
https://digitalcommons.cwu.edu/etd?utm_source=digitalcommons.cwu.edu%2Fetd%2F1353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/172?utm_source=digitalcommons.cwu.edu%2Fetd%2F1353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=digitalcommons.cwu.edu%2Fetd%2F1353&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.cwu.edu%2Fetd%2F1353&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cwu.edu/etd/1353?utm_source=digitalcommons.cwu.edu%2Fetd%2F1353&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@cwu.edu


OPTIMIZING POLLUTION ROUTING PROBLEM

A Project

Presented to

The Graduate Faculty

Central Washington University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computational Science

by

Shivika Dewan

June 2020



CENTRAL WASHINGTON UNIVERSITY

Graduate Studies

We hearby approve the thesis of

Shivika Dewan

Candidate for the degree of Master of Science

APPROVED FOR THE GRADUATE FACULTY

Dr. Donald Davendra

Dr. Razvan Andonie

Dr. Szilárd Vajda

Dean of Graduate Studies

ii



ABSTRACT

OPTIMIZING POLLUTION ROUTING PROBLEM

by

Shivika Dewan

June 2020

Pollution is a major environmental issue around the world. Despite the growing use

and impact of commercial vehicles, recent research has been conducted with minimizing

pollution as the primary objective to be reduced. The objective of this project is to

implement different optimization algorithms to solve this problem. A basic model is

created using the Vehicle Routing Problem (VRP) which is further extended to the

Pollution Routing Problem (PRP). The basic model is updated using a Monte Carlo

Algorithm (MCA). The data set contains 180 data files with a combination of 10, 15,

20, 25, 50, 75, 100, 150, and 200 groups of cities. The optimizing techniques applied are

the Discrete Differential Evolution (DDE) and, Discrete Particle Swarm Optimization

(DPSO) with a Python Tkinter frontend. The objectives to be optimized is the fuel

consumption rate and distance traveled and a statistical comparison is done between the

different algorithm to compare effectiveness.

iii



ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Donald Davendra, Chair of

Computer Science Department at Central Washington University. The door to Prof.

Davendra office was always open when I ran into problems or had a question about my

research or writing. He consistently allowed this project to be my own work, but steered

me in the right the direction, whenever it was needed.

I would also like to thank committee members Dr. Razvan Andonie and Dr. Szilárd

Vajda, who gave great feedback during this project and guided me further after my

proposal. Without their passionate participation and input, this project could not have

been conducted successfully.

Finally, I must express my very profound gratitude to my parents, friends and

colleagues for providing me with unfailing support and continuous encouragement

throughout my years of study and the process of researching and writing this paper. This

accomplishment would not have been possible without them. Thank you.

Author

Shivika Dewan

iv



TABLE OF CONTENTS

Chapter Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II POLLUTION ROUTING PROBLEM . . . . . . . . . . . . . . . . . . . . 3

Distance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Emission Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Fuel Consumption Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pollution Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . 8

III ALGORITHMS USED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Discrete Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . 12
Discrete Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . 17

IV EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Inputs for the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Hardware Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Tkinter Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

V RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Monte Carlo Algorithm Results . . . . . . . . . . . . . . . . . . . . . . 26
Discrete Differential Evolution Results . . . . . . . . . . . . . . . . . . 31
Discrete Particle Swarm Optimization Results . . . . . . . . . . . . . . . 33
Differential Evolution Algorithm and Discrete Particle Swarm Algorithm

Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 35

VI ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Distance Traveled Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36
Emission Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Algorithm Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . 40

v



Chapter Page

VII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Future Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



LIST OF TABLES

Table Page

1 Vehicle emission parameters . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Hardware Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Distance traveled in 100 iterations . . . . . . . . . . . . . . . . . . . . . . 26

4 Emission in 100 iterations . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Time taken in msec for each iteration . . . . . . . . . . . . . . . . . . . . 27

6 MCA Distance-Emission for cities 10, 15 and 20 . . . . . . . . . . . . . . 28

7 MCA Distance-Emission for cities 25, 50 and 75 . . . . . . . . . . . . . . 29

8 MCA Distance-Emission for cities 100, 150 and 200 . . . . . . . . . . . . 29

9 Distance traveled using MCA . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Emission using MCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 DDE: Distance traveled, Emission, runtime for each file of 10 cities. . . . . 31

12 DDE: Distance traveled . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

13 DDE: Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

14 DPSO: Distance traveled, Emission, runtime for each file of 10 cities. . . . 33

15 DPSO: Distance traveled . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 DPSO: Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

17 Distance traveled comparison between DDE and DPSO . . . . . . . . . . 35

18 Emission comparison between DDE and DPSO . . . . . . . . . . . . . . 35

vii



LIST OF FIGURES

Figure Page

1 Pollution Problem in Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 VRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 VRP Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 PRP Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 PRP Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Discrete Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Subtract Operator for DPSO . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Multiplication Operator for DPSO . . . . . . . . . . . . . . . . . . . . . . 19

9 Add Operator for DPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Update Operator for DPSO . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Tkinter Main form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12 Tkinter Inputs form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

13 Final Tkinter Results form . . . . . . . . . . . . . . . . . . . . . . . . . . 25

14 Distance graph for 10 cities . . . . . . . . . . . . . . . . . . . . . . . . . 38

15 Emission graph for 10 cities . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 Algorithm runtime graph for 10 cities . . . . . . . . . . . . . . . . . . . . 41

viii



CHAPTER I

INTRODUCTION

Pollution is a big problem all over the world [1], [2]. Despite the growing use and

impact of commercial vehicles, little research has been done keeping pollution as its

primary objective [3]. Road transport accounts for a proportion of 92% in the United

Kingdom (UK). According to [4], Freight transportation in the United Kingdom (UK) is

responsible for 22% of the CO2 emissions from the transportation sector. This amounts

to 33.7 million tonnes, or 6% of the CO2 emissions in the country. The author in [5]

focuses on comparing the six models created about the green house gasses and freight

transportation, and assess them with their advantages and disadvantages.

FIGURE 1: Pollution Problem in Delhi

1



Paper [5] also talks about the data taken from [6] which used an algorithm called

Vehicle Market Model (VMM) to estimate changes to vehicle stock/kilometrage, fuel

consumed and CO2 emitted [7].

According to Demir et. al. [8], there are 35 organic hydro-carbon and oxygenated

species that cause air pollution in the London region. Subsequently, the model created in

[8], helps in lessening the affect of the loss of the ozone layer and peroxyacetyl nitrate,

which could have been prevented if production of pollution was not as great.

Pollution started with the globalization of the supply chain, which resulted in an

increase of transportation leading to more air pollution from carbon emissions [9]. The

transportation sector itself is responsible for 24% of the overall green house gas (GHG)

emissions in the EU-27 countries, of which road transportation amounts to 17%.

As shown in the Fig 1, the air quality is defined as very unhealthy. According to

[10], contribution of automobiles is reported in the range of 40% to 80% of the total air

pollution in Delhi, India. The anthropogenic sources of urban air pollution are classified

into three major categories: industrial, mainly domestic cooking/heating and vehicular.

The main cause of air pollution is fuel combustion. In India, 25% of the total energy

(of which 98% comes from oil) is consumed by transport sector exclusively, which

is reported to be contributing more than 50% of air pollution problem in most of the

metro cities, and in some cases it was even up to 80%. As per an estimate, in 2001,

air pollution contribution of transport sector was about 72% in Delhi. This makes it a

major environmental issue, which is of grave concern. This research looks at one small

component as to how emission can be reduced using better vehicle routing techniques

between cities using evolutionary algorithms.

2



CHAPTER II

POLLUTION ROUTING PROBLEM

This project uses the VRP [11] as the basic model and extends this basic model

to formulate the Pollution Routing Problem (PRP) [12]. The basic model of VRP is

initially solved using the Monte Carlo Algorithm (MCA). The traditional route is the

route following the order of cities given in the dataset. The MCA algorithm is used to

shuffle the sequence of cities to make new routes, thus, helping to find a better route than

the traditional route. Thereafter, the random sequence generator is applied, followed by

two evolutionary optimizing techniques to ascertain if the results can be improved [13]

[14]. The back-end code is written in C++, while Python is used for the front-end GUI .

Distance Calculation

Distance traveled was calculated using the formula of distance between two points

in a graph using Equation 2.1.

Distance travelled =
√
(x2 − x1)2 + (y2 − y1)2 (2.1)

Where, x and y represents, x and y coordinates of a city. The values of x and y coordinates

are given in the VRP data set. The Equation 2.1 was only valid for the VRP data set.

Whereas, for the PRP data set, the distance traveled was already given in the data set in

the matrix form. It will be explained further in the report Section 2.5.

3



Emission Calculation

The emission computation consists of a number of unique factors. For example,

engine component, fuel-air mass ratio, conversion factor, engine displacement, amongst

others shown in Table 1. The objective function for the emission is designated as Fuel

Consumption Rate (FCR).

Fuel Consumption Rate

Pollution calculation requires the distance traveled as the core component. The

equations used to create the FCR equations were taken from [12]. There were three

fundermental equations:

FCR =
ξ

κψ

(
kNeV +

0.5CdAρv
3 + (µ+ f)v(g sinφ+ gCr cosφ)

1000εω

)
(2.2)

Substituting, α = g sinφ + gCr cosφ, β = 0.5CdAρ, γ = 1
(1000εω)

, λ = ξ
κψ

in Equation

2.2 gives Equation 2.3:

FCR = λ(KNeV + γ(βv3 + α(µ+ f)v)) (2.3)

FCR = λ(kNeV
d

v
+ γβdv2 + γα(µ+ f)d) (2.4)

Equation 2.2 and Equation 2.3 is used derive to Equation 2.4, where, kNeV
d
v

is the

Engine Component linear to travel time, γβdv2 is the Speed Component, and γα(µ + f)d

is the Weight Component independent of speed and travel time. Some of the elements are

constants and are given in Table 1.

4



TABLE 1: Vehicle emission parameters

Notation Description Value
ξ Fuel-air mass ratio 1
κ Gross energy of Diesel fuel (kJ/g) 44
ω Conversion factor (g/l) 737
τ Engine friction factor (kJ/rev/l) 0.2
Ne Engine speed (rev/s) 33
δ Engine displacement (l) 5
ρ Air density (kg/m3) 1.2041
A Frontal surface area (m2) 3.912
µ Curb weight (kg) 6350
g Gravitational constant (m/s2) 9.81
θ Road angle 0
Cd Aerodynamic drag coefficient 0.7
Cr Rolling resistance coefficient 0.01
ε Vehicle drive train efficiency 0.4
$ Engine efficiency parameter 0.9

Equation 2.4, is the equation that was getting used to calculate the emission on a

particular route. The factor d represents distance traveled.

Vehicle Routing Problem

The objective of this project was to use the existing algorithms such as VRP and

PRP and apply optimizing techniques such as Discrete Differential Evolution (DDE) and

Particle Swarm Optimization (PSO) to see if better results can be obtained. The basic

model used is the VRP [11]. It starts with the depot, whose location is (0,0) which is

nothing but x and y coordinates of the depot. The tour starts from the depot and goes

to different clients. If the vehicle ever visits the depot in the entire route, the current

capacity changes to the max payload. When the vehicle goes from depot to the first

client, the current payload changes to max payload - demand of the client visited. Then, it

checks the demand of the next client and if and only if the demand is less than the current

payload, the vehicle goes to the next client, else it goes back to depot and changes the

current payload to full payload before going to the next client. Whenever, the vehicle

5



visits the depot, it is counted as a subtour. Subtour are defined as tour starting from depot

and returning to the depot again. At the completion of the entire tour, the vehicle returns

back to depot. The total distance is calculated by adding all the distances traveled in

different subtours. Fig 2, shows an example of how the route looks like where 1, 2, 3,

4, 5, 6 and 7 are cities and depot denoted as 0 in the route. This example represents how

the data set gets read and the sequence is denoted the same way as given in the data set.

The final route developed was: 0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 0, where 0 represents the depot

and the numbers represents the cities. There are three subtours in this route, which are:

1. depot→ 1→ 2→ 3→ depot.

2. depot→ 4→ 5→ 6→ depot.

3. depot→ 7→ depot.

FIGURE 2: VRP

Here, the sequence represents the route in which the vehicle will travel. This is the

traditional route which needs to be optimized. Fig 3, shows an outline of the VRP dataset.

It has number of locations, which was 75 (given in the dataset), best result found, which

6



FIGURE 3: VRP Dataset

was used to compare the quality of the results. The full capacity was 1445, which is only

generated when the depot is visited. The depot location is (0, 0). Location are given from

1 to 75, which are the x and y coordinates with demand at each location. VRP can be

better understood through Algorithm 1.

Algorithm 1 Distance traveled using VRP
total distance + = distance from depot to first location
current capacity = maximum capacity - demand of first location
while (Second location to end location) do

current capacity = current capacity - demand of current location
if (current capacity > 0) then

total distance + = distance from current location to next location
else

total distance + = distance from current location to depot
current capacity = max capacity
total distance + = distance from depot to next location
current capacity = current capacity - demand of current location

end if
end while
total distance + = distance from last location to depot
Calculate FCR using Equation 2.4 for total distance
return total distance traveled

7



Pollution Routing Problem

Pollution Routing Problem (PRP) uses Equation 2.4 to calculate the CO2 emission,

which is called the Fuel Consumption Rate (FCR). The dataset used was referenced from

[12]. This PRP dataset contains 180 data files with 10, 15, 20, 25, 50, 75, 100, 150 and

200 cities groups. Each city group has 20 unique datafiles. For example, UK10 01 has

data of different 10 cities in comparison to UK10 02 as shown in Fig 4. The data set can

be found in [15].

FIGURE 4: PRP Data Files

In Fig 5, The data-set shows the number of customers, vehicle curb weight, which

is used in the FCR Equation 2.4, vehicle maximum pay load, which is used as maximum

capacity, minimum speed and maximum speed, which are used as speed components

in Equation 2.4. Then, distances are read in the matrix form in the code. Furthermore,

node number, city names, demand for each city, ready time, due time and service time in

seconds are obtained from the file. PRP works in the same way as the basic model created

with VRP with random sequences. The difference between the VRP and PRP is the usage

of different data sets and the calculation of FCR after each subtour is completed. Usage of
8



FIGURE 5: PRP Dataset

PRP is explained in Algorithm 2, where it shows how the FCR is getting computed using

the standard model of calculating distance traveled.

The difference between Algorithm 1 and Algorithm 3, is that there is an addition of

using subtours, which is when the vehicle visits the depot, the subtours increments by 1.

The number of subtours also define the number of vehicles used. The PRP in Algorithm

2, obtains the distance traveled as a distance matrix and not computed as in the VRP as

given in Algorithm 1.

9



Algorithm 2 PRP algorithm
total distance + = distance from depot to first city
current capacity = maximum capacity − demand of first city
while (second location to end location in the sequence) do

current capacity = current capacity − demand of current city
if (current capacity > 0) then

total distance + = distance from current city to next city
else

total distance + = distance from current city to depot
current capacity = max capacity
total distance + = distance from depot to next city
current capacity = current capacity - demand of current location
subtours ++

end if
total distance + = distance from last city to depot
Calculate FCR using Equation 2.4 for total distance traveled

end while
return total distance traveled and FCR

10



CHAPTER III

ALGORITHMS USED

Monte Carlo Algorithm

Monte Carlo Algorithm (MCA) used for this project utilized the Mersenne Twister

(MT19937) as the pseudo-random number generator. Random sequences of cities are

generated using Mersenne Twister, which is version MT19937 developed by Takuji

Nishimura and Makoto Matsumoto [16]. The C++ Mersenne Twister wrapper class was

written by Jason R. Blevins on July 24, 2006 [16]. C++ has introduced many pseudo-

random number generators to replace the rand() function, which is used to generate

random numbers, whereas one of them is the Mersenne Twister. Mersenne Twister was

used for this project because it has much longer period than that of rand() function,

which also means that random sequence will take a longer time to repeat itself [17]. Also,

the statistical behavior is better as the number of iterations were high, which required the

random sequence to have more randomness than standard rand() function. Mersenne

Twister was used to generate random routes of cities in the UK. The new population was

created using specific number of rows and columns. Number of columns is the number

of cities read through the data file. However, the number of rows are specified by the user

using the tkinter form. It is helpful to see if it is possible to find an optimized route

using the random distribution of different cities, which could be better than the standard

route used in VRP. The data set of PRP was a little different than VRP such that the VRP

used to calculate distance traveled using the x and y coordinates whereas, in the PRP data

set the distance traveled is already given in a matrix form. The dataset, shown in Fig 5

has been altered to 3 cities. Otherwise, the data starts with at least 10 cities. The number

11



of customers used for the example are three, which includes the depot as the Kingston

upon hull.

Algorithm 3 MCA algorithm
Reading from a file the size of the Population to be created
Inputting number of columns, Number of rows from the Population
Creating a array Fitness to store the calculated f(x) value of each of row
for (from 0 to Number of Iterations) do

Create new population using Mersenne Twister.
calculate Distance Traveled using Algorithm 1 or Algorithm 2
Add f(x) calculated from each row to fitness array and calculate the optimised

fitness
int bestInd = 0;
for (int i = 1; i < number of Rows; i++) do

if (Fitness[i] < Fitness[bestInd]) then
bestInd = i;

end if
end for
bestFitness = Fitness[bestInd];

end for
return bestFitness

Algorithm 3, explains how MCA works. MCA can be used for both distance

traveled and FCR as the f(x) function defines which of the optimization criteria is getting

used.

The two optimizing techniques used in this project are now described.

Discrete Differential Evolution

Discrete Differential Evolution (DDE) algorithm, a relatively recent algorithm,

was originally developed to solve the permutation flowshop problem [13]. Besides

the standard version, this algorithm is also presented as a novel discrete version. It is

simple in nature, such that it takes the random sequence that gives the best results in

12



the population generated and tries to optimize it. The DDE algorithm consists of the

following steps:

– DDE starts with initializing the initial target population, which is generated using

MCA as given in Algorithm 3. population = πi = [π1, π2, ...πNP ] with size NP.

– To generate a mutant individual, DDE mutates vectors from the target population

by adding weighted difference between two randomly selected target population

member target population members to a third member at iteration t using Equation

3.1

vtij = πt−1
aj + F (πt−1

bj − π
t−1
cj ) (3.1)

Where a, b and c are three randomly chosen individuals from the target population.

The only condition is that (a 6= b 6= c ∈ (1, ..., NP )) and j = 1, ..., n. F , where

F > 0 is a mutation scale factor.

– The crossover operator is described in Equation 3.2.

utij =


vtij if rtij ≤ CR or j = Dj

πt−1
ij otherwise

(3.2)

Where, the Dj is randomly chosen dimension (j = 1, ..., n). Each trial utij differs

from its counterpart in the previous iteration ut−1
ij . CR is defined as crossover

constant in range of [0,1] and rtij is uniform random number between (0, 1).

– To decide whether uti will become a member of the trial population will be decided

on the bases of comparison to its counterpart target individual πt−1
i at the previous

generation. The selection will be based on the fitness among the trial population

13



and target population as given in Equation 3.3.

πti


uti if f

(
uti
)
≤ f
(
πt−1
i

)
πt−1
i otherwise

(3.3)

– The above equations explains the working of DDE, however, they are only valid for

data that is discrete/binary. Since, the data used for this project is neither discrete

nor binary the improved equations used are given in Equations 3.4, 3.5 and 3.6.

V t
i = Pm ⊕ Fk

(
πt−1
i

)
(3.4)

V t
i = Pm ⊕ Fk

(
πt−1
a

)
(3.5)

V t
i = Pm ⊕ Fk

(
πt−1
g

)
(3.6)

Where, πt−1
i is the ith individual from target population at iteration t − 1;πt−1

a is a

randomly chosen individual from the target population at iteration t−1;πt−1
g , which

is global best solution to be saved at iteration t − 1;Pm is the mutation probability;

and Fk is the mutation operator with mutation strength of k.

NEH Heuristic [18] has two phases, which are explained below:

1. First phase starts with allocating job that are ordered in descending order sums of

their processing times explained in Equation 3.7.

Pj =
m∑
k=l

pjk, j = 1, ..n. (3.7)

2. Second phase includes choosing two jobs at random, which gives two possible

sequences that can be evaluated to establish the partial schedule. Then, a job
14



permutation is established by evaluating the partial schedules based on the initial

order of the first phase.

The computational complexity of the NEH heuristic is O
(
n3m

)
, which can consume a

considerable CPU time especially for large data files. This can be seen further in DDE

results given in Tables 11, 12 and 13.

DDE algorithm has the following steps:

1. The first step is called the destruction phase. This step involves removing the first

sequence and calculating its distance traveled and its least fuel consumption rate

and saving it for later comparison. Further, two random cities are removed from the

first sequence into a partial array. The rest of the cities are kept in a separate array.

2. The second step is called construction phase. New sequences with new

combination of both arrays are generated as shown in Fig 6 and checked to see if

better results can be obtained or not.

3. The last step is called the local search. In this step, if the new sequence created

shows better results than the old sequence, then the new sequence is added to the

new generated population. Otherwise, steps 1 and 2 is repeated until a solution is

found or it hits a limit where the results obtained are no longer improved. If the

results still does not improve, the old sequence is saved in the new population. It

can be further described as in Fig 6 and also in Algorithm 4.

These steps are repeated for the number of rows until each row is improved for the new

generated population. The new population is thus generated and global best is saved.

Fig 6, is an example off how DDE works in the code. In Fig 6, the initial sequence,

taken was 1, 5, 4, 2, 6, 3. Cities 1 and 4 was chosen randomly and kept in a separate array

and the rest, which was 5, 2, 6, 3 was kept in a different array. Then, 1 was inserted at
15



FIGURE 6: Discrete Differential Evolution

Algorithm 4 DDE algorithm
for (from 0 to Number of Iterations) do

for (each sequence in the Population created from Algorithm 3) do
save two random indexes from current sequence
first array = [current sequence[index1] and current sequence[index2]]
second array containing rest of the cities other than the first array make new

combinations including first and second array
calculate distance traveled from 2
calculate FCR
if (new distance traveled < old distance traveled from current sequence) then

old distance traveled = new distance traveled
save new sequence created
Update the Population generated with new sequence

end if
end for
Calculate the smallest distance traveled and FCR from the updated new Population

return new smallest distance traveled and new smallest FCR
end for

16



position 0 and distance traveled was calculated followed with the FCR. Later, 1 was

added at position 1 and the sequence was changed to 5, 1, 2, 6, 3 and so on until distance

traveled and FCR stopped improving. The same procedure was applied with the other

city, which is 4 in this example. New distance calculated is saved only when it improves

in comparison to itself or the initial distance traveled. If the new distance never improved,

then the initial sequence is the optimized sequence. Algorithm 4, uses the Population

generated from Algorithm 3 and improves it until new better sequences is found for each

of the given rows. The update of the sequence implies finding smaller distance traveled

and a smaller FCR, which is the aim of the project. DDE does that for the given number

of iterations.

Discrete Particle Swarm Optimization

The final algorithm used in this project is the Discrete Particle Swarm Optimization

(DPSO) algorithm. It is a hybrid version of the traditional Particle Swarm Optimization

(PSO) algorithm [14] where, real number encoded values are used. In DPSO, the

population is initialized by two different heuristic procedures so that the solution quality

and diversity can both be considered. That is, the first solution is obtained by the NEH

heuristic [18], while the other particles can be randomly generated using the MCA as

given in Algorithm 3. This project uses the random generated method to generate the

particles. Particle Swarm Optimization (PSO) was generally used to solve continuous

optimization problems. According to [14], when the continuous PSO was applied to

discrete combinatorial optimization problems, a transformation method (e.g., the SPV

rule of Tasgetiren et al. [19]) was needed to translate the continuous particle into a

discrete solution. To avoid this extra work some researchers found an update to the

traditional PSO and created DPSO, which proved to give better result [14]. This kept the

17



self-adaptive factor as one of the major factors while implementing the algorithm. There

are two main steps to be followed while working on DPSO, velocity and particle update

with self-adaptive perturbation. Each of them have some steps to follow, but the results

are proven to be better when it comes to applying it on permutative sequences. DPSO

consists of the following procedures:

1. Velocity : Following are the steps to have the velocity of each of the sequence in the

original pollution. The velocity update equation is taken from [14]:

V t+1
i = (C1 × V t

i ) + (C2 × (pti −X t
i )) + (C3 × (gt −X t

i )) (3.8)

Where, V t+1
i is the new velocity vector found,

pti is personal best from each iteration t,

gt is global best from each iteration t,

X t
i is the current row from the population generated in which i determines the row

and t determines the iteration working,

C1, C2, C3 are pre-determined numbers in range (0, 1).

(a) Subtract Operator (−): The subtract operator can be best explained using an

example as shown in Fig 7. Given X t
i and pti, if the numbers of the sequence

repeat in the same position then the subtract operator will put 0 in the same

position. In the example Fig 7, at 0 the position 4 was repeated in both the

sequence, so in the subtract operator the value input will be 0. If the values are

not repeating, then the value from the personal best sequence will be copied to

the subtract operator sequence generated.

(b) Multiply Operator (×): Let a denote a number from the non zero elements

from the subtract operator sequence. For this example, let’s assign a = 8.
18



FIGURE 7: Subtract Operator for DPSO

Randomly select daC1e, daC2eordaC3e and set all the other elements to 0. It

can be further explained using the example given in Fig 8 where, 8 was chosen

as a and the 4th position was set to 0.

FIGURE 8: Multiplication Operator for DPSO

(c) Add Operator (+): It can be explained using the example given Fig 9. There

are three cases:

i. If there is only element that is non-zero, then copy the element. For

example, in Fig 9, in the 0th position of all the given arrays, 4 is copied

because other two elements are 0 in the 0th position of the other elements.

ii. If there is repetition of the number. For example, in the 4th position, the

numbers in the three array are 2, 0 and 2. If the result array doesn’t have

number 2, then 2 is copied to the 4th position in the result array.

iii. If more than one element is non-zero and the element can be repeated

in the result array as given in the 3rd position, then 0 is copied as the

19



result. Else, if more than two elements are non-zero and elements are not

repeating, follow these steps:

A. Generate a number r in range (0, 1).

B. if r < C1/(C1 + C2), then copy the first sequence element.

C. Else, copy the second sequence element. For example, in the 1st

position, 3 is copied instead of 1.

iv. If more than two elements are non-zero, then follow the following steps:

A. if r < C1/(C1 + C2 + C3), copy from the first sequence.

B. if C1/(C1 + C2 + C3) < r < (C1 + C2)/(C1 + C2 + C3), then copy

from second sequence.

C. if r > (C1 +C2)/(C1 +C2 +C3), then copy from the third sequence.

FIGURE 9: Add Operator for DPSO

2. Particle update with self-adaptive perturbation: After determining the velocity of

each of the sequence, the next step is to update the old sequence using Equation 3.9.

X t+1 = (X t
i ⊕ V t+1

t )� (C4 ⊗Rt+1
i ) (3.9)

Where, C4 is perturbation probability between (0, 1),

20



Rt+1
i = (r1, r2) is a random insertion move, which deletes the job at position r1 and

inserts it to a different position r2. Operators for particle update are:

(a) Update Operator (⊕): There are two steps for this operator:

i. Remove the values that are V t+1
i which matches X t

i .

ii. Add the rest of the elements to the empty spaces. As shown in the

example Fig 10: 8, 1, 9 is removed because these elements were getting

repeated and the rest are copied into the final sequence.

FIGURE 10: Update Operator for DPSO

(b) Self-Adaptive Perturbation (⊗): Generates a random number r in range of

(0, 1) and if r < C4, then generate a random insertion and move Rt+1
i . C4

is a perturbation probability, which was obtained from [14] and is given in

Algorithm 5.

(c) The operator for implementing the random insert move (�): It just applies the

random insert move Rt+1
i on the result of (X t

i ⊕ V t+1
t ). just note that if there

was non random moves that were inserted then, the operator is omitted.

The algorithm for DPSO is given in Algorithm 6.

21



Algorithm 5 Self-Adaptive Perturbation
sum = 0, t = 0, rnd = 0.0
for (int i = 0; i < Rows− 1; i++) do

for (int j = i+ 1;j < Rows− 1; j++) do
for (int k = 0; k < Columns; k++) do

t = Population[i][k]− Population[j][k];
if (t < 0 or t > 0) then

sum++;
t = 0;

end if
end for

end for
end for
DivCoe = (float)((2× sum) / (Rows× (Rows− 1)× Columns));
C4 = expf (−K×DivCoe); where K is a user defined input

Algorithm 6 DPSO
Generate Population using Algorithm 3
Calculate velocity of each sequence in the Population generated
set Best Personal Fitness
set Best Global Fitness
for from 0 to iterations do

Calculate the value of C4

for from 0 to Rows do
Update the V elocity calculated
Update the sequences
Get smallest fitness

end for
set the Best Fitness
set Best Personal Fitness
set Best Global Fitness

end for
return Best Global Fitness

22



CHAPTER IV

EXPERIMENTS

Design

This section details the code design, which is written in the C++ language with a

Python frontend. In the C++ main function, the initializing and seeding of the random

generator, which is Mersenne Twister is done. Thereafter, it creates the instance of the

MCA algorithm as given in Algorithm (2). It then creates the instance of Population class

and creates a new population as given in Algorithm (3). The next step is to create the

instance of the optimization algorithm selected, which can be either DDE or DPSO and

finally the selected algorithm is run for the given number of iterations for each file. Before

termination of the code, all dynamically allocated memory used is released.

Inputs for the results

The input parameters used for running the simulations were:

1. Number of solutions: 50

2. Number of columns: size of the data files (cities).

3. Number of Iterations: 100

4. The total number of times the code was executed: 180 x 3 (all three algorithms).

Hardware Details

The hardware details used to run experiments for this project is give in Table 2.

23



TABLE 2: Hardware Details

Operating System Windows 10 Enterprise
CPU Intel(R) Core(TM) i7 CPU
RAM 16.0 GB

Tkinter Forms

Tkinter was used as the front end for this project. It is a standard Python

interface to the TK GUI toolkit [20] and is relatively easy to use. The forms created

will let the user choose the data file, number of rows for the population, number of

iterations/generations and the algorithm that the user wants to run. The Python code

will generate a script file for the C++ code and it will run the code according to the

user inputs and generate results as needed. Initially, three forms were created, a parent

form or main form, which then directs the user to the input and the result form.

FIGURE 11: Tkinter Main form

24



FIGURE 12: Tkinter Inputs form

FIGURE 13: Final Tkinter Results form

25



CHAPTER V

RESULTS

This section gives the results obtained from the three algorithms of MCA, DDE,

DPSO for the PRP dataset problems. The size of iterations was kept to 100 and number of

solutions in the population was 50.

The results are given for all three algorithms and compared on the basis of their

standard deviations, averages and CPU total runtime. The runtime is calculated in

milliseconds using the ctime library.

Significance is also checked pairwise between the algorithms. The t-values

and p-values are calculated subsequently while setting the significance level to 95%.

Significance is verified if p < 0.5.

Monte Carlo Algorithm Results

MCA results were obtained as shown in Tables 6, 7 and 8. The results show average

distance traveled, emission and runtime of each data file. As an example, the result

obtained for the first data file is given in Tables 3, 4 and 5.

Iter 1 - 10 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 - 100
1 606641 550512 558721 502971 567591 521601 527721 563141 557802 571881
2 575431 561431 612981 603552 495071 574551 579161 592622 573951 519661
3 593992 579011 543531 598851 512961 624741 587241 542291 522581 554971
4 567551 559301 604681 529511 606341 561131 478521 542791 564511 594041
5 501741 548951 580251 599541 575761 596422 554961 545891 586021 523061
6 563871 601091 566561 549302 545591 576331 582101 577891 563721 595541
7 554031 546631 573161 595081 601141 567601 544881 479711 587112 527561
8 582351 501291 506021 550501 589741 571351 529301 621451 558781 564251
9 609521 617861 537521 567671 612921 592981 552221 578811 583111 588921
10 591241 553281 591311 543481 533091 522001 462421 536981 562231 575171

TABLE 3: Distance traveled in 100 iterations

26



Iter 1 - 10 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 - 100
1 30.86 28.01 28.42 25.59 28.88 26.54 26.85 28.65 28.38 29.09
2 29.27 28.56 31.18 30.7 25.19 29.23 29.46 30.15 29.2 26.44
3 30.22 29.46 27.65 30.47 26.1 31.78 29.88 27.59 26.58 28.23
4 28.87 28.45 30.76 26.94 30.85 28.55 24.34 27.61 28.72 30.22
5 25.52 27.93 29.52 30.5 29.29 30.34 28.23 27.77 29.81 26.61
6 28.69 30.58 28.82 27.94 27.76 29.32 29.61 29.4 28.68 30.3
7 28.19 27.81 29.16 30.27 30.58 28.88 27.72 24.4 29.87 26.84
8 29.63 25.5 25.74 28.01 30.01 29.07 26.93 31.62 28.43 28.71
9 31.01 31.43 27.35 28.88 31.18 30.17 28.09 29.45 29.66 29.99
10 30.08 28.15 30.08 27.65 27.12 26.56 23.52 27.32 28.6 29.26

TABLE 4: Emission in 100 iterations

Iter 1 - 10 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 - 100
1 2 1 15 2 15 11 2 1 2 2
2 2 2 2 19 3 2 11 12 5 8
3 8 17 18 2 2 2 2 10 4 5
4 10 2 13 3 10 15 5 2 6 8
5 3 2 2 14 2 2 2 15 14 1
6 13 14 4 1 2 6 14 2 5 2
7 5 1 2 2 17 1 2 2 8 13
8 2 10 6 18 5 16 1 14 4 1
9 13 16 2 2 7 1 18 3 2 3

10 2 3 14 2 8 2 2 16 15 17

TABLE 5: Time taken in msec for each iteration

27



City Distance Emission Time City Distance Emission Time City Distance Emission Time
10 562848.48 28.64 6.61 15 1140121.45 58.01 3.85 20 1504160.8 76.53 3.93
10 735203.83 37.41 6.24 15 841036.55 42.79 3.05 20 1515113.01 77.09 3.97
10 609404.21 31.01 5.32 15 1203963.8 61.26 3.58 20 946586.41 48.16 4.17
10 688172.1 35.02 4.86 15 1053988.27 53.63 3.38 20 1283710.6 65.32 2.85
10 574340.14 29.22 4.65 15 1220929.4 62.12 3.18 20 1328122.8 67.58 3.55
10 725102.77 36.89 5.8 15 856318.44 43.57 2.82 20 1273106.4 64.78 4.12
10 681852.98 34.69 5.26 15 982703.86 50.1 3.5 20 847283.17 43.11 3.73
10 791488.76 40.27 5.94 15 674275.88 34.31 3.3 20 1249640.11 63.58 3.96
10 686631.5 34.94 5.91 15 910859.14 46.35 3.75 20 1525395.6 77.62 3.67
10 712311.38 36.24 3.73 15 826380.02 42.05 3.52 20 1351407.2 68.76 3.72
10 954043.71 48.54 4.81 15 1058919.22 53.88 3.8 20 1591005.1 80.95 3.37
10 550364.81 28.01 4.74 15 1242190.9 63.21 4.12 20 1394507.8 70.96 4.69
10 647078.12 32.92 4.45 15 974192.4 49.57 4.01 20 1409593.8 71.72 3.5
10 627570.8 31.93 5.97 15 1331462.3 67.75 3.63 20 1693841.5 86.19 4.22
10 400420.34 20.37 4.71 15 922543.01 46.94 3.21 20 1389642.9 70.71 3.48
10 521650.3 26.54 4.06 15 772136.21 39.29 2.98 20 1436985.1 73.12 3.49
10 653191.63 33.24 3.41 15 1121093.6 57.04 2.92 20 1274138.8 64.83 3.06
10 533967.38 27.17 3.66 15 1270343.4 64.64 3.09 20 1621922.2 82.53 3.38
10 641531.48 32.64 3.01 15 610765.01 31.08 3.54 20 1391410.7 70.8 4.11
10 489935.62 24.93 3.44 15 673422.13 34.27 4.19 20 1478435.9 75.23 4.16

Avg 639355.51 32.53 55.91 984382.24 50.08 69.42 1375300.46 69.97 75.13

TABLE 6: MCA Distance-Emission for cities 10, 15 and 20

Averages of the above data from Tables 3, 4 and 5 was distance traveled:

562848.48, emission: 28.64 and run-time: 6.61msec, which is also the first line in the

Table 6. The average values of each file is calculated in the same way. Furthermore,

the final results for MCA consisting of standard deviation, average and total run-time is

calculated as shown in Table 9 for distance traveled and Table 10 for emission.

28



City Distance Emission Time City Distance Emission Time City Distance Emission Time
25 1414323.6 71.96 4.03 50 3352049.5 170.56 5.09 75 6365723.4 323.9 6.27
25 1447810.9 73.67 3.34 50 3644107.2 185.42 5.6 75 5348700.9 272.15 6.98
25 923696.54 47.1 3.65 50 3455875.1 175.84 5.63 75 5626950.9 286.31 6.66
25 1439744.9 73.26 3.95 50 3785465.9 192.61 5.51 75 5002886.7 254.56 6.49
25 1466229.7 74.6 3.75 50 3985782.7 202.80 4.84 75 6075322.9 309.12 6.42
25 1346242.1 68.5 4.31 50 3041769.5 154.77 6.66 75 5936251.1 302.05 6.52
25 1453560.8 73.96 3.24 50 3180509.2 161.83 5.89 75 5870727.4 298.71 6.83
25 1726658.1 87.86 4.02 50 3143719.3 159.96 6.13 75 6151205.7 312.99 6.86
25 1277454.3 65.1 4.27 50 4091421.01 208.18 5.28 75 6279125.7 319.49 6.49
25 1391840.1 70.82 4.27 50 3460430.01 176.07 4.59 75 6504391.8 330.96 6.3
25 1481923.6 75.4 4.24 50 3695201.4 188.02 5.93 75 4305113.6 219.05 6.67
25 1907110.7 97.04 3.55 50 3651248.3 185.78 6.04 75 6087695.1 309.75 6.34
25 921936.25 46.91 4.04 50 3273113.8 166.54 5.3 75 6821217.1 347.08 6.41
25 1802209.4 91.7 3.66 50 4269393.1 217.24 5.57 75 6172458.5 314.07 6.15
25 1875855.2 95.45 2.9 50 3654277.8 185.94 7.31 75 6739015.7 342.89 6.59
25 1546192.7 78.67 4.05 50 3345589.1 170.23 5.87 75 6588767.8 335.25 6.47
25 2202051.8 112.04 3.44 50 2229771.7 113.46 5.45 75 6011966.3 305.9 6.87
25 1895944.5 96.47 3.73 50 3757482.6 191.19 4.83 75 5570618.8 283.44 6.43
25 1934050.1 98.41 4.39 50 3252804.3 165.51 6.14 75 5731590.9 291.63 6.17
25 1509110.3 76.79 4.39 50 4151820.9 211.25 6.26 75 5920468.2 301.24 6.24

Avg 1548197.3 78.77 77.22 3521091.59 179.16 113.92 5955509.91 303.02 130.16

TABLE 7: MCA Distance-Emission for cities 25, 50 and 75

City Distance Emission Time City Distance Emission Time City Distance Emission Time
100 8403267.7 427.57 10.47 150 10299704.3 524.07 15.23 200 14875182.12 756.88 20.98
100 8396677.6 427.24 7.79 150 12628627.7 642.57 14.23 200 15347354.34 780.9 20.94
100 6698961.4 340.86 8.73 150 9714527.1 494.29 14.48 200 14762177.45 751.13 21.42
100 7068508.6 359.66 8.62 150 11907099.1 605.86 14.27 200 13970840.12 710.86 22.16
100 6562330.6 333.9 7.85 150 9918542.6 504.67 15.35 200 16422443.3 835.61 22.42
100 8013215.1 407.73 9.55 150 10225822.2 520.31 14.67 200 13742943.4 699.27 21.88
100 8165304.2 415.47 8.5 150 991999.88 651.07 13.59 200 15020292.5 764.26 21.22
100 6716709.9 341.76 8.8 150 10054179.6 511.58 14.68 200 15383928.88 782.76 21.64
100 7908285.1 402.39 8.51 150 12189984.1 620.25 13.26 200 13722033.23 698.2 21.62
100 8296245.8 422.13 9.59 150 12610416.2 641.64 15.75 200 16785118.45 854.06 22.53
100 7020441.1 357.21 8.33 150 12472267.1 634.61 13.99 200 14286754.67 726.94 21.74
100 8537238.2 434.39 7.84 150 12535249.3 637.82 15.45 200 17078167.77 868.97 21.98
100 9416488.4 479.13 9.66 150 12499541.1 636.1 18.53 200 16717028.9 850.59 21.55
100 9260745.5 471.2 7.96 150 12436304.4 632.78 14.02 200 146184422.2 743.81 21.74
100 7160545.3 364.34 9.18 150 10236003.4 520.83 13.67 200 16195316.44 824.05 21.18
100 8325286.6 423.61 8.73 150 11628743.1 591.69 13.38 200 14918491.11 759.08 21.48
100 8484788.1 431.72 7.96 150 12157159.12 618.58 13.84 200 16959772.12 862.95 22.56
100 7062096.8 359.33 8.02 150 12432014.45 632.57 14.91 200 15054298.45 765.99 22.15
100 9153132.1 465.73 8.95 150 13668188.23 695.46 14.29 200 14234868.8 724.3 22.34
100 9465539.1 481.63 8.16 150 12936170.12 658.22 15.14 200 15936126.4 810.86 22.28
Avg 8005790.4 407.35 173.2 11177127.12 598.74 292.73 87662868.02 778.57 435.81

TABLE 8: MCA Distance-Emission for cities 100, 150 and 200

29



Monte Carlo Algorithm
Cities STD Average Time

10 120115.79 639355.51 55.91
15 214595.02 984382.24 69.42
20 224450.92 1375300.46 75.13
25 325413.48 1548197.26 77.22
50 462335.74 3521091.59 113.92
75 597077.67 5955509.91 130.16

100 944899.33 8005790.36 173.2
150 2674406.02 11177127.12 292.73
200 323450532.7 87662868.02 425.81

TABLE 9: Distance traveled using MCA

Monte Carlo Algorithm
Cities STD Average Time

10 6.11 32.53 55.91
15 10.41 50.08 69.42
20 10.92 69.97 75.13
25 16.55 78.77 77.22
50 22.92 179.16 113.92
75 30.38 303.02 130.16

100 48.07 407.35 173.2
150 61.56 598.74 292.73
200 75.57 778.57 425.81

TABLE 10: Emission using MCA

30



Discrete Differential Evolution Results

Results for DDE were not easy to obtain as the time taken to run the experiments

was significantly longer than the other algorithms. The final results for DDE is shown

in Table 12 and Table 13. These tables are also the extension for MCA Tables 9 and 10,

which was added to check if the distance traveled, emission and run time improved or not.

Table 11, shows the averages of distance traveled, emission and time of each file of 10

cities comparing only the MCA and DDE algorithms.

Distance Emission Runtime
Data File MCA DDE MCA DDE MCA DDE

10 1 562848.48 420569.3 28.64 21.39 5.94 14613.23
10 2 735203.83 532089.4 37.41 27.07 6.24 8181.7
10 3 609404.21 426113.2 31.01 21.68 5.32 8096.63
10 4 688172.1 500723.7 35.02 25.47 4.86 15293.4
10 5 574340.14 505101.4 29.22 25.70 4.65 9700.72
10 6 725102.77 469960.2 36.89 23.91 5.8 8796.14
10 7 681852.98 505101.4 34.69 25.87 5.26 13884.09
10 8 791488.76 531127.8 40.27 27.02 5.94 14214.1
10 9 686631.5 506836.3 34.94 25.78 5.91 7899.77

10 10 712311.38 488064.4 36.24 24.83 3.73 14600.22
10 11 954043.71 699959.5 48.54 35.61 4.81 14567.22
10 12 550364.81 326091.1 28.01 16.59 4.74 14573.15
10 13 647078.12 427385.2 32.92 21.74 4.45 11581.96
10 14 627570.8 433822.1 31.93 22.07 5.97 18073.74
10 15 400420.34 260930.6 20.37 13.27 4.71 13828.31
10 16 521650.3 407672.5 26.54 20.74 4.06 8916.12
10 17 653191.63 448224.2 33.24 22.80 3.41 9338.92
10 18 533967.38 401943.7 27.17 20.45 3.66 9605.8
10 19 641531.48 476465.1 32.64 24.24 3.01 9637.28
10 20 489935.62 295896.5 24.93 15.05 3.44 12273.13

TABLE 11: DDE: Distance traveled, Emission, runtime for each file of 10 cities.

31



Monte Carlo Algorithm Discrete Differential Evolution Significance

Cities STD Average Time STD Average Time t p p <0.05

10 120115.79 639355.51 55.91 94918.36 453203.8 237675 4.29 0.00014 Y

15 214595.02 984382.24 69.42 13172.89 526779.24 257181 4.07 0.00034 Y

20 224450.92 1375300.46 75.13 147022.12 755195.6 300708 5.37 0.00001 Y

25 325413.48 1548197.26 77.22 20391.93 1041373.34 342999 3.43 0.00036 Y

50 462335.74 3521091.59 113.92 444452.64 2694902.7 454780 1.96 0.02528 Y

75 597077.67 5955509.91 130.16 577120.56 4126600.9 503447 2.45 0.0074 Y

100 944899.33 8005790.36 173.2 620822.28 5778088.2 548122 7.61 0.00001 Y

150 2674406.02 11177127.12 292.73 969757.57 8048146.5 708222 8.46 0.00001 Y

200 323450532.7 87662868.02 425.81 1032876.54 12910399.1 1007201 9.16 0.00001 Y

Avg 36557091.84 13429958.05 157.05 435614.98 4037187.7 484481.56

TABLE 12: DDE: Distance traveled

Monte Carlo Algorithm Discrete Differential Evolution Significance
Cities STD Average Time STD Average Time t p p <0.05

10 6.11 32.53 55.91 4.25 19.91 237675 4.29 0.00014 Y

15 10.41 50.08 69.42 4.36 33.65 257181 4.07 0.00034 Y

20 10.92 69.97 75.13 6.64 45.88 300708 5.37 0.00001 Y

25 16.55 78.77 77.22 10.33 50.42 342999 3.43 0.00036 Y

50 22.92 179.16 113.92 24.48 136.03 454780 1.96 0.02528 Y

75 30.38 303.02 130.16 30.12 226.3 503447 2.45 0.0074 Y

100 48.07 407.35 173.2 39.67 327.67 548122 7.61 0.00001 Y

150 61.56 598.74 292.73 46.73 504.84 708222 8.46 0.00001 Y

200 75.57 778.57 425.81 55.61 678.01 1007201 9.16 0.00001 Y

Avg 31.38 277.57 157.05 24.68 224.74 484481.56

TABLE 13: DDE: Emission

32



Discrete Particle Swarm Optimization Results

DPSO was similar to DDE as it is another optimization technique used to solve

the PRP problem. The results for DPSO can be see in Tables 15 and 16. The time taken

shows a significant improvement when compared to DDE.

Distance Emission Runtime
Data File MCA DPSO MCA DPSO MCA DPSO

10 1 562848.5 440836.6 28.64 22.43 5.94 30.05
10 2 735203.8 556816.4 37.41 28.33 6.24 25.17
10 3 609404.2 479242.7 31.01 24.38 5.32 28.42
10 4 688172.1 528182.01 35.02 26.87 4.86 31.02
10 5 574340.1 506645.34 29.22 25.78 4.65 24.98
10 6 725102.8 566794.8 36.89 28.84 5.8 27.74
10 7 681853.33 525973.1 34.69 26.76 5.26 26.49
10 8 791488.8 650787.5 40.27 33.11 5.94 27.87
10 9 686631.5 518828.5 34.94 26.4 5.91 26.36

10 10 712311.4 517874.6 36.24 26.35 3.73 23.61
10 11 954043.7 703570.3 48.54 35.8 4.81 25.41
10 12 550364.8 415718.9 28.01 21.15 4.74 27.59
10 13 647078.1 526970.9 32.92 26.81 4.45 30.1
10 14 627570.8 497145.3 31.93 25.3 5.97 27.07
10 15 400420.3 301968.1 20.37 15.36 4.71 22.25
10 16 521650.3 447942.7 26.54 22.79 4.06 22.33
10 17 653191.6 505155.9 33.24 25.7 3.41 21.79
10 18 533967.4 407903.6 27.17 20.75 3.66 20.29
10 19 641531.5 476782.4 32.64 24.26 3.01 21.03
10 20 489935.6 368398.2 24.93 18.74 3.44 21.94

TABLE 14: DPSO: Distance traveled, Emission, runtime for each file of 10 cities.

33



Monte Carlo Algorithm Discrete Particle Swarm Significance
Cities STD Average Time STD Average Time t p p <0.05

10 120115.79 639355.51 55.91 90016.96 497176.87 411.51 5.64 0.00001 Y
15 214595.02 984382.24 69.42 155883.95 701477.56 467.57 4.07 0.00024 Y
20 224450.92 1375300.46 75.13 157691.37 938290.34 491.23 5.37 0.00001 Y
25 325413.48 1548197.26 77.22 242939.65 1065200.45 551.41 7.46 0.00561 Y
50 462335.74 3521091.59 113.92 355254.78 2598102.52 862.44 4.96 0.04284 Y
75 597077.67 5955509.91 130.16 551396.35 4703112.82 1230.73 2.43 0.04401 Y

100 944899.33 8005790.36 173.2 732605.86 6553508.39 1459.08 7.61 0.00001 Y
150 2674406.02 11177127.12 292.73 977478.52 10023414.6 2253.74 8.57 0.00981 Y
200 323450532.7 87662868.02 425.81 1047712.34 13507528.6 3240.55 9.16 0.00001 Y
Avg 36557091.84 13429958.05 157.05 478997.75 4509756.9 1218.69

TABLE 15: DPSO: Distance traveled

Monte Carlo Algorithm Discrete Particle Swarm Significance
Cities STD Average Time STD Average Time t p p <0.05

10 6.11 32.53 55.91 4.58 25.29 411.51 5.64 0.00001 Y
15 10.41 50.08 69.42 7.93 35.69 467.57 4.07 0.00024 Y
20 10.92 69.97 75.13 8.02 47.74 491.23 5.37 0.00001 Y
25 16.55 78.77 77.22 12.36 54.2 551.41 7.46 0.00561 Y
50 22.92 179.16 113.92 18.07 132.19 862.44 4.96 0.04284 Y
75 30.38 303.02 130.16 28.05 239.3 1230.73 2.43 0.04401 Y
100 48.07 407.35 173.2 37.27 333.45 1459.08 7.61 0.00001 Y
150 61.56 598.74 292.73 49.73 510.01 2253.74 8.57 0.00981 Y
200 75.57 778.57 425.81 57.56 687.28 3240.55 9.16 0.00001 Y
Avg 31.38 277.57 157.05 24.84 229.46 1218.69

TABLE 16: DPSO: Emission

34



Differential Evolution Algorithm and Discrete Particle Swarm Algorithm Result

Comparison

While comparing the MCA with two widely used optimized techniques, the

objective was to also ascertain as to which of these algorithms is better performing. Table

17 shows the distance traveled comparison between DDE and DPSO. Table 18, shows the

emission comparison between DDE and DPSO.

DDE DPSO Significance
Cities STD Average Time STD Average Time t p p <0.05

10 94918.36 453203.8 237675 90016.96 497176.87 411.51 -111.61 0.00001 Y
15 13172.89 526779.24 257181 155883.95 701477.56 467.57 27.28 0.00001 Y
20 147022.12 755195.6 300708 157691.37 938290.34 491.23 38.05 0.00001 Y
25 20391.93 1041373.34 342999 242939.65 1065200.45 551.41 -6.93 0.00001 Y
50 444452.64 2694902.7 454780 355254.78 2598102.52 862.44 -14.25 0.00001 Y
75 577120.56 4126600.9 503447 551396.35 4703112.82 1230.73 24.59 0.00001 Y

100 620822.28 5778088.2 548122 732605.86 6553508.39 1459.08 28.77 0.00001 Y
150 969757.57 8048146.5 708222 977478.52 10023414.6 2253.74 6.68 0.00001 Y
200 1032876.54 12910399.1 1007201 1047712.34 13507528.6 3240.55 2.43 0.00001 Y
Avg 435614.98 4037187.7 484481.6 478997.75 4509756.9 1218.69

TABLE 17: Distance traveled comparison between DDE and DPSO

DDE DPSO Significance
Cities STD Average Time STD Average Time t p p <0.05

10 4.25 19.91 237675 4.58 25.29 411.51 -111.61 0.00001 Y
15 4.36 33.65 257181 7.93 35.69 467.57 27.28 0.00001 Y
20 6.64 45.88 300708 8.02 47.74 491.23 38.05 0.00001 Y
25 10.33 50.42 342999 12.36 54.2 551.41 -6.93 0.00001 Y
50 24.48 136.03 454780 18.07 132.19 862.44 -14.25 0.00001 Y
75 30.12 226.3 503447 28.05 239.3 1230.73 24.59 0.00001 Y

100 39.67 327.67 548122 37.27 333.45 1459.08 28.77 0.00001 Y
150 46.73 504.84 708222 49.73 510.01 2253.74 6.68 0.00001 Y
200 55.61 678.01 1007201 57.56 687.28 3240.55 2.43 0.00001 Y
Avg 24.68 224.74 484481.6 24.84 229.46 1218.69

TABLE 18: Emission comparison between DDE and DPSO

35



CHAPTER VI

ANALYSIS

This section analyses the results obtained using MCA, DDE and DPSO in the

previous section. The results of DDE and DPSO show significant improvement over

MCA. As an example, Fig 14, Fig 15 and Fig 16 are generated using the Uk 01 dataset

to show the progression of the algorithm over a number of iterations. These figures are

generated using the tkinter Python code. The parameters for the results obtained for

Fig 14, Fig 15 and Fig 16 are:

– Number of rows: 10

– Number of iterations: 30

– Number of columns : 10

– Algorithm selected: DDE, DPSO and MCA

Distance Traveled Analysis

The first objective function to be analyzed is the distance traveled, and the results

are given in Tables 11 and 12 for DDE algorithm and Tables 14 and 15 for the DPSO

algorithms. These four tables compare the results against the MCA method.

Both DDE and DPSO results significantly improve on the MCA results. This is

due to the fact that evolutionary algorithms are based on directed search and not random

behavior such as the MCA. DDE improved on all results for all data instances.

In Table 14, the first data set of ten cities is analyzed. In all the results, the DDE

algorithm is better, however it requires extra runtime. Table 12 compares all the datasets

36



grouped in the city sizes. The average (4037187.7) and standard deviation (435614.98)

for DDE is shown to be better compared to the MCA algorithms average (13429958.05)

and standard deviation (36557091.84) value. The execution time however is better for the

MCA algorithm of 157.05msec compared to 484481.56msec for the DDE algorithm.

Significance test at 95% confidence interval is done between the two average

values, and for all of the instances, the DDE algorithm is shown to be significantly better

than the MCA algorithm.

The first DPSO distance results is given in Table 14 for the first ten cities. As in

the previous case of the DDE algorithm, the DPSO algorithm performed better than

the MCA algorithm, however with a negative influence of runtime. The DPSO distance

results for all datasets is given in Table 15. For all the problems instances, DPSO obtains

a better standard deviation (478997.75) and average (4509756.9) values compared to

MCA standard deviation (36557091.84) and average (13429958.05) values. The overall

average time is however higher for DPSO (1218.69msec compared to MCA runtime

(157.05msec). The final pairwise comparison is done between the DDE algorithm and

the DPSO algorithm as given in Table 17. From the results obtained, the DDE algorithm

is better performing in all the datasets apart from the 50 cities. The average standard

deviation for DDE is 435614.98 compared to 478997.75 for DPSO, which is a 9%

improvement. The average value of DDE is 4037187.7 compared to 4509756.9 for DPSO,

which is a 10.47% improvement of DDE over DPSO. The big drawback of DDE is its

runtime which is significantly longer than both MCA and DPSO algorithms.

An example of the iterations of the three algorithms is given in Fig 14 on a sample

10 city problem. The improvement of average values is shown over the many iterations to

showcase how the algorithms operate.

37



FIGURE 14: Distance graph for 10 cities

Emission Analysis

The second objective function to be analyzed is the emission, and the results

are given in Tables 11 and 13 for DDE algorithm and Tables 14 and 16 for the DPSO

algorithms. These four tables compare the emission results against the MCA method.

As in the previous case, both DDE and DPSO results significantly improve on the

MCA emission results.

In Table 14, the first data set of ten cities is analyzed. In all the results, the DDE

algorithm obtains better emission results, however it requires extra runtime. Table 13

compares all the datasets grouped in the city sizes. The average (224.74) and standard

deviation (24.68) for DDE is shown to be better compared to the MCA algorithms

average (277.57) and standard deviation (31.38) value. The execution time however is

better for the MCA algorithm of 157.05msec compared to 484481.56msec for the DDE

algorithm.

38



Significance test at 95% confidence interval is done between the two average

emission values, and for all of the instances, the DDE algorithm is shown to be

significantly better than the MCA algorithm.

The first DPSO emission results is given in Table 14 for the first ten cities. The

DPSO algorithm performed better on all data instances than the MCA algorithm.

The DPSO emission results for all datasets is given in Table 16. For all the problems

instances, DPSO obtains a better standard deviation (24.84) and average (229.46) values

compared to MCA standard deviation (31.38) and average (277.57) values.

The final pairwise comparison is done between the DDE algorithm and the DPSO

algorithm for emission is given in Table 18. From the results obtained, the DDE algorithm

is better performing in all the datasets apart from the 50 cities. The average standard

deviation for DDE is 24.68 compared to 24.84 for DPSO, which is a 0.64% improvement.

The average value of DDE is 224.74 compared to 229.46 for DPSO, which is a 0.02%

improvement of DDE over DPSO. All significance test at 95% confidence interval shows

that the algorithm obtaining a better value significantly improves on the other algorithm

for that dataset. Overall, it can be stated that DDE is a better performing algorithm.

An example of the iterations of the three algorithms is given in Fig 15, on a sample

10 city problem. The improvement of average emission values is shown over the many

iterations to showcase how the algorithms operate.

39



FIGURE 15: Emission graph for 10 cities

Algorithm Runtime Analysis

The final analysis is of the algorithm runtimes. The MCA algorithm takes on

average 157.05msec to run, whereas DDE takes 484481.56msec and DPSO takes

1218.69msec to run the datasets. We can conclude that MCA and DPSO are relatively

comparable, whereas DDE is significantly longer in runtime. This can be easily

explained with the fact that DDE has a NEH local search routine, whereas MCA and

DPSO do not employ any local search routines. This is a tradeoff between the different

algorithms, and also is influenced by the machine architecture that is being used to run the

experimentations.

An example is given in Fig 16, where the time taken by DPSO was much better

than DDE. The runtime of DPSO is almost the same as for MCA.

40



FIGURE 16: Algorithm runtime graph for 10 cities

41



CHAPTER VII

CONCLUSION

The aim of this project was to solve a problem that has been identified as one

of the biggest challenges that humanity is facing, that of reducing carbon emissions

[21]. Air pollution is been seen as a major factor in a lot of the societal problems in the

world. These problems include reduced population density, species density, and species

richness in communities [22]. Some of these problems have no solution (or none yet)

and for some, the extent of the problems is still yet to be determined. One of the key

components that has been identified as a major contributor for air pollution is vehicular

traffic, specifically commercial vehicles.

The motivation of this project was to find suitable algorithms that can be used to

solve Vehicle Routing Problems (VRP), specifically the pollution focused Pollution

Routing Problem (PRP). There are many papers written on the PRP, however each is

taking a fixed approach which cannot be adapted to other modification of the problem.

The idea was then to use advanced evolutionary algorithms and test its effectiveness

to solve this problem. Initially, the project started by using the traditional way of

calculating the distance traveled formula and adding emission formula (FCR) on it.

Therefore, VRP was transformed into the PRP problem and a suitable dataset

from the UK was utilized for testing purposes. Initially, by using MCA algorithm, major

improvements were seen in the results over the iterations. For the data file Uk10 1, the

distance traveled from the classic sequence of city was 847741 and emission was 43.1437,

whereas using MCA gives distance traveled as 559193 and emission as 28.45. Using the

MCA algorithm, the emission value were improved by almost 1.5 times.

42



Applying the two different evolutionary algorithm of DDE and DPSO further

improved on these results. Both these algorithms were adapted from literature, where

they had been used to solve strict permutative based combinatorial optimization problems.

These algorithms were modified to solve the PRP problem.

Two separate analysis were done for distance traveled and emission. Aside from

one dataset, DDE was the best performing algorithm overall with the DPSO ahead of the

MCA algorithm. By employing a local search routine inside DPSO, it is believed that the

performance will be on par with DDE.

The application of these evolutionary algorithms validate the aim of the project that

different algorithms can effectively solve the PRP problem and they can be easily adapted

and scaled to solve such problems from other regions and states across the globe. The

reduction in pollutants remains a key objective for humanity.

Future Expectations

– The future work can include using more optimizing algorithms to see if better

results can be obtained.

– High performance paradigms such as CUDA can be used to accelerate these

algorithms for better in-time analysis of conditions.

– A model can be created which for example uses the PRP as a layer for Google

Maps to indicate which route will cause less pollution for traffic analysis and route

setting purposes.

– Instead of using tkinter forms, an app can be created. Trucking companies can

use it for optimizing the route and improving the environment thereby creating less

pollution and improving air quality.

43



REFERENCES CITED

[1] T. Bektaş and G. Laporte, “The pollution-routing problem,” Transportation Research
Part B: Methodological, vol. 45, no. 8, pp. 1232–1250, 2011.

[2] R. Kramer, A. Subramanian, T. Vidal, and F. C. Lucı́dio dos Anjos, “A matheuristic
approach for the pollution-routing problem,” European Journal of Operational
Research, vol. 243, no. 2, pp. 523–539, 2015.

[3] M. Figliozzi, “Vehicle routing problem for emissions minimization,” Transportation
Research Record, vol. 2197, no. 1, pp. 1–7, 2010.

[4] A. McKinnon, “co2 emissions from freight transport in the uk,” Commission for
Integrated Transport, London, 2007.

[5] E. Demir, T. Bektaş, and G. Laporte, “A comparative analysis of several vehicle
emission models for road freight transportation,” Transportation Research Part D:
Transport and Environment, vol. 16, no. 5, pp. 347–357, 2011.

[6] H. R. Kirby, B. Hutton, R. W. McQuaid, R. Raeside, and X. Zhang, “Modelling the
effects of transport policy levers on fuel efficiency and national fuel consumption,”
Transportation Research Part D: Transport and Environment, vol. 5, no. 4,
pp. 265–282, 2000.

[7] N. Tajik, R. Tavakkoli-Moghaddam, B. Vahdani, and S. M. Mousavi, “A robust
optimization approach for pollution routing problem with pickup and delivery under
uncertainty,” Journal of Manufacturing Systems, vol. 33, no. 2, pp. 277–286, 2014.

[8] R. G. Derwent and O. Hov, “Computer modeling studies of the impact of vehicle
exhaust emission controls on photochemical air pollution formation in the united
kingdom,” Environmental Science & Technology, vol. 14, no. 11, pp. 1360–1366,
1980.

[9] R. S. Kumar, K. Kondapaneni, V. Dixit, A. Goswami, L. S. Thakur, and M. Tiwari,
“Multi-objective modeling of production and pollution routing problem with time
window: A self-learning particle swarm optimization approach,” Computers &
Industrial Engineering, vol. 99, pp. 29–40, 2016.

[10] S. Goyal, S. Ghatge, P. Nema, and S. Tamhane, “Understanding urban vehicular
pollution problem vis-a-vis ambient air quality–case study of a megacity (delhi,
india),” Environmental monitoring and assessment, vol. 119, no. 1-3, pp. 557–569,
2006.

44



[11] D. Davendra, I. Zelinka, M. Bialic-Davendra, R. Senkerik, and R. Jasek, “Discrete
self organising migrating algorithm for the task of capacitated vehicle routing
problem,” Mendel, pp. 259–265, 01 2011.

[12] R. Nath, A. Rauniyar, P. K. Muhuri, and A. K. Shukla, “A novel bilevel formulation
for pollution routing problem,” pp. 586–562, 2018.

[13] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A discrete differential evolution
algorithm for the permutation flowshop scheduling problem,” Computers &
Industrial Engineering, vol. 55, no. 4, pp. 795–816, 2008.

[14] X. Wang and L. Tang, “A discrete particle swarm optimization algorithm with
self-adaptive diversity control for the permutation flowshop problem with
blocking,” Applied Soft Computing, vol. 12, no. 2, pp. 652–662, 2012.

[15] U. of Southampton, “The pollution-routing problem instance library.”
http://www.apollo.management.soton.ac.uk/prplib.htm, 2020.

[16] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans. Model.
Comput. Simul., vol. 8, p. 3–30, Jan. 1998.

[17] V. Sriram and D. Kearney, “An area time efficient field programmable mersenne
twister uniform random number generator,” in ERSA, pp. 244–246, Citeseer, 2006.

[18] M. Nawaz, E. E. Enscore Jr, and I. Ham, “A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem,” Omega, vol. 11, no. 1, pp. 91–95, 1983.

[19] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz, “A particle swarm
optimization algorithm for makespan and total flowtime minimization in the
permutation flowshop sequencing problem,” European journal of operational
research, vol. 177, no. 3, pp. 1930–1947, 2007.

[20] J. W. Shipman, “Tkinter 8.4 reference: a gui for python,” New Mexico Tech Computer
Center, 2013.

[21] J. Kagawa, “Atmospheric pollution due to mobile sources and effects on human
health in japan.,” Environmental health perspectives, vol. 102, no. suppl 4,
pp. 93–99, 1994.

[22] P. Movalli, O. Krone, D. Osborn, and D. Pain, “Monitoring contaminants, emerging
infectious diseases and environmental change with raptors, and links to human
health,” Bird Study, vol. 65, no. sup1, pp. S96–S109, 2018.

45


	Optimizing Pollution Routing Problem
	Recommended Citation

	tmp.1591671651.pdf.ywGKc

